All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.johnsnowlabs.nlp.annotators.pos.perceptron.PerceptronUtils.scala Maven / Gradle / Ivy

The newest version!
/*
 * Copyright 2017-2022 John Snow Labs
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package com.johnsnowlabs.nlp.annotators.pos.perceptron

import scala.collection.mutable.{Map => MMap}

trait PerceptronUtils {

  private[perceptron] val START = Array("-START-", "-START2-")
  private[perceptron] val END = Array("-END-", "-END2-")

  /** Specific normalization rules for this POS Tagger to avoid unnecessary tagging
    * @return
    */
  private[perceptron] def normalized(word: String): String = {
    if (word.contains("-") && word.head != '-') {
      "!HYPEN"
    } else if (word.forall(_.isDigit) && word.length == 4) {
      "!YEAR"
    } else if (word.head.isDigit) {
      "!DIGITS"
    } else {
      word.toLowerCase
    }
  }

  /** Method used when a word tag is not certain. the word context is explored and features
    * collected
    * @param init
    *   word position in a sentence
    * @param word
    *   word itself
    * @param context
    *   surrounding words of positions -2 and +2
    * @param prev
    *   holds previous tag result
    * @param prev2
    *   holds pre previous tag result
    * @return
    *   A list of scored features based on how frequently they appear in a context
    */
  private[perceptron] def getFeatures(
      init: Int,
      word: String,
      context: Array[String],
      prev: String,
      prev2: String): Map[String, Int] = {
    val features = MMap[String, Int]().withDefaultValue(0)
    def add(keyName: String): Unit = {
      features(keyName) += 1
    }
    val i = init + START.length
    add("bias")
    add("i suffix" + " " + word.takeRight(3))
    add("i pref1" + " " + word.head)
    add("i-1 tag" + " " + prev)
    add("i-2 tag" + " " + prev2)
    add("i tag+i-2 tag" + " " + prev + " " + prev2)
    add("i word" + " " + context(i))
    add("i-1 tag+i word" + " " + prev + " " + context(i))
    add("i-1 word" + " " + context(i - 1))
    add("i-1 suffix" + " " + context(i - 1).takeRight(3))
    add("i-2 word" + " " + context(i - 2))
    add("i+1 word" + " " + context(i + 1))
    add("i+1 suffix" + " " + context(i + 1).takeRight(3))
    add("i+2 word" + " " + context(i + 2))
    features.toMap
  }
}




© 2015 - 2024 Weber Informatics LLC | Privacy Policy