java.util.zip.ZipFile Maven / Gradle / Ivy
Show all versions of jtransc-rt Show documentation
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package java.util.zip;
import com.jtransc.compression.JTranscZlib;
import com.jtransc.io.ra.RAFile;
import com.jtransc.io.ra.RASlice;
import com.jtransc.io.ra.RAStream;
import libcore.io.BufferIterator;
import libcore.io.HeapBufferIterator;
import java.io.*;
import java.nio.ByteOrder;
import java.nio.charset.StandardCharsets;
import java.util.Enumeration;
import java.util.Iterator;
import java.util.LinkedHashMap;
/**
* This class provides random read access to a zip file. You pay more to read
* the zip file's central directory up front (from the constructor), but if you're using
* {@link #getEntry} to look up multiple files by name, you get the benefit of this index.
*
*
If you only want to iterate through all the files (using {@link #entries()}, you should
* consider {@link ZipInputStream}, which provides stream-like read access to a zip file and
* has a lower up-front cost because you don't pay to build an in-memory index.
*
*
If you want to create a zip file, use {@link ZipOutputStream}. There is no API for updating
* an existing zip file.
*/
public class ZipFile implements Closeable, ZipConstants {
/**
* General Purpose Bit Flags, Bit 0.
* If set, indicates that the file is encrypted.
*/
static final int GPBF_ENCRYPTED_FLAG = 1 << 0;
/**
* General Purpose Bit Flags, Bit 3.
* If this bit is set, the fields crc-32, compressed
* size and uncompressed size are set to zero in the
* local header. The correct values are put in the
* data descriptor immediately following the compressed
* data. (Note: PKZIP version 2.04g for DOS only
* recognizes this bit for method 8 compression, newer
* versions of PKZIP recognize this bit for any
* compression method.)
*/
static final int GPBF_DATA_DESCRIPTOR_FLAG = 1 << 3;
/**
* General Purpose Bit Flags, Bit 11.
* Language encoding flag (EFS). If this bit is set,
* the filename and comment fields for this file
* must be encoded using UTF-8.
*/
static final int GPBF_UTF8_FLAG = 1 << 11;
/**
* Supported General Purpose Bit Flags Mask.
* Bit mask of bits not supported.
* Note: The only bit that we will enforce at this time
* is the encrypted bit. Although other bits are not supported,
* we must not enforce them as this could break some legitimate
* use cases (See http://b/8617715).
*/
static final int GPBF_UNSUPPORTED_MASK = GPBF_ENCRYPTED_FLAG;
/**
* Open zip file for reading.
*/
public static final int OPEN_READ = 1;
/**
* Delete zip file when closed.
*/
public static final int OPEN_DELETE = 4;
private final String filename;
private File fileToDeleteOnClose;
private RAStream ras;
private final LinkedHashMap entries = new LinkedHashMap();
private String comment;
/**
* Constructs a new {@code ZipFile} allowing read access to the contents of the given file.
*
* @throws ZipException if a zip error occurs.
* @throws IOException if an {@code IOException} occurs.
*/
public ZipFile(File file) throws ZipException, IOException {
this(file, OPEN_READ);
}
/**
* Constructs a new {@code ZipFile} allowing read access to the contents of the given file.
*
* @throws IOException if an IOException occurs.
*/
public ZipFile(String name) throws IOException {
this(new File(name), OPEN_READ);
}
/**
* Constructs a new {@code ZipFile} allowing access to the given file.
* The {@code mode} must be either {@code OPEN_READ} or {@code OPEN_READ|OPEN_DELETE}.
*
*
If the {@code OPEN_DELETE} flag is supplied, the file will be deleted at or before the
* time that the {@code ZipFile} is closed (the contents will remain accessible until
* this {@code ZipFile} is closed); it also calls {@code File.deleteOnExit}.
*
* @throws IOException if an {@code IOException} occurs.
*/
public ZipFile(File file, int mode) throws IOException {
filename = file.getPath();
if (mode != OPEN_READ && mode != (OPEN_READ | OPEN_DELETE)) {
throw new IllegalArgumentException("Bad mode: " + mode);
}
if ((mode & OPEN_DELETE) != 0) {
fileToDeleteOnClose = file;
fileToDeleteOnClose.deleteOnExit();
} else {
fileToDeleteOnClose = null;
}
ras = new RAFile(file);
readCentralDir();
}
@Override
protected void finalize() throws IOException {
try {
} finally {
try {
super.finalize();
} catch (Throwable t) {
throw new AssertionError(t);
}
}
}
/**
* Closes this zip file. This method is idempotent. This method may cause I/O if the
* zip file needs to be deleted.
*
* @throws IOException if an IOException occurs.
*/
public void close() throws IOException {
RAStream localRaf = ras;
if (localRaf != null) { // Only close initialized instances
synchronized (localRaf) {
ras = null;
localRaf.close();
}
if (fileToDeleteOnClose != null) {
fileToDeleteOnClose.delete();
fileToDeleteOnClose = null;
}
}
}
private void checkNotClosed() {
if (ras == null) {
throw new IllegalStateException("Zip file closed");
}
}
/**
* Returns an enumeration of the entries. The entries are listed in the
* order in which they appear in the zip file.
*
*
If you only need to iterate over the entries in a zip file, and don't
* need random-access entry lookup by name, you should probably use {@link ZipInputStream}
* instead, to avoid paying to construct the in-memory index.
*
* @throws IllegalStateException if this zip file has been closed.
*/
public Enumeration extends ZipEntry> entries() {
checkNotClosed();
final Iterator iterator = entries.values().iterator();
return new Enumeration() {
public boolean hasMoreElements() {
checkNotClosed();
return iterator.hasNext();
}
public ZipEntry nextElement() {
checkNotClosed();
return iterator.next();
}
};
}
/**
* Returns this file's comment, or null if it doesn't have one.
* See {@link ZipOutputStream#setComment}.
*
* @throws IllegalStateException if this zip file has been closed.
* @since 1.7
*/
public String getComment() {
checkNotClosed();
return comment;
}
/**
* Returns the zip entry with the given name, or null if there is no such entry.
*
* @throws IllegalStateException if this zip file has been closed.
*/
public ZipEntry getEntry(String entryName) {
checkNotClosed();
if (entryName == null) {
throw new NullPointerException("entryName == null");
}
ZipEntry ze = entries.get(entryName);
if (ze == null) {
ze = entries.get(entryName + "/");
}
return ze;
}
/**
* Returns an input stream on the data of the specified {@code ZipEntry}.
*
* @param entry the ZipEntry.
* @return an input stream of the data contained in the {@code ZipEntry}.
* @throws IOException if an {@code IOException} occurs.
* @throws IllegalStateException if this zip file has been closed.
*/
public InputStream getInputStream(ZipEntry entry) throws IOException {
// Make sure this ZipEntry is in this Zip file. We run it through the name lookup.
entry = getEntry(entry.getName());
if (entry == null) {
return null;
}
// Create an InputStream at the right part of the file.
RASlice is = ras.sliceAvailable(entry.localHeaderRelOffset);
// We don't know the entry data's start position. All we have is the
// position of the entry's local header.
// http://www.pkware.com/documents/casestudies/APPNOTE.TXT
final int localMagic = is.readS32_LE();
if (localMagic != LOCSIG) {
throwZipException("Local File Header", localMagic);
}
is.skip(2);
// At position 6 we find the General Purpose Bit Flag.
int gpbf = is.readU16_LE();
if ((gpbf & ZipFile.GPBF_UNSUPPORTED_MASK) != 0) {
throw new ZipException("Invalid General Purpose Bit Flag: " + gpbf);
}
// Offset 26 has the file name length, and offset 28 has the extra field length.
// These lengths can differ from the ones in the central header.
is.skip(18);
int fileNameLength = is.readU16_LE();
int extraFieldLength = is.readU16_LE();
is.close();
// Skip the variable-size file name and extra field data.
is.skip(fileNameLength + extraFieldLength);
RASlice data = is.readSlice(entry.compressedSize);
if (entry.compressionMethod == ZipEntry.STORED) {
//return data.createInputStream();
return new ByteArrayInputStream(data.getAllBytes());
} else {
return new ByteArrayInputStream(JTranscZlib.inflate(data.getAllBytes(), (int) entry.size));
}
}
/**
* Gets the file name of this {@code ZipFile}.
*
* @return the file name of this {@code ZipFile}.
*/
public String getName() {
return filename;
}
/**
* Returns the number of {@code ZipEntries} in this {@code ZipFile}.
*
* @return the number of entries in this file.
* @throws IllegalStateException if this zip file has been closed.
*/
public int size() {
checkNotClosed();
return entries.size();
}
/**
* Find the central directory and read the contents.
*
*
The central directory can be followed by a variable-length comment
* field, so we have to scan through it backwards. The comment is at
* most 64K, plus we have 18 bytes for the end-of-central-dir stuff
* itself, plus apparently sometimes people throw random junk on the end
* just for the fun of it.
*
*
This is all a little wobbly. If the wrong value ends up in the EOCD
* area, we're hosed. This appears to be the way that everybody handles
* it though, so we're in good company if this fails.
*/
private void readCentralDir() throws IOException {
// Scan back, looking for the End Of Central Directory field. If the zip file doesn't
// have an overall comment (unrelated to any per-entry comments), we'll hit the EOCD
// on the first try.
// No need to synchronize raf here -- we only do this when we first open the zip file.
long scanOffset = ras.length() - ENDHDR;
if (scanOffset < 0) {
throw new ZipException("File too short to be a zip file: " + ras.length());
}
ras.setPosition(0);
final int headerMagic = ras.readS32_LE();
if (headerMagic != LOCSIG) {
throw new ZipException("Not a zip archive");
}
long stopOffset = scanOffset - 65536;
if (stopOffset < 0) {
stopOffset = 0;
}
while (true) {
ras.setPosition(scanOffset);
if (ras.readS32_LE() == ENDSIG) {
break;
}
scanOffset--;
if (scanOffset < stopOffset) {
throw new ZipException("End Of Central Directory signature not found");
}
}
// Read the End Of Central Directory. ENDHDR includes the signature bytes,
// which we've already read.
byte[] eocd = ras.readBytes(ENDHDR - 4);
// Pull out the information we need.
BufferIterator it = HeapBufferIterator.iterator(eocd, 0, eocd.length, ByteOrder.LITTLE_ENDIAN);
int diskNumber = it.readShort() & 0xffff;
int diskWithCentralDir = it.readShort() & 0xffff;
int numEntries = it.readShort() & 0xffff;
int totalNumEntries = it.readShort() & 0xffff;
long centralDirSize = ((long) it.readInt()) & 0xffffffffL;
long centralDirOffset = ((long) it.readInt()) & 0xffffffffL;
int commentLength = it.readShort() & 0xffff;
if (numEntries != totalNumEntries || diskNumber != 0 || diskWithCentralDir != 0) {
throw new ZipException("Spanned archives not supported");
}
if (commentLength > 0) {
byte[] commentBytes = ras.readBytes(commentLength);
comment = new String(commentBytes, 0, commentBytes.length, StandardCharsets.UTF_8);
}
// Seek to the first CDE and read all entries.
// We have to do this now (from the constructor) rather than lazily because the
// public API doesn't allow us to throw IOException except from the constructor
// or from getInputStream.
RASlice slice = ras.slice(centralDirOffset, centralDirOffset + centralDirSize);
byte[] hdrBuf = new byte[CENHDR]; // Reuse the same buffer for each entry.
for (int i = 0; i < numEntries; ++i) {
ZipEntry newEntry = new ZipEntry(hdrBuf, slice.createInputStream());
if (newEntry.localHeaderRelOffset >= centralDirOffset) {
throw new ZipException("Local file header offset is after central directory");
}
String entryName = newEntry.getName();
if (entries.put(entryName, newEntry) != null) {
throw new ZipException("Duplicate entry name: " + entryName);
}
}
}
static void throwZipException(String msg, int magic) throws ZipException {
//final String hexString = IntegralToString.intToHexString(magic, true, 8);
throw new ZipException(msg + " signature not found; was " + magic);
}
}