dart.Base.dart Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of jtransc-rt Show documentation
Show all versions of jtransc-rt Show documentation
JVM AOT compiler currently generating JavaScript, C++, Haxe, with initial focus on Kotlin and games.
// JTransc {{ JTRANSC_VERSION }} : https://github.com/jtransc/jtransc
import 'dart:typed_data';
import 'dart:math' as Math;
import 'dart:io';
//import 'dart:developer' as debugger;
{% for import in TARGET_IMPORTS %}
import '{{ import }}';
{% end %}
main() {
Bootstrap.Main(new List(0));
}
// https://www.dartlang.org/articles/dart-vm/numeric-computation
class N {
static final int MIN_INT32 = -2147483648;
static final int MAX_INT32 = 2147483647;
static final Int64 MIN_INT64 = N.lnew(-9223372036854775808);
static final Int64 MAX_INT64 = N.lnew(9223372036854775807);
static final double DOUBLE_NAN = longBitsToDouble(N.lnew(0x7FF8000000000000));
static final Int8List _tempI8 = new Int8List(8);
static final Float32List _tempF32 = _tempI8.buffer.asFloat32List();
static final Int32List _tempI32 = _tempI8.buffer.asInt32List();
static final Float64List _tempF64 = _tempI8.buffer.asFloat64List();
static final Int64List _tempI64 = _tempI8.buffer.asInt64List();
static void init() {
}
// FAILS
//static int I(int v) { _tempI32[0] = v.toInt(); return _tempI32[0]; }
//static int L(int v) { _tempI64[0] = v.toInt(); return _tempI64[0]; }
//static double F(int v) { _tempF32[0] = v.toDouble(); return _tempF32[0]; }
//static double D(int v) { _tempF64[0] = v.toDouble(); return _tempF64[0]; }
//static int I(int v) { Int32List out = new Int32List(1) ; out[0] = v.toInt(); return out[0]; }
//static int L(int v) { Int64List out = new Int64List(1) ; out[0] = v.toInt(); return out[0]; }
//static double F(int v) { Float32List out = new Float32List(1); out[0] = v.toDouble(); return out[0]; }
//static double D(int v) { Float64List out = new Float64List(1); out[0] = v.toDouble(); return out[0]; }
// https://github.com/dart-lang/fixnum/blob/master/lib/src/int.dart
static int I(int v) { return (v & 0x7fffffff) - (v & 0x80000000); }
static double F(int v) { return v.toDouble(); }
static double D(int v) { return v.toDouble(); }
static int ineg(int r) {
if (r == MIN_INT32) return MIN_INT32;
return I(-r);
}
//static CHECK_CAST(i, clazz) {
// if (i == null) return null;
// if (!(i is clazz)) {
// throw new WrappedThrowable({% CONSTRUCTOR java.lang.ClassCastException:()V %}());
// }
// return i;
//}
static getJavaException(ee) {
if (ee is WrappedThrowable) return ee.t;
if (ee is CastError) return {% CONSTRUCTOR java.lang.ClassCastException:()V %}();
return ee;
//return new WrappedThrowable({% CONSTRUCTOR java.lang.ClassCastException:()V %}());
}
static int iadd(int l, int r) { return I(l + r); }
static int isub(int l, int r) { return I(l - r); }
static int imul(int l, int r) { return I(l * r); }
static int idiv(int l, int r) { return I(l ~/ r); }
static int irem(int l, int r) { return I(l.remainder(r)); }
static int iand(int l, int r) { return I(l & r); }
static int ixor(int l, int r) { return I(l ^ r); }
static int ior(int l, int r) { return I(l | r); }
static int FIXSHIFT(int r) {
if (r < 0) {
return (32 - ((-r) & 0x1F)) & 0x1F;
} else {
return r & 0x1F;
}
}
static int LFIXSHIFT(int r) {
if (r < 0) {
return (64 - ((-r) & 0x3F)) & 0x3F;
} else {
return r & 0x3F;
}
}
static int ishl(int l, int r) { return I(l << FIXSHIFT(r)); }
static int ishr(int l, int r) { return I(l >> FIXSHIFT(r)); }
static int iushr(int l, int r) { return I((l & 0xffffffff) >> FIXSHIFT(r)); }
static int ishl_opt(int l, int r) { return I(l << r); }
static int ishr_opt(int l, int r) { return I(l >> r); }
static int iushr_opt(int l, int r) { return I((l & 0xffffffff) >> r); }
static void fillSecureRandomBytes(Int8List data) {
var random = new Math.Random.secure();
for (var n = 0; n < data.length; n++) data[n] = random.nextInt(0xFF);
}
//static int lnew(int high, int low) { return (high << 32) | low; }
static double i2f(int v) { return v.toDouble(); }
static double i2d(int v) { return v.toDouble(); }
static int floatToIntBits(double v) { _tempF32[0] = v; return _tempI32[0]; }
static double intBitsToFloat(int v) { _tempI32[0] = v; return _tempF32[0]; }
// LONG related
static int inew(int v) { return v; }
static Int64 lnew(int v) { return new Int64(v); }
static Int64 lneg(int v) { return -v; }
static Int64 ladd(Int64 l, Int64 r) { return (l + r); }
static Int64 lsub(Int64 l, Int64 r) { return (l - r); }
static Int64 lmul(Int64 l, Int64 r) { return (l * r); }
static Int64 lrem(Int64 l, Int64 r) { return (l.remainder(r)); }
static Int64 ldiv(Int64 l, Int64 r) { return (l ~/ r); }
static Int64 lxor(Int64 l, Int64 r) { return (l ^ r); }
static Int64 lor (Int64 l, Int64 r) { return (l | r); }
static Int64 land(Int64 l, Int64 r) { return (l & r); }
static Int64 lshl(Int64 l, int r) { return (l << LFIXSHIFT(r)); }
static Int64 lshr(Int64 l, int r) { return (l >> LFIXSHIFT(r)); }
static Int64 lushr(Int64 l, int r) { return l.shiftRightUnsigned(LFIXSHIFT(r)); }
static Int64 lushr_opt(Int64 l, int r) { return l.shiftRightUnsigned(r); }
static int lcmp(Int64 l, Int64 r) { return l.compareTo(r); }
static double j2f(Int64 v) { return v.toDouble(); }
static double j2d(Int64 v) { return v.toDouble(); }
static int j2i(Int64 v) { return v.toInt32_v(); }
static int i2j(int v) { return new Int64(v.toInt()); }
static int d2j(double v) { return new Int64(v.toInt()); }
static int f2j(double v) { return new Int64(v.toInt()); }
static Int64 doubleToLongBits(double v) { _tempF64[0] = v.toDouble(); return new Int64(_tempI64[0]); }
static double longBitsToDouble(Int64 v) { _tempI64[0] = v.toInt(); return _tempF64[0]; }
// DOUBLE
static int cmp (double a, double b) { return (a < b) ? (-1) : ((a > b) ? (1) : 0); }
static int cmpl(double a, double b) { return (a.isNaN || b.isNaN) ? (-1) : N.cmp(a, b); }
static int cmpg(double a, double b) { return (a.isNaN || b.isNaN) ? (1) : N.cmp(a, b); }
static int z2i(bool v) { return v ? 1 : 0; }
static int i(int v) { return (v.toInt()); }
static int f2i(double v) { if (v.isNaN || !v.isFinite) return 0; return I(v.toInt()); }
static int d2i(double v) { if (v.isNaN || !v.isFinite) return 0; return I(v.toInt()); }
static int i2b(int v) { return (v & 0x7F) - (v & 0x80); }
static int i2s(int v) { return (v & 0x7FFF) - (v & 0x8000); }
static int i2c(int v) { return (v & 0xFFFF); }
static String charArrayToString(JA_C array) {
return new String.fromCharCodes(array.data);
}
static String ichar(int v) {
return new String.fromCharCode(v);
}
static JA_C stringToCharArray(String str) {
var out = new JA_C(str.length);
for (var n = 0; n < str.length; n++) out.data[n] = str.codeUnitAt(n);
return out;
}
static {% CLASS java.lang.String %} str(String str) {
if (str == null) return null;
var out = new {% CLASS java.lang.String %}();
out._str = str;
return out;
}
static {% CLASS java.lang.String %} strLitEscape(String str) { return N.str(str); }
static String istr({% CLASS java.lang.String %} o) { return (o != null) ? o._str : null; }
static JA_L strArray(List strs) {
int len = strs.length;
JA_L o = new JA_L(len, "[Ljava/lang/String;");
for (int n = 0; n < len; n++) o.data[n] = N.str(strs[n]);
return o;
}
static {% CLASS java.lang.RuntimeException %} runtimeException(String msg) {
print("runtimeException: '$msg'");
return {% CONSTRUCTOR java.lang.RuntimeException:(Ljava/lang/String;)V %}(N.str(msg));
}
static {% CLASS java.lang.Class %} resolveClass(String name) {
return {% SMETHOD java.lang.Class:forName:(Ljava/lang/String;)Ljava/lang/Class; %}(N.str(name));
}
static completeFuture({% CLASS com.jtransc.async.JTranscAsyncHandler %} handler, callback) {
(() async {
var result;
try {
result = await callback();
} catch (e) {
handler{% IMETHOD com.jtransc.async.JTranscAsyncHandler:complete %}(null, N.runtimeException("$e"));
return;
}
handler{% IMETHOD com.jtransc.async.JTranscAsyncHandler:complete %}(result, null);
})();
}
static void monitorEnter({% CLASS java.lang.Object %} o) {
}
static void monitorExit({% CLASS java.lang.Object %} o) {
}
static bool unboxBool ({% CLASS java.lang.Boolean %} i) { return i{% IMETHOD java.lang.Boolean:booleanValue %}(); }
static int unboxByte ({% CLASS java.lang.Byte %} i) { return i{% IMETHOD java.lang.Byte:byteValue %}(); }
static int unboxShort ({% CLASS java.lang.Short %} i) { return i{% IMETHOD java.lang.Short:shortValue %}(); }
static int unboxChar ({% CLASS java.lang.Character %} i) { return i{% IMETHOD java.lang.Character:charValue %}(); }
static int unboxInt ({% CLASS java.lang.Integer %} i) { return i{% IMETHOD java.lang.Integer:intValue %}(); }
static int unboxLong ({% CLASS java.lang.Long %} i) { return i{% IMETHOD java.lang.Long:longValue %}(); }
static double unboxFloat ({% CLASS java.lang.Float %} i) { return i{% IMETHOD java.lang.Float:floatValue %}(); }
static double unboxDouble({% CLASS java.lang.Double %} i) { return i{% IMETHOD java.lang.Double:doubleValue %}(); }
static {% CLASS java.lang.Object %} boxVoid ( ) { return null; }
static {% CLASS java.lang.Boolean %} boxBool (bool v) { return {% SMETHOD java.lang.Boolean:valueOf:(Z)Ljava/lang/Boolean; %}(v); }
static {% CLASS java.lang.Byte %} boxByte (int v) { return {% SMETHOD java.lang.Byte:valueOf:(B)Ljava/lang/Byte; %}(v); }
static {% CLASS java.lang.Short %} boxShort (int v) { return {% SMETHOD java.lang.Short:valueOf:(S)Ljava/lang/Short; %}(v); }
static {% CLASS java.lang.Character %} boxChar (int v) { return {% SMETHOD java.lang.Character:valueOf:(C)Ljava/lang/Character; %}(v); }
static {% CLASS java.lang.Integer %} boxInt (int v) { return {% SMETHOD java.lang.Integer:valueOf:(I)Ljava/lang/Integer; %}(v); }
static {% CLASS java.lang.Long %} boxLong (int v) { return {% SMETHOD java.lang.Long:valueOf:(J)Ljava/lang/Long; %}(v); }
static {% CLASS java.lang.Float %} boxFloat (double v) { return {% SMETHOD java.lang.Float:valueOf:(F)Ljava/lang/Float; %}(v); }
static {% CLASS java.lang.Double %} boxDouble(double v) { return {% SMETHOD java.lang.Double:valueOf:(D)Ljava/lang/Double; %}(v); }
static void arraycopy({% CLASS java.lang.Object %} src, int srcPos, {% CLASS java.lang.Object %} dest, int destPos, int length) {
if (src is JA_0) return src.copyTo(dest, srcPos, destPos, length);
throw new Exception("Not implemented arraycopy for " + src.toString());
}
//static JA_L getStackTrace(Error error, int skip) {
static JA_L getStackTrace(StackTrace st, int skip) {
//var st = StackTrace.current;
//var st = error.stackTrace;
var lines = st.toString().split('\n');
var o = new JA_L(lines.length - skip, "[Ljava/lang/StackTraceElement;");
for (var n = 0; n < lines.length; n++) {
var line = lines[n];
// @TODO: Parse stacktrace elements
var clazz = line;
var method = '';
var file = '';
var lineNumber = 0;
if (n >= skip) {
o.data[n - skip] = {% CONSTRUCTOR java.lang.StackTraceElement:(Ljava/lang/String;Ljava/lang/String;Ljava/lang/String;I)V %}(
N.str(clazz), N.str(method), N.str(file), lineNumber
);
}
}
return o;
}
}
abstract class JA_0 extends {% CLASS java.lang.Object %} {
int length;
String desc;
JA_0(int length, String desc) {
this.length = length;
this.desc = desc;
}
void setArraySlice(int index, List data);
void copyTo(JA_0 dest, int srcPos, int destPos, int length);
}
class JA_B extends JA_0 {
Int8List data;
JA_B(int length, [String desc = '[B']) : super(length, desc) { data = new Int8List(length); }
void setArraySlice(int index, List data) {
for (var n = 0; n < data.length; n++) this.data[index + n] = data[n];
}
void copyTo(JA_0 dest, int srcPos, int destPos, int length) {
(dest as JA_B).data.setRange(destPos, destPos + length, this.data, srcPos);
}
}
class JA_Z extends JA_B {
JA_Z(int length, [String desc = '[Z']) : super(length, desc) { }
}
class JA_C extends JA_0 {
Int32List data;
JA_C(int length) : super(length, '[C') { data = new Int32List(length); }
void setArraySlice(int index, List data) {
for (var n = 0; n < data.length; n++) this.data[index + n] = data[n];
}
void copyTo(JA_0 dest, int srcPos, int destPos, int length) {
(dest as JA_C).data.setRange(destPos, destPos + length, this.data, srcPos);
}
}
class JA_S extends JA_0 {
Int16List data;
JA_S(int length) : super(length, '[S') { data = new Int16List(length); }
void setArraySlice(int index, List data) {
for (var n = 0; n < data.length; n++) this.data[index + n] = data[n];
}
void copyTo(JA_0 dest, int srcPos, int destPos, int length) {
(dest as JA_S).data.setRange(destPos, destPos + length, this.data, srcPos);
}
}
class JA_I extends JA_0 {
Int32List data;
JA_I(int length) : super(length, '[I') { data = new Int32List(length); }
static JA_I T(List values) {
var out = new JA_I(values.length);
for (var n = 0; n < out.length; n++) out.data[n] = values[n];
return out;
}
void setArraySlice(int index, List data) {
for (var n = 0; n < data.length; n++) this.data[index + n] = data[n];
}
void copyTo(JA_0 dest, int srcPos, int destPos, int length) {
(dest as JA_I).data.setRange(destPos, destPos + length, this.data, srcPos);
}
}
class JA_F extends JA_0 {
Float32List data;
JA_F(int length) : super(length, '[F') { data = new Float32List(length); }
void setArraySlice(int index, List data) {
for (var n = 0; n < data.length; n++) this.data[index + n] = data[n];
}
void copyTo(JA_0 dest, int srcPos, int destPos, int length) {
(dest as JA_F).data.setRange(destPos, destPos + length, this.data, srcPos);
}
}
class JA_D extends JA_0 {
Float64List data;
JA_D(int length) : super(length, '[D') { data = new Float64List(length); }
void setArraySlice(int index, List data) {
for (var n = 0; n < data.length; n++) this.data[index + n] = data[n];
}
void copyTo(JA_0 dest, int srcPos, int destPos, int length) {
(dest as JA_D).data.setRange(destPos, destPos + length, this.data, srcPos);
}
}
class JA_J extends JA_0 {
List data;
JA_J(int length) : super(length, '[J') { data = new List.filled(length, Int64.ZERO); }
void setArraySlice(int index, List data) {
for (var n = 0; n < data.length; n++) this.data[index + n] = data[n];
}
void copyTo(JA_0 dest, int srcPos, int destPos, int length) {
(dest as JA_J).data.setRange(destPos, destPos + length, this.data, srcPos);
}
}
class JA_L extends JA_0 {
List data;
JA_L(int length, String desc) : super(length, desc) { data = new List.filled(length, null); }
static JA_0 createMultiSure(String desc, List sizes) {
return _createMultiSure(desc, 0, sizes);
}
static JA_0 _createMultiSure(String desc, int index, List sizes) {
if (!desc.startsWith("[")) return null;
if (index >= sizes.length - 1) return JA_L.create(sizes[index], desc);
int len = sizes[index];
JA_L o = new JA_L(len, desc);
String desc2 = desc.substring(1);
for (int n = 0; n < len; n++) {
o.data[n] = JA_L._createMultiSure(desc2, index + 1, sizes);
}
return o;
}
static create(int size, String desc) {
switch (desc) {
case "[Z": return new JA_Z(size);
case "[B": return new JA_B(size);
case "[C": return new JA_C(size);
case "[S": return new JA_S(size);
case "[I": return new JA_I(size);
case "[J": return new JA_J(size);
case "[F": return new JA_F(size);
case "[D": return new JA_D(size);
default: return new JA_L(size, desc);
}
}
void setArraySlice(int index, List data) {
for (var n = 0; n < data.length; n++) this.data[index + n] = data[n];
}
void copyTo(JA_0 dest, int srcPos, int destPos, int length) {
(dest as JA_L).data.setRange(destPos, destPos + length, this.data, srcPos);
}
}
class WrappedThrowable extends Error {
{% CLASS java.lang.Throwable %} t;
WrappedThrowable({% CLASS java.lang.Throwable %} t) {
this.t = t;
}
String toString() {
return t.toString();
}
}
// https://github.com/dart-lang/fixnum/tree/2d95f7d21690be6f077128f6bd5c29d875f71fee/lib/src
abstract class IntX implements Comparable {
IntX operator +(other);
IntX operator -(other);
IntX operator -();
IntX operator *(other);
IntX operator %(other);
IntX operator ~/(other);
IntX remainder(other);
IntX operator &(other);
IntX operator |(other);
IntX operator ^(other);
IntX operator ~();
IntX operator <<(int shiftAmount);
IntX operator >>(int shiftAmount);
IntX shiftRightUnsigned(int shiftAmount);
int compareTo(other);
bool operator ==(other);
bool operator <(other);
bool operator <=(other);
bool operator >(other);
bool operator >=(other);
bool get isEven;
bool get isMaxValue;
bool get isMinValue;
bool get isNegative;
bool get isOdd;
bool get isZero;
int get hashCode;
IntX abs();
IntX clamp(lowerLimit, upperLimit);
int get bitLength;
int numberOfLeadingZeros();
int numberOfTrailingZeros();
IntX toSigned(int width);
IntX toUnsigned(int width);
List toBytes();
double toDouble();
int toInt();
Int32 toInt32();
int toInt32_v();
Int64 toInt64();
String toString();
String toHexString();
String toRadixString(int radix);
}
class Int64 implements IntX {
final int _l, _m, _h;
static const int _BITS = 22;
static const int _BITS01 = 44; // 2 * _BITS
static const int _BITS2 = 20; // 64 - _BITS01
static const int _MASK = 4194303; // (1 << _BITS) - 1
static const int _MASK2 = 1048575; // (1 << _BITS2) - 1
static const int _SIGN_BIT = 19; // _BITS2 - 1
static const int _SIGN_BIT_MASK = 1 << _SIGN_BIT;
static const Int64 MAX_VALUE = const Int64._bits(_MASK, _MASK, _MASK2 >> 1);
static const Int64 MIN_VALUE = const Int64._bits(0, 0, _SIGN_BIT_MASK);
static const Int64 ZERO = const Int64._bits(0, 0, 0);
static const Int64 ONE = const Int64._bits(1, 0, 0);
static const Int64 TWO = const Int64._bits(2, 0, 0);
const Int64._bits(int this._l, int this._m, int this._h);
static Int64 parseRadix(String s, int radix) {
return _parseRadix(s, Int32._validateRadix(radix));
}
static Int64 _parseRadix(String s, int radix) {
int i = 0;
bool negative = false;
if (s[0] == '-') {
negative = true;
i++;
}
int d0 = 0, d1 = 0, d2 = 0; // low, middle, high components.
for (; i < s.length; i++) {
int c = s.codeUnitAt(i);
int digit = Int32._decodeDigit(c);
if (digit < 0 || digit >= radix) throw new FormatException("Non-radix char code: $c");
d0 = d0 * radix + digit;
int carry = d0 >> _BITS;
d0 = _MASK & d0;
d1 = d1 * radix + carry;
carry = d1 >> _BITS;
d1 = _MASK & d1;
d2 = d2 * radix + carry;
d2 = _MASK2 & d2;
}
if (negative) return _negate(d0, d1, d2);
return Int64._masked(d0, d1, d2);
}
static Int64 parseInt(String s) => _parseRadix(s, 10);
static Int64 parseHex(String s) => _parseRadix(s, 16);
factory Int64([int value=0]) {
int v0 = 0, v1 = 0, v2 = 0;
bool negative = false;
if (value < 0) {
negative = true;
value = -value - 1;
}
v2 = value ~/ 17592186044416; // 2^44
value -= v2 * 17592186044416;
v1 = value ~/ 4194304; // 2^22
value -= v1 * 4194304;
v0 = value;
if (negative) {
v0 = ~v0;
v1 = ~v1;
v2 = ~v2;
}
return Int64._masked(v0, v1, v2);
}
factory Int64.fromBytes(List bytes) {
int top = bytes[7] & 0xff;
top <<= 8;
top |= bytes[6] & 0xff;
top <<= 8;
top |= bytes[5] & 0xff;
top <<= 8;
top |= bytes[4] & 0xff;
int bottom = bytes[3] & 0xff;
bottom <<= 8;
bottom |= bytes[2] & 0xff;
bottom <<= 8;
bottom |= bytes[1] & 0xff;
bottom <<= 8;
bottom |= bytes[0] & 0xff;
return new Int64.fromInts(top, bottom);
}
factory Int64.fromBytesBigEndian(List bytes) {
int top = bytes[0] & 0xff;
top <<= 8;
top |= bytes[1] & 0xff;
top <<= 8;
top |= bytes[2] & 0xff;
top <<= 8;
top |= bytes[3] & 0xff;
int bottom = bytes[4] & 0xff;
bottom <<= 8;
bottom |= bytes[5] & 0xff;
bottom <<= 8;
bottom |= bytes[6] & 0xff;
bottom <<= 8;
bottom |= bytes[7] & 0xff;
return new Int64.fromInts(top, bottom);
}
factory Int64.fromInts(int top, int bottom) {
top &= 0xffffffff;
bottom &= 0xffffffff;
int d0 = _MASK & bottom;
int d1 = ((0xfff & top) << 10) | (0x3ff & (bottom >> _BITS));
int d2 = _MASK2 & (top >> 12);
return Int64._masked(d0, d1, d2);
}
static Int64 _promote(value) {
if (value is Int64) return value;
if (value is int) return new Int64(value);
if (value is Int32) return value.toInt64();
throw new ArgumentError.value(value);
}
Int64 operator +(other) {
Int64 o = _promote(other);
int sum0 = _l + o._l;
int sum1 = _m + o._m + (sum0 >> _BITS);
int sum2 = _h + o._h + (sum1 >> _BITS);
return Int64._masked(sum0, sum1, sum2);
}
Int64 operator -(other) {
Int64 o = _promote(other);
return _sub(_l, _m, _h, o._l, o._m, o._h);
}
Int64 operator -() => _negate(_l, _m, _h);
Int64 operator *(other) {
Int64 o = _promote(other);
int a0 = _l & 0x1fff;
int a1 = (_l >> 13) | ((_m & 0xf) << 9);
int a2 = (_m >> 4) & 0x1fff;
int a3 = (_m >> 17) | ((_h & 0xff) << 5);
int a4 = (_h & 0xfff00) >> 8;
int b0 = o._l & 0x1fff;
int b1 = (o._l >> 13) | ((o._m & 0xf) << 9);
int b2 = (o._m >> 4) & 0x1fff;
int b3 = (o._m >> 17) | ((o._h & 0xff) << 5);
int b4 = (o._h & 0xfff00) >> 8;
int p0 = a0 * b0; // << 0
int p1 = a1 * b0; // << 13
int p2 = a2 * b0; // << 26
int p3 = a3 * b0; // << 39
int p4 = a4 * b0; // << 52
if (b1 != 0) {
p1 += a0 * b1;
p2 += a1 * b1;
p3 += a2 * b1;
p4 += a3 * b1;
}
if (b2 != 0) {
p2 += a0 * b2;
p3 += a1 * b2;
p4 += a2 * b2;
}
if (b3 != 0) {
p3 += a0 * b3;
p4 += a1 * b3;
}
if (b4 != 0) {
p4 += a0 * b4;
}
int c00 = p0 & 0x3fffff;
int c01 = (p1 & 0x1ff) << 13;
int c0 = c00 + c01;
int c10 = p0 >> 22;
int c11 = p1 >> 9;
int c12 = (p2 & 0x3ffff) << 4;
int c13 = (p3 & 0x1f) << 17;
int c1 = c10 + c11 + c12 + c13;
int c22 = p2 >> 18;
int c23 = p3 >> 5;
int c24 = (p4 & 0xfff) << 8;
int c2 = c22 + c23 + c24;
// Propagate high bits from c0 -> c1, c1 -> c2.
c1 += c0 >> _BITS;
c2 += c1 >> _BITS;
return Int64._masked(c0, c1, c2);
}
Int64 operator %(other) => _divide(this, other, _RETURN_MOD);
Int64 operator ~/(other) => _divide(this, other, _RETURN_DIV);
Int64 remainder(other) => _divide(this, other, _RETURN_REM);
Int64 operator &(other) {
Int64 o = _promote(other);
int a0 = _l & o._l;
int a1 = _m & o._m;
int a2 = _h & o._h;
return Int64._masked(a0, a1, a2);
}
Int64 operator |(other) {
Int64 o = _promote(other);
int a0 = _l | o._l;
int a1 = _m | o._m;
int a2 = _h | o._h;
return Int64._masked(a0, a1, a2);
}
Int64 operator ^(other) {
Int64 o = _promote(other);
int a0 = _l ^ o._l;
int a1 = _m ^ o._m;
int a2 = _h ^ o._h;
return Int64._masked(a0, a1, a2);
}
Int64 operator ~() => Int64._masked(~_l, ~_m, ~_h);
Int64 operator <<(int n) {
if (n < 0) throw new ArgumentError.value(n);
n &= 63;
int res0, res1, res2;
if (n < _BITS) {
res0 = _l << n;
res1 = (_m << n) | (_l >> (_BITS - n));
res2 = (_h << n) | (_m >> (_BITS - n));
} else if (n < _BITS01) {
res0 = 0;
res1 = _l << (n - _BITS);
res2 = (_m << (n - _BITS)) | (_l >> (_BITS01 - n));
} else {
res0 = 0;
res1 = 0;
res2 = _l << (n - _BITS01);
}
return Int64._masked(res0, res1, res2);
}
Int64 operator >>(int n) {
if (n < 0) throw new ArgumentError.value(n);
n &= 63;
int res0, res1, res2;
int a2 = _h;
bool negative = (a2 & _SIGN_BIT_MASK) != 0;
if (negative && _MASK > _MASK2) a2 += (_MASK - _MASK2);
if (n < _BITS) {
res2 = _shiftRight(a2, n);
if (negative) {
res2 |= _MASK2 & ~(_MASK2 >> n);
}
res1 = _shiftRight(_m, n) | (a2 << (_BITS - n));
res0 = _shiftRight(_l, n) | (_m << (_BITS - n));
} else if (n < _BITS01) {
res2 = negative ? _MASK2 : 0;
res1 = _shiftRight(a2, n - _BITS);
if (negative) {
res1 |= _MASK & ~(_MASK >> (n - _BITS));
}
res0 = _shiftRight(_m, n - _BITS) | (a2 << (_BITS01 - n));
} else {
res2 = negative ? _MASK2 : 0;
res1 = negative ? _MASK : 0;
res0 = _shiftRight(a2, n - _BITS01);
if (negative) {
res0 |= _MASK & ~(_MASK >> (n - _BITS01));
}
}
return Int64._masked(res0, res1, res2);
}
Int64 shiftRightUnsigned(int n) {
if (n < 0) throw new ArgumentError.value(n);
n &= 63;
int res0, res1, res2;
int a2 = _MASK2 & _h; // Ensure a2 is positive.
if (n < _BITS) {
res2 = a2 >> n;
res1 = (_m >> n) | (a2 << (_BITS - n));
res0 = (_l >> n) | (_m << (_BITS - n));
} else if (n < _BITS01) {
res2 = 0;
res1 = a2 >> (n - _BITS);
res0 = (_m >> (n - _BITS)) | (_h << (_BITS01 - n));
} else {
res2 = 0;
res1 = 0;
res0 = a2 >> (n - _BITS01);
}
return Int64._masked(res0, res1, res2);
}
bool operator ==(other) {
Int64 o;
if (other is Int64) {
o = other;
} else if (other is int) {
if (_h == 0 && _m == 0) return _l == other;
if ((_MASK & other) == other) return false;
o = new Int64(other);
} else if (other is Int32) {
o = other.toInt64();
}
if (o != null) return _l == o._l && _m == o._m && _h == o._h;
return false;
}
int compareTo(other) => _compareTo(other);
int _compareTo(other) {
Int64 o = _promote(other);
int signa = _h >> (_BITS2 - 1);
int signb = o._h >> (_BITS2 - 1);
if (signa != signb) {
return signa == 0 ? 1 : -1;
}
if (_h > o._h) {
return 1;
} else if (_h < o._h) {
return -1;
}
if (_m > o._m) {
return 1;
} else if (_m < o._m) {
return -1;
}
if (_l > o._l) {
return 1;
} else if (_l < o._l) {
return -1;
}
return 0;
}
bool operator <(other) => _compareTo(other) < 0;
bool operator <=(other) => _compareTo(other) <= 0;
bool operator >(other) => this._compareTo(other) > 0;
bool operator >=(other) => _compareTo(other) >= 0;
bool get isEven => (_l & 0x1) == 0;
bool get isMaxValue => (_h == _MASK2 >> 1) && _m == _MASK && _l == _MASK;
bool get isMinValue => _h == _SIGN_BIT_MASK && _m == 0 && _l == 0;
bool get isNegative => (_h & _SIGN_BIT_MASK) != 0;
bool get isOdd => (_l & 0x1) == 1;
bool get isZero => _h == 0 && _m == 0 && _l == 0;
int get bitLength {
if (isZero) return 0;
int a0 = _l, a1 = _m, a2 = _h;
if (isNegative) {
a0 = _MASK & ~a0;
a1 = _MASK & ~a1;
a2 = _MASK2 & ~a2;
}
if (a2 != 0) return _BITS01 + a2.bitLength;
if (a1 != 0) return _BITS + a1.bitLength;
return a0.bitLength;
}
int get hashCode {
// TODO(sra): Should we ensure that hashCode values match corresponding int?
// i.e. should `new Int64(x).hashCode == x.hashCode`?
int bottom = ((_m & 0x3ff) << _BITS) | _l;
int top = (_h << 12) | ((_m >> 10) & 0xfff);
return bottom ^ top;
}
Int64 abs() => this.isNegative ? -this : this;
Int64 clamp(lowerLimit, upperLimit) {
Int64 lower = _promote(lowerLimit);
Int64 upper = _promote(upperLimit);
if (this < lower) return lower;
if (this > upper) return upper;
return this;
}
int numberOfLeadingZeros() {
int b2 = Int32._numberOfLeadingZeros(_h);
if (b2 == 32) {
int b1 = Int32._numberOfLeadingZeros(_m);
if (b1 == 32) {
return Int32._numberOfLeadingZeros(_l) + 32;
} else {
return b1 + _BITS2 - (32 - _BITS);
}
} else {
return b2 - (32 - _BITS2);
}
}
int numberOfTrailingZeros() {
int zeros = Int32._numberOfTrailingZeros(_l);
if (zeros < 32) return zeros;
zeros = Int32._numberOfTrailingZeros(_m);
if (zeros < 32) return _BITS + zeros;
zeros = Int32._numberOfTrailingZeros(_h);
if (zeros < 32) return _BITS01 + zeros;
return 64;
}
Int64 toSigned(int width) {
if (width < 1 || width > 64) throw new RangeError.range(width, 1, 64);
if (width > _BITS01) {
return Int64._masked(_l, _m, _h.toSigned(width - _BITS01));
} else if (width > _BITS) {
int m = _m.toSigned(width - _BITS);
return m.isNegative
? Int64._masked(_l, m, _MASK2)
: Int64._masked(_l, m, 0); // Masking for type inferrer.
} else {
int l = _l.toSigned(width);
return l.isNegative
? Int64._masked(l, _MASK, _MASK2)
: Int64._masked(l, 0, 0); // Masking for type inferrer.
}
}
Int64 toUnsigned(int width) {
if (width < 0 || width > 64) throw new RangeError.range(width, 0, 64);
if (width > _BITS01) {
int h = _h.toUnsigned(width - _BITS01);
return Int64._masked(_l, _m, h);
}
if (width > _BITS) {
int m = _m.toUnsigned(width - _BITS);
return Int64._masked(_l, m, 0);
}
int l = _l.toUnsigned(width);
return Int64._masked(l, 0, 0);
}
List toBytes() {
List result = new List(8);
result[0] = _l & 0xff;
result[1] = (_l >> 8) & 0xff;
result[2] = ((_m << 6) & 0xfc) | ((_l >> 16) & 0x3f);
result[3] = (_m >> 2) & 0xff;
result[4] = (_m >> 10) & 0xff;
result[5] = ((_h << 4) & 0xf0) | ((_m >> 18) & 0xf);
result[6] = (_h >> 4) & 0xff;
result[7] = (_h >> 12) & 0xff;
return result;
}
double toDouble() => toInt().toDouble();
int toInt() {
int l = _l;
int m = _m;
int h = _h;
if ((_h & _SIGN_BIT_MASK) != 0) {
l = _MASK & ~_l;
m = _MASK & ~_m;
h = _MASK2 & ~_h;
return -((1 + l) + (4194304 * m) + (17592186044416 * h));
} else {
return l + (4194304 * m) + (17592186044416 * h);
}
}
Int32 toInt32() => new Int32(((_m & 0x3ff) << _BITS) | _l);
int toInt32_v() => N.I(((_m & 0x3ff) << _BITS) | _l);
Int64 toInt64() => this;
String toString() => _toRadixString(10);
// TODO(rice) - Make this faster by avoiding arithmetic.
String toHexString() {
if (isZero) return "0";
Int64 x = this;
String hexStr = "";
while (!x.isZero) {
int digit = x._l & 0xf;
hexStr = "${_hexDigit(digit)}$hexStr";
x = x.shiftRightUnsigned(4);
}
return hexStr;
}
String toRadixString(int radix) {
return _toRadixString(Int32._validateRadix(radix));
}
String _toRadixString(int radix) {
int d0 = _l;
int d1 = _m;
int d2 = _h;
if (d0 == 0 && d1 == 0 && d2 == 0) return '0';
String sign = '';
if ((d2 & _SIGN_BIT_MASK) != 0) {
sign = '-';
d0 = 0 - d0;
int borrow = (d0 >> _BITS) & 1;
d0 &= _MASK;
d1 = 0 - d1 - borrow;
borrow = (d1 >> _BITS) & 1;
d1 &= _MASK;
d2 = 0 - d2 - borrow;
d2 &= _MASK2;
}
int d4 = (d2 << 4) | (d1 >> 18);
int d3 = (d1 >> 8) & 0x3ff;
d2 = ((d1 << 2) | (d0 >> 20)) & 0x3ff;
d1 = (d0 >> 10) & 0x3ff;
d0 = d0 & 0x3ff;
int fatRadix = _fatRadixTable[radix];
String chunk1 = "", chunk2 = "", chunk3 = "";
while (!(d4 == 0 && d3 == 0)) {
int q = d4 ~/ fatRadix;
int r = d4 - q * fatRadix;
d4 = q;
d3 += r << 10;
q = d3 ~/ fatRadix;
r = d3 - q * fatRadix;
d3 = q;
d2 += r << 10;
q = d2 ~/ fatRadix;
r = d2 - q * fatRadix;
d2 = q;
d1 += r << 10;
q = d1 ~/ fatRadix;
r = d1 - q * fatRadix;
d1 = q;
d0 += r << 10;
q = d0 ~/ fatRadix;
r = d0 - q * fatRadix;
d0 = q;
assert(chunk3 == "");
chunk3 = chunk2;
chunk2 = chunk1;
chunk1 = (fatRadix + r).toRadixString(radix).substring(1);
}
int residue = (d2 << 20) + (d1 << 10) + d0;
String leadingDigits = residue == 0 ? '' : residue.toRadixString(radix);
return '$sign$leadingDigits$chunk1$chunk2$chunk3';
}
static const _fatRadixTable = const [
0,
0,
2 * 2 * 2 * 2 * 2 * 2 * 2 * 2 * 2 * 2 * 2 * 2 * 2 * 2 * 2 * 2 * 2 * 2 * 2
* 2,
3 * 3 * 3 * 3 * 3 * 3 * 3 * 3 * 3 * 3 * 3 * 3,
4 * 4 * 4 * 4 * 4 * 4 * 4 * 4 * 4 * 4,
5 * 5 * 5 * 5 * 5 * 5 * 5 * 5,
6 * 6 * 6 * 6 * 6 * 6 * 6,
7 * 7 * 7 * 7 * 7 * 7 * 7,
8 * 8 * 8 * 8 * 8 * 8,
9 * 9 * 9 * 9 * 9 * 9,
10 * 10 * 10 * 10 * 10 * 10,
11 * 11 * 11 * 11 * 11,
12 * 12 * 12 * 12 * 12,
13 * 13 * 13 * 13 * 13,
14 * 14 * 14 * 14 * 14,
15 * 15 * 15 * 15 * 15,
16 * 16 * 16 * 16 * 16,
17 * 17 * 17 * 17,
18 * 18 * 18 * 18,
19 * 19 * 19 * 19,
20 * 20 * 20 * 20,
21 * 21 * 21 * 21,
22 * 22 * 22 * 22,
23 * 23 * 23 * 23,
24 * 24 * 24 * 24,
25 * 25 * 25 * 25,
26 * 26 * 26 * 26,
27 * 27 * 27 * 27,
28 * 28 * 28 * 28,
29 * 29 * 29 * 29,
30 * 30 * 30 * 30,
31 * 31 * 31 * 31,
32 * 32 * 32 * 32,
33 * 33 * 33,
34 * 34 * 34,
35 * 35 * 35,
36 * 36 * 36
];
String toDebugString() => "Int64[_l=$_l, _m=$_m, _h=$_h]";
static Int64 _masked(int a0, int a1, int a2) => new Int64._bits(_MASK & a0, _MASK & a1, _MASK2 & a2);
static Int64 _sub(int a0, int a1, int a2, int b0, int b1, int b2) {
int diff0 = a0 - b0;
int diff1 = a1 - b1 - ((diff0 >> _BITS) & 1);
int diff2 = a2 - b2 - ((diff1 >> _BITS) & 1);
return _masked(diff0, diff1, diff2);
}
static Int64 _negate(int b0, int b1, int b2) => _sub(0, 0, 0, b0, b1, b2);
String _hexDigit(int digit) => "0123456789ABCDEF"[digit];
// Work around dart2js bugs with negative arguments to '>>' operator.
static int _shiftRight(int x, int n) {
if (x >= 0) return x >> n;
int shifted = x >> n;
if (shifted >= 0x80000000) shifted -= 4294967296;
return shifted;
}
// Implementation of '~/', '%' and 'remainder'.
static Int64 _divide(Int64 a, other, int what) {
Int64 b = _promote(other);
if (b.isZero) throw new IntegerDivisionByZeroException();
if (a.isZero) return ZERO;
bool aNeg = a.isNegative;
bool bNeg = b.isNegative;
a = a.abs();
b = b.abs();
int a0 = a._l;
int a1 = a._m;
int a2 = a._h;
int b0 = b._l;
int b1 = b._m;
int b2 = b._h;
return _divideHelper(a0, a1, a2, aNeg, b0, b1, b2, bNeg, what);
}
static const _RETURN_DIV = 1;
static const _RETURN_REM = 2;
static const _RETURN_MOD = 3;
static _divideHelper(int a0, int a1, int a2, bool aNeg, int b0, int b1, int b2, bool bNeg, int what) {
int q0 = 0, q1 = 0, q2 = 0; // result Q.
int r0 = 0, r1 = 0, r2 = 0; // result R.
if (b2 == 0 && b1 == 0 && b0 < (1 << (30 - _BITS))) {
q2 = a2 ~/ b0;
int carry = a2 - q2 * b0;
int d1 = a1 + (carry << _BITS);
q1 = d1 ~/ b0;
carry = d1 - q1 * b0;
int d0 = a0 + (carry << _BITS);
q0 = d0 ~/ b0;
r0 = d0 - q0 * b0;
} else {
const double K2 = 17592186044416.0; // 2^44
const double K1 = 4194304.0; // 2^22
// Approximate double values for [a] and [b].
double ad = a0 + K1 * a1 + K2 * a2;
double bd = b0 + K1 * b1 + K2 * b2;
// Approximate quotient.
double qd = (ad / bd).floorToDouble();
// Extract components of [qd] using double arithmetic.
double q2d = (qd / K2).floorToDouble();
qd = qd - K2 * q2d;
double q1d = (qd / K1).floorToDouble();
double q0d = qd - K1 * q1d;
q2 = q2d.toInt();
q1 = q1d.toInt();
q0 = q0d.toInt();
assert(q0 + K1 * q1 + K2 * q2 == (ad / bd).floorToDouble());
assert(q2 == 0 || b2 == 0); // Q and B can't both be big since Q*B <= A.
// P = Q * B, using doubles to hold intermediates.
// We don't need all partial sums since Q*B <= A.
double p0d = q0d * b0;
double p0carry = (p0d / K1).floorToDouble();
p0d = p0d - p0carry * K1;
double p1d = q1d * b0 + q0d * b1 + p0carry;
double p1carry = (p1d / K1).floorToDouble();
p1d = p1d - p1carry * K1;
double p2d = q2d * b0 + q1d * b1 + q0d * b2 + p1carry;
assert(p2d <= _MASK2); // No partial sum overflow.
// R = A - P
int diff0 = a0 - p0d.toInt();
int diff1 = a1 - p1d.toInt() - ((diff0 >> _BITS) & 1);
int diff2 = a2 - p2d.toInt() - ((diff1 >> _BITS) & 1);
r0 = _MASK & diff0;
r1 = _MASK & diff1;
r2 = _MASK2 & diff2;
while ( r2 >= _SIGN_BIT_MASK || r2 > b2 || (r2 == b2 && (r1 > b1 || (r1 == b1 && r0 >= b0)))) {
// Direction multiplier for adjustment.
int m = (r2 & _SIGN_BIT_MASK) == 0 ? 1 : -1;
// R = R - B or R = R + B
int d0 = r0 - m * b0;
int d1 = r1 - m * (b1 + ((d0 >> _BITS) & 1));
int d2 = r2 - m * (b2 + ((d1 >> _BITS) & 1));
r0 = _MASK & d0;
r1 = _MASK & d1;
r2 = _MASK2 & d2;
// Q = Q + 1 or Q = Q - 1
d0 = q0 + m;
d1 = q1 + m * ((d0 >> _BITS) & 1);
d2 = q2 + m * ((d1 >> _BITS) & 1);
q0 = _MASK & d0;
q1 = _MASK & d1;
q2 = _MASK2 & d2;
}
}
// 0 <= R < B
assert(Int64.ZERO <= new Int64._bits(r0, r1, r2));
assert(r2 < b2 || // Handles case where B = -(MIN_VALUE)
new Int64._bits(r0, r1, r2) < new Int64._bits(b0, b1, b2));
assert(what == _RETURN_DIV || what == _RETURN_MOD || what == _RETURN_REM);
if (what == _RETURN_DIV) {
if (aNeg != bNeg) return _negate(q0, q1, q2);
return Int64._masked(q0, q1, q2); // Masking for type inferrer.
}
if (!aNeg) {
return Int64._masked(r0, r1, r2); // Masking for type inferrer.
}
if (what == _RETURN_MOD) {
if (r0 == 0 && r1 == 0 && r2 == 0) return ZERO;
return _sub(b0, b1, b2, r0, r1, r2);
} else {
return _negate(r0, r1, r2);
}
}
}
class Int32 implements IntX {
static const Int32 MAX_VALUE = const Int32._internal(0x7FFFFFFF);
static const Int32 MIN_VALUE = const Int32._internal(-0x80000000);
static const Int32 ZERO = const Int32._internal(0);
static const Int32 ONE = const Int32._internal(1);
static const Int32 TWO = const Int32._internal(2);
static const int _CC_0 = 48; // '0'.codeUnitAt(0)
static const int _CC_9 = 57; // '9'.codeUnitAt(0)
static const int _CC_a = 97; // 'a'.codeUnitAt(0)
static const int _CC_z = 122; // 'z'.codeUnitAt(0)
static const int _CC_A = 65; // 'A'.codeUnitAt(0)
static const int _CC_Z = 90; // 'Z'.codeUnitAt(0)
static int _decodeDigit(int c) {
if (c >= _CC_0 && c <= _CC_9) return c - _CC_0;
if (c >= _CC_a && c <= _CC_z) return c - _CC_a + 10;
if (c >= _CC_A && c <= _CC_Z) return c - _CC_A + 10;
return -1; // bad char code
}
static int _validateRadix(int radix) {
if (2 <= radix && radix <= 36) return radix;
throw new RangeError.range(radix, 2, 36, 'radix');
}
// TODO(rice) - Make this faster by converting several digits at once.
static Int32 parseRadix(String s, int radix) {
_validateRadix(radix);
Int32 x = ZERO;
for (int i = 0; i < s.length; i++) {
int c = s.codeUnitAt(i);
int digit = _decodeDigit(c);
if (digit < 0 || digit >= radix) throw new FormatException("Non-radix code unit: $c");
x = (x * radix) + digit;
}
return x;
}
static Int32 parseInt(String s) => new Int32(int.parse(s));
static Int32 parseHex(String s) => parseRadix(s, 16);
// Assumes i is <= 32-bit.
static int _bitCount(int i) {
i -= ((i >> 1) & 0x55555555);
i = (i & 0x33333333) + ((i >> 2) & 0x33333333);
i = ((i + (i >> 4)) & 0x0F0F0F0F);
i += (i >> 8);
i += (i >> 16);
return (i & 0x0000003F);
}
static int _numberOfLeadingZeros(int i) {
i |= i >> 1;
i |= i >> 2;
i |= i >> 4;
i |= i >> 8;
i |= i >> 16;
return _bitCount(~i);
}
static int _numberOfTrailingZeros(int i) => _bitCount((i & -i) - 1);
final int _i;
const Int32._internal(int i) : _i = i;
Int32([int i = 0]) : _i = (i & 0x7fffffff) - (i & 0x80000000);
int _toInt(val) {
if (val is Int32) return val._i;
if (val is int) return val;
throw new ArgumentError(val);
}
IntX operator +(other) {
if (other is Int64) return this.toInt64() + other;
return new Int32(_i + _toInt(other));
}
IntX operator -(other) {
if (other is Int64) return this.toInt64() - other;
return new Int32(_i - _toInt(other));
}
Int32 operator -() => new Int32(-_i);
IntX operator *(other) {
if (other is Int64) return this.toInt64() * other;
// TODO(rice) - optimize
return (this.toInt64() * other).toInt32();
}
Int32 operator %(other) {
// Result will be Int32
if (other is Int64) return (this.toInt64() % other).toInt32();
return new Int32(_i % _toInt(other));
}
Int32 operator ~/(other) {
if (other is Int64) return (this.toInt64() ~/ other).toInt32();
return new Int32(_i ~/ _toInt(other));
}
Int32 remainder(other) {
if (other is Int64) {
Int64 t = this.toInt64();
return (t - (t ~/ other) * other).toInt32();
}
return this - (this ~/ other) * other;
}
Int32 operator &(other) {
if (other is Int64) return (this.toInt64() & other).toInt32();
return new Int32(_i & _toInt(other));
}
Int32 operator |(other) {
if (other is Int64) return (this.toInt64() | other).toInt32();
return new Int32(_i | _toInt(other));
}
Int32 operator ^(other) {
if (other is Int64) return (this.toInt64() ^ other).toInt32();
return new Int32(_i ^ _toInt(other));
}
Int32 operator ~() => new Int32(~_i);
Int32 operator <<(int n) {
if (n < 0) throw new ArgumentError(n);
n &= 31;
return new Int32(_i << n);
}
Int32 operator >>(int n) {
if (n < 0) throw new ArgumentError(n);
n &= 31;
int value;
if (_i >= 0) {
value = _i >> n;
} else {
value = (_i >> n) | (0xffffffff << (32 - n));
}
return new Int32(value);
}
Int32 shiftRightUnsigned(int n) {
if (n < 0) throw new ArgumentError(n);
n &= 31;
int value;
if (_i >= 0) {
value = _i >> n;
} else {
value = (_i >> n) & ((1 << (32 - n)) - 1);
}
return new Int32(value);
}
bool operator ==(other) {
if (other is Int32) return _i == other._i;
if (other is Int64) return this.toInt64() == other;
if (other is int) return _i == other;
return false;
}
int compareTo(other) {
if (other is Int64) return this.toInt64().compareTo(other);
return _i.compareTo(_toInt(other));
}
bool operator <(other) {
if (other is Int64) return this.toInt64() < other;
return _i < _toInt(other);
}
bool operator <=(other) {
if (other is Int64) return this.toInt64() <= other;
return _i <= _toInt(other);
}
bool operator >(other) {
if (other is Int64) return this.toInt64() > other;
return _i > _toInt(other);
}
bool operator >=(other) {
if (other is Int64) return this.toInt64() >= other;
return _i >= _toInt(other);
}
bool get isEven => (_i & 0x1) == 0;
bool get isMaxValue => _i == 2147483647;
bool get isMinValue => _i == -2147483648;
bool get isNegative => _i < 0;
bool get isOdd => (_i & 0x1) == 1;
bool get isZero => _i == 0;
int get bitLength => _i.bitLength;
int get hashCode => _i;
Int32 abs() => _i < 0 ? new Int32(-_i) : this;
Int32 clamp(lowerLimit, upperLimit) {
if (this < lowerLimit) {
if (lowerLimit is IntX) return lowerLimit.toInt32();
if (lowerLimit is int) return new Int32(lowerLimit);
throw new ArgumentError(lowerLimit);
}
if (this > upperLimit) {
if (upperLimit is IntX) return upperLimit.toInt32();
if (upperLimit is int) return new Int32(upperLimit);
throw new ArgumentError(upperLimit);
}
return this;
}
int numberOfLeadingZeros() => _numberOfLeadingZeros(_i);
int numberOfTrailingZeros() => _numberOfTrailingZeros(_i);
Int32 toSigned(int width) {
if (width < 1 || width > 32) throw new RangeError.range(width, 1, 32);
return new Int32(_i.toSigned(width));
}
Int32 toUnsigned(int width) {
if (width < 0 || width > 32) throw new RangeError.range(width, 0, 32);
return new Int32(_i.toUnsigned(width));
}
List toBytes() {
List result = new List(4);
result[0] = _i & 0xff;
result[1] = (_i >> 8) & 0xff;
result[2] = (_i >> 16) & 0xff;
result[3] = (_i >> 24) & 0xff;
return result;
}
double toDouble() => _i.toDouble();
int toInt() => _i;
Int32 toInt32() => this;
Int64 toInt64() => new Int64(_i);
String toString() => _i.toString();
String toHexString() => _i.toRadixString(16);
String toRadixString(int radix) => _i.toRadixString(radix);
int toInt32_v() => _i;
}
/* ## BODY ## */