com.johnsnowlabs.nlp.util.FinisherUtil.scala Maven / Gradle / Ivy
The newest version!
/*
* Copyright 2017-2022 John Snow Labs
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.johnsnowlabs.nlp.util
import com.johnsnowlabs.nlp.Annotation
import org.apache.spark.sql.DataFrame
import org.apache.spark.sql.types._
object FinisherUtil {
def checkIfInputColsExist(inputCols: Array[String], schema: StructType): Unit = {
require(
inputCols.forall(schema.fieldNames.contains),
s"pipeline annotator stages incomplete. " +
s"expected: ${inputCols.mkString(", ")}, " +
s"found: ${schema.fields.filter(_.dataType == ArrayType(Annotation.dataType)).map(_.name).mkString(", ")}, " +
s"among available: ${schema.fieldNames.mkString(", ")}")
}
def checkIfAnnotationColumnIsSparkNLPAnnotation(
schema: StructType,
annotationColumn: String): Unit = {
require(
schema(annotationColumn).dataType == ArrayType(Annotation.dataType),
s"column [$annotationColumn] must be an NLP Annotation column")
}
def getMetadataFields(outputCols: Array[String], outputAsArray: Boolean): Array[StructField] = {
outputCols.flatMap(outputCol => {
if (outputAsArray)
Some(
StructField(outputCol + "_metadata", MapType(StringType, StringType), nullable = false))
else
None
})
}
def getOutputFields(outputCols: Array[String], outputAsArray: Boolean): Array[StructField] = {
outputCols.map(outputCol => {
if (outputAsArray)
StructField(outputCol, ArrayType(StringType), nullable = false)
else
StructField(outputCol, StringType, nullable = true)
})
}
def getCleanFields(
cleanAnnotations: Boolean,
outputFields: Array[StructField]): Array[StructField] = {
if (cleanAnnotations)
outputFields.filterNot(f => f.dataType == ArrayType(Annotation.dataType))
else outputFields
}
def cleaningAnnotations(cleanAnnotations: Boolean, dataSet: DataFrame): DataFrame = {
if (cleanAnnotations) {
val columnsToDrop = dataSet.schema.fields
.filter(_.dataType == ArrayType(Annotation.dataType))
.map(_.name)
dataSet.drop(columnsToDrop: _*)
} else dataSet
}
}