All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.johnsnowlabs.nlp.annotators.btm.BigTextMatcher.scala Maven / Gradle / Ivy

The newest version!
/*
 * Copyright 2017-2022 John Snow Labs
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package com.johnsnowlabs.nlp.annotators.btm

import com.johnsnowlabs.collections.StorageSearchTrie
import com.johnsnowlabs.nlp.AnnotatorApproach
import com.johnsnowlabs.nlp.AnnotatorType.{CHUNK, DOCUMENT, TOKEN}
import com.johnsnowlabs.nlp.annotators.TokenizerModel
import com.johnsnowlabs.nlp.serialization.StructFeature
import com.johnsnowlabs.nlp.util.io.{ExternalResource, ReadAs, ResourceHelper}
import com.johnsnowlabs.storage.Database.Name
import com.johnsnowlabs.storage.{Database, HasStorage, RocksDBConnection, StorageWriter}
import org.apache.spark.ml.PipelineModel
import org.apache.spark.ml.param.BooleanParam
import org.apache.spark.ml.util.{DefaultParamsReadable, Identifiable}
import org.apache.spark.sql.Dataset

/** Annotator to match exact phrases (by token) provided in a file against a Document.
  *
  * A text file of predefined phrases must be provided with `setStoragePath`. The text file can
  * als be set directly as an [[com.johnsnowlabs.nlp.util.io.ExternalResource ExternalResource]].
  *
  * In contrast to the normal `TextMatcher`, the `BigTextMatcher` is designed for large corpora.
  *
  * For extended examples of usage, see the
  * [[https://github.com/JohnSnowLabs/spark-nlp/blob/master/src/test/scala/com/johnsnowlabs/nlp/annotators/btm/BigTextMatcherTestSpec.scala BigTextMatcherTestSpec]].
  *
  * ==Example==
  * In this example, the entities file is of the form
  * {{{
  * ...
  * dolore magna aliqua
  * lorem ipsum dolor. sit
  * laborum
  * ...
  * }}}
  * where each line represents an entity phrase to be extracted.
  * {{{
  * import spark.implicits._
  * import com.johnsnowlabs.nlp.DocumentAssembler
  * import com.johnsnowlabs.nlp.annotator.Tokenizer
  * import com.johnsnowlabs.nlp.annotator.BigTextMatcher
  * import com.johnsnowlabs.nlp.util.io.ReadAs
  * import org.apache.spark.ml.Pipeline
  *
  * val documentAssembler = new DocumentAssembler()
  *   .setInputCol("text")
  *   .setOutputCol("document")
  *
  * val tokenizer = new Tokenizer()
  *   .setInputCols("document")
  *   .setOutputCol("token")
  *
  * val data = Seq("Hello dolore magna aliqua. Lorem ipsum dolor. sit in laborum").toDF("text")
  * val entityExtractor = new BigTextMatcher()
  *   .setInputCols("document", "token")
  *   .setStoragePath("src/test/resources/entity-extractor/test-phrases.txt", ReadAs.TEXT)
  *   .setOutputCol("entity")
  *   .setCaseSensitive(false)
  *
  * val pipeline = new Pipeline().setStages(Array(documentAssembler, tokenizer, entityExtractor))
  * val results = pipeline.fit(data).transform(data)
  * results.selectExpr("explode(entity)").show(false)
  * +--------------------------------------------------------------------+
  * |col                                                                 |
  * +--------------------------------------------------------------------+
  * |[chunk, 6, 24, dolore magna aliqua, [sentence -> 0, chunk -> 0], []]|
  * |[chunk, 53, 59, laborum, [sentence -> 0, chunk -> 1], []]           |
  * +--------------------------------------------------------------------+
  * }}}
  *
  * @param uid
  *   internal uid required to generate writable annotators
  * @groupname anno Annotator types
  * @groupdesc anno
  *   Required input and expected output annotator types
  * @groupname Ungrouped Members
  * @groupname param Parameters
  * @groupname setParam Parameter setters
  * @groupname getParam Parameter getters
  * @groupname Ungrouped Members
  * @groupprio anno  1
  * @groupprio param  2
  * @groupprio setParam  3
  * @groupprio getParam  4
  * @groupprio Ungrouped 5
  * @groupdesc param
  *   A list of (hyper-)parameter keys this annotator can take. Users can set and get the
  *   parameter values through setters and getters, respectively.
  */
class BigTextMatcher(override val uid: String)
    extends AnnotatorApproach[BigTextMatcherModel]
    with HasStorage {

  def this() = this(Identifiable.randomUID("ENTITY_EXTRACTOR"))

  /** Input annotator Types: DOCUMENT, TOKEN
    * @group anno
    */
  override val inputAnnotatorTypes: Array[String] = Array(DOCUMENT, TOKEN)

  /** Output annotator Types: CHUNK
    * @group anno
    */
  override val outputAnnotatorType: AnnotatorType = CHUNK

  override val description: String = "Extracts entities from target dataset given in a text file"

  /** Whether to merge overlapping matched chunks (Default: `false`)
    *
    * @group param
    */
  val mergeOverlapping = new BooleanParam(
    this,
    "mergeOverlapping",
    "whether to merge overlapping matched chunks. Defaults false")

  /** The Tokenizer to perform tokenization with
    *
    * @group param
    */
  val tokenizer = new StructFeature[TokenizerModel](this, "tokenizer")

  setDefault(inputCols, Array(TOKEN))
  setDefault(caseSensitive, true)
  setDefault(mergeOverlapping, false)

  /** @group setParam */
  def setTokenizer(tokenizer: TokenizerModel): this.type = set(this.tokenizer, tokenizer)

  /** @group getParam */
  def getTokenizer: TokenizerModel = $$(tokenizer)

  /** @group setParam */
  def setMergeOverlapping(v: Boolean): this.type = set(mergeOverlapping, v)

  /** @group getParam */
  def getMergeOverlapping: Boolean = $(mergeOverlapping)

  /** Loads entities from a provided source. */
  private def loadEntities(path: String, writers: Map[Database.Name, StorageWriter[_]]): Unit = {
    val inputFiles: Seq[Iterator[String]] =
      ResourceHelper.parseLinesIterator(ExternalResource(path, ReadAs.TEXT, Map()))
    inputFiles.foreach { inputFile =>
      {
        StorageSearchTrie.load(inputFile, writers, get(tokenizer))
      }
    }
  }

  override def train(
      dataset: Dataset[_],
      recursivePipeline: Option[PipelineModel]): BigTextMatcherModel = {
    new BigTextMatcherModel()
      .setInputCols($(inputCols))
      .setOutputCol($(outputCol))
      .setCaseSensitive($(caseSensitive))
      .setStorageRef($(storageRef))
      .setMergeOverlapping($(mergeOverlapping))
  }

  override protected def createWriter(
      database: Name,
      connection: RocksDBConnection): StorageWriter[_] = {
    database match {
      case Database.TMVOCAB => new TMVocabReadWriter(connection, $(caseSensitive))
      case Database.TMEDGES => new TMEdgesReadWriter(connection, $(caseSensitive))
      case Database.TMNODES => new TMNodesWriter(connection)
    }
  }

  override protected def index(
      fitDataset: Dataset[_],
      storageSourcePath: Option[String],
      readAs: Option[ReadAs.Value],
      writers: Map[Database.Name, StorageWriter[_]],
      readOptions: Option[Map[String, String]]): Unit = {
    require(
      readAs.get == ReadAs.TEXT,
      "BigTextMatcher only supports TEXT input formats at the moment.")
    loadEntities(storageSourcePath.get, writers)
  }

  override protected val databases: Array[Name] = BigTextMatcherModel.databases
}

/** This is the companion object of [[BigTextMatcher]]. Please refer to that class for the
  * documentation.
  */
object BigTextMatcher extends DefaultParamsReadable[BigTextMatcher]




© 2015 - 2024 Weber Informatics LLC | Privacy Policy