All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.johnsnowlabs.nlp.annotators.PretrainedAnnotations.scala Maven / Gradle / Ivy

The newest version!
/*
 * Copyright 2017-2022 John Snow Labs
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package com.johnsnowlabs.nlp.annotators

import com.johnsnowlabs.nlp.Annotation
import com.johnsnowlabs.nlp.annotators.parser.dep.DependencyParserModel
import com.johnsnowlabs.nlp.annotators.parser.dep.GreedyTransition.DependencyMaker
import com.johnsnowlabs.nlp.annotators.parser.typdep.{
  DependencyPipe,
  Options,
  TypedDependencyParserModel
}
import com.johnsnowlabs.nlp.annotators.pos.perceptron.{AveragedPerceptron, PerceptronModel}

object PretrainedAnnotations {

  def getPosOutput(
      annotations: Seq[Annotation],
      perceptronModel: PerceptronModel): Seq[Annotation] = {
    perceptronModel.annotate(annotations)
  }

  def getPretrainedPos(posModelCoordinates: Array[String]): PerceptronModel = {
    val pretrainedPosModel = posModelCoordinates.length match {
      case 2 =>
        PerceptronModel.pretrained(name = posModelCoordinates.head, lang = posModelCoordinates(1))
      case 3 =>
        PerceptronModel.pretrained(
          name = posModelCoordinates.head,
          lang = posModelCoordinates(1),
          remoteLoc = posModelCoordinates(2))
      case _ => PerceptronModel.pretrained()
    }

    val averagePerceptron: AveragedPerceptron = pretrainedPosModel.model.getOrDefault
    val posTagger = new PerceptronModel().setModel(averagePerceptron)

    posTagger
  }

  def getDependencyParser(
      dependencyParserModelCoordinates: Array[String]): DependencyParserModel = {
    val dependencyParserModel = dependencyParserModelCoordinates.length match {
      case 2 =>
        DependencyParserModel.pretrained(
          name = dependencyParserModelCoordinates.head,
          lang = dependencyParserModelCoordinates(1))
      case 3 =>
        DependencyParserModel.pretrained(
          name = dependencyParserModelCoordinates.head,
          lang = dependencyParserModelCoordinates(1),
          remoteLoc = dependencyParserModelCoordinates(2))
      case _ => DependencyParserModel.pretrained()
    }

    val dependencyMaker: DependencyMaker = dependencyParserModel.perceptron.getOrDefault
    val dependencyParser = new DependencyParserModel().setPerceptron(dependencyMaker)

    dependencyParser
  }

  def getDependencyParserOutput(
      annotations: Seq[Annotation],
      dependencyParserModel: DependencyParserModel): Seq[Annotation] = {
    val dependencyParserAnnotations = dependencyParserModel.annotate(annotations)
    dependencyParserAnnotations
  }

  def getTypedDependencyParser(
      typedDependencyParserModelCoordinates: Array[String]): TypedDependencyParserModel = {
    val pretrainedModel = typedDependencyParserModelCoordinates.length match {
      case 2 =>
        TypedDependencyParserModel.pretrained(
          name = typedDependencyParserModelCoordinates.head,
          lang = typedDependencyParserModelCoordinates(1))
      case 3 =>
        TypedDependencyParserModel.pretrained(
          name = typedDependencyParserModelCoordinates.head,
          lang = typedDependencyParserModelCoordinates(1),
          remoteLoc = typedDependencyParserModelCoordinates(2))
      case _ => TypedDependencyParserModel.pretrained()
    }

    val dependencyPipe: DependencyPipe = pretrainedModel.trainDependencyPipe.getOrDefault
    val trainOptions: Options = pretrainedModel.trainOptions.getOrDefault
    val typedDependencyParser = new TypedDependencyParserModel()
      .setDependencyPipe(dependencyPipe)
      .setOptions(trainOptions)
      .setConllFormat("2009")

    typedDependencyParser
  }

  def getTypedDependencyParserOutput(
      annotations: Seq[Annotation],
      typedDependencyParser: TypedDependencyParserModel): Seq[Annotation] = {
    typedDependencyParser.annotate(annotations)
  }

}




© 2015 - 2024 Weber Informatics LLC | Privacy Policy