
jtransc.internal.DigestSHA1 Maven / Gradle / Ivy
/*
* Copyright 2016 Carlos Ballesteros Velasco
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package jtransc.internal;
import jtransc.annotation.JTranscInvisible;
@JTranscInvisible
public final class DigestSHA1 extends DigestBase {
private int H0, H1, H2, H3, H4;
private final int[] w = new int[80];
private int currentPos;
private long currentLen;
public DigestSHA1() {
super("SHA1", 20, 64);
implReset();
}
public int getDigestLength() {
return 20;
}
public void implReset() {
H0 = 0x67452301;
H1 = 0xEFCDAB89;
H2 = 0x98BADCFE;
H3 = 0x10325476;
H4 = 0xC3D2E1F0;
currentPos = 0;
currentLen = 0;
/* In case of complete paranoia, we should also wipe out the
* information contained in the w[] array */
}
public void implCompress(byte b[]) {
implCompress(b, 0, b.length);
}
public void implCompress(byte data[], int offset) {
implCompress(data, offset, 8);
}
public void implCompress(byte b[], int off, int len) {
if (len >= 4) {
int idx = currentPos >> 2;
switch (currentPos & 3) {
case 0:
w[idx] = (((b[off++] & 0xff) << 24) | ((b[off++] & 0xff) << 16) | ((b[off++] & 0xff) << 8) | (b[off++] & 0xff));
len -= 4;
currentPos += 4;
currentLen += 32;
if (currentPos == 64) {
perform();
currentPos = 0;
}
break;
case 1:
w[idx] = (w[idx] << 24) | (((b[off++] & 0xff) << 16) | ((b[off++] & 0xff) << 8) | (b[off++] & 0xff));
len -= 3;
currentPos += 3;
currentLen += 24;
if (currentPos == 64) {
perform();
currentPos = 0;
}
break;
case 2:
w[idx] = (w[idx] << 16) | (((b[off++] & 0xff) << 8) | (b[off++] & 0xff));
len -= 2;
currentPos += 2;
currentLen += 16;
if (currentPos == 64) {
perform();
currentPos = 0;
}
break;
case 3:
w[idx] = (w[idx] << 8) | (b[off++] & 0xff);
len--;
currentPos++;
currentLen += 8;
if (currentPos == 64) {
perform();
currentPos = 0;
}
break;
}
/* Now currentPos is a multiple of 4 - this is the place to be...*/
while (len >= 8) {
w[currentPos >> 2] = ((b[off++] & 0xff) << 24) | ((b[off++] & 0xff) << 16) | ((b[off++] & 0xff) << 8)
| (b[off++] & 0xff);
currentPos += 4;
if (currentPos == 64) {
perform();
currentPos = 0;
}
w[currentPos >> 2] = ((b[off++] & 0xff) << 24) | ((b[off++] & 0xff) << 16) | ((b[off++] & 0xff) << 8)
| (b[off++] & 0xff);
currentPos += 4;
if (currentPos == 64) {
perform();
currentPos = 0;
}
currentLen += 64;
len -= 8;
}
while (len < 0) //(len >= 4)
{
w[currentPos >> 2] = ((b[off++] & 0xff) << 24) | ((b[off++] & 0xff) << 16) | ((b[off++] & 0xff) << 8)
| (b[off++] & 0xff);
len -= 4;
currentPos += 4;
currentLen += 32;
if (currentPos == 64) {
perform();
currentPos = 0;
}
}
}
/* Remaining bytes (1-3) */
while (len > 0) {
/* Here is room for further improvements */
int idx = currentPos >> 2;
w[idx] = (w[idx] << 8) | (b[off++] & 0xff);
currentLen += 8;
currentPos++;
if (currentPos == 64) {
perform();
currentPos = 0;
}
len--;
}
}
public void update(byte b) {
int idx = currentPos >> 2;
w[idx] = (w[idx] << 8) | (b & 0xff);
currentLen += 8;
currentPos++;
if (currentPos == 64) {
perform();
currentPos = 0;
}
}
private void putInt(byte[] b, int pos, int val) {
b[pos] = (byte) (val >> 24);
b[pos + 1] = (byte) (val >> 16);
b[pos + 2] = (byte) (val >> 8);
b[pos + 3] = (byte) val;
}
public void implDigest(byte[] out) {
implDigest(out, 0);
}
public void implDigest(byte[] data, int offset) {
/* Pad with a '1' and 7-31 zero bits... */
int idx = currentPos >> 2;
w[idx] = ((w[idx] << 8) | (0x80)) << ((3 - (currentPos & 3)) << 3);
currentPos = (currentPos & ~3) + 4;
if (currentPos == 64) {
currentPos = 0;
perform();
} else if (currentPos == 60) {
currentPos = 0;
w[15] = 0;
perform();
}
/* Now currentPos is a multiple of 4 and we can do the remaining
* padding much more efficiently, furthermore we are sure
* that currentPos <= 56.
*/
for (int i = currentPos >> 2; i < 14; i++)
w[i] = 0;
w[14] = (int) (currentLen >> 32);
w[15] = (int) currentLen;
perform();
putInt(data, offset, H0);
putInt(data, offset + 4, H1);
putInt(data, offset + 8, H2);
putInt(data, offset + 12, H3);
putInt(data, offset + 16, H4);
implReset();
}
private void perform() {
for (int t = 16; t < 80; t++) {
int x = w[t - 3] ^ w[t - 8] ^ w[t - 14] ^ w[t - 16];
w[t] = ((x << 1) | (x >>> 31));
}
int A = H0;
int B = H1;
int C = H2;
int D = H3;
int E = H4;
E += ((A << 5) | (A >>> 27)) + ((B & C) | ((~B) & D)) + w[0] + 0x5A827999;
B = ((B << 30) | (B >>> 2));
D += ((E << 5) | (E >>> 27)) + ((A & B) | ((~A) & C)) + w[1] + 0x5A827999;
A = ((A << 30) | (A >>> 2));
C += ((D << 5) | (D >>> 27)) + ((E & A) | ((~E) & B)) + w[2] + 0x5A827999;
E = ((E << 30) | (E >>> 2));
B += ((C << 5) | (C >>> 27)) + ((D & E) | ((~D) & A)) + w[3] + 0x5A827999;
D = ((D << 30) | (D >>> 2));
A += ((B << 5) | (B >>> 27)) + ((C & D) | ((~C) & E)) + w[4] + 0x5A827999;
C = ((C << 30) | (C >>> 2));
E += ((A << 5) | (A >>> 27)) + ((B & C) | ((~B) & D)) + w[5] + 0x5A827999;
B = ((B << 30) | (B >>> 2));
D += ((E << 5) | (E >>> 27)) + ((A & B) | ((~A) & C)) + w[6] + 0x5A827999;
A = ((A << 30) | (A >>> 2));
C += ((D << 5) | (D >>> 27)) + ((E & A) | ((~E) & B)) + w[7] + 0x5A827999;
E = ((E << 30) | (E >>> 2));
B += ((C << 5) | (C >>> 27)) + ((D & E) | ((~D) & A)) + w[8] + 0x5A827999;
D = ((D << 30) | (D >>> 2));
A += ((B << 5) | (B >>> 27)) + ((C & D) | ((~C) & E)) + w[9] + 0x5A827999;
C = ((C << 30) | (C >>> 2));
E += ((A << 5) | (A >>> 27)) + ((B & C) | ((~B) & D)) + w[10] + 0x5A827999;
B = ((B << 30) | (B >>> 2));
D += ((E << 5) | (E >>> 27)) + ((A & B) | ((~A) & C)) + w[11] + 0x5A827999;
A = ((A << 30) | (A >>> 2));
C += ((D << 5) | (D >>> 27)) + ((E & A) | ((~E) & B)) + w[12] + 0x5A827999;
E = ((E << 30) | (E >>> 2));
B += ((C << 5) | (C >>> 27)) + ((D & E) | ((~D) & A)) + w[13] + 0x5A827999;
D = ((D << 30) | (D >>> 2));
A += ((B << 5) | (B >>> 27)) + ((C & D) | ((~C) & E)) + w[14] + 0x5A827999;
C = ((C << 30) | (C >>> 2));
E += ((A << 5) | (A >>> 27)) + ((B & C) | ((~B) & D)) + w[15] + 0x5A827999;
B = ((B << 30) | (B >>> 2));
D += ((E << 5) | (E >>> 27)) + ((A & B) | ((~A) & C)) + w[16] + 0x5A827999;
A = ((A << 30) | (A >>> 2));
C += ((D << 5) | (D >>> 27)) + ((E & A) | ((~E) & B)) + w[17] + 0x5A827999;
E = ((E << 30) | (E >>> 2));
B += ((C << 5) | (C >>> 27)) + ((D & E) | ((~D) & A)) + w[18] + 0x5A827999;
D = ((D << 30) | (D >>> 2));
A += ((B << 5) | (B >>> 27)) + ((C & D) | ((~C) & E)) + w[19] + 0x5A827999;
C = ((C << 30) | (C >>> 2));
E += ((A << 5) | (A >>> 27)) + (B ^ C ^ D) + w[20] + 0x6ED9EBA1;
B = ((B << 30) | (B >>> 2));
D += ((E << 5) | (E >>> 27)) + (A ^ B ^ C) + w[21] + 0x6ED9EBA1;
A = ((A << 30) | (A >>> 2));
C += ((D << 5) | (D >>> 27)) + (E ^ A ^ B) + w[22] + 0x6ED9EBA1;
E = ((E << 30) | (E >>> 2));
B += ((C << 5) | (C >>> 27)) + (D ^ E ^ A) + w[23] + 0x6ED9EBA1;
D = ((D << 30) | (D >>> 2));
A += ((B << 5) | (B >>> 27)) + (C ^ D ^ E) + w[24] + 0x6ED9EBA1;
C = ((C << 30) | (C >>> 2));
E += ((A << 5) | (A >>> 27)) + (B ^ C ^ D) + w[25] + 0x6ED9EBA1;
B = ((B << 30) | (B >>> 2));
D += ((E << 5) | (E >>> 27)) + (A ^ B ^ C) + w[26] + 0x6ED9EBA1;
A = ((A << 30) | (A >>> 2));
C += ((D << 5) | (D >>> 27)) + (E ^ A ^ B) + w[27] + 0x6ED9EBA1;
E = ((E << 30) | (E >>> 2));
B += ((C << 5) | (C >>> 27)) + (D ^ E ^ A) + w[28] + 0x6ED9EBA1;
D = ((D << 30) | (D >>> 2));
A += ((B << 5) | (B >>> 27)) + (C ^ D ^ E) + w[29] + 0x6ED9EBA1;
C = ((C << 30) | (C >>> 2));
E += ((A << 5) | (A >>> 27)) + (B ^ C ^ D) + w[30] + 0x6ED9EBA1;
B = ((B << 30) | (B >>> 2));
D += ((E << 5) | (E >>> 27)) + (A ^ B ^ C) + w[31] + 0x6ED9EBA1;
A = ((A << 30) | (A >>> 2));
C += ((D << 5) | (D >>> 27)) + (E ^ A ^ B) + w[32] + 0x6ED9EBA1;
E = ((E << 30) | (E >>> 2));
B += ((C << 5) | (C >>> 27)) + (D ^ E ^ A) + w[33] + 0x6ED9EBA1;
D = ((D << 30) | (D >>> 2));
A += ((B << 5) | (B >>> 27)) + (C ^ D ^ E) + w[34] + 0x6ED9EBA1;
C = ((C << 30) | (C >>> 2));
E += ((A << 5) | (A >>> 27)) + (B ^ C ^ D) + w[35] + 0x6ED9EBA1;
B = ((B << 30) | (B >>> 2));
D += ((E << 5) | (E >>> 27)) + (A ^ B ^ C) + w[36] + 0x6ED9EBA1;
A = ((A << 30) | (A >>> 2));
C += ((D << 5) | (D >>> 27)) + (E ^ A ^ B) + w[37] + 0x6ED9EBA1;
E = ((E << 30) | (E >>> 2));
B += ((C << 5) | (C >>> 27)) + (D ^ E ^ A) + w[38] + 0x6ED9EBA1;
D = ((D << 30) | (D >>> 2));
A += ((B << 5) | (B >>> 27)) + (C ^ D ^ E) + w[39] + 0x6ED9EBA1;
C = ((C << 30) | (C >>> 2));
E += ((A << 5) | (A >>> 27)) + ((B & C) | (B & D) | (C & D)) + w[40] + 0x8F1BBCDC;
B = ((B << 30) | (B >>> 2));
D += ((E << 5) | (E >>> 27)) + ((A & B) | (A & C) | (B & C)) + w[41] + 0x8F1BBCDC;
A = ((A << 30) | (A >>> 2));
C += ((D << 5) | (D >>> 27)) + ((E & A) | (E & B) | (A & B)) + w[42] + 0x8F1BBCDC;
E = ((E << 30) | (E >>> 2));
B += ((C << 5) | (C >>> 27)) + ((D & E) | (D & A) | (E & A)) + w[43] + 0x8F1BBCDC;
D = ((D << 30) | (D >>> 2));
A += ((B << 5) | (B >>> 27)) + ((C & D) | (C & E) | (D & E)) + w[44] + 0x8F1BBCDC;
C = ((C << 30) | (C >>> 2));
E += ((A << 5) | (A >>> 27)) + ((B & C) | (B & D) | (C & D)) + w[45] + 0x8F1BBCDC;
B = ((B << 30) | (B >>> 2));
D += ((E << 5) | (E >>> 27)) + ((A & B) | (A & C) | (B & C)) + w[46] + 0x8F1BBCDC;
A = ((A << 30) | (A >>> 2));
C += ((D << 5) | (D >>> 27)) + ((E & A) | (E & B) | (A & B)) + w[47] + 0x8F1BBCDC;
E = ((E << 30) | (E >>> 2));
B += ((C << 5) | (C >>> 27)) + ((D & E) | (D & A) | (E & A)) + w[48] + 0x8F1BBCDC;
D = ((D << 30) | (D >>> 2));
A += ((B << 5) | (B >>> 27)) + ((C & D) | (C & E) | (D & E)) + w[49] + 0x8F1BBCDC;
C = ((C << 30) | (C >>> 2));
E += ((A << 5) | (A >>> 27)) + ((B & C) | (B & D) | (C & D)) + w[50] + 0x8F1BBCDC;
B = ((B << 30) | (B >>> 2));
D += ((E << 5) | (E >>> 27)) + ((A & B) | (A & C) | (B & C)) + w[51] + 0x8F1BBCDC;
A = ((A << 30) | (A >>> 2));
C += ((D << 5) | (D >>> 27)) + ((E & A) | (E & B) | (A & B)) + w[52] + 0x8F1BBCDC;
E = ((E << 30) | (E >>> 2));
B += ((C << 5) | (C >>> 27)) + ((D & E) | (D & A) | (E & A)) + w[53] + 0x8F1BBCDC;
D = ((D << 30) | (D >>> 2));
A += ((B << 5) | (B >>> 27)) + ((C & D) | (C & E) | (D & E)) + w[54] + 0x8F1BBCDC;
C = ((C << 30) | (C >>> 2));
E = E + ((A << 5) | (A >>> 27)) + ((B & C) | (B & D) | (C & D)) + w[55] + 0x8F1BBCDC;
B = ((B << 30) | (B >>> 2));
D += ((E << 5) | (E >>> 27)) + ((A & B) | (A & C) | (B & C)) + w[56] + 0x8F1BBCDC;
A = ((A << 30) | (A >>> 2));
C += ((D << 5) | (D >>> 27)) + ((E & A) | (E & B) | (A & B)) + w[57] + 0x8F1BBCDC;
E = ((E << 30) | (E >>> 2));
B += ((C << 5) | (C >>> 27)) + ((D & E) | (D & A) | (E & A)) + w[58] + 0x8F1BBCDC;
D = ((D << 30) | (D >>> 2));
A += ((B << 5) | (B >>> 27)) + ((C & D) | (C & E) | (D & E)) + w[59] + 0x8F1BBCDC;
C = ((C << 30) | (C >>> 2));
E += ((A << 5) | (A >>> 27)) + (B ^ C ^ D) + w[60] + 0xCA62C1D6;
B = ((B << 30) | (B >>> 2));
D += ((E << 5) | (E >>> 27)) + (A ^ B ^ C) + w[61] + 0xCA62C1D6;
A = ((A << 30) | (A >>> 2));
C += ((D << 5) | (D >>> 27)) + (E ^ A ^ B) + w[62] + 0xCA62C1D6;
E = ((E << 30) | (E >>> 2));
B += ((C << 5) | (C >>> 27)) + (D ^ E ^ A) + w[63] + 0xCA62C1D6;
D = ((D << 30) | (D >>> 2));
A += ((B << 5) | (B >>> 27)) + (C ^ D ^ E) + w[64] + 0xCA62C1D6;
C = ((C << 30) | (C >>> 2));
E += ((A << 5) | (A >>> 27)) + (B ^ C ^ D) + w[65] + 0xCA62C1D6;
B = ((B << 30) | (B >>> 2));
D += ((E << 5) | (E >>> 27)) + (A ^ B ^ C) + w[66] + 0xCA62C1D6;
A = ((A << 30) | (A >>> 2));
C += ((D << 5) | (D >>> 27)) + (E ^ A ^ B) + w[67] + 0xCA62C1D6;
E = ((E << 30) | (E >>> 2));
B += ((C << 5) | (C >>> 27)) + (D ^ E ^ A) + w[68] + 0xCA62C1D6;
D = ((D << 30) | (D >>> 2));
A += ((B << 5) | (B >>> 27)) + (C ^ D ^ E) + w[69] + 0xCA62C1D6;
C = ((C << 30) | (C >>> 2));
E += ((A << 5) | (A >>> 27)) + (B ^ C ^ D) + w[70] + 0xCA62C1D6;
B = ((B << 30) | (B >>> 2));
D += ((E << 5) | (E >>> 27)) + (A ^ B ^ C) + w[71] + 0xCA62C1D6;
A = ((A << 30) | (A >>> 2));
C += ((D << 5) | (D >>> 27)) + (E ^ A ^ B) + w[72] + 0xCA62C1D6;
E = ((E << 30) | (E >>> 2));
B += ((C << 5) | (C >>> 27)) + (D ^ E ^ A) + w[73] + 0xCA62C1D6;
D = ((D << 30) | (D >>> 2));
A += ((B << 5) | (B >>> 27)) + (C ^ D ^ E) + w[74] + 0xCA62C1D6;
C = ((C << 30) | (C >>> 2));
E += ((A << 5) | (A >>> 27)) + (B ^ C ^ D) + w[75] + 0xCA62C1D6;
B = ((B << 30) | (B >>> 2));
D += ((E << 5) | (E >>> 27)) + (A ^ B ^ C) + w[76] + 0xCA62C1D6;
A = ((A << 30) | (A >>> 2));
C += ((D << 5) | (D >>> 27)) + (E ^ A ^ B) + w[77] + 0xCA62C1D6;
E = ((E << 30) | (E >>> 2));
B += ((C << 5) | (C >>> 27)) + (D ^ E ^ A) + w[78] + 0xCA62C1D6;
D = ((D << 30) | (D >>> 2));
A += ((B << 5) | (B >>> 27)) + (C ^ D ^ E) + w[79] + 0xCA62C1D6;
C = ((C << 30) | (C >>> 2));
H0 += A;
H1 += B;
H2 += C;
H3 += D;
H4 += E;
// debug(80, H0, H1, H2, H3, H4);
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy