Many resources are needed to download a project. Please understand that we have to compensate our server costs. Thank you in advance. Project price only 1 $
You can buy this project and download/modify it how often you want.
/*
* Copyright 2017-2022 John Snow Labs
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.johnsnowlabs.nlp.embeddings
import com.johnsnowlabs.ml.ai.BGE
import com.johnsnowlabs.ml.onnx.{OnnxWrapper, ReadOnnxModel, WriteOnnxModel}
import com.johnsnowlabs.ml.tensorflow._
import com.johnsnowlabs.ml.util.LoadExternalModel.{
loadTextAsset,
modelSanityCheck,
notSupportedEngineError
}
import com.johnsnowlabs.ml.util.{ONNX, TensorFlow}
import com.johnsnowlabs.nlp._
import com.johnsnowlabs.nlp.annotators.common._
import com.johnsnowlabs.nlp.annotators.tokenizer.wordpiece.{BasicTokenizer, WordpieceEncoder}
import com.johnsnowlabs.nlp.serialization.MapFeature
import com.johnsnowlabs.storage.HasStorageRef
import org.apache.spark.broadcast.Broadcast
import org.apache.spark.ml.param._
import org.apache.spark.ml.util.Identifiable
import org.apache.spark.sql.{DataFrame, SparkSession}
import org.slf4j.{Logger, LoggerFactory}
/** Sentence embeddings using BGE.
*
* BGE, or BAAI General Embeddings, a model that can map any text to a low-dimensional dense
* vector which can be used for tasks like retrieval, classification, clustering, or semantic
* search.
*
* Note that this annotator is only supported for Spark Versions 3.4 and up.
*
* Pretrained models can be loaded with `pretrained` of the companion object:
* {{{
* val embeddings = BGEEmbeddings.pretrained()
* .setInputCols("document")
* .setOutputCol("embeddings")
* }}}
* The default model is `"bge_base"`, if no name is provided.
*
* For available pretrained models please see the
* [[https://sparknlp.org/models?q=BGE Models Hub]].
*
* For extended examples of usage, see
* [[https://github.com/JohnSnowLabs/spark-nlp/blob/master/src/test/scala/com/johnsnowlabs/nlp/embeddings/BGEEmbeddingsTestSpec.scala BGEEmbeddingsTestSpec]].
*
* '''Sources''' :
*
* [[https://arxiv.org/pdf/2309.07597 C-Pack: Packaged Resources To Advance General Chinese Embedding]]
*
* [[https://github.com/FlagOpen/FlagEmbedding BGE Github Repository]]
*
* ''' Paper abstract '''
*
* ''We introduce C-Pack, a package of resources that significantly advance the field of general
* Chinese embeddings. C-Pack includes three critical resources. 1) C-MTEB is a comprehensive
* benchmark for Chinese text embeddings covering 6 tasks and 35 datasets. 2) C-MTP is a massive
* text embedding dataset curated from labeled and unlabeled Chinese corpora for training
* embedding models. 3) C-TEM is a family of embedding models covering multiple sizes. Our models
* outperform all prior Chinese text embeddings on C-MTEB by up to +10% upon the time of the
* release. We also integrate and optimize the entire suite of training methods for C-TEM. Along
* with our resources on general Chinese embedding, we release our data and models for English
* text embeddings. The English models achieve stateof-the-art performance on the MTEB benchmark;
* meanwhile, our released English data is 2 times larger than the Chinese data. All these
* resources are made publicly available at https://github.com/FlagOpen/FlagEmbedding.''
*
* ==Example==
* {{{
* import spark.implicits._
* import com.johnsnowlabs.nlp.base.DocumentAssembler
* import com.johnsnowlabs.nlp.annotators.Tokenizer
* import com.johnsnowlabs.nlp.embeddings.BGEEmbeddings
* import com.johnsnowlabs.nlp.EmbeddingsFinisher
* import org.apache.spark.ml.Pipeline
*
* val documentAssembler = new DocumentAssembler()
* .setInputCol("text")
* .setOutputCol("document")
*
* val embeddings = BGEEmbeddings.pretrained("bge_base", "en")
* .setInputCols("document")
* .setOutputCol("bge_embeddings")
*
* val embeddingsFinisher = new EmbeddingsFinisher()
* .setInputCols("bge_embeddings")
* .setOutputCols("finished_embeddings")
* .setOutputAsVector(true)
*
* val pipeline = new Pipeline().setStages(Array(
* documentAssembler,
* embeddings,
* embeddingsFinisher
* ))
*
* val data = Seq("query: how much protein should a female eat",
* "passage: As a general guideline, the CDC's average requirement of protein for women ages 19 to 70 is 46 grams per day." +
* But, as you can see from this chart, you'll need to increase that if you're expecting or training for a" +
* marathon. Check out the chart below to see how much protein you should be eating each day."
*
* ).toDF("text")
* val result = pipeline.fit(data).transform(data)
*
* result.selectExpr("explode(finished_embeddings) as result").show(1, 80)
* +--------------------------------------------------------------------------------+
* | result|
* +--------------------------------------------------------------------------------+
* |[[8.0190285E-4, -0.005974853, -0.072875895, 0.007944068, 0.026059335, -0.0080...|
* |[[0.050514214, 0.010061974, -0.04340176, -0.020937217, 0.05170225, 0.01157857...|
* +--------------------------------------------------------------------------------+
* }}}
*
* @see
* [[https://sparknlp.org/docs/en/annotators Annotators Main Page]] for a list of transformer
* based embeddings
* @param uid
* required uid for storing annotator to disk
* @groupname anno Annotator types
* @groupdesc anno
* Required input and expected output annotator types
* @groupname Ungrouped Members
* @groupname param Parameters
* @groupname setParam Parameter setters
* @groupname getParam Parameter getters
* @groupname Ungrouped Members
* @groupprio param 1
* @groupprio anno 2
* @groupprio Ungrouped 3
* @groupprio setParam 4
* @groupprio getParam 5
* @groupdesc param
* A list of (hyper-)parameter keys this annotator can take. Users can set and get the
* parameter values through setters and getters, respectively.
*/
class BGEEmbeddings(override val uid: String)
extends AnnotatorModel[BGEEmbeddings]
with HasBatchedAnnotate[BGEEmbeddings]
with WriteTensorflowModel
with WriteOnnxModel
with HasEmbeddingsProperties
with HasStorageRef
with HasCaseSensitiveProperties
with HasEngine {
/** Annotator reference id. Used to identify elements in metadata or to refer to this annotator
* type
*/
override val inputAnnotatorTypes: Array[String] =
Array(AnnotatorType.DOCUMENT)
override val outputAnnotatorType: AnnotatorType = AnnotatorType.SENTENCE_EMBEDDINGS
/** ConfigProto from tensorflow, serialized into byte array. Get with
* `config_proto.SerializeToString()`
*
* @group param
*/
val configProtoBytes = new IntArrayParam(
this,
"configProtoBytes",
"ConfigProto from tensorflow, serialized into byte array. Get with config_proto.SerializeToString()")
/** Max sentence length to process (Default: `128`)
*
* @group param
*/
val maxSentenceLength =
new IntParam(this, "maxSentenceLength", "Max sentence length to process")
def sentenceStartTokenId: Int = {
$$(vocabulary)("[CLS]")
}
/** @group setParam */
def sentenceEndTokenId: Int = {
$$(vocabulary)("[SEP]")
}
/** Vocabulary used to encode the words to ids with WordPieceEncoder
*
* @group param
*/
val vocabulary: MapFeature[String, Int] = new MapFeature(this, "vocabulary").setProtected()
/** @group setParam */
def setVocabulary(value: Map[String, Int]): this.type = set(vocabulary, value)
/** It contains TF model signatures for the laded saved model
*
* @group param
*/
val signatures =
new MapFeature[String, String](model = this, name = "signatures").setProtected()
private var _model: Option[Broadcast[BGE]] = None
def this() = this(Identifiable.randomUID("BGE_EMBEDDINGS"))
/** @group setParam */
def setConfigProtoBytes(bytes: Array[Int]): BGEEmbeddings.this.type =
set(this.configProtoBytes, bytes)
/** @group setParam */
def setMaxSentenceLength(value: Int): this.type = {
require(
value <= 512,
"BGE models do not support sequences longer than 512 because of trainable positional embeddings.")
require(value >= 1, "The maxSentenceLength must be at least 1")
set(maxSentenceLength, value)
this
}
/** @group getParam */
def getMaxSentenceLength: Int = $(maxSentenceLength)
/** @group setParam */
def setSignatures(value: Map[String, String]): this.type = {
if (get(signatures).isEmpty)
set(signatures, value)
this
}
/** @group setParam */
def setModelIfNotSet(
spark: SparkSession,
tensorflowWrapper: Option[TensorflowWrapper],
onnxWrapper: Option[OnnxWrapper]): BGEEmbeddings = {
if (_model.isEmpty) {
_model = Some(
spark.sparkContext.broadcast(
new BGE(
tensorflowWrapper,
onnxWrapper,
configProtoBytes = getConfigProtoBytes,
sentenceStartTokenId = sentenceStartTokenId,
sentenceEndTokenId = sentenceEndTokenId,
signatures = getSignatures)))
}
this
}
/** Set Embeddings dimensions for the BERT model Only possible to set this when the first time
* is saved dimension is not changeable, it comes from BERT config file
*
* @group setParam
*/
override def setDimension(value: Int): this.type = {
if (get(dimension).isEmpty)
set(this.dimension, value)
this
}
/** Whether to lowercase tokens or not
*
* @group setParam
*/
override def setCaseSensitive(value: Boolean): this.type = {
if (get(caseSensitive).isEmpty)
set(this.caseSensitive, value)
this
}
setDefault(dimension -> 768, batchSize -> 8, maxSentenceLength -> 512, caseSensitive -> false)
def tokenize(sentences: Seq[Annotation]): Seq[WordpieceTokenizedSentence] = {
val basicTokenizer = new BasicTokenizer($(caseSensitive))
val encoder = new WordpieceEncoder($$(vocabulary))
sentences.map { s =>
val sent = Sentence(
content = s.result,
start = s.begin,
end = s.end,
metadata = Some(s.metadata),
index = s.begin)
val tokens = basicTokenizer.tokenize(sent)
val wordpieceTokens = tokens.flatMap(token => encoder.encode(token))
WordpieceTokenizedSentence(wordpieceTokens)
}
}
/** takes a document and annotations and produces new annotations of this annotator's annotation
* type
*
* @param batchedAnnotations
* Annotations that correspond to inputAnnotationCols generated by previous annotators if any
* @return
* any number of annotations processed for every input annotation. Not necessary one to one
* relationship
*/
override def batchAnnotate(batchedAnnotations: Seq[Array[Annotation]]): Seq[Seq[Annotation]] = {
val allAnnotations = batchedAnnotations
.filter(_.nonEmpty)
.zipWithIndex
.flatMap { case (annotations, i) =>
annotations.filter(_.result.nonEmpty).map(x => (x, i))
}
// Tokenize sentences
val tokenizedSentences = tokenize(allAnnotations.map(_._1))
val processedAnnotations = if (allAnnotations.nonEmpty) {
this.getModelIfNotSet.predict(
sentences = allAnnotations.map(_._1),
tokenizedSentences = tokenizedSentences,
batchSize = $(batchSize),
maxSentenceLength = $(maxSentenceLength))
} else {
Seq()
}
// Group resulting annotations by rows. If there are not sentences in a given row, return empty sequence
batchedAnnotations.indices.map(rowIndex => {
val rowAnnotations = processedAnnotations
// zip each annotation with its corresponding row index
.zip(allAnnotations)
// select the sentences belonging to the current row
.filter(_._2._2 == rowIndex)
// leave the annotation only
.map(_._1)
if (rowAnnotations.nonEmpty)
rowAnnotations
else
Seq.empty[Annotation]
})
}
/** @group getParam */
def getModelIfNotSet: BGE = _model.get.value
override def onWrite(path: String, spark: SparkSession): Unit = {
super.onWrite(path, spark)
val suffix = "_bge"
getEngine match {
case TensorFlow.name =>
writeTensorflowModelV2(
path,
spark,
getModelIfNotSet.tensorflowWrapper.get,
suffix,
BGEEmbeddings.tfFile,
configProtoBytes = getConfigProtoBytes,
savedSignatures = getSignatures)
case ONNX.name =>
writeOnnxModel(
path,
spark,
getModelIfNotSet.onnxWrapper.get,
suffix,
BGEEmbeddings.onnxFile)
case _ =>
throw new Exception(notSupportedEngineError)
}
}
/** @group getParam */
def getConfigProtoBytes: Option[Array[Byte]] = get(this.configProtoBytes).map(_.map(_.toByte))
/** @group getParam */
def getSignatures: Option[Map[String, String]] = get(this.signatures)
override protected def afterAnnotate(dataset: DataFrame): DataFrame = {
dataset.withColumn(
getOutputCol,
wrapSentenceEmbeddingsMetadata(
dataset.col(getOutputCol),
$(dimension),
Some($(storageRef))))
}
}
trait ReadablePretrainedBGEModel
extends ParamsAndFeaturesReadable[BGEEmbeddings]
with HasPretrained[BGEEmbeddings] {
override val defaultModelName: Some[String] = Some("bge_base")
/** Java compliant-overrides */
override def pretrained(): BGEEmbeddings = super.pretrained()
override def pretrained(name: String): BGEEmbeddings = super.pretrained(name)
override def pretrained(name: String, lang: String): BGEEmbeddings =
super.pretrained(name, lang)
override def pretrained(name: String, lang: String, remoteLoc: String): BGEEmbeddings =
super.pretrained(name, lang, remoteLoc)
}
trait ReadBGEDLModel extends ReadTensorflowModel with ReadOnnxModel {
this: ParamsAndFeaturesReadable[BGEEmbeddings] =>
override val tfFile: String = "bge_tensorflow"
override val onnxFile: String = "bge_onnx"
def readModel(instance: BGEEmbeddings, path: String, spark: SparkSession): Unit = {
instance.getEngine match {
case TensorFlow.name =>
val tfWrapper = readTensorflowModel(path, spark, "_bge_tf", initAllTables = false)
instance.setModelIfNotSet(spark, Some(tfWrapper), None)
case ONNX.name =>
val onnxWrapper =
readOnnxModel(path, spark, "_bge_onnx", zipped = true, useBundle = false, None)
instance.setModelIfNotSet(spark, None, Some(onnxWrapper))
case _ =>
throw new Exception(notSupportedEngineError)
}
}
addReader(readModel)
def loadSavedModel(modelPath: String, spark: SparkSession): BGEEmbeddings = {
val (localModelPath, detectedEngine) = modelSanityCheck(modelPath)
val vocabs = loadTextAsset(localModelPath, "vocab.txt").zipWithIndex.toMap
/*Universal parameters for all engines*/
val annotatorModel = new BGEEmbeddings()
.setVocabulary(vocabs)
annotatorModel.set(annotatorModel.engine, detectedEngine)
detectedEngine match {
case TensorFlow.name =>
val (wrapper, signatures) =
TensorflowWrapper.read(
localModelPath,
zipped = false,
useBundle = true,
tags = Array("serve"),
initAllTables = false)
val _signatures = signatures match {
case Some(s) => s
case None => throw new Exception("Cannot load signature definitions from model!")
}
/** the order of setSignatures is important if we use getSignatures inside
* setModelIfNotSet
*/
annotatorModel
.setSignatures(_signatures)
.setModelIfNotSet(spark, Some(wrapper), None)
case ONNX.name =>
val onnxWrapper =
OnnxWrapper.read(spark, localModelPath, zipped = false, useBundle = true)
annotatorModel
.setModelIfNotSet(spark, None, Some(onnxWrapper))
case _ =>
throw new Exception(notSupportedEngineError)
}
annotatorModel
}
}
/** This is the companion object of [[BGEEmbeddings]]. Please refer to that class for the
* documentation.
*/
object BGEEmbeddings extends ReadablePretrainedBGEModel with ReadBGEDLModel {
private[BGEEmbeddings] val logger: Logger =
LoggerFactory.getLogger("BGEEmbeddings")
}