com.johnsnowlabs.nlp.annotators.audio.Wav2Vec2ForCTC.scala Maven / Gradle / Ivy
The newest version!
/*
* Copyright 2017-2022 John Snow Labs
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.johnsnowlabs.nlp.annotators.audio
import com.johnsnowlabs.ml.ai.Wav2Vec2
import com.johnsnowlabs.ml.onnx.{OnnxWrapper, ReadOnnxModel, WriteOnnxModel}
import com.johnsnowlabs.ml.tensorflow.{
ReadTensorflowModel,
TensorflowWrapper,
WriteTensorflowModel
}
import com.johnsnowlabs.ml.util.LoadExternalModel.{
loadJsonStringAsset,
modelSanityCheck,
notSupportedEngineError
}
import com.johnsnowlabs.ml.util.{ONNX, TensorFlow}
import com.johnsnowlabs.nlp.AnnotatorType.{AUDIO, DOCUMENT}
import com.johnsnowlabs.nlp._
import com.johnsnowlabs.nlp.annotators.audio.feature_extractor.Preprocessor
import com.johnsnowlabs.nlp.serialization.MapFeature
import org.apache.spark.broadcast.Broadcast
import org.apache.spark.ml.param.IntArrayParam
import org.apache.spark.ml.util.Identifiable
import org.apache.spark.sql.SparkSession
import org.json4s._
import org.json4s.jackson.JsonMethods._
/** Wav2Vec2 Model with a language modeling head on top for Connectionist Temporal Classification
* (CTC). Wav2Vec2 was proposed in wav2vec 2.0: A Framework for Self-Supervised Learning of
* Speech Representations by Alexei Baevski, Henry Zhou, Abdelrahman Mohamed, Michael Auli.
*
* The annotator takes audio files and transcribes it as text. The audio needs to be provided
* pre-processed an array of floats.
*
* Note that this annotator is currently not supported on Apple Silicon processors such as the
* M1/M2 (Apple Silicon). This is due to the processor not supporting instructions for XLA.
*
* Pretrained models can be loaded with `pretrained` of the companion object:
* {{{
* val speechToText = Wav2Vec2ForCTC.pretrained()
* .setInputCols("audio_assembler")
* .setOutputCol("text")
* }}}
* The default model is `"asr_wav2vec2_base_960h"`, if no name is provided.
*
* For available pretrained models please see the [[https://sparknlp.org/models Models Hub]].
*
* To see which models are compatible and how to import them see
* [[https://github.com/JohnSnowLabs/spark-nlp/discussions/5669]] and to see more extended
* examples, see
* [[https://github.com/JohnSnowLabs/spark-nlp/blob/master/src/test/scala/com/johnsnowlabs/nlp/annotators/audio/Wav2Vec2ForCTCTestSpec.scala Wav2Vec2ForCTCTestSpec]].
*
* ==Example==
* {{{
* import spark.implicits._
* import com.johnsnowlabs.nlp.base._
* import com.johnsnowlabs.nlp.annotators._
* import com.johnsnowlabs.nlp.annotators.audio.Wav2Vec2ForCTC
* import org.apache.spark.ml.Pipeline
*
* val audioAssembler: AudioAssembler = new AudioAssembler()
* .setInputCol("audio_content")
* .setOutputCol("audio_assembler")
*
* val speechToText: Wav2Vec2ForCTC = Wav2Vec2ForCTC
* .pretrained()
* .setInputCols("audio_assembler")
* .setOutputCol("text")
*
* val pipeline: Pipeline = new Pipeline().setStages(Array(audioAssembler, speechToText))
*
* val bufferedSource =
* scala.io.Source.fromFile("src/test/resources/audio/csv/audio_floats.csv")
*
* val rawFloats = bufferedSource
* .getLines()
* .map(_.split(",").head.trim.toFloat)
* .toArray
* bufferedSource.close
*
* val processedAudioFloats = Seq(rawFloats).toDF("audio_content")
*
* val result = pipeline.fit(processedAudioFloats).transform(processedAudioFloats)
* result.select("text.result").show(truncate = false)
* +------------------------------------------------------------------------------------------+
* |result |
* +------------------------------------------------------------------------------------------+
* |[MISTER QUILTER IS THE APOSTLE OF THE MIDLE CLASES AND WE ARE GLAD TO WELCOME HIS GOSPEL ]|
* +------------------------------------------------------------------------------------------+
* }}}
* @param uid
* required uid for storing annotator to disk
* @groupname anno Annotator types
* @groupdesc anno
* Required input and expected output annotator types
* @groupname Ungrouped Members
* @groupname param Parameters
* @groupname setParam Parameter setters
* @groupname getParam Parameter getters
* @groupname Ungrouped Members
* @groupprio param 1
* @groupprio anno 2
* @groupprio Ungrouped 3
* @groupprio setParam 4
* @groupprio getParam 5
* @groupdesc param
* A list of (hyper-)parameter keys this annotator can take. Users can set and get the
* parameter values through setters and getters, respectively.
*/
class Wav2Vec2ForCTC(override val uid: String)
extends AnnotatorModel[Wav2Vec2ForCTC]
with HasBatchedAnnotateAudio[Wav2Vec2ForCTC]
with HasAudioFeatureProperties
with WriteTensorflowModel
with WriteOnnxModel
with HasEngine {
/** Annotator reference id. Used to identify elements in metadata or to refer to this annotator
* type
*/
def this() = this(Identifiable.randomUID("Wav2Vec2ForCTC"))
/** Output annotator type : DOCUMENT
*
* @group anno
*/
override val outputAnnotatorType: AnnotatorType = DOCUMENT
/** Input annotator type : AUDIO
*
* @group anno
*/
override val inputAnnotatorTypes: Array[AnnotatorType] = Array(AUDIO)
/** ConfigProto from tensorflow, serialized into byte array. Get with
* config_proto.SerializeToString()
*
* @group param
*/
val configProtoBytes = new IntArrayParam(
this,
"configProtoBytes",
"ConfigProto from tensorflow, serialized into byte array. Get with config_proto.SerializeToString()")
/** ConfigProto from tensorflow, serialized into byte array. Get with
* config_proto.SerializeToString()
*
* @group setParam
*/
def setConfigProtoBytes(bytes: Array[Int]): Wav2Vec2ForCTC.this.type =
set(this.configProtoBytes, bytes)
/** ConfigProto from tensorflow, serialized into byte array. Get with
* config_proto.SerializeToString()
*
* @group getParam
*/
def getConfigProtoBytes: Option[Array[Byte]] =
get(this.configProtoBytes).map(_.map(_.toByte))
/** Vocabulary used to encode the words to ids
*
* @group param
*/
val vocabulary: MapFeature[String, BigInt] = new MapFeature(this, "vocabulary").setProtected()
/** @group setParam */
def setVocabulary(value: Map[String, BigInt]): this.type = set(vocabulary, value)
/** It contains TF model signatures for the laded saved model
*
* @group param
*/
val signatures =
new MapFeature[String, String](model = this, name = "signatures").setProtected()
/** @group setParam */
def setSignatures(value: Map[String, String]): this.type = {
set(signatures, value)
this
}
/** @group getParam */
def getSignatures: Option[Map[String, String]] = get(this.signatures)
private var _model: Option[Broadcast[Wav2Vec2]] = None
/** @group getParam */
def getModelIfNotSet: Wav2Vec2 = _model.get.value
/** @group setParam */
def setModelIfNotSet(
spark: SparkSession,
tensorflowWrapper: Option[TensorflowWrapper],
onnxWrapper: Option[OnnxWrapper]): this.type = {
if (_model.isEmpty) {
_model = Some(
spark.sparkContext.broadcast(
new Wav2Vec2(
tensorflowWrapper,
onnxWrapper,
configProtoBytes = getConfigProtoBytes,
vocabs = $$(vocabulary),
signatures = getSignatures)))
}
this
}
setDefault(batchSize -> 4)
/** Takes a document and annotations and produces new annotations of this annotator's annotation
* type
*
* @param batchedAnnotations
* Annotations that correspond to inputAnnotationCols generated by previous annotators if any
* @return
* any number of annotations processed for every input annotation. Not necessary one to one
* relationship
*/
override def batchAnnotate(
batchedAnnotations: Seq[Array[AnnotationAudio]]): Seq[Seq[Annotation]] = {
// Zip annotations to the row it belongs to
val audiosWithRow = batchedAnnotations.zipWithIndex
.flatMap { case (annotations, i) => annotations.map(x => (x, i)) }
val noneEmptyAudios = audiosWithRow.map(_._1).filter(_.result.nonEmpty).toArray
val allAnnotations =
if (noneEmptyAudios.nonEmpty) {
getModelIfNotSet.predict(
audios = noneEmptyAudios,
batchSize = $(batchSize),
preprocessor = Preprocessor(
do_normalize = getDoNormalize,
return_attention_mask = getReturnAttentionMask,
padding_side = getPaddingSide,
padding_value = getPaddingValue,
feature_size = getFeatureSize,
sampling_rate = getSamplingRate))
} else {
Seq.empty[Annotation]
}
// Group resulting annotations by rows. If there are not sentences in a given row, return empty sequence
batchedAnnotations.indices.map(rowIndex => {
val rowAnnotations = allAnnotations
// zip each annotation with its corresponding row index
.zip(audiosWithRow)
// select the sentences belonging to the current row
.filter(_._2._2 == rowIndex)
// leave the annotation only
.map(_._1)
if (rowAnnotations.nonEmpty)
rowAnnotations
else
Seq.empty[Annotation]
})
}
override def onWrite(path: String, spark: SparkSession): Unit = {
super.onWrite(path, spark)
getEngine match {
case TensorFlow.name =>
writeTensorflowModelV2(
path,
spark,
getModelIfNotSet.tensorflowWrapper.get,
"_wav_ctc",
Wav2Vec2ForCTC.tfFile,
configProtoBytes = getConfigProtoBytes)
case ONNX.name =>
writeOnnxModel(
path,
spark,
getModelIfNotSet.onnxWrapper.get,
"_wav_ctc",
Wav2Vec2ForCTC.onnxFile)
}
}
}
trait ReadablePretrainedWav2Vec2ForAudioModel
extends ParamsAndFeaturesReadable[Wav2Vec2ForCTC]
with HasPretrained[Wav2Vec2ForCTC] {
override val defaultModelName: Some[String] = Some("asr_wav2vec2_base_960h")
/** Java compliant-overrides */
override def pretrained(): Wav2Vec2ForCTC = super.pretrained()
override def pretrained(name: String): Wav2Vec2ForCTC = super.pretrained(name)
override def pretrained(name: String, lang: String): Wav2Vec2ForCTC =
super.pretrained(name, lang)
override def pretrained(name: String, lang: String, remoteLoc: String): Wav2Vec2ForCTC =
super.pretrained(name, lang, remoteLoc)
}
trait ReadWav2Vec2ForAudioDLModel extends ReadTensorflowModel with ReadOnnxModel {
this: ParamsAndFeaturesReadable[Wav2Vec2ForCTC] =>
override val tfFile: String = "wav_ctc_tensorflow"
override val onnxFile: String = "wav_ctc_onnx"
def readModel(instance: Wav2Vec2ForCTC, path: String, spark: SparkSession): Unit = {
instance.getEngine match {
case TensorFlow.name =>
val tf = readTensorflowModel(path, spark, "_wav_ctc_tf", initAllTables = false)
instance.setModelIfNotSet(spark, Some(tf), None)
case ONNX.name =>
val onnxWrapper =
readOnnxModel(path, spark, "_wav_ctc_onnx", zipped = true, useBundle = false, None)
instance.setModelIfNotSet(spark, None, Some(onnxWrapper))
case _ =>
throw new Exception(notSupportedEngineError)
}
}
addReader(readModel)
def loadSavedModel(modelPath: String, spark: SparkSession): Wav2Vec2ForCTC = {
val (localModelPath, detectedEngine) = modelSanityCheck(modelPath)
val vocabJsonContent = loadJsonStringAsset(localModelPath, "vocab.json")
val vocabJsonMap =
parse(vocabJsonContent, useBigIntForLong = true).values
.asInstanceOf[Map[String, BigInt]]
val preprocessorConfigJsonContent =
loadJsonStringAsset(localModelPath, "preprocessor_config.json")
val preprocessorConfig =
Preprocessor.loadPreprocessorConfig(preprocessorConfigJsonContent)
/*Universal parameters for all engines*/
val annotatorModel = new Wav2Vec2ForCTC()
.setVocabulary(vocabJsonMap)
.setDoNormalize(preprocessorConfig.do_normalize)
.setFeatureSize(preprocessorConfig.feature_size)
.setPaddingSide(preprocessorConfig.padding_side)
.setPaddingValue(preprocessorConfig.padding_value)
.setReturnAttentionMask(preprocessorConfig.return_attention_mask)
.setSamplingRate(preprocessorConfig.sampling_rate)
annotatorModel.set(annotatorModel.engine, detectedEngine)
detectedEngine match {
case TensorFlow.name =>
val (wrapper, signatures) =
TensorflowWrapper.read(localModelPath, zipped = false, useBundle = true)
val _signatures = signatures match {
case Some(s) => s
case None => throw new Exception("Cannot load signature definitions from model!")
}
/** the order of setSignatures is important if we use getSignatures inside
* setModelIfNotSet
*/
annotatorModel
.setSignatures(_signatures)
.setModelIfNotSet(spark, Some(wrapper), None)
case ONNX.name =>
val onnxWrapper =
OnnxWrapper.read(spark, localModelPath, zipped = false, useBundle = true)
annotatorModel
.setModelIfNotSet(spark, None, Some(onnxWrapper))
case _ =>
throw new Exception(notSupportedEngineError)
}
annotatorModel
}
}
/** This is the companion object of [[Wav2Vec2ForCTC]]. Please refer to that class for the
* documentation.
*/
object Wav2Vec2ForCTC
extends ReadablePretrainedWav2Vec2ForAudioModel
with ReadWav2Vec2ForAudioDLModel