com.johnsnowlabs.nlp.embeddings.AlbertEmbeddings.scala Maven / Gradle / Ivy
The newest version!
/*
* Copyright 2017-2022 John Snow Labs
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.johnsnowlabs.nlp.embeddings
import com.johnsnowlabs.ml.ai.Albert
import com.johnsnowlabs.ml.onnx.{OnnxWrapper, ReadOnnxModel, WriteOnnxModel}
import com.johnsnowlabs.ml.tensorflow._
import com.johnsnowlabs.ml.tensorflow.sentencepiece.{
ReadSentencePieceModel,
SentencePieceWrapper,
WriteSentencePieceModel
}
import com.johnsnowlabs.ml.util.LoadExternalModel.{
loadSentencePieceAsset,
modelSanityCheck,
notSupportedEngineError
}
import com.johnsnowlabs.ml.util.{ONNX, TensorFlow}
import com.johnsnowlabs.nlp._
import com.johnsnowlabs.nlp.annotators.common._
import com.johnsnowlabs.nlp.serialization.MapFeature
import com.johnsnowlabs.storage.HasStorageRef
import org.apache.spark.broadcast.Broadcast
import org.apache.spark.ml.param.{IntArrayParam, IntParam}
import org.apache.spark.ml.util.Identifiable
import org.apache.spark.sql.{DataFrame, SparkSession}
/** ALBERT: A LITE BERT FOR SELF-SUPERVISED LEARNING OF LANGUAGE REPRESENTATIONS - Google
* Research, Toyota Technological Institute at Chicago
*
* These word embeddings represent the outputs generated by the Albert model. All official Albert
* releases by google in TF-HUB are supported with this Albert Wrapper:
*
* '''Ported TF-Hub Models:'''
*
* `"albert_base_uncased"` | [[https://tfhub.dev/google/albert_base/3 albert_base]] |
* 768-embed-dim, 12-layer, 12-heads, 12M parameters
*
* `"albert_large_uncased"` | [[https://tfhub.dev/google/albert_large/3 albert_large]] |
* 1024-embed-dim, 24-layer, 16-heads, 18M parameters
*
* `"albert_xlarge_uncased"` | [[https://tfhub.dev/google/albert_xlarge/3 albert_xlarge]] |
* 2048-embed-dim, 24-layer, 32-heads, 60M parameters
*
* `"albert_xxlarge_uncased"` | [[https://tfhub.dev/google/albert_xxlarge/3 albert_xxlarge]] |
* 4096-embed-dim, 12-layer, 64-heads, 235M parameters
*
* This model requires input tokenization with SentencePiece model, which is provided by
* Spark-NLP (See tokenizers package).
*
* Pretrained models can be loaded with `pretrained` of the companion object:
* {{{
* val embeddings = AlbertEmbeddings.pretrained()
* .setInputCols("sentence", "token")
* .setOutputCol("embeddings")
* }}}
* The default model is `"albert_base_uncased"`, if no name is provided.
*
* For extended examples of usage, see the
* [[https://github.com/JohnSnowLabs/spark-nlp/blob/master/examples/python/training/english/dl-ner/ner_albert.ipynb Examples]]
* and the
* [[https://github.com/JohnSnowLabs/spark-nlp/blob/master/src/test/scala/com/johnsnowlabs/nlp/embeddings/AlbertEmbeddingsTestSpec.scala AlbertEmbeddingsTestSpec]].
* To see which models are compatible and how to import them see
* [[https://github.com/JohnSnowLabs/spark-nlp/discussions/5669]].
*
* '''References:'''
*
* [[https://arxiv.org/pdf/1909.11942.pdf ALBERT: A LITE BERT FOR SELF-SUPERVISED LEARNING OF LANGUAGE REPRESENTATIONS]]
*
* [[https://github.com/google-research/ALBERT]]
*
* [[https://tfhub.dev/s?q=albert]]
*
* '''Paper abstract:'''
*
* ''Increasing model size when pretraining natural language representations often results in
* improved performance on downstream tasks. However, at some point further model increases
* become harder due to GPU/TPU memory limitations and longer training times. To address these
* problems, we present two parameter reduction techniques to lower memory consumption and
* increase the training speed of BERT (Devlin et al., 2019). Comprehensive empirical evidence
* shows that our proposed methods lead to models that scale much better compared to the original
* BERT. We also use a self-supervised loss that focuses on modeling inter-sentence coherence,
* and show it consistently helps downstream tasks with multi-sentence inputs. As a result, our
* best model establishes new state-of-the-art results on the GLUE, RACE, and SQuAD benchmarks
* while having fewer parameters compared to BERT-large.''
*
* '''Tips:''' ALBERT uses repeating layers which results in a small memory footprint, however
* the computational cost remains similar to a BERT-like architecture with the same number of
* hidden layers as it has to iterate through the same number of (repeating) layers.
*
* ==Example==
* {{{
* import spark.implicits._
* import com.johnsnowlabs.nlp.base.DocumentAssembler
* import com.johnsnowlabs.nlp.annotators.Tokenizer
* import com.johnsnowlabs.nlp.embeddings.AlbertEmbeddings
* import com.johnsnowlabs.nlp.EmbeddingsFinisher
* import org.apache.spark.ml.Pipeline
*
* val documentAssembler = new DocumentAssembler()
* .setInputCol("text")
* .setOutputCol("document")
*
* val tokenizer = new Tokenizer()
* .setInputCols("document")
* .setOutputCol("token")
*
* val embeddings = AlbertEmbeddings.pretrained()
* .setInputCols("token", "document")
* .setOutputCol("embeddings")
*
* val embeddingsFinisher = new EmbeddingsFinisher()
* .setInputCols("embeddings")
* .setOutputCols("finished_embeddings")
* .setOutputAsVector(true)
* .setCleanAnnotations(false)
*
* val pipeline = new Pipeline().setStages(Array(
* documentAssembler,
* tokenizer,
* embeddings,
* embeddingsFinisher
* ))
*
* val data = Seq("This is a sentence.").toDF("text")
* val result = pipeline.fit(data).transform(data)
*
* result.selectExpr("explode(finished_embeddings) as result").show(5, 80)
* +--------------------------------------------------------------------------------+
* | result|
* +--------------------------------------------------------------------------------+
* |[1.1342473030090332,-1.3855540752410889,0.9818322062492371,-0.784737348556518...|
* |[0.847029983997345,-1.047153353691101,-0.1520637571811676,-0.6245765686035156...|
* |[-0.009860038757324219,-0.13450059294700623,2.707749128341675,1.2916892766952...|
* |[-0.04192575812339783,-0.5764210224151611,-0.3196685314178467,-0.527840495109...|
* |[0.15583214163780212,-0.1614152491092682,-0.28423872590065,-0.135491415858268...|
* +--------------------------------------------------------------------------------+
* }}}
*
* @see
* [[com.johnsnowlabs.nlp.annotators.classifier.dl.AlbertForTokenClassification AlbertForTokenClassification]]
* for AlbertEmbeddings with a token classification layer on top
* @see
* [[https://sparknlp.org/docs/en/annotators Annotators Main Page]] for a list of transformer
* based embeddings
* @param uid
* required uid for storing annotator to disk
* @groupname anno Annotator types
* @groupdesc anno
* Required input and expected output annotator types
* @groupname Ungrouped Members
* @groupname param Parameters
* @groupname setParam Parameter setters
* @groupname getParam Parameter getters
* @groupname Ungrouped Members
* @groupprio param 1
* @groupprio anno 2
* @groupprio Ungrouped 3
* @groupprio setParam 4
* @groupprio getParam 5
* @groupdesc param
* A list of (hyper-)parameter keys this annotator can take. Users can set and get the
* parameter values through setters and getters, respectively.
*/
class AlbertEmbeddings(override val uid: String)
extends AnnotatorModel[AlbertEmbeddings]
with HasBatchedAnnotate[AlbertEmbeddings]
with WriteTensorflowModel
with WriteSentencePieceModel
with WriteOnnxModel
with HasEmbeddingsProperties
with HasStorageRef
with HasCaseSensitiveProperties
with HasEngine {
/** Annotator reference id. Used to identify elements in metadata or to refer to this annotator
* type
*/
def this() = this(Identifiable.randomUID("ALBERT_EMBEDDINGS"))
/** Input Annotator Types: DOCUMENT, TOKEN
*
* @group anno
*/
override val inputAnnotatorTypes: Array[String] =
Array(AnnotatorType.DOCUMENT, AnnotatorType.TOKEN)
/** Output Annotator Types: WORD_EMBEDDINGS
*
* @group anno
*/
override val outputAnnotatorType: AnnotatorType = AnnotatorType.WORD_EMBEDDINGS
/** ConfigProto from tensorflow, serialized into byte array. Get with
* config_proto.SerializeToString()
*
* @group param
*/
val configProtoBytes = new IntArrayParam(
this,
"configProtoBytes",
"ConfigProto from tensorflow, serialized into byte array. Get with config_proto.SerializeToString()")
/** @group setParam */
def setConfigProtoBytes(bytes: Array[Int]): AlbertEmbeddings.this.type =
set(this.configProtoBytes, bytes)
/** @group getParam */
def getConfigProtoBytes: Option[Array[Byte]] = get(this.configProtoBytes).map(_.map(_.toByte))
/** Max sentence length to process (Default: `128`)
*
* @group param
*/
val maxSentenceLength =
new IntParam(this, "maxSentenceLength", "Max sentence length to process")
/** @group setParam */
def setMaxSentenceLength(value: Int): this.type = {
require(
value <= 512,
"ALBERT models do not support sequences longer than 512 because of trainable positional embeddings")
require(value >= 1, "The maxSentenceLength must be at least 1")
set(maxSentenceLength, value)
this
}
/** @group getParam */
def getMaxSentenceLength: Int = $(maxSentenceLength)
/** @group setParam */
override def setDimension(value: Int): this.type = {
set(this.dimension, value)
}
/** It contains TF model signatures for the laded saved model
*
* @group param
*/
val signatures =
new MapFeature[String, String](model = this, name = "signatures").setProtected()
/** @group setParam */
def setSignatures(value: Map[String, String]): this.type = {
set(signatures, value)
this
}
/** @group getParam */
def getSignatures: Option[Map[String, String]] = get(this.signatures)
private var _model: Option[Broadcast[Albert]] = None
/** @group setParam */
def setModelIfNotSet(
spark: SparkSession,
tensorflowWrapper: Option[TensorflowWrapper],
onnxWrapper: Option[OnnxWrapper],
spp: SentencePieceWrapper): AlbertEmbeddings = {
if (_model.isEmpty) {
_model = Some(
spark.sparkContext.broadcast(
new Albert(
tensorflowWrapper,
onnxWrapper,
spp,
batchSize = $(batchSize),
configProtoBytes = getConfigProtoBytes,
signatures = getSignatures)))
}
this
}
def getModelIfNotSet: Albert = _model.get.value
setDefault(batchSize -> 32, dimension -> 768, maxSentenceLength -> 128, caseSensitive -> false)
/** takes a document and annotations and produces new annotations of this annotator's annotation
* type
*
* @param batchedAnnotations
* Annotations that correspond to inputAnnotationCols generated by previous annotators if any
* @return
* any number of annotations processed for every input annotation. Not necessary one to one
* relationship
*/
override def batchAnnotate(batchedAnnotations: Seq[Array[Annotation]]): Seq[Seq[Annotation]] = {
// Unpack annotations and zip each sentence to the index or the row it belongs to
val sentencesWithRow = batchedAnnotations.zipWithIndex
.flatMap { case (annotations, i) =>
TokenizedWithSentence.unpack(annotations).toArray.map(x => (x, i))
}
/*Return empty if the real tokens are empty*/
val sentenceWordEmbeddings = getModelIfNotSet.predict(
sentencesWithRow.map(_._1),
$(batchSize),
$(maxSentenceLength),
$(caseSensitive))
// Group resulting annotations by rows. If there are not sentences in a given row, return empty sequence
batchedAnnotations.indices.map(rowIndex => {
val rowEmbeddings = sentenceWordEmbeddings
// zip each annotation with its corresponding row index
.zip(sentencesWithRow)
// select the sentences belonging to the current row
.filter(_._2._2 == rowIndex)
// leave the annotation only
.map(_._1)
if (rowEmbeddings.nonEmpty)
WordpieceEmbeddingsSentence.pack(rowEmbeddings)
else
Seq.empty[Annotation]
})
}
override def onWrite(path: String, spark: SparkSession): Unit = {
super.onWrite(path, spark)
val suffix = "_albert"
getEngine match {
case TensorFlow.name =>
writeTensorflowModelV2(
path,
spark,
getModelIfNotSet.tensorflowWrapper.get,
suffix,
AlbertEmbeddings.tfFile,
configProtoBytes = getConfigProtoBytes)
case ONNX.name =>
writeOnnxModel(
path,
spark,
getModelIfNotSet.onnxWrapper.get,
suffix,
AlbertEmbeddings.onnxFile)
case _ =>
throw new Exception(notSupportedEngineError)
}
writeSentencePieceModel(path, spark, getModelIfNotSet.spp, suffix, AlbertEmbeddings.sppFile)
}
override protected def afterAnnotate(dataset: DataFrame): DataFrame = {
dataset.withColumn(
getOutputCol,
wrapEmbeddingsMetadata(dataset.col(getOutputCol), $(dimension), Some($(storageRef))))
}
}
trait ReadablePretrainedAlbertModel
extends ParamsAndFeaturesReadable[AlbertEmbeddings]
with HasPretrained[AlbertEmbeddings] {
override val defaultModelName: Some[String] = Some("albert_base_uncased")
/** Java compliant-overrides */
override def pretrained(): AlbertEmbeddings = super.pretrained()
override def pretrained(name: String): AlbertEmbeddings = super.pretrained(name)
override def pretrained(name: String, lang: String): AlbertEmbeddings =
super.pretrained(name, lang)
override def pretrained(name: String, lang: String, remoteLoc: String): AlbertEmbeddings =
super.pretrained(name, lang, remoteLoc)
}
trait ReadAlbertDLModel
extends ReadTensorflowModel
with ReadSentencePieceModel
with ReadOnnxModel {
this: ParamsAndFeaturesReadable[AlbertEmbeddings] =>
override val tfFile: String = "albert_tensorflow"
override val onnxFile: String = "albert_onnx"
override val sppFile: String = "albert_spp"
def readModel(instance: AlbertEmbeddings, path: String, spark: SparkSession): Unit = {
instance.getEngine match {
case TensorFlow.name =>
val tfWrapper = readTensorflowModel(path, spark, "_albert_tf", initAllTables = false)
val spp = readSentencePieceModel(path, spark, "_albert_spp", sppFile)
instance.setModelIfNotSet(spark, Some(tfWrapper), None, spp)
case ONNX.name => {
val onnxWrapper =
readOnnxModel(path, spark, "_albert_onnx", zipped = true, useBundle = false)
val spp = readSentencePieceModel(path, spark, "_albert_spp", sppFile)
instance.setModelIfNotSet(spark, None, Some(onnxWrapper), spp)
}
case _ =>
throw new Exception(notSupportedEngineError)
}
}
addReader(readModel)
def loadSavedModel(modelPath: String, spark: SparkSession): AlbertEmbeddings = {
val (localModelPath, detectedEngine) = modelSanityCheck(modelPath)
val spModel = loadSentencePieceAsset(localModelPath, "spiece.model")
/*Universal parameters for all engines*/
val annotatorModel = new AlbertEmbeddings()
annotatorModel.set(annotatorModel.engine, detectedEngine)
detectedEngine match {
case TensorFlow.name =>
val (tfWrapper, signatures) =
TensorflowWrapper.read(localModelPath, zipped = false, useBundle = true)
val _signatures = signatures match {
case Some(s) => s
case None => throw new Exception("Cannot load signature definitions from model!")
}
/** the order of setSignatures is important if we use getSignatures inside
* setModelIfNotSet
*/
annotatorModel
.setSignatures(_signatures)
.setModelIfNotSet(spark, Some(tfWrapper), None, spModel)
case ONNX.name =>
val onnxWrapper = OnnxWrapper.read(
spark,
localModelPath,
zipped = false,
useBundle = true,
onnxFileSuffix = None)
annotatorModel
.setModelIfNotSet(spark, None, Some(onnxWrapper), spModel)
case _ =>
throw new Exception(notSupportedEngineError)
}
annotatorModel
}
}
/** This is the companion object of [[AlbertEmbeddings]]. Please refer to that class for the
* documentation.
*/
object AlbertEmbeddings extends ReadablePretrainedAlbertModel with ReadAlbertDLModel