com.joliciel.talismane.machineLearning.ModelTrainerFactory Maven / Gradle / Ivy
///////////////////////////////////////////////////////////////////////////////
//Copyright (C) 2014 Joliciel Informatique
//
//This file is part of Talismane.
//
//Talismane is free software: you can redistribute it and/or modify
//it under the terms of the GNU Affero General Public License as published by
//the Free Software Foundation, either version 3 of the License, or
//(at your option) any later version.
//
//Talismane is distributed in the hope that it will be useful,
//but WITHOUT ANY WARRANTY; without even the implied warranty of
//MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
//GNU Affero General Public License for more details.
//
//You should have received a copy of the GNU Affero General Public License
//along with Talismane. If not, see .
//////////////////////////////////////////////////////////////////////////////
package com.joliciel.talismane.machineLearning;
import com.joliciel.talismane.machineLearning.linearsvm.LinearSVMModelTrainer;
import com.joliciel.talismane.machineLearning.maxent.MaxentModelTrainer;
import com.joliciel.talismane.machineLearning.perceptron.PerceptronClassificationModelTrainer;
import com.joliciel.talismane.utils.JolicielException;
import com.typesafe.config.Config;
import com.typesafe.config.ConfigFactory;
/**
* A class for constructing model trainers implementing ModelTrainer.
*
* @author Assaf Urieli
*
*/
public class ModelTrainerFactory {
/**
* Get a classification model trainer corresponding to a given outcome type
* and a given algorithm.
*
* It is assumed the config file passed will be a local configuration, whose
* root is equivalent to the talismane.machine-learning key in reference.conf
*/
public ClassificationModelTrainer constructTrainer(Config config) {
config.checkValid(ConfigFactory.defaultReference().getConfig("talismane.machine-learning.generic"));
MachineLearningAlgorithm algorithm = MachineLearningAlgorithm.valueOf(config.getString("algorithm"));
ClassificationModelTrainer modelTrainer = null;
switch (algorithm) {
case MaxEnt:
MaxentModelTrainer maxentModelTrainer = new MaxentModelTrainer();
modelTrainer = maxentModelTrainer;
break;
case LinearSVM:
case LinearSVMOneVsRest:
LinearSVMModelTrainer linearSVMModelTrainer = new LinearSVMModelTrainer();
modelTrainer = linearSVMModelTrainer;
break;
case Perceptron:
PerceptronClassificationModelTrainer perceptronModelTrainer = new PerceptronClassificationModelTrainer();
modelTrainer = perceptronModelTrainer;
break;
default:
throw new JolicielException("Machine learning algorithm not yet supported: " + algorithm);
}
modelTrainer.setParameters(config);
return modelTrainer;
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy