All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.jtransc.text.internal.RealToString Maven / Gradle / Ivy

Go to download

JVM AOT compiler currently generating JavaScript, C++, Haxe, with initial focus on Kotlin and games.

There is a newer version: 0.6.8
Show newest version
/*
 *  Licensed to the Apache Software Foundation (ASF) under one or more
 *  contributor license agreements.  See the NOTICE file distributed with
 *  this work for additional information regarding copyright ownership.
 *  The ASF licenses this file to You under the Apache License, Version 2.0
 *  (the "License"); you may not use this file except in compliance with
 *  the License.  You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 */

package com.jtransc.text.internal;

import com.jtransc.lang.DoubleInfo;
import com.jtransc.lang.FloatInfo;

final public class RealToString {
	public static long[] LONG_POWERS_OF_TEN;

	private static final ThreadLocal INSTANCE = new ThreadLocal() {
		@Override protected RealToString initialValue() {
			return new RealToString();
		}
	};

	private static final double invLogOfTenBaseTwo = Math.log(2.0) / Math.log(10.0);

	private int firstK;

	/**
	 * An array of decimal digits, filled by longDigitGenerator or bigIntDigitGenerator.
	 */
	private final int[] digits = new int[64];

	/**
	 * Number of valid entries in 'digits'.
	 */
	private int digitCount;

	private RealToString() {
	}

	public static RealToString getInstance() {
		return INSTANCE.get();
	}

	private static String resultOrSideEffect(StringBuilder sb, String s) {
		if (sb != null) {
			sb.append(s);
			return null;
		}
		return s;
	}

	public String doubleToString(double d) {
		return convertDouble(null, d);
	}

	public void appendDouble(StringBuilder sb, double d) {
		convertDouble(sb, d);
	}

	private String convertDouble(StringBuilder sb, double inputNumber) {
		long inputNumberBits = Double.doubleToRawLongBits(inputNumber);
		boolean positive = (inputNumberBits & DoubleInfo.SIGN_MASK) == 0;
		int e = (int) ((inputNumberBits & DoubleInfo.EXPONENT_MASK) >> DoubleInfo.MANTISSA_BITS);
		long f = inputNumberBits & DoubleInfo.MANTISSA_MASK;
		boolean mantissaIsZero = f == 0;

		String quickResult = null;
		if (e == 2047) {
			if (mantissaIsZero) {
				quickResult = positive ? "Infinity" : "-Infinity";
			} else {
				quickResult = "NaN";
			}
		} else if (e == 0) {
			if (mantissaIsZero) {
				quickResult = positive ? "0.0" : "-0.0";
			} else if (f == 1) {
				// special case to increase precision even though 2 * Double.MIN_VALUE is 1.0e-323
				quickResult = positive ? "4.9E-324" : "-4.9E-324";
			}
		}
		if (quickResult != null) {
			return resultOrSideEffect(sb, quickResult);
		}

		int p = DoubleInfo.EXPONENT_BIAS + DoubleInfo.MANTISSA_BITS; // the power offset (precision)
		int pow;
		int numBits = DoubleInfo.MANTISSA_BITS;
		if (e == 0) {
			pow = 1 - p; // a denormalized number
			long ff = f;
			while ((ff & 0x0010000000000000L) == 0) {
				ff = ff << 1;
				numBits--;
			}
		} else {
			// 0 < e < 2047
			// a "normalized" number
			f = f | 0x0010000000000000L;
			pow = e - p;
		}

		firstK = digitCount = 0;
		if (-59 < pow && pow < 6 || (pow == -59 && !mantissaIsZero)) {
			longDigitGenerator(f, pow, e == 0, mantissaIsZero, numBits);
		} else {
			bigIntDigitGenerator(f, pow, e == 0, numBits);
		}
		StringBuilder dst = (sb != null) ? sb : new StringBuilder(26);
		if (inputNumber >= 1e7D || inputNumber <= -1e7D
			|| (inputNumber > -1e-3D && inputNumber < 1e-3D)) {
			freeFormatExponential(dst, positive);
		} else {
			freeFormat(dst, positive);
		}
		return (sb != null) ? null : dst.toString();
	}

	public String floatToString(float f) {
		return convertFloat(null, f);
	}

	public void appendFloat(StringBuilder sb, float f) {
		convertFloat(sb, f);
	}

	public String convertFloat(StringBuilder sb, float inputNumber) {
		int inputNumberBits = Float.floatToRawIntBits(inputNumber);
		boolean positive = (inputNumberBits & FloatInfo.SIGN_MASK) == 0;
		int e = (inputNumberBits & FloatInfo.EXPONENT_MASK) >> FloatInfo.MANTISSA_BITS;
		int f = inputNumberBits & FloatInfo.MANTISSA_MASK;
		boolean mantissaIsZero = f == 0;

		String quickResult = null;
		if (e == 255) {
			if (mantissaIsZero) {
				quickResult = positive ? "Infinity" : "-Infinity";
			} else {
				quickResult = "NaN";
			}
		} else if (e == 0 && mantissaIsZero) {
			quickResult = positive ? "0.0" : "-0.0";
		}
		if (quickResult != null) {
			return resultOrSideEffect(sb, quickResult);
		}

		int p = FloatInfo.EXPONENT_BIAS + FloatInfo.MANTISSA_BITS; // the power offset (precision)
		int pow;
		int numBits = FloatInfo.MANTISSA_BITS;
		if (e == 0) {
			pow = 1 - p; // a denormalized number
			if (f < 8) { // want more precision with smallest values
				f = f << 2;
				pow -= 2;
			}
			int ff = f;
			while ((ff & 0x00800000) == 0) {
				ff = ff << 1;
				numBits--;
			}
		} else {
			// 0 < e < 255
			// a "normalized" number
			f = f | 0x00800000;
			pow = e - p;
		}

		firstK = digitCount = 0;
		if (-59 < pow && pow < 35 || (pow == -59 && !mantissaIsZero)) {
			longDigitGenerator(f, pow, e == 0, mantissaIsZero, numBits);
		} else {
			bigIntDigitGenerator(f, pow, e == 0, numBits);
		}
		StringBuilder dst = (sb != null) ? sb : new StringBuilder(26);
		if (inputNumber >= 1e7f || inputNumber <= -1e7f
			|| (inputNumber > -1e-3f && inputNumber < 1e-3f)) {
			freeFormatExponential(dst, positive);
		} else {
			freeFormat(dst, positive);
		}
		return (sb != null) ? null : dst.toString();
	}

	private void freeFormatExponential(StringBuilder sb, boolean positive) {
		int digitIndex = 0;
		if (!positive) {
			sb.append('-');
		}
		sb.append((char) ('0' + digits[digitIndex++]));
		sb.append('.');

		int k = firstK;
		int exponent = k;
		while (true) {
			k--;
			if (digitIndex >= digitCount) {
				break;
			}
			sb.append((char) ('0' + digits[digitIndex++]));
		}

		if (k == exponent - 1) {
			sb.append('0');
		}
		sb.append('E');
		sb.append(Integer.toString(exponent));
	}

	private void freeFormat(StringBuilder sb, boolean positive) {
		int digitIndex = 0;
		if (!positive) {
			sb.append('-');
		}
		int k = firstK;
		if (k < 0) {
			sb.append('0');
			sb.append('.');
			for (int i = k + 1; i < 0; ++i) {
				sb.append('0');
			}
		}
		int U = digits[digitIndex++];
		do {
			if (U != -1) {
				sb.append((char) ('0' + U));
			} else if (k >= -1) {
				sb.append('0');
			}
			if (k == 0) {
				sb.append('.');
			}
			k--;
			U = digitIndex < digitCount ? digits[digitIndex++] : -1;
		} while (U != -1 || k >= -1);
	}

	private native void bigIntDigitGenerator(long f, int e, boolean isDenormalized, int p);

	private void longDigitGenerator(long f, int e, boolean isDenormalized, boolean mantissaIsZero, int p) {
		if (LONG_POWERS_OF_TEN == null) {
			LONG_POWERS_OF_TEN = new long[] {
				1L,
				10L,
				100L,
				1000L,
				10000L,
				100000L,
				1000000L,
				10000000L,
				100000000L,
				1000000000L,
				10000000000L,
				100000000000L,
				1000000000000L,
				10000000000000L,
				100000000000000L,
				1000000000000000L,
				10000000000000000L,
				100000000000000000L,
				1000000000000000000L,
			};
		}

		long R, S, M;
		if (e >= 0) {
			M = 1l << e;
			if (!mantissaIsZero) {
				R = f << (e + 1);
				S = 2;
			} else {
				R = f << (e + 2);
				S = 4;
			}
		} else {
			M = 1;
			if (isDenormalized || !mantissaIsZero) {
				R = f << 1;
				S = 1l << (1 - e);
			} else {
				R = f << 2;
				S = 1l << (2 - e);
			}
		}

		int k = (int) Math.ceil((e + p - 1) * invLogOfTenBaseTwo - 1e-10);

		if (k > 0) {
			S = S * LONG_POWERS_OF_TEN[k];
		} else if (k < 0) {
			long scale = LONG_POWERS_OF_TEN[-k];
			R = R * scale;
			M = M == 1 ? scale : M * scale;
		}

		if (R + M > S) { // was M_plus
			firstK = k;
		} else {
			firstK = k - 1;
			R = R * 10;
			M = M * 10;
		}

		boolean low, high;
		int U;
		while (true) {
			// Set U to floor(R/S) and R to the remainder, using *unsigned* 64-bit division
			U = 0;
			for (int i = 3; i >= 0; i--) {
				long remainder = R - (S << i);
				if (remainder >= 0) {
					R = remainder;
					U += 1 << i;
				}
			}

			low = R < M; // was M_minus
			high = R + M > S; // was M_plus

			if (low || high) {
				break;
			}
			R = R * 10;
			M = M * 10;
			digits[digitCount++] = U;
		}
		if (low && !high) {
			digits[digitCount++] = U;
		} else if (high && !low) {
			digits[digitCount++] = U + 1;
		} else if ((R << 1) < S) {
			digits[digitCount++] = U;
		} else {
			digits[digitCount++] = U + 1;
		}
	}
}




© 2015 - 2025 Weber Informatics LLC | Privacy Policy