com.johnsnowlabs.ml.ai.t5.OnnxT5EncoderDecoder.scala Maven / Gradle / Ivy
The newest version!
package com.johnsnowlabs.ml.ai.t5
import ai.onnxruntime.{OnnxTensor, OrtSession, TensorInfo}
import com.johnsnowlabs.ml.onnx.{OnnxSession, OnnxWrapper}
import com.johnsnowlabs.ml.tensorflow.sentencepiece.SentencePieceWrapper
import org.slf4j.{Logger, LoggerFactory}
import scala.collection.JavaConverters.{mapAsJavaMap, setAsJavaSet}
class OnnxT5EncoderDecoder(
val onnxEncoder: OnnxWrapper,
val onnxDecoder: OnnxWrapper,
override val spp: SentencePieceWrapper,
override val additionalTokens: Map[Int, String] = Map())
extends T5EncoderDecoder(spp, additionalTokens) {
protected val logger: Logger = LoggerFactory.getLogger("OnnxT5EncoderDecoder")
private val onnxSessionOptions: Map[String, String] = new OnnxSession().getSessionOptions
protected val numLayers: Int = {
((onnxDecoder.getSession(onnxSessionOptions)._1.getNumOutputs - 1) / 4).toInt
}
protected val numAttnHeads: Int = {
onnxDecoder
.getSession(onnxSessionOptions)
._1
.getInputInfo
.get("past_key_values.0.decoder.value")
.getInfo
.asInstanceOf[TensorInfo]
.getShape()(1)
.toInt
}
sessionWarmup()
override def tag(
batch: Seq[Array[Int]],
maxNewTokens: Int,
maxTextLength: Int,
doSample: Boolean,
topK: Int,
topP: Double,
temperature: Double,
noRepeatNgramSize: Int,
repetitionPenalty: Double,
randomSeed: Option[Long],
ignoreTokenIds: Array[Int] = Array(),
stopAtEos: Boolean): Array[Array[Int]] = {
/* Actual size of each sentence to skip padding in the TF model */
val sequencesLength = batch.map(x => x.length).toArray
val maxSentenceLength = sequencesLength.max // - curLen
val numReturn_sequences = 1
// from config
val vocabSize = 32128
val inputDim = batch.length * maxSentenceLength
val (encoder, env) = onnxEncoder.getSession(onnxSessionOptions)
// Run encoder
val encoderInputBuffers = batch
.map(tokenIds =>
(tokenIds.take(maxSentenceLength).map(_.toLong) ++ Array.fill[Long](
maxSentenceLength - tokenIds.length)(this.paddingTokenId)))
.toArray
val encoderAttentionMaskBuffers =
encoderInputBuffers.map(x => x.map(xx => if (xx != this.paddingTokenId) 1L else 0L))
val encoderInputTensors = OnnxTensor.createTensor(env, encoderInputBuffers)
val encoderAttentionMaskTensors = OnnxTensor.createTensor(env, encoderAttentionMaskBuffers)
Array(Array())
try {
val encoderResults = encoder.run(mapAsJavaMap(
Map("input_ids" -> encoderInputTensors, "attention_mask" -> encoderAttentionMaskTensors)))
val encoderStateBuffer =
try {
val encoderStateTensor = encoderResults
.get("last_hidden_state")
.get()
.asInstanceOf[OnnxTensor]
val shape = encoderStateTensor.getInfo.getShape
encoderStateTensor.getFloatBuffer
.array()
.grouped(shape(2).toInt)
.toArray
.grouped(shape(1).toInt)
.toArray
} finally {
if (encoderResults != null) encoderResults.close()
}
encoderInputTensors.close()
val encoderStateTensors = OnnxTensor.createTensor(env, encoderStateBuffer)
val modelOutputs = generateNoBeamSearch(
batch,
encoderStateTensors,
encoderAttentionMaskTensors,
maxNewTokens = maxNewTokens,
maxTextLength = maxTextLength,
doSample = doSample,
topK = topK,
topP = topP,
temperature = temperature,
vocabSize = vocabSize,
randomSeed = randomSeed,
ignoreTokenIds = ignoreTokenIds,
stopAtEos = stopAtEos,
noRepeatNgramSize = noRepeatNgramSize,
repetitionPenalty = repetitionPenalty)
encoderAttentionMaskTensors.close()
encoderStateTensors.close()
// modelOutputs.foreach(x => {
// println(x.map(_.toString).mkString(" "))
// })
modelOutputs
} catch {
case e: Exception =>
// Handle exceptions by logging or other means.
e.printStackTrace()
Array.empty[Array[Int]] // Return an empty array or appropriate error handling
}
}
def generateCacheKeys(component: String, state: String): Array[String] = {
{ 0 until numLayers }
.flatMap(x => Array(s"$state.$x.$component.key", s"$state.$x.$component.value"))
.toArray
}
lazy val encoderCacheInputKeys: Array[String] = generateCacheKeys("encoder", "past_key_values")
lazy val encoderCacheOutputKeys: Array[String] = generateCacheKeys("encoder", "present")
lazy val decoderCacheInputKeys: Array[String] = generateCacheKeys("decoder", "past_key_values")
lazy val decoderCacheOutputKeys: Array[String] = generateCacheKeys("decoder", "present")
def generateNoBeamSearch(
inputIds: Seq[Array[Int]],
encoderStateTensors: OnnxTensor,
encoderAttentionMaskTensors: OnnxTensor,
maxNewTokens: Int,
maxTextLength: Int,
doSample: Boolean,
topK: Int,
topP: Double,
temperature: Double,
vocabSize: Int,
randomSeed: Option[Long],
ignoreTokenIds: Array[Int] = Array(),
stopAtEos: Boolean,
noRepeatNgramSize: Int,
repetitionPenalty: Double): Array[Array[Int]] = {
var decoderInputIds = inputIds.map(x => Array(this.paddingTokenId.toLong)).toArray
val batchSize = decoderInputIds.length
val stopTokens = if (stopAtEos) Array(this.eosTokenId) else Array[Int]()
var decoderInitCache: Option[Array[OnnxTensor]] = None
var decoderOutputCache: Option[Array[OnnxTensor]] = None
var decoderInitResults: OrtSession.Result = null
var decoderResults: OrtSession.Result = null
val (decoderSession, decoderEnv) = onnxDecoder.getSession(onnxSessionOptions)
val decoderProcessor = new DecoderProcessor(
batchSize = batchSize,
maxTextLength = maxTextLength,
sequenceLength = decoderInputIds(0).length,
doSample = doSample,
topK = topK,
topP = topP,
temperature = temperature,
vocabSize = vocabSize,
noRepeatNgramSize = noRepeatNgramSize,
randomSeed = randomSeed,
stopTokens = stopTokens,
ignoreTokenIds = ignoreTokenIds,
maxNewTokens = maxNewTokens,
repetitionPenalty = repetitionPenalty)
while (!decoderProcessor.stopDecoding(decoderInputIds)) {
var logitsRaw: Array[Float] = Array()
if (decoderInitCache.isEmpty) {
// First pass of the decoder
val decoderInputIdsTensors = OnnxTensor.createTensor(decoderEnv, decoderInputIds)
// dummy zero tensors for the first pass
val dummyTensor1 = OnnxTensor.createTensor(
decoderEnv,
Array
.fill(batchSize * inputIds.head.length * numAttnHeads * 64)(0.0f)
.grouped(64)
.toArray
.grouped(inputIds.head.length)
.toArray
.grouped(numAttnHeads)
.toArray)
val dummyTensor2 = OnnxTensor.createTensor(
decoderEnv,
Array
.fill(batchSize * decoderInputIds.head.length * numAttnHeads * 64)(0.0f)
.grouped(64)
.toArray
.grouped(decoderInputIds.head.length)
.toArray
.grouped(numAttnHeads)
.toArray)
val decoderInitFeedKeys = Map(
"input_ids" -> decoderInputIdsTensors,
"encoder_attention_mask" -> encoderAttentionMaskTensors,
"encoder_hidden_states" -> encoderStateTensors,
"use_cache_branch" -> OnnxTensor.createTensor(
decoderEnv,
Array(x = false))) ++ (encoderCacheInputKeys.map(x => (x, dummyTensor1))
++ decoderCacheInputKeys.map(x => (x, dummyTensor2)))
val decoderInitFetchKeys =
Array("logits") ++ encoderCacheOutputKeys ++ decoderCacheOutputKeys
decoderInitResults = decoderSession.run(
mapAsJavaMap(decoderInitFeedKeys),
setAsJavaSet(Set(decoderInitFetchKeys).flatten))
logitsRaw = decoderInitResults
.get(decoderInitFetchKeys.head)
.get
.asInstanceOf[OnnxTensor]
.getFloatBuffer
.array()
decoderInitCache = Some(decoderInitFetchKeys.tail.map(cacheKey =>
decoderInitResults.get(cacheKey).get.asInstanceOf[OnnxTensor]))
decoderInputIdsTensors.close()
} else {
// Subsequent passes of the decoder
val decoderInputIdsTensors =
OnnxTensor.createTensor(decoderEnv, decoderInputIds.map(x => Array(x.last)))
val decoderFeedKeys = Map(
"input_ids" -> decoderInputIdsTensors,
"encoder_attention_mask" -> encoderAttentionMaskTensors,
"encoder_hidden_states" -> encoderStateTensors,
"use_cache_branch" -> OnnxTensor.createTensor(
decoderEnv,
Array(x = true))) ++ encoderCacheInputKeys.zip(
decoderInitCache.get.slice(0, encoderCacheInputKeys.length)) ++ (
if (decoderOutputCache.isEmpty) {
decoderCacheInputKeys.zip(
decoderInitCache.get.slice(
encoderCacheInputKeys.length,
encoderCacheInputKeys.length + decoderCacheInputKeys.length))
} else {
decoderCacheInputKeys.zip(decoderOutputCache.get)
}
)
val decoderFetchKeys = Array("logits") ++ decoderCacheOutputKeys
decoderResults = decoderSession.run(
mapAsJavaMap(decoderFeedKeys),
setAsJavaSet(Set(decoderFetchKeys).flatten))
logitsRaw = decoderResults
.get(decoderFetchKeys.head)
.get
.asInstanceOf[OnnxTensor]
.getFloatBuffer
.array()
decoderOutputCache = Some(decoderFetchKeys.tail.map(cacheKey =>
decoderResults.get(cacheKey).get.asInstanceOf[OnnxTensor]))
decoderInputIdsTensors.close()
}
val logits = (0 until batchSize)
.map(i => {
logitsRaw.slice(i * vocabSize, (i + 1) * vocabSize)
})
.toArray
decoderInputIds =
decoderProcessor.processLogits(batchLogits = logits, decoderInputIds = decoderInputIds)
}
if (decoderInitResults != null) decoderInitResults.close()
if (decoderResults != null) decoderResults.close()
decoderInputIds.map(x => x.map(_.toInt))
}
}