org.jbox2d.dynamics.World Maven / Gradle / Ivy
/*******************************************************************************
* Copyright (c) 2013, Daniel Murphy
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
* INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
******************************************************************************/
package org.jbox2d.dynamics;
import org.jbox2d.callbacks.ContactFilter;
import org.jbox2d.callbacks.ContactListener;
import org.jbox2d.callbacks.DebugDraw;
import org.jbox2d.callbacks.DestructionListener;
import org.jbox2d.callbacks.ParticleDestructionListener;
import org.jbox2d.callbacks.ParticleQueryCallback;
import org.jbox2d.callbacks.ParticleRaycastCallback;
import org.jbox2d.callbacks.QueryCallback;
import org.jbox2d.callbacks.RayCastCallback;
import org.jbox2d.callbacks.TreeCallback;
import org.jbox2d.callbacks.TreeRayCastCallback;
import org.jbox2d.collision.AABB;
import org.jbox2d.collision.RayCastInput;
import org.jbox2d.collision.RayCastOutput;
import org.jbox2d.collision.TimeOfImpact.TOIInput;
import org.jbox2d.collision.TimeOfImpact.TOIOutput;
import org.jbox2d.collision.TimeOfImpact.TOIOutputState;
import org.jbox2d.collision.broadphase.BroadPhase;
import org.jbox2d.collision.broadphase.BroadPhaseStrategy;
import org.jbox2d.collision.broadphase.DefaultBroadPhaseBuffer;
import org.jbox2d.collision.broadphase.DynamicTree;
import org.jbox2d.collision.shapes.ChainShape;
import org.jbox2d.collision.shapes.CircleShape;
import org.jbox2d.collision.shapes.EdgeShape;
import org.jbox2d.collision.shapes.PolygonShape;
import org.jbox2d.collision.shapes.Shape;
import org.jbox2d.collision.shapes.ShapeType;
import org.jbox2d.common.Color3f;
import org.jbox2d.common.MathUtils;
import org.jbox2d.common.Settings;
import org.jbox2d.common.Sweep;
import org.jbox2d.common.Timer;
import org.jbox2d.common.Transform;
import org.jbox2d.common.Vec2;
import org.jbox2d.dynamics.contacts.Contact;
import org.jbox2d.dynamics.contacts.ContactEdge;
import org.jbox2d.dynamics.contacts.ContactRegister;
import org.jbox2d.dynamics.joints.Joint;
import org.jbox2d.dynamics.joints.JointDef;
import org.jbox2d.dynamics.joints.JointEdge;
import org.jbox2d.dynamics.joints.PulleyJoint;
import org.jbox2d.particle.ParticleBodyContact;
import org.jbox2d.particle.ParticleColor;
import org.jbox2d.particle.ParticleContact;
import org.jbox2d.particle.ParticleDef;
import org.jbox2d.particle.ParticleGroup;
import org.jbox2d.particle.ParticleGroupDef;
import org.jbox2d.particle.ParticleSystem;
import org.jbox2d.pooling.IDynamicStack;
import org.jbox2d.pooling.IWorldPool;
import org.jbox2d.pooling.arrays.Vec2Array;
import org.jbox2d.pooling.normal.DefaultWorldPool;
/**
* The world class manages all physics entities, dynamic simulation, and asynchronous queries. The
* world also contains efficient memory management facilities.
*
* @author Daniel Murphy
*/
public class World {
public static final int WORLD_POOL_SIZE = 100;
public static final int WORLD_POOL_CONTAINER_SIZE = 10;
public static final int NEW_FIXTURE = 0x0001;
public static final int LOCKED = 0x0002;
public static final int CLEAR_FORCES = 0x0004;
// statistics gathering
public int activeContacts = 0;
public int contactPoolCount = 0;
protected int m_flags;
protected ContactManager m_contactManager;
private Body m_bodyList;
private Joint m_jointList;
private int m_bodyCount;
private int m_jointCount;
private final Vec2 m_gravity = new Vec2();
private boolean m_allowSleep;
// private Body m_groundBody;
private DestructionListener m_destructionListener;
private ParticleDestructionListener m_particleDestructionListener;
private DebugDraw m_debugDraw;
private final IWorldPool pool;
/**
* This is used to compute the time step ratio to support a variable time step.
*/
private float m_inv_dt0;
// these are for debugging the solver
private boolean m_warmStarting;
private boolean m_continuousPhysics;
private boolean m_subStepping;
private boolean m_stepComplete;
private Profile m_profile;
private ParticleSystem m_particleSystem;
private ContactRegister[][] contactStacks =
new ContactRegister[ShapeType.values().length][ShapeType.values().length];
/**
* Construct a world object.
*
* @param gravity the world gravity vector.
*/
public World(Vec2 gravity) {
this(gravity, new DefaultWorldPool(WORLD_POOL_SIZE, WORLD_POOL_CONTAINER_SIZE));
}
/**
* Construct a world object.
*
* @param gravity the world gravity vector.
*/
public World(Vec2 gravity, IWorldPool pool) {
this(gravity, pool, new DynamicTree());
}
public World(Vec2 gravity, IWorldPool pool, BroadPhaseStrategy strategy) {
this(gravity, pool, new DefaultBroadPhaseBuffer(strategy));
}
public World(Vec2 gravity, IWorldPool pool, BroadPhase broadPhase) {
this.pool = pool;
m_destructionListener = null;
m_debugDraw = null;
m_bodyList = null;
m_jointList = null;
m_bodyCount = 0;
m_jointCount = 0;
m_warmStarting = true;
m_continuousPhysics = true;
m_subStepping = false;
m_stepComplete = true;
m_allowSleep = true;
m_gravity.set(gravity);
m_flags = CLEAR_FORCES;
m_inv_dt0 = 0f;
m_contactManager = new ContactManager(this, broadPhase);
m_profile = new Profile();
m_particleSystem = new ParticleSystem(this);
initializeRegisters();
}
public void setAllowSleep(boolean flag) {
if (flag == m_allowSleep) {
return;
}
m_allowSleep = flag;
if (m_allowSleep == false) {
for (Body b = m_bodyList; b != null; b = b.m_next) {
b.setAwake(true);
}
}
}
public void setSubStepping(boolean subStepping) {
this.m_subStepping = subStepping;
}
public boolean isSubStepping() {
return m_subStepping;
}
public boolean isAllowSleep() {
return m_allowSleep;
}
private void addType(IDynamicStack creator, ShapeType type1, ShapeType type2) {
ContactRegister register = new ContactRegister();
register.creator = creator;
register.primary = true;
contactStacks[type1.ordinal()][type2.ordinal()] = register;
if (type1 != type2) {
ContactRegister register2 = new ContactRegister();
register2.creator = creator;
register2.primary = false;
contactStacks[type2.ordinal()][type1.ordinal()] = register2;
}
}
private void initializeRegisters() {
addType(pool.getCircleContactStack(), ShapeType.CIRCLE, ShapeType.CIRCLE);
addType(pool.getPolyCircleContactStack(), ShapeType.POLYGON, ShapeType.CIRCLE);
addType(pool.getPolyContactStack(), ShapeType.POLYGON, ShapeType.POLYGON);
addType(pool.getEdgeCircleContactStack(), ShapeType.EDGE, ShapeType.CIRCLE);
addType(pool.getEdgePolyContactStack(), ShapeType.EDGE, ShapeType.POLYGON);
addType(pool.getChainCircleContactStack(), ShapeType.CHAIN, ShapeType.CIRCLE);
addType(pool.getChainPolyContactStack(), ShapeType.CHAIN, ShapeType.POLYGON);
}
public DestructionListener getDestructionListener() {
return m_destructionListener;
}
public ParticleDestructionListener getParticleDestructionListener() {
return m_particleDestructionListener;
}
public void setParticleDestructionListener(ParticleDestructionListener listener) {
m_particleDestructionListener = listener;
}
public Contact popContact(Fixture fixtureA, int indexA, Fixture fixtureB, int indexB) {
final ShapeType type1 = fixtureA.getType();
final ShapeType type2 = fixtureB.getType();
final ContactRegister reg = contactStacks[type1.ordinal()][type2.ordinal()];
if (reg != null) {
if (reg.primary) {
Contact c = reg.creator.pop();
c.init(fixtureA, indexA, fixtureB, indexB);
return c;
} else {
Contact c = reg.creator.pop();
c.init(fixtureB, indexB, fixtureA, indexA);
return c;
}
} else {
return null;
}
}
public void pushContact(Contact contact) {
Fixture fixtureA = contact.getFixtureA();
Fixture fixtureB = contact.getFixtureB();
if (contact.m_manifold.pointCount > 0 && !fixtureA.isSensor() && !fixtureB.isSensor()) {
fixtureA.getBody().setAwake(true);
fixtureB.getBody().setAwake(true);
}
ShapeType type1 = fixtureA.getType();
ShapeType type2 = fixtureB.getType();
IDynamicStack creator = contactStacks[type1.ordinal()][type2.ordinal()].creator;
creator.push(contact);
}
public IWorldPool getPool() {
return pool;
}
/**
* Register a destruction listener. The listener is owned by you and must remain in scope.
*
* @param listener
*/
public void setDestructionListener(DestructionListener listener) {
m_destructionListener = listener;
}
/**
* Register a contact filter to provide specific control over collision. Otherwise the default
* filter is used (_defaultFilter). The listener is owned by you and must remain in scope.
*
* @param filter
*/
public void setContactFilter(ContactFilter filter) {
m_contactManager.m_contactFilter = filter;
}
/**
* Register a contact event listener. The listener is owned by you and must remain in scope.
*
* @param listener
*/
public void setContactListener(ContactListener listener) {
m_contactManager.m_contactListener = listener;
}
/**
* Register a routine for debug drawing. The debug draw functions are called inside with
* World.DrawDebugData method. The debug draw object is owned by you and must remain in scope.
*
* @param debugDraw
*/
public void setDebugDraw(DebugDraw debugDraw) {
m_debugDraw = debugDraw;
}
/**
* create a rigid body given a definition. No reference to the definition is retained.
*
* @warning This function is locked during callbacks.
* @param def
* @return
*/
public Body createBody(BodyDef def) {
assert (isLocked() == false);
if (isLocked()) {
return null;
}
// TODO djm pooling
Body b = new Body(def, this);
// add to world doubly linked list
b.m_prev = null;
b.m_next = m_bodyList;
if (m_bodyList != null) {
m_bodyList.m_prev = b;
}
m_bodyList = b;
++m_bodyCount;
return b;
}
/**
* destroy a rigid body given a definition. No reference to the definition is retained. This
* function is locked during callbacks.
*
* @warning This automatically deletes all associated shapes and joints.
* @warning This function is locked during callbacks.
* @param body
*/
public void destroyBody(Body body) {
assert (m_bodyCount > 0);
assert (isLocked() == false);
if (isLocked()) {
return;
}
// Delete the attached joints.
JointEdge je = body.m_jointList;
while (je != null) {
JointEdge je0 = je;
je = je.next;
if (m_destructionListener != null) {
m_destructionListener.sayGoodbye(je0.joint);
}
destroyJoint(je0.joint);
body.m_jointList = je;
}
body.m_jointList = null;
// Delete the attached contacts.
ContactEdge ce = body.m_contactList;
while (ce != null) {
ContactEdge ce0 = ce;
ce = ce.next;
m_contactManager.destroy(ce0.contact);
}
body.m_contactList = null;
Fixture f = body.m_fixtureList;
while (f != null) {
Fixture f0 = f;
f = f.m_next;
if (m_destructionListener != null) {
m_destructionListener.sayGoodbye(f0);
}
f0.destroyProxies(m_contactManager.m_broadPhase);
f0.destroy();
// TODO djm recycle fixtures (here or in that destroy method)
body.m_fixtureList = f;
body.m_fixtureCount -= 1;
}
body.m_fixtureList = null;
body.m_fixtureCount = 0;
// Remove world body list.
if (body.m_prev != null) {
body.m_prev.m_next = body.m_next;
}
if (body.m_next != null) {
body.m_next.m_prev = body.m_prev;
}
if (body == m_bodyList) {
m_bodyList = body.m_next;
}
--m_bodyCount;
// TODO djm recycle body
}
/**
* create a joint to constrain bodies together. No reference to the definition is retained. This
* may cause the connected bodies to cease colliding.
*
* @warning This function is locked during callbacks.
* @param def
* @return
*/
public Joint createJoint(JointDef def) {
assert (isLocked() == false);
if (isLocked()) {
return null;
}
Joint j = Joint.create(this, def);
// Connect to the world list.
j.m_prev = null;
j.m_next = m_jointList;
if (m_jointList != null) {
m_jointList.m_prev = j;
}
m_jointList = j;
++m_jointCount;
// Connect to the bodies' doubly linked lists.
j.m_edgeA.joint = j;
j.m_edgeA.other = j.getBodyB();
j.m_edgeA.prev = null;
j.m_edgeA.next = j.getBodyA().m_jointList;
if (j.getBodyA().m_jointList != null) {
j.getBodyA().m_jointList.prev = j.m_edgeA;
}
j.getBodyA().m_jointList = j.m_edgeA;
j.m_edgeB.joint = j;
j.m_edgeB.other = j.getBodyA();
j.m_edgeB.prev = null;
j.m_edgeB.next = j.getBodyB().m_jointList;
if (j.getBodyB().m_jointList != null) {
j.getBodyB().m_jointList.prev = j.m_edgeB;
}
j.getBodyB().m_jointList = j.m_edgeB;
Body bodyA = def.bodyA;
Body bodyB = def.bodyB;
// If the joint prevents collisions, then flag any contacts for filtering.
if (def.collideConnected == false) {
ContactEdge edge = bodyB.getContactList();
while (edge != null) {
if (edge.other == bodyA) {
// Flag the contact for filtering at the next time step (where either
// body is awake).
edge.contact.flagForFiltering();
}
edge = edge.next;
}
}
// Note: creating a joint doesn't wake the bodies.
return j;
}
/**
* destroy a joint. This may cause the connected bodies to begin colliding.
*
* @warning This function is locked during callbacks.
* @param joint
*/
public void destroyJoint(Joint j) {
assert (isLocked() == false);
if (isLocked()) {
return;
}
boolean collideConnected = j.getCollideConnected();
// Remove from the doubly linked list.
if (j.m_prev != null) {
j.m_prev.m_next = j.m_next;
}
if (j.m_next != null) {
j.m_next.m_prev = j.m_prev;
}
if (j == m_jointList) {
m_jointList = j.m_next;
}
// Disconnect from island graph.
Body bodyA = j.getBodyA();
Body bodyB = j.getBodyB();
// Wake up connected bodies.
bodyA.setAwake(true);
bodyB.setAwake(true);
// Remove from body 1.
if (j.m_edgeA.prev != null) {
j.m_edgeA.prev.next = j.m_edgeA.next;
}
if (j.m_edgeA.next != null) {
j.m_edgeA.next.prev = j.m_edgeA.prev;
}
if (j.m_edgeA == bodyA.m_jointList) {
bodyA.m_jointList = j.m_edgeA.next;
}
j.m_edgeA.prev = null;
j.m_edgeA.next = null;
// Remove from body 2
if (j.m_edgeB.prev != null) {
j.m_edgeB.prev.next = j.m_edgeB.next;
}
if (j.m_edgeB.next != null) {
j.m_edgeB.next.prev = j.m_edgeB.prev;
}
if (j.m_edgeB == bodyB.m_jointList) {
bodyB.m_jointList = j.m_edgeB.next;
}
j.m_edgeB.prev = null;
j.m_edgeB.next = null;
Joint.destroy(j);
assert (m_jointCount > 0);
--m_jointCount;
// If the joint prevents collisions, then flag any contacts for filtering.
if (collideConnected == false) {
ContactEdge edge = bodyB.getContactList();
while (edge != null) {
if (edge.other == bodyA) {
// Flag the contact for filtering at the next time step (where either
// body is awake).
edge.contact.flagForFiltering();
}
edge = edge.next;
}
}
}
// djm pooling
private final TimeStep step = new TimeStep();
private final Timer stepTimer = new Timer();
private final Timer tempTimer = new Timer();
/**
* Take a time step. This performs collision detection, integration, and constraint solution.
*
* @param timeStep the amount of time to simulate, this should not vary.
* @param velocityIterations for the velocity constraint solver.
* @param positionIterations for the position constraint solver.
*/
public void step(float dt, int velocityIterations, int positionIterations) {
stepTimer.reset();
tempTimer.reset();
// log.debug("Starting step");
// If new fixtures were added, we need to find the new contacts.
if ((m_flags & NEW_FIXTURE) == NEW_FIXTURE) {
// log.debug("There's a new fixture, lets look for new contacts");
m_contactManager.findNewContacts();
m_flags &= ~NEW_FIXTURE;
}
m_flags |= LOCKED;
step.dt = dt;
step.velocityIterations = velocityIterations;
step.positionIterations = positionIterations;
if (dt > 0.0f) {
step.inv_dt = 1.0f / dt;
} else {
step.inv_dt = 0.0f;
}
step.dtRatio = m_inv_dt0 * dt;
step.warmStarting = m_warmStarting;
m_profile.stepInit.record(tempTimer.getMilliseconds());
// Update contacts. This is where some contacts are destroyed.
tempTimer.reset();
m_contactManager.collide();
m_profile.collide.record(tempTimer.getMilliseconds());
// Integrate velocities, solve velocity constraints, and integrate positions.
if (m_stepComplete && step.dt > 0.0f) {
tempTimer.reset();
m_particleSystem.solve(step); // Particle Simulation
m_profile.solveParticleSystem.record(tempTimer.getMilliseconds());
tempTimer.reset();
solve(step);
m_profile.solve.record(tempTimer.getMilliseconds());
}
// Handle TOI events.
if (m_continuousPhysics && step.dt > 0.0f) {
tempTimer.reset();
solveTOI(step);
m_profile.solveTOI.record(tempTimer.getMilliseconds());
}
if (step.dt > 0.0f) {
m_inv_dt0 = step.inv_dt;
}
if ((m_flags & CLEAR_FORCES) == CLEAR_FORCES) {
clearForces();
}
m_flags &= ~LOCKED;
// log.debug("ending step");
m_profile.step.record(stepTimer.getMilliseconds());
}
/**
* Call this after you are done with time steps to clear the forces. You normally call this after
* each call to Step, unless you are performing sub-steps. By default, forces will be
* automatically cleared, so you don't need to call this function.
*
* @see setAutoClearForces
*/
public void clearForces() {
for (Body body = m_bodyList; body != null; body = body.getNext()) {
body.m_force.setZero();
body.m_torque = 0.0f;
}
}
private final Color3f color = new Color3f();
private final Transform xf = new Transform();
private final Vec2 cA = new Vec2();
private final Vec2 cB = new Vec2();
private final Vec2Array avs = new Vec2Array();
/**
* Call this to draw shapes and other debug draw data.
*/
public void drawDebugData() {
if (m_debugDraw == null) {
return;
}
int flags = m_debugDraw.getFlags();
boolean wireframe = (flags & DebugDraw.e_wireframeDrawingBit) != 0;
if ((flags & DebugDraw.e_shapeBit) != 0) {
for (Body b = m_bodyList; b != null; b = b.getNext()) {
xf.set(b.getTransform());
for (Fixture f = b.getFixtureList(); f != null; f = f.getNext()) {
if (b.isActive() == false) {
color.set(0.5f, 0.5f, 0.3f);
drawShape(f, xf, color, wireframe);
} else if (b.getType() == BodyType.STATIC) {
color.set(0.5f, 0.9f, 0.3f);
drawShape(f, xf, color, wireframe);
} else if (b.getType() == BodyType.KINEMATIC) {
color.set(0.5f, 0.5f, 0.9f);
drawShape(f, xf, color, wireframe);
} else if (b.isAwake() == false) {
color.set(0.5f, 0.5f, 0.5f);
drawShape(f, xf, color, wireframe);
} else {
color.set(0.9f, 0.7f, 0.7f);
drawShape(f, xf, color, wireframe);
}
}
}
drawParticleSystem(m_particleSystem);
}
if ((flags & DebugDraw.e_jointBit) != 0) {
for (Joint j = m_jointList; j != null; j = j.getNext()) {
drawJoint(j);
}
}
if ((flags & DebugDraw.e_pairBit) != 0) {
color.set(0.3f, 0.9f, 0.9f);
for (Contact c = m_contactManager.m_contactList; c != null; c = c.getNext()) {
Fixture fixtureA = c.getFixtureA();
Fixture fixtureB = c.getFixtureB();
fixtureA.getAABB(c.getChildIndexA()).getCenterToOut(cA);
fixtureB.getAABB(c.getChildIndexB()).getCenterToOut(cB);
m_debugDraw.drawSegment(cA, cB, color);
}
}
if ((flags & DebugDraw.e_aabbBit) != 0) {
color.set(0.9f, 0.3f, 0.9f);
for (Body b = m_bodyList; b != null; b = b.getNext()) {
if (b.isActive() == false) {
continue;
}
for (Fixture f = b.getFixtureList(); f != null; f = f.getNext()) {
for (int i = 0; i < f.m_proxyCount; ++i) {
FixtureProxy proxy = f.m_proxies[i];
AABB aabb = m_contactManager.m_broadPhase.getFatAABB(proxy.proxyId);
if (aabb != null) {
Vec2[] vs = avs.get(4);
vs[0].set(aabb.lowerBound.x, aabb.lowerBound.y);
vs[1].set(aabb.upperBound.x, aabb.lowerBound.y);
vs[2].set(aabb.upperBound.x, aabb.upperBound.y);
vs[3].set(aabb.lowerBound.x, aabb.upperBound.y);
m_debugDraw.drawPolygon(vs, 4, color);
}
}
}
}
}
if ((flags & DebugDraw.e_centerOfMassBit) != 0) {
for (Body b = m_bodyList; b != null; b = b.getNext()) {
xf.set(b.getTransform());
xf.p.set(b.getWorldCenter());
m_debugDraw.drawTransform(xf);
}
}
if ((flags & DebugDraw.e_dynamicTreeBit) != 0) {
m_contactManager.m_broadPhase.drawTree(m_debugDraw);
}
m_debugDraw.flush();
}
private final WorldQueryWrapper wqwrapper = new WorldQueryWrapper();
/**
* Query the world for all fixtures that potentially overlap the provided AABB.
*
* @param callback a user implemented callback class.
* @param aabb the query box.
*/
public void queryAABB(QueryCallback callback, AABB aabb) {
wqwrapper.broadPhase = m_contactManager.m_broadPhase;
wqwrapper.callback = callback;
m_contactManager.m_broadPhase.query(wqwrapper, aabb);
}
/**
* Query the world for all fixtures and particles that potentially overlap the provided AABB.
*
* @param callback a user implemented callback class.
* @param particleCallback callback for particles.
* @param aabb the query box.
*/
public void queryAABB(QueryCallback callback, ParticleQueryCallback particleCallback, AABB aabb) {
wqwrapper.broadPhase = m_contactManager.m_broadPhase;
wqwrapper.callback = callback;
m_contactManager.m_broadPhase.query(wqwrapper, aabb);
m_particleSystem.queryAABB(particleCallback, aabb);
}
/**
* Query the world for all particles that potentially overlap the provided AABB.
*
* @param particleCallback callback for particles.
* @param aabb the query box.
*/
public void queryAABB(ParticleQueryCallback particleCallback, AABB aabb) {
m_particleSystem.queryAABB(particleCallback, aabb);
}
private final WorldRayCastWrapper wrcwrapper = new WorldRayCastWrapper();
private final RayCastInput input = new RayCastInput();
/**
* Ray-cast the world for all fixtures in the path of the ray. Your callback controls whether you
* get the closest point, any point, or n-points. The ray-cast ignores shapes that contain the
* starting point.
*
* @param callback a user implemented callback class.
* @param point1 the ray starting point
* @param point2 the ray ending point
*/
public void raycast(RayCastCallback callback, Vec2 point1, Vec2 point2) {
wrcwrapper.broadPhase = m_contactManager.m_broadPhase;
wrcwrapper.callback = callback;
input.maxFraction = 1.0f;
input.p1.set(point1);
input.p2.set(point2);
m_contactManager.m_broadPhase.raycast(wrcwrapper, input);
}
/**
* Ray-cast the world for all fixtures and particles in the path of the ray. Your callback
* controls whether you get the closest point, any point, or n-points. The ray-cast ignores shapes
* that contain the starting point.
*
* @param callback a user implemented callback class.
* @param particleCallback the particle callback class.
* @param point1 the ray starting point
* @param point2 the ray ending point
*/
public void raycast(RayCastCallback callback, ParticleRaycastCallback particleCallback,
Vec2 point1, Vec2 point2) {
wrcwrapper.broadPhase = m_contactManager.m_broadPhase;
wrcwrapper.callback = callback;
input.maxFraction = 1.0f;
input.p1.set(point1);
input.p2.set(point2);
m_contactManager.m_broadPhase.raycast(wrcwrapper, input);
m_particleSystem.raycast(particleCallback, point1, point2);
}
/**
* Ray-cast the world for all particles in the path of the ray. Your callback controls whether you
* get the closest point, any point, or n-points.
*
* @param particleCallback the particle callback class.
* @param point1 the ray starting point
* @param point2 the ray ending point
*/
public void raycast(ParticleRaycastCallback particleCallback, Vec2 point1, Vec2 point2) {
m_particleSystem.raycast(particleCallback, point1, point2);
}
/**
* Get the world body list. With the returned body, use Body.getNext to get the next body in the
* world list. A null body indicates the end of the list.
*
* @return the head of the world body list.
*/
public Body getBodyList() {
return m_bodyList;
}
/**
* Get the world joint list. With the returned joint, use Joint.getNext to get the next joint in
* the world list. A null joint indicates the end of the list.
*
* @return the head of the world joint list.
*/
public Joint getJointList() {
return m_jointList;
}
/**
* Get the world contact list. With the returned contact, use Contact.getNext to get the next
* contact in the world list. A null contact indicates the end of the list.
*
* @return the head of the world contact list.
* @warning contacts are created and destroyed in the middle of a time step. Use ContactListener
* to avoid missing contacts.
*/
public Contact getContactList() {
return m_contactManager.m_contactList;
}
public boolean isSleepingAllowed() {
return m_allowSleep;
}
public void setSleepingAllowed(boolean sleepingAllowed) {
m_allowSleep = sleepingAllowed;
}
/**
* Enable/disable warm starting. For testing.
*
* @param flag
*/
public void setWarmStarting(boolean flag) {
m_warmStarting = flag;
}
public boolean isWarmStarting() {
return m_warmStarting;
}
/**
* Enable/disable continuous physics. For testing.
*
* @param flag
*/
public void setContinuousPhysics(boolean flag) {
m_continuousPhysics = flag;
}
public boolean isContinuousPhysics() {
return m_continuousPhysics;
}
/**
* Get the number of broad-phase proxies.
*
* @return
*/
public int getProxyCount() {
return m_contactManager.m_broadPhase.getProxyCount();
}
/**
* Get the number of bodies.
*
* @return
*/
public int getBodyCount() {
return m_bodyCount;
}
/**
* Get the number of joints.
*
* @return
*/
public int getJointCount() {
return m_jointCount;
}
/**
* Get the number of contacts (each may have 0 or more contact points).
*
* @return
*/
public int getContactCount() {
return m_contactManager.m_contactCount;
}
/**
* Gets the height of the dynamic tree
*
* @return
*/
public int getTreeHeight() {
return m_contactManager.m_broadPhase.getTreeHeight();
}
/**
* Gets the balance of the dynamic tree
*
* @return
*/
public int getTreeBalance() {
return m_contactManager.m_broadPhase.getTreeBalance();
}
/**
* Gets the quality of the dynamic tree
*
* @return
*/
public float getTreeQuality() {
return m_contactManager.m_broadPhase.getTreeQuality();
}
/**
* Change the global gravity vector.
*
* @param gravity
*/
public void setGravity(Vec2 gravity) {
m_gravity.set(gravity);
}
/**
* Get the global gravity vector.
*
* @return
*/
public Vec2 getGravity() {
return m_gravity;
}
/**
* Is the world locked (in the middle of a time step).
*
* @return
*/
public boolean isLocked() {
return (m_flags & LOCKED) == LOCKED;
}
/**
* Set flag to control automatic clearing of forces after each time step.
*
* @param flag
*/
public void setAutoClearForces(boolean flag) {
if (flag) {
m_flags |= CLEAR_FORCES;
} else {
m_flags &= ~CLEAR_FORCES;
}
}
/**
* Get the flag that controls automatic clearing of forces after each time step.
*
* @return
*/
public boolean getAutoClearForces() {
return (m_flags & CLEAR_FORCES) == CLEAR_FORCES;
}
/**
* Get the contact manager for testing purposes
*
* @return
*/
public ContactManager getContactManager() {
return m_contactManager;
}
public Profile getProfile() {
return m_profile;
}
private final Island island = new Island();
private Body[] stack = new Body[10]; // TODO djm find a good initial stack number;
private final Timer broadphaseTimer = new Timer();
private void solve(TimeStep step) {
m_profile.solveInit.startAccum();
m_profile.solveVelocity.startAccum();
m_profile.solvePosition.startAccum();
// update previous transforms
for (Body b = m_bodyList; b != null; b = b.m_next) {
b.m_xf0.set(b.m_xf);
}
// Size the island for the worst case.
island.init(m_bodyCount, m_contactManager.m_contactCount, m_jointCount,
m_contactManager.m_contactListener);
// Clear all the island flags.
for (Body b = m_bodyList; b != null; b = b.m_next) {
b.m_flags &= ~Body.e_islandFlag;
}
for (Contact c = m_contactManager.m_contactList; c != null; c = c.m_next) {
c.m_flags &= ~Contact.ISLAND_FLAG;
}
for (Joint j = m_jointList; j != null; j = j.m_next) {
j.m_islandFlag = false;
}
// Build and simulate all awake islands.
int stackSize = m_bodyCount;
if (stack.length < stackSize) {
stack = new Body[stackSize];
}
for (Body seed = m_bodyList; seed != null; seed = seed.m_next) {
if ((seed.m_flags & Body.e_islandFlag) == Body.e_islandFlag) {
continue;
}
if (seed.isAwake() == false || seed.isActive() == false) {
continue;
}
// The seed can be dynamic or kinematic.
if (seed.getType() == BodyType.STATIC) {
continue;
}
// Reset island and stack.
island.clear();
int stackCount = 0;
stack[stackCount++] = seed;
seed.m_flags |= Body.e_islandFlag;
// Perform a depth first search (DFS) on the constraint graph.
while (stackCount > 0) {
// Grab the next body off the stack and add it to the island.
Body b = stack[--stackCount];
assert (b.isActive() == true);
island.add(b);
// Make sure the body is awake.
b.setAwake(true);
// To keep islands as small as possible, we don't
// propagate islands across static bodies.
if (b.getType() == BodyType.STATIC) {
continue;
}
// Search all contacts connected to this body.
for (ContactEdge ce = b.m_contactList; ce != null; ce = ce.next) {
Contact contact = ce.contact;
// Has this contact already been added to an island?
if ((contact.m_flags & Contact.ISLAND_FLAG) == Contact.ISLAND_FLAG) {
continue;
}
// Is this contact solid and touching?
if (contact.isEnabled() == false || contact.isTouching() == false) {
continue;
}
// Skip sensors.
boolean sensorA = contact.m_fixtureA.m_isSensor;
boolean sensorB = contact.m_fixtureB.m_isSensor;
if (sensorA || sensorB) {
continue;
}
island.add(contact);
contact.m_flags |= Contact.ISLAND_FLAG;
Body other = ce.other;
// Was the other body already added to this island?
if ((other.m_flags & Body.e_islandFlag) == Body.e_islandFlag) {
continue;
}
assert (stackCount < stackSize);
stack[stackCount++] = other;
other.m_flags |= Body.e_islandFlag;
}
// Search all joints connect to this body.
for (JointEdge je = b.m_jointList; je != null; je = je.next) {
if (je.joint.m_islandFlag == true) {
continue;
}
Body other = je.other;
// Don't simulate joints connected to inactive bodies.
if (other.isActive() == false) {
continue;
}
island.add(je.joint);
je.joint.m_islandFlag = true;
if ((other.m_flags & Body.e_islandFlag) == Body.e_islandFlag) {
continue;
}
assert (stackCount < stackSize);
stack[stackCount++] = other;
other.m_flags |= Body.e_islandFlag;
}
}
island.solve(m_profile, step, m_gravity, m_allowSleep);
// Post solve cleanup.
for (int i = 0; i < island.m_bodyCount; ++i) {
// Allow static bodies to participate in other islands.
Body b = island.m_bodies[i];
if (b.getType() == BodyType.STATIC) {
b.m_flags &= ~Body.e_islandFlag;
}
}
}
m_profile.solveInit.endAccum();
m_profile.solveVelocity.endAccum();
m_profile.solvePosition.endAccum();
broadphaseTimer.reset();
// Synchronize fixtures, check for out of range bodies.
for (Body b = m_bodyList; b != null; b = b.getNext()) {
// If a body was not in an island then it did not move.
if ((b.m_flags & Body.e_islandFlag) == 0) {
continue;
}
if (b.getType() == BodyType.STATIC) {
continue;
}
// Update fixtures (for broad-phase).
b.synchronizeFixtures();
}
// Look for new contacts.
m_contactManager.findNewContacts();
m_profile.broadphase.record(broadphaseTimer.getMilliseconds());
}
private final Island toiIsland = new Island();
private final TOIInput toiInput = new TOIInput();
private final TOIOutput toiOutput = new TOIOutput();
private final TimeStep subStep = new TimeStep();
private final Body[] tempBodies = new Body[2];
private final Sweep backup1 = new Sweep();
private final Sweep backup2 = new Sweep();
private void solveTOI(final TimeStep step) {
final Island island = toiIsland;
island.init(2 * Settings.maxTOIContacts, Settings.maxTOIContacts, 0,
m_contactManager.m_contactListener);
if (m_stepComplete) {
for (Body b = m_bodyList; b != null; b = b.m_next) {
b.m_flags &= ~Body.e_islandFlag;
b.m_sweep.alpha0 = 0.0f;
}
for (Contact c = m_contactManager.m_contactList; c != null; c = c.m_next) {
// Invalidate TOI
c.m_flags &= ~(Contact.TOI_FLAG | Contact.ISLAND_FLAG);
c.m_toiCount = 0;
c.m_toi = 1.0f;
}
}
// Find TOI events and solve them.
for (;;) {
// Find the first TOI.
Contact minContact = null;
float minAlpha = 1.0f;
for (Contact c = m_contactManager.m_contactList; c != null; c = c.m_next) {
// Is this contact disabled?
if (c.isEnabled() == false) {
continue;
}
// Prevent excessive sub-stepping.
if (c.m_toiCount > Settings.maxSubSteps) {
continue;
}
float alpha = 1.0f;
if ((c.m_flags & Contact.TOI_FLAG) != 0) {
// This contact has a valid cached TOI.
alpha = c.m_toi;
} else {
Fixture fA = c.getFixtureA();
Fixture fB = c.getFixtureB();
// Is there a sensor?
if (fA.isSensor() || fB.isSensor()) {
continue;
}
Body bA = fA.getBody();
Body bB = fB.getBody();
BodyType typeA = bA.m_type;
BodyType typeB = bB.m_type;
assert (typeA == BodyType.DYNAMIC || typeB == BodyType.DYNAMIC);
boolean activeA = bA.isAwake() && typeA != BodyType.STATIC;
boolean activeB = bB.isAwake() && typeB != BodyType.STATIC;
// Is at least one body active (awake and dynamic or kinematic)?
if (activeA == false && activeB == false) {
continue;
}
boolean collideA = bA.isBullet() || typeA != BodyType.DYNAMIC;
boolean collideB = bB.isBullet() || typeB != BodyType.DYNAMIC;
// Are these two non-bullet dynamic bodies?
if (collideA == false && collideB == false) {
continue;
}
// Compute the TOI for this contact.
// Put the sweeps onto the same time interval.
float alpha0 = bA.m_sweep.alpha0;
if (bA.m_sweep.alpha0 < bB.m_sweep.alpha0) {
alpha0 = bB.m_sweep.alpha0;
bA.m_sweep.advance(alpha0);
} else if (bB.m_sweep.alpha0 < bA.m_sweep.alpha0) {
alpha0 = bA.m_sweep.alpha0;
bB.m_sweep.advance(alpha0);
}
assert (alpha0 < 1.0f);
int indexA = c.getChildIndexA();
int indexB = c.getChildIndexB();
// Compute the time of impact in interval [0, minTOI]
final TOIInput input = toiInput;
input.proxyA.set(fA.getShape(), indexA);
input.proxyB.set(fB.getShape(), indexB);
input.sweepA.set(bA.m_sweep);
input.sweepB.set(bB.m_sweep);
input.tMax = 1.0f;
pool.getTimeOfImpact().timeOfImpact(toiOutput, input);
// Beta is the fraction of the remaining portion of the .
float beta = toiOutput.t;
if (toiOutput.state == TOIOutputState.TOUCHING) {
alpha = MathUtils.min(alpha0 + (1.0f - alpha0) * beta, 1.0f);
} else {
alpha = 1.0f;
}
c.m_toi = alpha;
c.m_flags |= Contact.TOI_FLAG;
}
if (alpha < minAlpha) {
// This is the minimum TOI found so far.
minContact = c;
minAlpha = alpha;
}
}
if (minContact == null || 1.0f - 10.0f * Settings.EPSILON < minAlpha) {
// No more TOI events. Done!
m_stepComplete = true;
break;
}
// Advance the bodies to the TOI.
Fixture fA = minContact.getFixtureA();
Fixture fB = minContact.getFixtureB();
Body bA = fA.getBody();
Body bB = fB.getBody();
backup1.set(bA.m_sweep);
backup2.set(bB.m_sweep);
bA.advance(minAlpha);
bB.advance(minAlpha);
// The TOI contact likely has some new contact points.
minContact.update(m_contactManager.m_contactListener);
minContact.m_flags &= ~Contact.TOI_FLAG;
++minContact.m_toiCount;
// Is the contact solid?
if (minContact.isEnabled() == false || minContact.isTouching() == false) {
// Restore the sweeps.
minContact.setEnabled(false);
bA.m_sweep.set(backup1);
bB.m_sweep.set(backup2);
bA.synchronizeTransform();
bB.synchronizeTransform();
continue;
}
bA.setAwake(true);
bB.setAwake(true);
// Build the island
island.clear();
island.add(bA);
island.add(bB);
island.add(minContact);
bA.m_flags |= Body.e_islandFlag;
bB.m_flags |= Body.e_islandFlag;
minContact.m_flags |= Contact.ISLAND_FLAG;
// Get contacts on bodyA and bodyB.
tempBodies[0] = bA;
tempBodies[1] = bB;
for (int i = 0; i < 2; ++i) {
Body body = tempBodies[i];
if (body.m_type == BodyType.DYNAMIC) {
for (ContactEdge ce = body.m_contactList; ce != null; ce = ce.next) {
if (island.m_bodyCount == island.m_bodyCapacity) {
break;
}
if (island.m_contactCount == island.m_contactCapacity) {
break;
}
Contact contact = ce.contact;
// Has this contact already been added to the island?
if ((contact.m_flags & Contact.ISLAND_FLAG) != 0) {
continue;
}
// Only add static, kinematic, or bullet bodies.
Body other = ce.other;
if (other.m_type == BodyType.DYNAMIC && body.isBullet() == false
&& other.isBullet() == false) {
continue;
}
// Skip sensors.
boolean sensorA = contact.m_fixtureA.m_isSensor;
boolean sensorB = contact.m_fixtureB.m_isSensor;
if (sensorA || sensorB) {
continue;
}
// Tentatively advance the body to the TOI.
backup1.set(other.m_sweep);
if ((other.m_flags & Body.e_islandFlag) == 0) {
other.advance(minAlpha);
}
// Update the contact points
contact.update(m_contactManager.m_contactListener);
// Was the contact disabled by the user?
if (contact.isEnabled() == false) {
other.m_sweep.set(backup1);
other.synchronizeTransform();
continue;
}
// Are there contact points?
if (contact.isTouching() == false) {
other.m_sweep.set(backup1);
other.synchronizeTransform();
continue;
}
// Add the contact to the island
contact.m_flags |= Contact.ISLAND_FLAG;
island.add(contact);
// Has the other body already been added to the island?
if ((other.m_flags & Body.e_islandFlag) != 0) {
continue;
}
// Add the other body to the island.
other.m_flags |= Body.e_islandFlag;
if (other.m_type != BodyType.STATIC) {
other.setAwake(true);
}
island.add(other);
}
}
}
subStep.dt = (1.0f - minAlpha) * step.dt;
subStep.inv_dt = 1.0f / subStep.dt;
subStep.dtRatio = 1.0f;
subStep.positionIterations = 20;
subStep.velocityIterations = step.velocityIterations;
subStep.warmStarting = false;
island.solveTOI(subStep, bA.m_islandIndex, bB.m_islandIndex);
// Reset island flags and synchronize broad-phase proxies.
for (int i = 0; i < island.m_bodyCount; ++i) {
Body body = island.m_bodies[i];
body.m_flags &= ~Body.e_islandFlag;
if (body.m_type != BodyType.DYNAMIC) {
continue;
}
body.synchronizeFixtures();
// Invalidate all contact TOIs on this displaced body.
for (ContactEdge ce = body.m_contactList; ce != null; ce = ce.next) {
ce.contact.m_flags &= ~(Contact.TOI_FLAG | Contact.ISLAND_FLAG);
}
}
// Commit fixture proxy movements to the broad-phase so that new contacts are created.
// Also, some contacts can be destroyed.
m_contactManager.findNewContacts();
if (m_subStepping) {
m_stepComplete = false;
break;
}
}
}
private void drawJoint(Joint joint) {
Body bodyA = joint.getBodyA();
Body bodyB = joint.getBodyB();
Transform xf1 = bodyA.getTransform();
Transform xf2 = bodyB.getTransform();
Vec2 x1 = xf1.p;
Vec2 x2 = xf2.p;
Vec2 p1 = pool.popVec2();
Vec2 p2 = pool.popVec2();
joint.getAnchorA(p1);
joint.getAnchorB(p2);
color.set(0.5f, 0.8f, 0.8f);
switch (joint.getType()) {
// TODO djm write after writing joints
case DISTANCE:
m_debugDraw.drawSegment(p1, p2, color);
break;
case PULLEY: {
PulleyJoint pulley = (PulleyJoint) joint;
Vec2 s1 = pulley.getGroundAnchorA();
Vec2 s2 = pulley.getGroundAnchorB();
m_debugDraw.drawSegment(s1, p1, color);
m_debugDraw.drawSegment(s2, p2, color);
m_debugDraw.drawSegment(s1, s2, color);
}
break;
case CONSTANT_VOLUME:
case MOUSE:
// don't draw this
break;
default:
m_debugDraw.drawSegment(x1, p1, color);
m_debugDraw.drawSegment(p1, p2, color);
m_debugDraw.drawSegment(x2, p2, color);
}
pool.pushVec2(2);
}
// NOTE this corresponds to the liquid test, so the debugdraw can draw
// the liquid particles correctly. They should be the same.
private static Integer LIQUID_INT = new Integer(1234598372);
private float liquidLength = .12f;
private float averageLinearVel = -1;
private final Vec2 liquidOffset = new Vec2();
private final Vec2 circCenterMoved = new Vec2();
private final Color3f liquidColor = new Color3f(.4f, .4f, 1f);
private final Vec2 center = new Vec2();
private final Vec2 axis = new Vec2();
private final Vec2 v1 = new Vec2();
private final Vec2 v2 = new Vec2();
private final Vec2Array tlvertices = new Vec2Array();
private void drawShape(Fixture fixture, Transform xf, Color3f color, boolean wireframe) {
switch (fixture.getType()) {
case CIRCLE: {
CircleShape circle = (CircleShape) fixture.getShape();
// Vec2 center = Mul(xf, circle.m_p);
Transform.mulToOutUnsafe(xf, circle.m_p, center);
float radius = circle.m_radius;
xf.q.getXAxis(axis);
if (fixture.getUserData() != null && fixture.getUserData().equals(LIQUID_INT)) {
Body b = fixture.getBody();
liquidOffset.set(b.m_linearVelocity);
float linVelLength = b.m_linearVelocity.length();
if (averageLinearVel == -1) {
averageLinearVel = linVelLength;
} else {
averageLinearVel = .98f * averageLinearVel + .02f * linVelLength;
}
liquidOffset.mulLocal(liquidLength / averageLinearVel / 2);
circCenterMoved.set(center).addLocal(liquidOffset);
center.subLocal(liquidOffset);
m_debugDraw.drawSegment(center, circCenterMoved, liquidColor);
return;
}
if (wireframe) {
m_debugDraw.drawCircle(center, radius, axis, color);
} else {
m_debugDraw.drawSolidCircle(center, radius, axis, color);
}
}
break;
case POLYGON: {
PolygonShape poly = (PolygonShape) fixture.getShape();
int vertexCount = poly.m_count;
assert (vertexCount <= Settings.maxPolygonVertices);
Vec2[] vertices = tlvertices.get(Settings.maxPolygonVertices);
for (int i = 0; i < vertexCount; ++i) {
// vertices[i] = Mul(xf, poly.m_vertices[i]);
Transform.mulToOutUnsafe(xf, poly.m_vertices[i], vertices[i]);
}
if (wireframe) {
m_debugDraw.drawPolygon(vertices, vertexCount, color);
} else {
m_debugDraw.drawSolidPolygon(vertices, vertexCount, color);
}
}
break;
case EDGE: {
EdgeShape edge = (EdgeShape) fixture.getShape();
Transform.mulToOutUnsafe(xf, edge.m_vertex1, v1);
Transform.mulToOutUnsafe(xf, edge.m_vertex2, v2);
m_debugDraw.drawSegment(v1, v2, color);
}
break;
case CHAIN: {
ChainShape chain = (ChainShape) fixture.getShape();
int count = chain.m_count;
Vec2[] vertices = chain.m_vertices;
Transform.mulToOutUnsafe(xf, vertices[0], v1);
for (int i = 1; i < count; ++i) {
Transform.mulToOutUnsafe(xf, vertices[i], v2);
m_debugDraw.drawSegment(v1, v2, color);
m_debugDraw.drawCircle(v1, 0.05f, color);
v1.set(v2);
}
}
break;
default:
break;
}
}
private void drawParticleSystem(ParticleSystem system) {
boolean wireframe = (m_debugDraw.getFlags() & DebugDraw.e_wireframeDrawingBit) != 0;
int particleCount = system.getParticleCount();
if (particleCount != 0) {
float particleRadius = system.getParticleRadius();
Vec2[] positionBuffer = system.getParticlePositionBuffer();
ParticleColor[] colorBuffer = null;
if (system.m_colorBuffer.data != null) {
colorBuffer = system.getParticleColorBuffer();
}
if (wireframe) {
m_debugDraw.drawParticlesWireframe(positionBuffer, particleRadius, colorBuffer,
particleCount);
} else {
m_debugDraw.drawParticles(positionBuffer, particleRadius, colorBuffer, particleCount);
}
}
}
/**
* Create a particle whose properties have been defined. No reference to the definition is
* retained. A simulation step must occur before it's possible to interact with a newly created
* particle. For example, DestroyParticleInShape() will not destroy a particle until Step() has
* been called.
*
* @warning This function is locked during callbacks.
* @return the index of the particle.
*/
public int createParticle(ParticleDef def) {
assert (isLocked() == false);
if (isLocked()) {
return 0;
}
int p = m_particleSystem.createParticle(def);
return p;
}
/**
* Destroy a particle. The particle is removed after the next step.
*
* @param index
*/
public void destroyParticle(int index) {
destroyParticle(index, false);
}
/**
* Destroy a particle. The particle is removed after the next step.
*
* @param Index of the particle to destroy.
* @param Whether to call the destruction listener just before the particle is destroyed.
*/
public void destroyParticle(int index, boolean callDestructionListener) {
m_particleSystem.destroyParticle(index, callDestructionListener);
}
/**
* Destroy particles inside a shape without enabling the destruction callback for destroyed
* particles. This function is locked during callbacks. For more information see
* DestroyParticleInShape(Shape&, Transform&,bool).
*
* @param Shape which encloses particles that should be destroyed.
* @param Transform applied to the shape.
* @warning This function is locked during callbacks.
* @return Number of particles destroyed.
*/
public int destroyParticlesInShape(Shape shape, Transform xf) {
return destroyParticlesInShape(shape, xf, false);
}
/**
* Destroy particles inside a shape. This function is locked during callbacks. In addition, this
* function immediately destroys particles in the shape in contrast to DestroyParticle() which
* defers the destruction until the next simulation step.
*
* @param Shape which encloses particles that should be destroyed.
* @param Transform applied to the shape.
* @param Whether to call the world b2DestructionListener for each particle destroyed.
* @warning This function is locked during callbacks.
* @return Number of particles destroyed.
*/
public int destroyParticlesInShape(Shape shape, Transform xf, boolean callDestructionListener) {
assert (isLocked() == false);
if (isLocked()) {
return 0;
}
return m_particleSystem.destroyParticlesInShape(shape, xf, callDestructionListener);
}
/**
* Create a particle group whose properties have been defined. No reference to the definition is
* retained.
*
* @warning This function is locked during callbacks.
*/
public ParticleGroup createParticleGroup(ParticleGroupDef def) {
assert (isLocked() == false);
if (isLocked()) {
return null;
}
ParticleGroup g = m_particleSystem.createParticleGroup(def);
return g;
}
/**
* Join two particle groups.
*
* @param the first group. Expands to encompass the second group.
* @param the second group. It is destroyed.
* @warning This function is locked during callbacks.
*/
public void joinParticleGroups(ParticleGroup groupA, ParticleGroup groupB) {
assert (isLocked() == false);
if (isLocked()) {
return;
}
m_particleSystem.joinParticleGroups(groupA, groupB);
}
/**
* Destroy particles in a group. This function is locked during callbacks.
*
* @param The particle group to destroy.
* @param Whether to call the world b2DestructionListener for each particle is destroyed.
* @warning This function is locked during callbacks.
*/
public void destroyParticlesInGroup(ParticleGroup group, boolean callDestructionListener) {
assert (isLocked() == false);
if (isLocked()) {
return;
}
m_particleSystem.destroyParticlesInGroup(group, callDestructionListener);
}
/**
* Destroy particles in a group without enabling the destruction callback for destroyed particles.
* This function is locked during callbacks.
*
* @param The particle group to destroy.
* @warning This function is locked during callbacks.
*/
public void destroyParticlesInGroup(ParticleGroup group) {
destroyParticlesInGroup(group, false);
}
/**
* Get the world particle group list. With the returned group, use ParticleGroup::GetNext to get
* the next group in the world list. A NULL group indicates the end of the list.
*
* @return the head of the world particle group list.
*/
public ParticleGroup[] getParticleGroupList() {
return m_particleSystem.getParticleGroupList();
}
/**
* Get the number of particle groups.
*
* @return
*/
public int getParticleGroupCount() {
return m_particleSystem.getParticleGroupCount();
}
/**
* Get the number of particles.
*
* @return
*/
public int getParticleCount() {
return m_particleSystem.getParticleCount();
}
/**
* Get the maximum number of particles.
*
* @return
*/
public int getParticleMaxCount() {
return m_particleSystem.getParticleMaxCount();
}
/**
* Set the maximum number of particles.
*
* @param count
*/
public void setParticleMaxCount(int count) {
m_particleSystem.setParticleMaxCount(count);
}
/**
* Change the particle density.
*
* @param density
*/
public void setParticleDensity(float density) {
m_particleSystem.setParticleDensity(density);
}
/**
* Get the particle density.
*
* @return
*/
public float getParticleDensity() {
return m_particleSystem.getParticleDensity();
}
/**
* Change the particle gravity scale. Adjusts the effect of the global gravity vector on
* particles. Default value is 1.0f.
*
* @param gravityScale
*/
public void setParticleGravityScale(float gravityScale) {
m_particleSystem.setParticleGravityScale(gravityScale);
}
/**
* Get the particle gravity scale.
*
* @return
*/
public float getParticleGravityScale() {
return m_particleSystem.getParticleGravityScale();
}
/**
* Damping is used to reduce the velocity of particles. The damping parameter can be larger than
* 1.0f but the damping effect becomes sensitive to the time step when the damping parameter is
* large.
*
* @param damping
*/
public void setParticleDamping(float damping) {
m_particleSystem.setParticleDamping(damping);
}
/**
* Get damping for particles
*
* @return
*/
public float getParticleDamping() {
return m_particleSystem.getParticleDamping();
}
/**
* Change the particle radius. You should set this only once, on world start. If you change the
* radius during execution, existing particles may explode, shrink, or behave unexpectedly.
*
* @param radius
*/
public void setParticleRadius(float radius) {
m_particleSystem.setParticleRadius(radius);
}
/**
* Get the particle radius.
*
* @return
*/
public float getParticleRadius() {
return m_particleSystem.getParticleRadius();
}
/**
* Get the particle data. @return the pointer to the head of the particle data.
*
* @return
*/
public int[] getParticleFlagsBuffer() {
return m_particleSystem.getParticleFlagsBuffer();
}
public Vec2[] getParticlePositionBuffer() {
return m_particleSystem.getParticlePositionBuffer();
}
public Vec2[] getParticleVelocityBuffer() {
return m_particleSystem.getParticleVelocityBuffer();
}
public ParticleColor[] getParticleColorBuffer() {
return m_particleSystem.getParticleColorBuffer();
}
public ParticleGroup[] getParticleGroupBuffer() {
return m_particleSystem.getParticleGroupBuffer();
}
public Object[] getParticleUserDataBuffer() {
return m_particleSystem.getParticleUserDataBuffer();
}
/**
* Set a buffer for particle data.
*
* @param buffer is a pointer to a block of memory.
* @param size is the number of values in the block.
*/
public void setParticleFlagsBuffer(int[] buffer, int capacity) {
m_particleSystem.setParticleFlagsBuffer(buffer, capacity);
}
public void setParticlePositionBuffer(Vec2[] buffer, int capacity) {
m_particleSystem.setParticlePositionBuffer(buffer, capacity);
}
public void setParticleVelocityBuffer(Vec2[] buffer, int capacity) {
m_particleSystem.setParticleVelocityBuffer(buffer, capacity);
}
public void setParticleColorBuffer(ParticleColor[] buffer, int capacity) {
m_particleSystem.setParticleColorBuffer(buffer, capacity);
}
public void setParticleUserDataBuffer(Object[] buffer, int capacity) {
m_particleSystem.setParticleUserDataBuffer(buffer, capacity);
}
/**
* Get contacts between particles
*
* @return
*/
public ParticleContact[] getParticleContacts() {
return m_particleSystem.m_contactBuffer;
}
public int getParticleContactCount() {
return m_particleSystem.m_contactCount;
}
/**
* Get contacts between particles and bodies
*
* @return
*/
public ParticleBodyContact[] getParticleBodyContacts() {
return m_particleSystem.m_bodyContactBuffer;
}
public int getParticleBodyContactCount() {
return m_particleSystem.m_bodyContactCount;
}
/**
* Compute the kinetic energy that can be lost by damping force
*
* @return
*/
public float computeParticleCollisionEnergy() {
return m_particleSystem.computeParticleCollisionEnergy();
}
}
class WorldQueryWrapper implements TreeCallback {
public boolean treeCallback(int nodeId) {
FixtureProxy proxy = (FixtureProxy) broadPhase.getUserData(nodeId);
return callback.reportFixture(proxy.fixture);
}
BroadPhase broadPhase;
QueryCallback callback;
};
class WorldRayCastWrapper implements TreeRayCastCallback {
// djm pooling
private final RayCastOutput output = new RayCastOutput();
private final Vec2 temp = new Vec2();
private final Vec2 point = new Vec2();
public float raycastCallback(RayCastInput input, int nodeId) {
Object userData = broadPhase.getUserData(nodeId);
FixtureProxy proxy = (FixtureProxy) userData;
Fixture fixture = proxy.fixture;
int index = proxy.childIndex;
boolean hit = fixture.raycast(output, input, index);
if (hit) {
float fraction = output.fraction;
// Vec2 point = (1.0f - fraction) * input.p1 + fraction * input.p2;
temp.set(input.p2).mulLocal(fraction);
point.set(input.p1).mulLocal(1 - fraction).addLocal(temp);
return callback.reportFixture(fixture, point, output.normal, fraction);
}
return input.maxFraction;
}
BroadPhase broadPhase;
RayCastCallback callback;
};
© 2015 - 2025 Weber Informatics LLC | Privacy Policy