com.johnsnowlabs.nlp.annotators.seq2seq.NLLBTransformer.scala Maven / Gradle / Ivy
The newest version!
/*
* Copyright 2017-2024 John Snow Labs
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.johnsnowlabs.nlp.annotators.seq2seq
import com.johnsnowlabs.ml.ai.util.Generation.GenerationConfig
import com.johnsnowlabs.ml.ai.NLLB
import com.johnsnowlabs.ml.onnx.OnnxWrapper.EncoderDecoderWithoutPastWrappers
import com.johnsnowlabs.ml.openvino.OpenvinoWrapper.{
EncoderDecoderWithoutPastWrappers => OpenvinoEncoderDecoderWithoutPastWrappers
}
import com.johnsnowlabs.ml.onnx.{OnnxWrapper, ReadOnnxModel, WriteOnnxModel}
import com.johnsnowlabs.ml.openvino.{OpenvinoWrapper, ReadOpenvinoModel, WriteOpenvinoModel}
import com.johnsnowlabs.ml.util.LoadExternalModel.{
loadJsonStringAsset,
loadSentencePieceAsset,
modelSanityCheck,
notSupportedEngineError
}
import com.johnsnowlabs.ml.util.{ONNX, Openvino}
import com.johnsnowlabs.nlp.AnnotatorType.DOCUMENT
import com.johnsnowlabs.nlp._
import com.johnsnowlabs.ml.tensorflow.sentencepiece.{
ReadSentencePieceModel,
SentencePieceWrapper,
WriteSentencePieceModel
}
import org.apache.spark.broadcast.Broadcast
import org.apache.spark.ml.param._
import org.apache.spark.ml.util.Identifiable
import org.apache.spark.sql.SparkSession
import com.johnsnowlabs.nlp.serialization.{MapFeature, StructFeature}
import org.json4s._
import org.json4s.jackson.JsonMethods._
/** NLLB : multilingual translation model
*
* NLLB is a multilingual encoder-decoder (seq-to-seq) model trained for Many-to-Many
* multilingual translation.
*
* The model can directly translate between 200+ languages.
*
* Pretrained models can be loaded with `pretrained` of the companion object:
* {{{
* val nllb = NLLBTransformer.pretrained()
* .setInputCols("document")
* .setOutputCol("generation")
* }}}
* The default model is `"nllb_418M"`, if no name is provided. For available pretrained models
* please see the [[https://sparknlp.org/models?q=nllb Models Hub]].
*
* For extended examples of usage, see
* [[https://github.com/JohnSnowLabs/spark-nlp/blob/master/src/test/scala/com/johnsnowlabs/nlp/annotators/seq2seq/NLLBTestSpec.scala NLLBTestSpec]].
*
* '''References:'''
* - [[https://arxiv.org/pdf/2207.04672.pdf No Language Left Behind: Scaling Human-Centered Machine Translation]]
* - [[https://github.com/facebookresearch/fairseq/tree/nllb]]
*
* '''Paper Abstract:'''
*
* ''Driven by the goal of eradicating language barriers on a global scale, machine translation
* has solidified itself as a key focus of artificial intelligence research today. However, such
* efforts have coalesced around a small subset of languages, leaving behind the vast majority of
* mostly low-resource languages. What does it take to break the 200 language barrier while
* ensuring safe, high quality results, all while keeping ethical considerations in mind? In No
* Language Left Behind, we took on this challenge by first contextualizing the need for
* low-resource language translation support through exploratory interviews with native speakers.
* Then, we created datasets and models aimed at narrowing the performance gap between low and
* high-resource languages. More specifically, we developed a conditional compute model based on
* Sparsely Gated Mixture of Experts that is trained on data obtained with novel and effective
* data mining techniques tailored for low-resource languages. We propose multiple architectural
* and training improvements to counteract overfitting while training on thousands of tasks.
* Critically, we evaluated the performance of over 40,000 different translation directions using
* a human-translated benchmark, Flores-200, and combined human evaluation with a novel toxicity
* benchmark covering all languages in Flores-200 to assess translation safety. Our model
* achieves an improvement of 44% BLEU relative to the previous state-of-the-art, laying
* important groundwork towards realizing a universal translation system. Finally, we open source
* all contributions described in this work, accessible at this https URL. ''
*
* '''Languages Covered:'''
*
* Acehnese (Arabic script) (ace_Arab), Acehnese (Latin script) (ace_Latn), Mesopotamian Arabic
* (acm_Arab), Ta’izzi-Adeni Arabic (acq_Arab), Tunisian Arabic (aeb_Arab), Afrikaans (afr_Latn),
* South Levantine Arabic (ajp_Arab), Akan (aka_Latn), Amharic (amh_Ethi), North Levantine Arabic
* (apc_Arab), Modern Standard Arabic (arb_Arab), Modern Standard Arabic (Romanized) (arb_Latn),
* Najdi Arabic (ars_Arab), Moroccan Arabic (ary_Arab), Egyptian Arabic (arz_Arab), Assamese
* (asm_Beng), Asturian (ast_Latn), Awadhi (awa_Deva), Central Aymara (ayr_Latn), South
* Azerbaijani (azb_Arab), North Azerbaijani (azj_Latn), Bashkir (bak_Cyrl), Bambara (bam_Latn),
* Balinese (ban_Latn), Belarusian (bel_Cyrl), Bemba (bem_Latn), Bengali (ben_Beng), Bhojpuri
* (bho_Deva), Banjar (Arabic script) (bjn_Arab), Banjar (Latin script) (bjn_Latn), Standard
* Tibetan (bod_Tibt), Bosnian (bos_Latn), Buginese (bug_Latn), Bulgarian (bul_Cyrl), Catalan
* (cat_Latn), Cebuano (ceb_Latn), Czech (ces_Latn), Chokwe (cjk_Latn), Central Kurdish
* (ckb_Arab), Crimean Tatar (crh_Latn), Welsh (cym_Latn), Danish (dan_Latn), German (deu_Latn),
* Southwestern Dinka (dik_Latn), Dyula (dyu_Latn), Dzongkha (dzo_Tibt), Greek (ell_Grek),
* English (eng_Latn), Esperanto (epo_Latn), Estonian (est_Latn), Basque (eus_Latn), Ewe
* (ewe_Latn), Faroese (fao_Latn), Fijian (fij_Latn), Finnish (fin_Latn), Fon (fon_Latn), French
* (fra_Latn), Friulian (fur_Latn), Nigerian Fulfulde (fuv_Latn), Scottish Gaelic (gla_Latn),
* Irish (gle_Latn), Galician (glg_Latn), Guarani (grn_Latn), Gujarati (guj_Gujr), Haitian Creole
* (hat_Latn), Hausa (hau_Latn), Hebrew (heb_Hebr), Hindi (hin_Deva), Chhattisgarhi (hne_Deva),
* Croatian (hrv_Latn), Hungarian (hun_Latn), Armenian (hye_Armn), Igbo (ibo_Latn), Ilocano
* (ilo_Latn), Indonesian (ind_Latn), Icelandic (isl_Latn), Italian (ita_Latn), Javanese
* (jav_Latn), Japanese (jpn_Jpan), Kabyle (kab_Latn), Jingpho (kac_Latn), Kamba (kam_Latn),
* Kannada (kan_Knda), Kashmiri (Arabic script) (kas_Arab), Kashmiri (Devanagari script)
* (kas_Deva), Georgian (kat_Geor), Central Kanuri (Arabic script) (knc_Arab), Central Kanuri
* (Latin script) (knc_Latn), Kazakh (kaz_Cyrl), Kabiyè (kbp_Latn), Kabuverdianu (kea_Latn),
* Khmer (khm_Khmr), Kikuyu (kik_Latn), Kinyarwanda (kin_Latn), Kyrgyz (kir_Cyrl), Kimbundu
* (kmb_Latn), Northern Kurdish (kmr_Latn), Kikongo (kon_Latn), Korean (kor_Hang), Lao
* (lao_Laoo), Ligurian (lij_Latn), Limburgish (lim_Latn), Lingala (lin_Latn), Lithuanian
* (lit_Latn), Lombard (lmo_Latn), Latgalian (ltg_Latn), Luxembourgish (ltz_Latn), Luba-Kasai
* (lua_Latn), Ganda (lug_Latn), Luo (luo_Latn), Mizo (lus_Latn), Standard Latvian (lvs_Latn),
* Magahi (mag_Deva), Maithili (mai_Deva), Malayalam (mal_Mlym), Marathi (mar_Deva), Minangkabau
* (Arabic script) (min_Arab), Minangkabau (Latin script) (min_Latn), Macedonian (mkd_Cyrl),
* Plateau Malagasy (plt_Latn), Maltese (mlt_Latn), Meitei (Bengali script) (mni_Beng), Halh
* Mongolian (khk_Cyrl), Mossi (mos_Latn), Maori (mri_Latn), Burmese (mya_Mymr), Dutch
* (nld_Latn), Norwegian Nynorsk (nno_Latn), Norwegian Bokmål (nob_Latn), Nepali (npi_Deva),
* Northern Sotho (nso_Latn), Nuer (nus_Latn), Nyanja (nya_Latn), Occitan (oci_Latn), West
* Central Oromo (gaz_Latn), Odia (ory_Orya), Pangasinan (pag_Latn), Eastern Panjabi (pan_Guru),
* Papiamento (pap_Latn), Western Persian (pes_Arab), Polish (pol_Latn), Portuguese (por_Latn),
* Dari (prs_Arab), Southern Pashto (pbt_Arab), Ayacucho Quechua (quy_Latn), Romanian (ron_Latn),
* Rundi (run_Latn), Russian (rus_Cyrl), Sango (sag_Latn), Sanskrit (san_Deva), Santali
* (sat_Olck), Sicilian (scn_Latn), Shan (shn_Mymr), Sinhala (sin_Sinh), Slovak (slk_Latn),
* Slovenian (slv_Latn), Samoan (smo_Latn), Shona (sna_Latn), Sindhi (snd_Arab), Somali
* (som_Latn), Southern Sotho (sot_Latn), Spanish (spa_Latn), Tosk Albanian (als_Latn), Sardinian
* (srd_Latn), Serbian (srp_Cyrl), Swati (ssw_Latn), Sundanese (sun_Latn), Swedish (swe_Latn),
* Swahili (swh_Latn), Silesian (szl_Latn), Tamil (tam_Taml), Tatar (tat_Cyrl), Telugu
* (tel_Telu), Tajik (tgk_Cyrl), Tagalog (tgl_Latn), Thai (tha_Thai), Tigrinya (tir_Ethi),
* Tamasheq (Latin script) (taq_Latn), Tamasheq (Tifinagh script) (taq_Tfng), Tok Pisin
* (tpi_Latn), Tswana (tsn_Latn), Tsonga (tso_Latn), Turkmen (tuk_Latn), Tumbuka (tum_Latn),
* Turkish (tur_Latn), Twi (twi_Latn), Central Atlas Tamazight (tzm_Tfng), Uyghur (uig_Arab),
* Ukrainian (ukr_Cyrl), Umbundu (umb_Latn), Urdu (urd_Arab), Northern Uzbek (uzn_Latn), Venetian
* (vec_Latn), Vietnamese (vie_Latn), Waray (war_Latn), Wolof (wol_Latn), Xhosa (xho_Latn),
* Eastern Yiddish (ydd_Hebr), Yoruba (yor_Latn), Yue Chinese (yue_Hant), Chinese (Simplified)
* (zho_Hans), Chinese (Traditional) (zho_Hant), Standard Malay (zsm_Latn), Zulu (zul_Latn).
*
* ==Example==
* {{{
* import spark.implicits._
* import com.johnsnowlabs.nlp.base.DocumentAssembler
* import com.johnsnowlabs.nlp.annotators.seq2seq.NLLBTransformer
* import org.apache.spark.ml.Pipeline
*
* val documentAssembler = new DocumentAssembler()
* .setInputCol("text")
* .setOutputCol("documents")
*
* val nllb = NLLBTransformer.pretrained("nllb_418M")
* .setInputCols(Array("documents"))
* .setSrcLang("zho_Hans")
* .serTgtLang("eng_Latn")
* .setMaxOutputLength(100)
* .setDoSample(false)
* .setOutputCol("generation")
*
* val pipeline = new Pipeline().setStages(Array(documentAssembler, nllb))
*
* val data = Seq(
* "生活就像一盒巧克力。"
* ).toDF("text")
* val result = pipeline.fit(data).transform(data)
*
* results.select("generation.result").show(truncate = false)
* +-------------------------------------------------------------------------------------------+
* |result |
* +-------------------------------------------------------------------------------------------+
* |[ Life is like a box of chocolate.] |
* +-------------------------------------------------------------------------------------------+
* }}}
*
* @param uid
* required uid for storing annotator to disk
* @groupname anno Annotator types
* @groupdesc anno
* Required input and expected output annotator types
* @groupname Ungrouped Members
* @groupname param Parameters
* @groupname setParam Parameter setters
* @groupname getParam Parameter getters
* @groupname Ungrouped Members
* @groupprio param 1
* @groupprio anno 2
* @groupprio Ungrouped 3
* @groupprio setParam 4
* @groupprio getParam 5
* @groupdesc param
* A list of (hyper-)parameter keys this annotator can take. Users can set and get the
* parameter values through setters and getters, respectively.
*/
class NLLBTransformer(override val uid: String)
extends AnnotatorModel[NLLBTransformer]
with HasBatchedAnnotate[NLLBTransformer]
with ParamsAndFeaturesWritable
with WriteOnnxModel
with WriteOpenvinoModel
with HasGeneratorProperties
with WriteSentencePieceModel
with HasEngine {
def this() = this(Identifiable.randomUID("NLLBTRANSFORMER"))
/** Input annotator type : DOCUMENT
*
* @group param
*/
override val inputAnnotatorTypes: Array[AnnotatorType] = Array(DOCUMENT)
/** Output annotator type : DOCUMENT
*
* @group param
*/
override val outputAnnotatorType: String = DOCUMENT
/** @group setParam */
def setRandomSeed(value: Int): NLLBTransformer.this.type = {
if (randomSeed.isEmpty) {
this.randomSeed = Some(value)
}
this
}
/** A list of token ids which are ignored in the decoder's output (Default: `Array()`)
*
* @group param
*/
var ignoreTokenIds = new IntArrayParam(
this,
"ignoreTokenIds",
"A list of token ids which are ignored in the decoder's output")
/** Source Language (Default: `en`)
* @group param
*/
var srcLang = new Param[String](this, "srcLang", "Source language")
/** Target Language (Default: `fr`)
* @group param
*/
var tgtLang = new Param[String](this, "tgtLang", "Target language")
def setSrcLang(value: String): NLLBTransformer.this.type = {
val valueLower = value
// check if language is supported
if (!languageIds.contains(valueLower)) {
throw new IllegalArgumentException(
s"Language $value is not supported. Supported languages are: ${languageIds.mkString(", ")}")
}
srcLangToken = Some(languageIds.indexOf(valueLower))
set(srcLang, valueLower)
}
def setTgtLang(value: String): NLLBTransformer.this.type = {
val valueLower = value
// check if language is supported
if (!languageIds.contains(valueLower)) {
throw new IllegalArgumentException(
s"Language $value is not supported. Supported languages are: ${languageIds.mkString(", ")}")
}
tgtLangToken = Some(languageIds.indexOf(valueLower))
set(tgtLang, value)
}
/** @group setParam */
def setIgnoreTokenIds(tokenIds: Array[Int]): NLLBTransformer.this.type = {
set(ignoreTokenIds, tokenIds)
}
/** @group getParam */
def getIgnoreTokenIds: Array[Int] = $(ignoreTokenIds)
def getSrcLangToken: Int = srcLangToken.getOrElse(languageIds.indexOf($(srcLang)))
def getTgtLangToken: Int = tgtLangToken.getOrElse(languageIds.indexOf($(tgtLang)))
private var _model: Option[Broadcast[NLLB]] = None
private var srcLangToken: Option[Int] = None
private var tgtLangToken: Option[Int] = None
/** Vocabulary used to encode the words to ids with bpeTokenizer.encode
*
* @group param
*/
val vocabulary: MapFeature[String, Int] = new MapFeature(this, "vocabulary").setProtected()
/** @group setParam */
def setVocabulary(value: Map[String, Int]): this.type = set(vocabulary, value)
val generationConfig: StructFeature[GenerationConfig] =
new StructFeature(this, "generationConfig").setProtected()
def setGenerationConfig(value: GenerationConfig): this.type =
set(generationConfig, value)
def getGenerationConfig: GenerationConfig = $$(generationConfig)
private val languageIds: Array[String] = Array(
"ace_Arab",
"ace_Latn",
"acm_Arab",
"acq_Arab",
"aeb_Arab",
"afr_Latn",
"ajp_Arab",
"aka_Latn",
"amh_Ethi",
"apc_Arab",
"arb_Arab",
"ars_Arab",
"ary_Arab",
"arz_Arab",
"asm_Beng",
"ast_Latn",
"awa_Deva",
"ayr_Latn",
"azb_Arab",
"azj_Latn",
"bak_Cyrl",
"bam_Latn",
"ban_Latn",
"bel_Cyrl",
"bem_Latn",
"ben_Beng",
"bho_Deva",
"bjn_Arab",
"bjn_Latn",
"bod_Tibt",
"bos_Latn",
"bug_Latn",
"bul_Cyrl",
"cat_Latn",
"ceb_Latn",
"ces_Latn",
"cjk_Latn",
"ckb_Arab",
"crh_Latn",
"cym_Latn",
"dan_Latn",
"deu_Latn",
"dik_Latn",
"dyu_Latn",
"dzo_Tibt",
"ell_Grek",
"eng_Latn",
"epo_Latn",
"est_Latn",
"eus_Latn",
"ewe_Latn",
"fao_Latn",
"pes_Arab",
"fij_Latn",
"fin_Latn",
"fon_Latn",
"fra_Latn",
"fur_Latn",
"fuv_Latn",
"gla_Latn",
"gle_Latn",
"glg_Latn",
"grn_Latn",
"guj_Gujr",
"hat_Latn",
"hau_Latn",
"heb_Hebr",
"hin_Deva",
"hne_Deva",
"hrv_Latn",
"hun_Latn",
"hye_Armn",
"ibo_Latn",
"ilo_Latn",
"ind_Latn",
"isl_Latn",
"ita_Latn",
"jav_Latn",
"jpn_Jpan",
"kab_Latn",
"kac_Latn",
"kam_Latn",
"kan_Knda",
"kas_Arab",
"kas_Deva",
"kat_Geor",
"knc_Arab",
"knc_Latn",
"kaz_Cyrl",
"kbp_Latn",
"kea_Latn",
"khm_Khmr",
"kik_Latn",
"kin_Latn",
"kir_Cyrl",
"kmb_Latn",
"kon_Latn",
"kor_Hang",
"kmr_Latn",
"lao_Laoo",
"lvs_Latn",
"lij_Latn",
"lim_Latn",
"lin_Latn",
"lit_Latn",
"lmo_Latn",
"ltg_Latn",
"ltz_Latn",
"lua_Latn",
"lug_Latn",
"luo_Latn",
"lus_Latn",
"mag_Deva",
"mai_Deva",
"mal_Mlym",
"mar_Deva",
"min_Latn",
"mkd_Cyrl",
"plt_Latn",
"mlt_Latn",
"mni_Beng",
"khk_Cyrl",
"mos_Latn",
"mri_Latn",
"zsm_Latn",
"mya_Mymr",
"nld_Latn",
"nno_Latn",
"nob_Latn",
"npi_Deva",
"nso_Latn",
"nus_Latn",
"nya_Latn",
"oci_Latn",
"gaz_Latn",
"ory_Orya",
"pag_Latn",
"pan_Guru",
"pap_Latn",
"pol_Latn",
"por_Latn",
"prs_Arab",
"pbt_Arab",
"quy_Latn",
"ron_Latn",
"run_Latn",
"rus_Cyrl",
"sag_Latn",
"san_Deva",
"sat_Beng",
"scn_Latn",
"shn_Mymr",
"sin_Sinh",
"slk_Latn",
"slv_Latn",
"smo_Latn",
"sna_Latn",
"snd_Arab",
"som_Latn",
"sot_Latn",
"spa_Latn",
"als_Latn",
"srd_Latn",
"srp_Cyrl",
"ssw_Latn",
"sun_Latn",
"swe_Latn",
"swh_Latn",
"szl_Latn",
"tam_Taml",
"tat_Cyrl",
"tel_Telu",
"tgk_Cyrl",
"tgl_Latn",
"tha_Thai",
"tir_Ethi",
"taq_Latn",
"taq_Tfng",
"tpi_Latn",
"tsn_Latn",
"tso_Latn",
"tuk_Latn",
"tum_Latn",
"tur_Latn",
"twi_Latn",
"tzm_Tfng",
"uig_Arab",
"ukr_Cyrl",
"umb_Latn",
"urd_Arab",
"uzn_Latn",
"vec_Latn",
"vie_Latn",
"war_Latn",
"wol_Latn",
"xho_Latn",
"ydd_Hebr",
"yor_Latn",
"yue_Hant",
"zho_Hans",
"zho_Hant",
"zul_Latn")
/** @group setParam */
def setModelIfNotSet(
spark: SparkSession,
onnxWrappers: Option[EncoderDecoderWithoutPastWrappers],
openvinoWrapper: Option[OpenvinoEncoderDecoderWithoutPastWrappers],
spp: SentencePieceWrapper): this.type = {
if (_model.isEmpty) {
_model = Some(
spark.sparkContext.broadcast(
new NLLB(
onnxWrappers,
openvinoWrapper,
spp = spp,
generationConfig = getGenerationConfig,
vocab = $$(vocabulary))))
}
this
}
/** @group getParam */
def getModelIfNotSet: NLLB = _model.get.value
setDefault(
minOutputLength -> 10,
maxOutputLength -> 200,
doSample -> false,
temperature -> 1.0,
topK -> 50,
topP -> 1.0,
repetitionPenalty -> 1.0,
noRepeatNgramSize -> 3,
ignoreTokenIds -> Array(),
batchSize -> 1,
beamSize -> 1,
maxInputLength -> 1024,
srcLang -> "eng_Latn",
tgtLang -> "fra_Latn")
/** takes a document and annotations and produces new annotations of this annotator's annotation
* type
*
* @param batchedAnnotations
* Annotations that correspond to inputAnnotationCols generated by previous annotators if any
* @return
* any number of annotations processed for every input annotation. Not necessary one to one
* relationship
*/
override def batchAnnotate(batchedAnnotations: Seq[Array[Annotation]]): Seq[Seq[Annotation]] = {
val allAnnotations = batchedAnnotations
.filter(_.nonEmpty)
.zipWithIndex
.flatMap { case (annotations, i) =>
annotations.filter(_.result.nonEmpty).map(x => (x, i))
}
val processedAnnotations = if (allAnnotations.nonEmpty) {
this.getModelIfNotSet.predict(
sentences = allAnnotations.map(_._1),
batchSize = $(batchSize),
minOutputLength = $(minOutputLength),
maxOutputLength = $(maxOutputLength),
doSample = $(doSample),
temperature = $(temperature),
topK = $(topK),
topP = $(topP),
repetitionPenalty = $(repetitionPenalty),
noRepeatNgramSize = $(noRepeatNgramSize),
randomSeed = this.randomSeed,
ignoreTokenIds = $(ignoreTokenIds),
beamSize = $(beamSize),
maxInputLength = $(maxInputLength),
srcLangToken = getSrcLangToken,
tgtLangToken = getTgtLangToken)
} else {
Seq()
}
Seq(processedAnnotations)
}
override def onWrite(path: String, spark: SparkSession): Unit = {
super.onWrite(path, spark)
getEngine match {
case ONNX.name =>
val wrappers = getModelIfNotSet.onnxWrappers
val obj = getModelIfNotSet
writeOnnxModels(
path,
spark,
Seq((wrappers.get.encoder, "encoder_model.onnx")),
NLLBTransformer.suffix)
writeOnnxModels(
path,
spark,
Seq((wrappers.get.decoder, "decoder_model.onnx")),
NLLBTransformer.suffix)
writeSentencePieceModel(
path,
spark,
obj.spp,
NLLBTransformer.suffix,
NLLBTransformer.sppFile)
case Openvino.name =>
val wrappers = getModelIfNotSet.openvinoWrapper
writeOpenvinoModels(
path,
spark,
Seq((wrappers.get.encoder, "openvino_encoder_model.xml")),
NLLBTransformer.suffix)
writeOpenvinoModels(
path,
spark,
Seq((wrappers.get.decoder, "openvino_decoder_model.xml")),
NLLBTransformer.suffix)
val obj = getModelIfNotSet
writeSentencePieceModel(
path,
spark,
obj.spp,
NLLBTransformer.suffix,
NLLBTransformer.sppFile)
}
}
}
trait ReadablePretrainedNLLBTransformerModel
extends ParamsAndFeaturesReadable[NLLBTransformer]
with HasPretrained[NLLBTransformer] {
override val defaultModelName: Some[String] = Some("nllb_418M")
override val defaultLang: String = "xx"
/** Java compliant-overrides */
override def pretrained(): NLLBTransformer = super.pretrained()
override def pretrained(name: String): NLLBTransformer = super.pretrained(name)
override def pretrained(name: String, lang: String): NLLBTransformer =
super.pretrained(name, lang)
override def pretrained(name: String, lang: String, remoteLoc: String): NLLBTransformer =
super.pretrained(name, lang, remoteLoc)
}
trait ReadNLLBTransformerDLModel
extends ReadOnnxModel
with ReadOpenvinoModel
with ReadSentencePieceModel {
this: ParamsAndFeaturesReadable[NLLBTransformer] =>
override val onnxFile: String = "nllb_onnx"
val suffix: String = "_nllb"
override val sppFile: String = "nllb_spp"
override val openvinoFile: String = "nllb_openvino"
def readModel(instance: NLLBTransformer, path: String, spark: SparkSession): Unit = {
instance.getEngine match {
case ONNX.name =>
val decoderWrappers =
readOnnxModels(path, spark, Seq("decoder_model.onnx"), suffix)
val encoderWrappers =
readOnnxModels(path, spark, Seq("encoder_model.onnx"), suffix)
val onnxWrappers =
EncoderDecoderWithoutPastWrappers(
decoder = decoderWrappers("decoder_model.onnx"),
encoder = encoderWrappers("encoder_model.onnx"))
val spp = readSentencePieceModel(path, spark, "_nllb_spp", sppFile)
instance.setModelIfNotSet(spark, Some(onnxWrappers), None, spp)
case Openvino.name =>
val decoderWrappers =
readOpenvinoModels(path, spark, Seq("openvino_decoder_model.xml"), suffix)
val encoderWrappers =
readOpenvinoModels(path, spark, Seq("openvino_encoder_model.xml"), suffix)
val ovWrapper = {
OpenvinoEncoderDecoderWithoutPastWrappers(
encoder = encoderWrappers("openvino_encoder_model.xml"),
decoder = decoderWrappers("openvino_decoder_model.xml"))
}
val spp = readSentencePieceModel(path, spark, "_nllb_spp", sppFile)
instance.setModelIfNotSet(spark, None, Some(ovWrapper), spp)
case _ =>
throw new Exception(notSupportedEngineError)
}
}
addReader(readModel)
def loadSavedModel(
modelPath: String,
spark: SparkSession,
useOpenvino: Boolean = false): NLLBTransformer = {
implicit val formats: DefaultFormats.type = DefaultFormats // for json4
val (localModelPath, detectedEngine) =
modelSanityCheck(modelPath, isEncoderDecoder = true)
val modelConfig: JValue =
parse(loadJsonStringAsset(localModelPath, "config.json"))
val beginSuppressTokens: Array[Int] =
(modelConfig \ "begin_suppress_tokens").extract[Array[Int]]
val suppressTokenIds: Array[Int] =
(modelConfig \ "suppress_tokens").extract[Array[Int]]
val forcedDecoderIds: Array[(Int, Int)] = Array()
def arrayOrNone[T](array: Array[T]): Option[Array[T]] =
if (array.nonEmpty) Some(array) else None
val bosTokenId = (modelConfig \ "bos_token_id").extract[Int]
val eosTokenId = (modelConfig \ "eos_token_id").extract[Int]
val padTokenId = (modelConfig \ "eos_token_id").extract[Int]
val vocabSize = (modelConfig \ "vocab_size").extract[Int]
val annotatorModel = new NLLBTransformer()
.setGenerationConfig(
GenerationConfig(
bosTokenId,
padTokenId,
eosTokenId,
vocabSize,
arrayOrNone(beginSuppressTokens),
arrayOrNone(suppressTokenIds),
arrayOrNone(forcedDecoderIds)))
val spModel = loadSentencePieceAsset(localModelPath, "sentencepiece.bpe.model")
val vocabulary: JValue =
parse(loadJsonStringAsset(localModelPath, "vocab.json"))
// convert to map
val vocab = vocabulary.extract[Map[String, Int]]
val modelEngine =
if (useOpenvino)
Openvino.name
else
detectedEngine
annotatorModel.setVocabulary(vocab)
annotatorModel.set(annotatorModel.engine, detectedEngine)
modelEngine match {
case ONNX.name =>
val onnxWrapperEncoder =
OnnxWrapper.read(
spark,
localModelPath,
zipped = false,
useBundle = true,
modelName = "encoder_model",
onnxFileSuffix = None)
val onnxWrapperDecoder =
OnnxWrapper.read(
spark,
localModelPath,
zipped = false,
useBundle = true,
modelName = "decoder_model",
onnxFileSuffix = None)
val onnxWrappers =
EncoderDecoderWithoutPastWrappers(
encoder = onnxWrapperEncoder,
decoder = onnxWrapperDecoder)
annotatorModel
.setModelIfNotSet(spark, Some(onnxWrappers), None, spModel)
case Openvino.name =>
val openvinoEncoderWrapper =
OpenvinoWrapper.read(
spark,
localModelPath,
zipped = false,
useBundle = true,
detectedEngine = detectedEngine,
modelName = "openvino_encoder_model")
val openvinoDecoderWrapper =
OpenvinoWrapper.read(
spark,
localModelPath,
zipped = false,
useBundle = true,
detectedEngine = detectedEngine,
modelName = "openvino_decoder_model")
val openvinoWrapper =
OpenvinoEncoderDecoderWithoutPastWrappers(
encoder = openvinoEncoderWrapper,
decoder = openvinoDecoderWrapper)
annotatorModel.setModelIfNotSet(spark, None, Some(openvinoWrapper), spModel)
case _ =>
throw new Exception(notSupportedEngineError)
}
annotatorModel
}
}
object NLLBTransformer
extends ReadablePretrainedNLLBTransformerModel
with ReadNLLBTransformerDLModel