com.joliciel.talismane.machineLearning.maxent.custom.TwoPassDataIndexer Maven / Gradle / Ivy
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
package com.joliciel.talismane.machineLearning.maxent.custom;
import java.io.BufferedWriter;
import java.io.File;
import java.io.FileOutputStream;
import java.io.IOException;
import java.io.OutputStreamWriter;
import java.io.Writer;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.HashMap;
import java.util.HashSet;
import java.util.Iterator;
import java.util.List;
import java.util.Map;
import java.util.Set;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import com.joliciel.talismane.utils.LogUtils;
import opennlp.model.AbstractDataIndexer;
import opennlp.model.ComparableEvent;
import opennlp.model.Event;
import opennlp.model.EventStream;
import opennlp.model.FileEventStream;
/**
* Collecting event and context counts by making two passes over the events. The
* first pass determines which contexts will be used by the model, and the
* second pass creates the events in memory containing only the contexts which
* will be used. This greatly reduces the amount of memory required for storing
* the events. During the first pass a temporary event file is created which is
* read during the second pass.
*/
public class TwoPassDataIndexer extends AbstractDataIndexer {
private static final Logger LOG = LoggerFactory.getLogger(TwoPassDataIndexer.class);
/**
* One argument constructor for DataIndexer which calls the two argument
* constructor assuming no cutoff.
*
* @param eventStream
* An Event[] which contains the a list of all the Events seen in the
* training data.
*/
public TwoPassDataIndexer(EventStream eventStream) throws IOException {
this(eventStream, 0);
}
public TwoPassDataIndexer(EventStream eventStream, int cutoff) throws IOException {
this(eventStream, cutoff, true);
}
/**
* Two argument constructor for DataIndexer.
*
* @param eventStream
* An Event[] which contains the a list of all the Events seen in the
* training data.
* @param cutoff
* The minimum number of times a predicate must have been observed in
* order to be included in the model.
*/
@SuppressWarnings("unchecked")
public TwoPassDataIndexer(EventStream eventStream, int cutoff, boolean sort) throws IOException {
Map predicateIndex = new HashMap();
@SuppressWarnings("rawtypes")
List eventsToCompare;
LOG.info("Indexing events using cutoff of " + cutoff);
LOG.info("Computing event counts... ");
try {
File tmp = File.createTempFile("events", null);
tmp.deleteOnExit();
Writer osw = new BufferedWriter(new OutputStreamWriter(new FileOutputStream(tmp), "UTF8"));
int numEvents = computeEventCounts(eventStream, osw, predicateIndex, cutoff);
LOG.info("done. " + numEvents + " events");
LOG.info("Indexing... ");
eventsToCompare = index(numEvents, this.getFileEventStream(tmp), predicateIndex);
// done with predicates
predicateIndex = null;
tmp.delete();
LOG.info("done.");
if (sort) {
System.out.print("Sorting and merging events... ");
} else {
System.out.print("Collecting events... ");
}
sortAndMerge(eventsToCompare, sort);
LOG.info("Done indexing.");
} catch (IOException e) {
LogUtils.logError(LOG, e);
}
}
/**
* Reads events from eventStream into a linked list. The predicates
* associated with each event are counted and any which occur at least
* cutoff times are added to the predicatesInOut map along
* with a unique integer index.
*
* @param eventStream
* an EventStream
value
* @param eventStore
* a writer to which the events are written to for later processing.
* @param predicatesInOut
* a TObjectIntHashMap
value
* @param cutoff
* an int
value
*/
@SuppressWarnings({ "rawtypes", "unchecked" })
private int computeEventCounts(EventStream eventStream, Writer eventStore, Map predicatesInOut, int cutoff) throws IOException {
Map counter = new HashMap();
int eventCount = 0;
Set predicateSet = new HashSet();
while (eventStream.hasNext()) {
Event ev = eventStream.next();
eventCount++;
eventStore.write(this.toLine(ev));
String[] ec = ev.getContext();
update(ec, predicateSet, counter, cutoff);
}
predCounts = new int[predicateSet.size()];
int index = 0;
for (Iterator pi = predicateSet.iterator(); pi.hasNext(); index++) {
String predicate = (String) pi.next();
predCounts[index] = counter.get(predicate);
predicatesInOut.put(predicate, index);
}
eventStore.close();
return eventCount;
}
@SuppressWarnings({ "rawtypes", "unchecked" })
protected List index(int numEvents, EventStream es, Map predicateIndex) throws IOException {
Map omap = new HashMap();
int outcomeCount = 0;
List eventsToCompare = new ArrayList(numEvents);
List indexedContext = new ArrayList();
while (es.hasNext()) {
Event ev = es.next();
String[] econtext = ev.getContext();
ComparableEvent ce;
int ocID;
String oc = ev.getOutcome();
if (omap.containsKey(oc)) {
ocID = omap.get(oc);
} else {
ocID = outcomeCount++;
omap.put(oc, ocID);
}
for (int i = 0; i < econtext.length; i++) {
String pred = econtext[i];
if (predicateIndex.containsKey(pred)) {
indexedContext.add(predicateIndex.get(pred));
}
}
// drop events with no active features
if (indexedContext.size() > 0) {
int[] cons = new int[indexedContext.size()];
for (int ci = 0; ci < cons.length; ci++) {
cons[ci] = indexedContext.get(ci);
}
ce = new ComparableEvent(ocID, cons);
eventsToCompare.add(ce);
} else {
LOG.debug("Dropped event " + ev.getOutcome() + ":" + Arrays.asList(ev.getContext()));
}
// recycle the TIntArrayList
indexedContext.clear();
}
outcomeLabels = toIndexedStringArray(omap);
predLabels = toIndexedStringArray(predicateIndex);
return eventsToCompare;
}
protected EventStream getFileEventStream(File file) throws IOException {
return new FileEventStream(file);
}
protected String toLine(Event ev) {
return FileEventStream.toLine(ev);
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy