All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.kitfox.svg.batik.MultipleGradientPaintContext Maven / Gradle / Ivy

Go to download

SVG Salamander - tools and components for SVG rendering, manipulation and animation

The newest version!
/*****************************************************************************
 * Copyright (C) The Apache Software Foundation. All rights reserved.        *
 * ------------------------------------------------------------------------- *
 * This software is published under the terms of the Apache Software License *
 * version 1.1, a copy of which has been included with this distribution in  *
 * the LICENSE file.                                                         *
 *****************************************************************************/

package com.kitfox.svg.batik;

import java.awt.Color;
import java.awt.PaintContext;
import java.awt.Rectangle;
import java.awt.RenderingHints;
import java.awt.color.ColorSpace;
import java.awt.geom.AffineTransform;
import java.awt.geom.NoninvertibleTransformException;
import java.awt.geom.Rectangle2D;
import java.awt.image.ColorModel;
import java.awt.image.DataBuffer;
import java.awt.image.DataBufferInt;
import java.awt.image.DirectColorModel;
import java.awt.image.Raster;
import java.awt.image.SinglePixelPackedSampleModel;
import java.awt.image.WritableRaster;
import java.lang.ref.WeakReference;

//import org.apache.batik.ext.awt.image.GraphicsUtil;

/** This is the superclass for all PaintContexts which use a multiple color
 * gradient to fill in their raster. It provides the actual color interpolation
 * functionality.  Subclasses only have to deal with using the gradient to fill
 * pixels in a raster.
 *
 * @author Nicholas Talian, Vincent Hardy, Jim Graham, Jerry Evans
 * @author Vincent Hardy
 * @version $Id: MultipleGradientPaintContext.java,v 1.1 2004/09/06 19:35:39 kitfox Exp $
 *
 */
abstract class MultipleGradientPaintContext implements PaintContext {

    protected final static boolean DEBUG = false;

    /**
     * The color model data is generated in (always un premult).
     */
    protected ColorModel dataModel;
    /**
     * PaintContext's output ColorModel ARGB if colors are not all
     * opaque, RGB otherwise.  Linear and premult are matched to
     * output ColorModel.
     */
    protected ColorModel model;

    /** Color model used if gradient colors are all opaque */
    private static ColorModel lrgbmodel_NA = new DirectColorModel
        (ColorSpace.getInstance(ColorSpace.CS_LINEAR_RGB),
         24, 0xff0000, 0xFF00, 0xFF, 0x0,
         false, DataBuffer.TYPE_INT);

    private static ColorModel srgbmodel_NA = new DirectColorModel
        (ColorSpace.getInstance(ColorSpace.CS_sRGB),
         24, 0xff0000, 0xFF00, 0xFF, 0x0,
         false, DataBuffer.TYPE_INT);

    /** Color model used if some gradient colors are transparent */
    private static ColorModel lrgbmodel_A = new DirectColorModel
        (ColorSpace.getInstance(ColorSpace.CS_LINEAR_RGB),
         32, 0xff0000, 0xFF00, 0xFF, 0xFF000000,
         false, DataBuffer.TYPE_INT);

    private static ColorModel srgbmodel_A = new DirectColorModel
        (ColorSpace.getInstance(ColorSpace.CS_sRGB),
         32, 0xff0000, 0xFF00, 0xFF, 0xFF000000,
         false, DataBuffer.TYPE_INT);

     /** The cached colorModel */
    protected static ColorModel cachedModel;

    /** The cached raster, which is reusable among instances */
    protected static WeakReference cached;

    /** Raster is reused whenever possible */
    protected WritableRaster saved;

    /** The method to use when painting out of the gradient bounds. */
    protected MultipleGradientPaint.CycleMethodEnum cycleMethod;

    /** The colorSpace in which to perform the interpolation */
    protected MultipleGradientPaint.ColorSpaceEnum colorSpace;

    /** Elements of the inverse transform matrix. */
    protected float a00, a01, a10, a11, a02, a12;

    /** This boolean specifies wether we are in simple lookup mode, where an
     * input value between 0 and 1 may be used to directly index into a single
     * array of gradient colors.  If this boolean value is false, then we have
     * to use a 2-step process where we have to determine which gradient array
     * we fall into, then determine the index into that array.
     */
    protected boolean isSimpleLookup = true;

    /** This boolean indicates if the gradient appears to have sudden
     *  discontinuities in it, this may be because of multiple stops
     *  at the same location or use of the REPEATE mode.  
     */
    protected boolean hasDiscontinuity = false;

    /** Size of gradients array for scaling the 0-1 index when looking up
     *  colors the fast way.  */
    protected int fastGradientArraySize;

    /**
     * Array which contains the interpolated color values for each interval,
     * used by calculateSingleArrayGradient().  It is protected for possible
     * direct access by subclasses.
     */
    protected int[] gradient;

    /** Array of gradient arrays, one array for each interval.  Used by
     *  calculateMultipleArrayGradient().
     */
    protected int[][] gradients;

    /** This holds the blend of all colors in the gradient.
     *  we use this at extreamly low resolutions to ensure we
     *  get a decent blend of the colors.
     */
    protected int gradientAverage;

    /** This holds the color to use when we are off the bottom of the
     * gradient */
    protected int gradientUnderflow;

    /** This holds the color to use when we are off the top of the
     * gradient */
    protected int gradientOverflow;

    /** Length of the 2D slow lookup gradients array. */
    protected int gradientsLength;

    /** Normalized intervals array */
    protected float[] normalizedIntervals;

    /** fractions array */
    protected float[] fractions;

    /** Used to determine if gradient colors are all opaque */
    private int transparencyTest;

    /** Colorspace conversion lookup tables */
    private static final int SRGBtoLinearRGB[] = new int[256];
    private static final int LinearRGBtoSRGB[] = new int[256];

    //build the tables
    static{
        for (int k = 0; k < 256; k++) {
            SRGBtoLinearRGB[k] = convertSRGBtoLinearRGB(k);
            LinearRGBtoSRGB[k] = convertLinearRGBtoSRGB(k);
        }
    }

    /** Constant number of max colors between any 2 arbitrary colors.
     * Used for creating and indexing gradients arrays.
     */
    protected static final int GRADIENT_SIZE = 256;
    protected static final int GRADIENT_SIZE_INDEX = GRADIENT_SIZE -1;

    /** Maximum length of the fast single-array.  If the estimated array size
     * is greater than this, switch over to the slow lookup method.
     * No particular reason for choosing this number, but it seems to provide
     * satisfactory performance for the common case (fast lookup).
     */
    private static final int MAX_GRADIENT_ARRAY_SIZE = 5000;

   /** Constructor for superclass. Does some initialization, but leaves most
    * of the heavy-duty math for calculateGradient(), so the subclass may do
    * some other manipulation beforehand if necessary.  This is not possible
    * if this computation is done in the superclass constructor which always
    * gets called first.
    **/
    public MultipleGradientPaintContext(ColorModel cm,
                                        Rectangle deviceBounds,
                                        Rectangle2D userBounds,
                                        AffineTransform t,
                                        RenderingHints hints,
                                        float[] fractions,
                                        Color[] colors,
                                        MultipleGradientPaint.CycleMethodEnum
                                        cycleMethod,
                                        MultipleGradientPaint.ColorSpaceEnum
                                        colorSpace)
        throws NoninvertibleTransformException
    {
        //We have to deal with the cases where the 1st gradient stop is not
        //equal to 0 and/or the last gradient stop is not equal to 1.
        //In both cases, create a new point and replicate the previous
        //extreme point's color.

        boolean fixFirst = false;
        boolean fixLast = false;
        int len = fractions.length;

        //if the first gradient stop is not equal to zero, fix this condition
        if (fractions[0] != 0f) {
            fixFirst = true;
            len++;
        }

        //if the last gradient stop is not equal to one, fix this condition
        if (fractions[fractions.length - 1] != 1f) {
            fixLast = true;
            len++;
        }
        
        for (int i=0; i normalizedIntervals[i]) ?
                normalizedIntervals[i] : Imin;
        }

        //estimate the size of the entire gradients array.
        //This is to prevent a tiny interval from causing the size of array to
        //explode.  If the estimated size is too large, break to using
        //seperate arrays for each interval, and using an indexing scheme at
        //look-up time.
        int estimatedSize = 0;

        if (Imin == 0) {
            estimatedSize = Integer.MAX_VALUE;
            hasDiscontinuity = true;
        } else {
            for (int i = 0; i < normalizedIntervals.length; i++) {
                estimatedSize += (normalizedIntervals[i]/Imin) * GRADIENT_SIZE;
            }
        }


        if (estimatedSize > MAX_GRADIENT_ARRAY_SIZE) {
            //slow method
            calculateMultipleArrayGradient(loColors, hiColors);
            if ((cycleMethod == MultipleGradientPaint.REPEAT) &&
                (gradients[0][0] != 
                 gradients[gradients.length-1][GRADIENT_SIZE_INDEX]))
                hasDiscontinuity = true;
        } else {
            //fast method
            calculateSingleArrayGradient(loColors, hiColors, Imin);
            if ((cycleMethod == MultipleGradientPaint.REPEAT) &&
                (gradient[0] != gradient[fastGradientArraySize]))
                hasDiscontinuity = true;
        }

        // Use the most 'economical' model (no alpha).
        if((transparencyTest >>> 24) == 0xff) {
            if (dataModel.getColorSpace() == lrgbmodel_NA.getColorSpace())
                dataModel = lrgbmodel_NA;
            else if (dataModel.getColorSpace() == srgbmodel_NA.getColorSpace())
                dataModel = srgbmodel_NA;
            model = dataModel;
        }
    }


    /**
     * FAST LOOKUP METHOD
     *
     * This method calculates the gradient color values and places them in a
     * single int array, gradient[].  It does this by allocating space for
     * each interval based on its size relative to the smallest interval in
     * the array.  The smallest interval is allocated 255 interpolated values
     * (the maximum number of unique in-between colors in a 24 bit color
     * system), and all other intervals are allocated
     * size = (255 * the ratio of their size to the smallest interval).
     *
     * This scheme expedites a speedy retrieval because the colors are
     * distributed along the array according to their user-specified
     * distribution.  All that is needed is a relative index from 0 to 1.
     *
     * The only problem with this method is that the possibility exists for
     * the array size to balloon in the case where there is a
     * disproportionately small gradient interval.  In this case the other
     * intervals will be allocated huge space, but much of that data is
     * redundant.  We thus need to use the space conserving scheme below.
     *
     * @param Imin the size of the smallest interval
     *
     */
    private void calculateSingleArrayGradient
        (Color [] loColors, Color [] hiColors, float Imin) {

        //set the flag so we know later it is a non-simple lookup
        isSimpleLookup = true;

        int rgb1; //2 colors to interpolate
        int rgb2;

        int gradientsTot = 1; //the eventual size of the single array

        // These are fixed point 8.16 (start with 0.5)
        int aveA = 0x008000;
        int aveR = 0x008000;
        int aveG = 0x008000;
        int aveB = 0x008000;

        //for every interval (transition between 2 colors)
        for(int i=0; i < gradients.length; i++){

            //create an array whose size is based on the ratio to the
            //smallest interval.
            int nGradients = (int)((normalizedIntervals[i]/Imin)*255f);
            gradientsTot += nGradients;
            gradients[i] = new int[nGradients];

            //the the 2 colors (keyframes) to interpolate between
            rgb1 = loColors[i].getRGB();
            rgb2 = hiColors[i].getRGB();

            //fill this array with the colors in between rgb1 and rgb2
            interpolate(rgb1, rgb2, gradients[i]);

            // Calculate Average of two colors...
            int argb = gradients[i][GRADIENT_SIZE/2];
            float norm = normalizedIntervals[i];
            aveA += (int)(((argb>> 8)&0xFF0000)*norm);
            aveR += (int)(((argb    )&0xFF0000)*norm);
            aveG += (int)(((argb<< 8)&0xFF0000)*norm);
            aveB += (int)(((argb<<16)&0xFF0000)*norm);

            //if the colors are opaque, transparency should still be 0xff000000
            transparencyTest &= rgb1;
            transparencyTest &= rgb2;
        }

        gradientAverage = (((aveA & 0xFF0000)<< 8) |
                           ((aveR & 0xFF0000)    ) |
                           ((aveG & 0xFF0000)>> 8) |
                           ((aveB & 0xFF0000)>>16));

        // Put all gradients in a single array
        gradient = new int[gradientsTot];
        int curOffset = 0;
        for(int i = 0; i < gradients.length; i++){
            System.arraycopy(gradients[i], 0, gradient,
                             curOffset, gradients[i].length);
            curOffset += gradients[i].length;
        }
        gradient[gradient.length-1] = hiColors[hiColors.length-1].getRGB();

        //if interpolation occurred in Linear RGB space, convert the
        //gradients back to SRGB using the lookup table
        if (colorSpace == LinearGradientPaint.LINEAR_RGB) {
            if (dataModel.getColorSpace() ==
                ColorSpace.getInstance(ColorSpace.CS_sRGB)) {
                for (int i = 0; i < gradient.length; i++) {
                    gradient[i] =
                        convertEntireColorLinearRGBtoSRGB(gradient[i]);
                }
                gradientAverage = 
                    convertEntireColorLinearRGBtoSRGB(gradientAverage);
            }
        } else {
            if (dataModel.getColorSpace() ==
                ColorSpace.getInstance(ColorSpace.CS_LINEAR_RGB)) {
                for (int i = 0; i < gradient.length; i++) {
                    gradient[i] =
                        convertEntireColorSRGBtoLinearRGB(gradient[i]);
                }
                gradientAverage = 
                    convertEntireColorSRGBtoLinearRGB(gradientAverage);
            }
        }

        fastGradientArraySize = gradient.length - 1;
    }


    /**
     * SLOW LOOKUP METHOD
     *
     * This method calculates the gradient color values for each interval and
     * places each into its own 255 size array.  The arrays are stored in
     * gradients[][].  (255 is used because this is the maximum number of
     * unique colors between 2 arbitrary colors in a 24 bit color system)
     *
     * This method uses the minimum amount of space (only 255 * number of
     * intervals), but it aggravates the lookup procedure, because now we
     * have to find out which interval to select, then calculate the index
     * within that interval.  This causes a significant performance hit,
     * because it requires this calculation be done for every point in
     * the rendering loop.
     *
     * For those of you who are interested, this is a classic example of the
     * time-space tradeoff.
     *
     */
    private void calculateMultipleArrayGradient
        (Color [] loColors, Color [] hiColors) {

        //set the flag so we know later it is a non-simple lookup
        isSimpleLookup = false;

        int rgb1; //2 colors to interpolate
        int rgb2;

        // These are fixed point 8.16 (start with 0.5)
        int aveA = 0x008000;
        int aveR = 0x008000;
        int aveG = 0x008000;
        int aveB = 0x008000;

        //for every interval (transition between 2 colors)
        for(int i=0; i < gradients.length; i++){

            // This interval will never actually be used (zero size)
            if (normalizedIntervals[i] == 0)
                continue;

            //create an array of the maximum theoretical size for each interval
            gradients[i] = new int[GRADIENT_SIZE];

            //get the the 2 colors
            rgb1 = loColors[i].getRGB();
            rgb2 = hiColors[i].getRGB();

            //fill this array with the colors in between rgb1 and rgb2
            interpolate(rgb1, rgb2, gradients[i]);

            // Calculate Average of two colors...
            int argb = gradients[i][GRADIENT_SIZE/2];
            float norm = normalizedIntervals[i];
            aveA += (int)(((argb>> 8)&0xFF0000)*norm);
            aveR += (int)(((argb    )&0xFF0000)*norm);
            aveG += (int)(((argb<< 8)&0xFF0000)*norm);
            aveB += (int)(((argb<<16)&0xFF0000)*norm);

            //if the colors are opaque, transparency should still be 0xff000000
            transparencyTest &= rgb1;
            transparencyTest &= rgb2;
        }

        gradientAverage = (((aveA & 0xFF0000)<< 8) |
                           ((aveR & 0xFF0000)    ) |
                           ((aveG & 0xFF0000)>> 8) |
                           ((aveB & 0xFF0000)>>16));

        //if interpolation occurred in Linear RGB space, convert the
        //gradients back to SRGB using the lookup table
        if (colorSpace == LinearGradientPaint.LINEAR_RGB) {
            if (dataModel.getColorSpace() ==
                ColorSpace.getInstance(ColorSpace.CS_sRGB)) {
                for (int j = 0; j < gradients.length; j++) {
                    for (int i = 0; i < gradients[j].length; i++) {
                        gradients[j][i] =
                            convertEntireColorLinearRGBtoSRGB(gradients[j][i]);
                    }
                }
                gradientAverage = 
                    convertEntireColorLinearRGBtoSRGB(gradientAverage);
            }
        } else {
            if (dataModel.getColorSpace() ==
                ColorSpace.getInstance(ColorSpace.CS_LINEAR_RGB)) {
                for (int j = 0; j < gradients.length; j++) {
                    for (int i = 0; i < gradients[j].length; i++) {
                        gradients[j][i] =
                            convertEntireColorSRGBtoLinearRGB(gradients[j][i]);
                    }
                }
                gradientAverage = 
                    convertEntireColorSRGBtoLinearRGB(gradientAverage);
            }
        }
    }

    /** Yet another helper function.  This one linearly interpolates between
     * 2 colors, filling up the output array.
     *
     * @param rgb1 the start color
     * @param rgb2 the end color
     * @param output the output array of colors... assuming this is not null.
     *
     */
    private void interpolate(int rgb1, int rgb2, int[] output) {

        int a1, r1, g1, b1, da, dr, dg, db; //color components

        //step between interpolated values.
        float stepSize = 1/(float)output.length;

        //extract color components from packed integer
        a1 = (rgb1 >> 24) & 0xff;
        r1 = (rgb1 >> 16) & 0xff;
        g1 = (rgb1 >>  8) & 0xff;
        b1 = (rgb1      ) & 0xff;
        //calculate the total change in alpha, red, green, blue
        da = ((rgb2 >> 24) & 0xff) - a1;
        dr = ((rgb2 >> 16) & 0xff) - r1;
        dg = ((rgb2 >>  8) & 0xff) - g1;
        db = ((rgb2      ) & 0xff) - b1;

        //for each step in the interval calculate the in-between color by
        //multiplying the normalized current position by the total color change
        //(.5 is added to prevent truncation round-off error)
        for (int i = 0; i < output.length; i++) {
            output[i] =
                (((int) ((a1 + i * da * stepSize) + .5) << 24)) |
                (((int) ((r1 + i * dr * stepSize) + .5) << 16)) |
                (((int) ((g1 + i * dg * stepSize) + .5) <<  8)) |
                (((int) ((b1 + i * db * stepSize) + .5)      ));
        }
    }


    /** Yet another helper function.  This one extracts the color components
     * of an integer RGB triple, converts them from LinearRGB to SRGB, then
     * recompacts them into an int.
     */
    private int convertEntireColorLinearRGBtoSRGB(int rgb) {

        int a1, r1, g1, b1; //color components

        //extract red, green, blue components
        a1 = (rgb >> 24) & 0xff;
        r1 = (rgb >> 16) & 0xff;
        g1 = (rgb >> 8) & 0xff;
        b1 = rgb & 0xff;

        //use the lookup table
        r1 =  LinearRGBtoSRGB[r1];
        g1 =  LinearRGBtoSRGB[g1];
        b1 =  LinearRGBtoSRGB[b1];

        //re-compact the components
        return ((a1 << 24) |
                (r1 << 16) |
                (g1 << 8) |
                b1);
    }

    /** Yet another helper function.  This one extracts the color components
     * of an integer RGB triple, converts them from LinearRGB to SRGB, then
     * recompacts them into an int.
     */
    private int convertEntireColorSRGBtoLinearRGB(int rgb) {

        int a1, r1, g1, b1; //color components

        //extract red, green, blue components
        a1 = (rgb >> 24) & 0xff;
        r1 = (rgb >> 16) & 0xff;
        g1 = (rgb >> 8) & 0xff;
        b1 = rgb & 0xff;

        //use the lookup table
        r1 =  SRGBtoLinearRGB[r1];
        g1 =  SRGBtoLinearRGB[g1];
        b1 =  SRGBtoLinearRGB[b1];

        //re-compact the components
        return ((a1 << 24) |
                (r1 << 16) |
                (g1 << 8) |
                b1);
    }


    /** Helper function to index into the gradients array.  This is necessary
     * because each interval has an array of colors with uniform size 255.
     * However, the color intervals are not necessarily of uniform length, so
     * a conversion is required.
     *
     * @param position the unmanipulated position.  want to map this into the
     * range 0 to 1
     *
     * @returns integer color to display
     *
     */
    protected final int indexIntoGradientsArrays(float position) {

        //first, manipulate position value depending on the cycle method.

        if (cycleMethod == MultipleGradientPaint.NO_CYCLE) {

            if (position >= 1) { //upper bound is 1
                return gradientOverflow;
            }

            else if (position <= 0) { //lower bound is 0
                return gradientUnderflow;
            }
        }

        else if (cycleMethod == MultipleGradientPaint.REPEAT) {
            //get the fractional part
            //(modulo behavior discards integer component)
            position = position - (int)position;

            //position now be between -1 and 1

            if (position < 0) {
                position = position + 1; //force it to be in the range 0-1
            }

            int w=0, c1=0, c2=0;
            if (isSimpleLookup) {
              position *= gradient.length;
              int idx1 = (int)(position);
              if (idx1+1 < gradient.length)
                return gradient[idx1];

              w = (int)((position-idx1)*(1<<16));
              c1 = gradient[idx1];
              c2 = gradient[0];
            } else {
              //for all the gradient interval arrays
              for (int i = 0; i < gradientsLength; i++) {

                if (position < fractions[i+1]) { //this is the array we want

                  float delta = position - fractions[i];
                  
                  delta = ((delta / normalizedIntervals[i]) * GRADIENT_SIZE);
                  //this is the interval we want.
                  int index = (int)delta;
                  if ((index+1>  8)           &0xFF0000)+
                    ((((c2>>>24)     )-((c1>>>24)     ))*w))&0xFF0000)<< 8) |
               
               (((  (  (c1     )           &0xFF0000)+
                    ((((c2>> 16)&0xFF)-((c1>> 16)&0xFF))*w))&0xFF0000)    ) |
                    
               (((  (  (c1<<  8)           &0xFF0000)+
                    ((((c2>>  8)&0xFF)-((c1>>  8)&0xFF))*w))&0xFF0000)>> 8) |
               
               (((  (  (c1<< 16)           &0xFF0000)+
                    ((((c2     )&0xFF)-((c1     )&0xFF))*w))&0xFF0000)>>16));

            // return c1 +
            //   ((( ((((c2>>>24)     )-((c1>>>24)     ))*w)&0xFF0000)<< 8) |
            //    (( ((((c2>> 16)&0xFF)-((c1>> 16)&0xFF))*w)&0xFF0000)    ) |
            //    (( ((((c2>>  8)&0xFF)-((c1>>  8)&0xFF))*w)&0xFF0000)>> 8) |
            //    (( ((((c2     )&0xFF)-((c1     )&0xFF))*w)&0xFF0000)>>16));
        }

        else {  //cycleMethod == MultipleGradientPaint.REFLECT

            if (position < 0) {
                position = -position; //take absolute value
            }

            int part = (int)position; //take the integer part

            position = position - part; //get the fractional part

            if ((part & 0x00000001) == 1) { //if integer part is odd
                position = 1 - position; //want the reflected color instead
            }
        }

        //now, get the color based on this 0-1 position:

        if (isSimpleLookup) { //easy to compute: just scale index by array size
            return gradient[(int)(position * fastGradientArraySize)];
        }

        else { //more complicated computation, to save space

            //for all the gradient interval arrays
            for (int i = 0; i < gradientsLength; i++) {

                if (position < fractions[i+1]) { //this is the array we want

                    float delta = position - fractions[i];

                    //this is the interval we want.
                    int index = (int)((delta / normalizedIntervals[i])
                                      * (GRADIENT_SIZE_INDEX));

                    return gradients[i][index];
                }
            }

        }

        return gradientOverflow;
    }


    /** Helper function to index into the gradients array.  This is necessary
     * because each interval has an array of colors with uniform size 255.
     * However, the color intervals are not necessarily of uniform length, so
     * a conversion is required.  This version also does anti-aliasing by
     * averaging the gradient over position+/-(sz/2).
     *
     * @param position the unmanipulated position.  want to map this into the
     * range 0 to 1
     * @param sz the size in gradient space to average.
     *
     * @returns ARGB integer color to display
     */
    protected final int indexGradientAntiAlias(float position, float sz) {
        //first, manipulate position value depending on the cycle method.
        if (cycleMethod == MultipleGradientPaint.NO_CYCLE) {
            if (DEBUG) System.out.println("NO_CYCLE");
            float p1 = position-(sz/2);
            float p2 = position+(sz/2);

            if (p1 >= 1) 
                return gradientOverflow;

            if (p2 <= 0) 
                return gradientUnderflow;

            int interior;
            float top_weight=0, bottom_weight=0, frac;
            if (p2 >= 1) {
                top_weight = (p2-1)/sz;
                if (p1 <= 0) {
                    bottom_weight = -p1/sz;
                    frac=1;
                    interior = gradientAverage;
                } else {
                    frac=1-p1;
                    interior = getAntiAlias(p1, true, 1, false, 1-p1, 1);
                }
            } else if (p1 <= 0) {
                bottom_weight = -p1/sz;
                frac = p2;
                interior = getAntiAlias(0, true, p2, false, p2, 1);
            } else
                return getAntiAlias(p1, true, p2, false, sz, 1);
            
            int norm = (int)((1<<16)*frac/sz);
            int pA = (((interior>>>20)&0xFF0)*norm)>>16;
            int pR = (((interior>> 12)&0xFF0)*norm)>>16;
            int pG = (((interior>>  4)&0xFF0)*norm)>>16;
            int pB = (((interior<<  4)&0xFF0)*norm)>>16;

            if (bottom_weight != 0) {
                int bPix = gradientUnderflow;
                // System.out.println("ave: " + gradientAverage);
                norm = (int)((1<<16)*bottom_weight);
                pA += (((bPix>>>20) & 0xFF0)*norm)>>16;
                pR += (((bPix>> 12) & 0xFF0)*norm)>>16;
                pG += (((bPix>>  4) & 0xFF0)*norm)>>16;
                pB += (((bPix<<  4) & 0xFF0)*norm)>>16;
            }

            if (top_weight != 0) {
                int tPix = gradientOverflow;

                norm = (int)((1<<16)*top_weight);
                pA += (((tPix>>>20) & 0xFF0)*norm)>>16;
                pR += (((tPix>> 12) & 0xFF0)*norm)>>16;
                pG += (((tPix>>  4) & 0xFF0)*norm)>>16;
                pB += (((tPix<<  4) & 0xFF0)*norm)>>16;
            }

            return (((pA&0xFF0)<<20)  |
                    ((pR&0xFF0)<<12)  |
                    ((pG&0xFF0)<< 4)  |
                    ((pB&0xFF0)>> 4));
        }

        // See how many times we are going to "wrap around" the gradient,
        // array.
        int intSz = (int)sz;
        
        float weight = 1f;
        if (intSz != 0) {
            // We need to make sure that sz is < 1.0 otherwise 
            // p1 and p2 my pass each other which will cause no end of
            // trouble.
            sz -= intSz;
            weight = sz/(intSz+sz);
            if (weight < 0.1)
                // The part of the color from the location will be swamped
                // by the averaged part of the gradient so just use the
                // average color for the gradient.
                return gradientAverage;
        }
            
        // So close to full gradient just use the average value...
        if (sz > 0.99)
            return gradientAverage;
            
            // Go up and down from position by 1/2 sz.
        float p1 = position-(sz/2);
        float p2 = position+(sz/2);
        if (DEBUG) System.out.println("P1: " + p1 + " P2: " + p2);

        // These indicate the direction to go from p1 and p2 when
        // averaging...
        boolean p1_up=true;
        boolean p2_up=false;

        if (cycleMethod == MultipleGradientPaint.REPEAT) {
            if (DEBUG) System.out.println("REPEAT");

            // Get positions between -1 and 1
            p1=p1-(int)p1;
            p2=p2-(int)p2;

            // force to be in rage 0-1.
            if (p1 <0) p1 += 1;
            if (p2 <0) p2 += 1;
        }

        else {  //cycleMethod == MultipleGradientPaint.REFLECT
            if (DEBUG) System.out.println("REFLECT");

            //take absolute values
            // Note when we reflect we change sense of p1/2_up.
            if (p2 < 0) {
                p1 = -p1; p1_up = !p1_up;
                p2 = -p2; p2_up = !p2_up;
            } else if (p1 < 0) { 
                p1 = -p1; p1_up = !p1_up; 
            }

            int part1, part2;
            part1 = (int)p1;   // take the integer part
            p1   = p1 - part1; // get the fractional part

            part2 = (int)p2;   // take the integer part
            p2   = p2 - part2; // get the fractional part

            // if integer part is odd we want the reflected color instead.
            // Note when we reflect we change sense of p1/2_up.
            if ((part1 & 0x01) == 1) {
                p1 = 1-p1;
                p1_up = !p1_up;
            }

            if ((part2 & 0x01) == 1) {
                p2 = 1-p2;
                p2_up = !p2_up;
            }

            // Check if in the end they just got switched around.
            // this commonly happens if they both end up negative.
            if ((p1 > p2) && !p1_up && p2_up) {
                float t = p1;
                p1 = p2; 
                p2 = t;
                p1_up = true;
                p2_up = false;
            }
        }

        return getAntiAlias(p1, p1_up, p2, p2_up, sz, weight);
    }


    private final int getAntiAlias(float p1, boolean p1_up,
                                   float p2, boolean p2_up,
                                   float sz, float weight) {

        // Until the last set of ops these are 28.4 fixed point values.
        int ach=0, rch=0, gch=0, bch=0;
        if (isSimpleLookup) {
            p1 *= fastGradientArraySize;
            p2 *= fastGradientArraySize;

            int idx1 = (int)p1;
            int idx2 = (int)p2;

            int i, pix;

            if (p1_up && !p2_up && (idx1 <= idx2)) {

                if (idx1 == idx2)
                    return gradient[idx1];

                // Sum between idx1 and idx2.
                for (i=idx1+1; i>>20)&0xFF0);
                    rch += ((pix>>>12)&0xFF0);
                    gch += ((pix>>> 4)&0xFF0);
                    bch += ((pix<<  4)&0xFF0);
                }
            } else {
                // Do the bulk of the work, all the whole gradient entries
                // for idx1 and idx2.
                if (p1_up) {
                    for (i=idx1+1; i>>20)&0xFF0);
                        rch += ((pix>>>12)&0xFF0);
                        gch += ((pix>>> 4)&0xFF0);
                        bch += ((pix<<  4)&0xFF0);
                    }
                } else {
                    for (i=0; i>>20)&0xFF0);
                        rch += ((pix>>>12)&0xFF0);
                        gch += ((pix>>> 4)&0xFF0);
                        bch += ((pix<<  4)&0xFF0);
                    }
                }

                if (p2_up) {
                    for (i=idx2+1; i>>20)&0xFF0);
                        rch += ((pix>>>12)&0xFF0);
                        gch += ((pix>>> 4)&0xFF0);
                        bch += ((pix<<  4)&0xFF0);
                    }
                } else {
                    for (i=0; i>>20)&0xFF0);
                        rch += ((pix>>>12)&0xFF0);
                        gch += ((pix>>> 4)&0xFF0);
                        bch += ((pix<<  4)&0xFF0);
                    }
                }
            }

            int norm, isz;

            // Normalize the summation so far...
            isz = (int)((1<<16)/(sz*fastGradientArraySize));
            ach = (ach*isz)>>16;
            rch = (rch*isz)>>16;
            gch = (gch*isz)>>16;
            bch = (bch*isz)>>16;

            // Clean up with the partial buckets at each end.
            if (p1_up) norm = (int)((1-(p1-idx1))*isz);
            else       norm = (int)(   (p1-idx1) *isz);
            pix = gradient[idx1];
            ach += (((pix>>>20)&0xFF0) *norm)>>16;
            rch += (((pix>>>12)&0xFF0) *norm)>>16;
            gch += (((pix>>> 4)&0xFF0) *norm)>>16;
            bch += (((pix<<  4)&0xFF0) *norm)>>16;

            if (p2_up) norm = (int)((1-(p2-idx2))*isz);
            else       norm = (int)(   (p2-idx2) *isz);
            pix = gradient[idx2];
            ach += (((pix>>>20)&0xFF0) *norm)>>16;
            rch += (((pix>>>12)&0xFF0) *norm)>>16;
            gch += (((pix>>> 4)&0xFF0) *norm)>>16;
            bch += (((pix<<  4)&0xFF0) *norm)>>16;

            // Round and drop the 4bits frac.
            ach = (ach+0x08)>>4;
            rch = (rch+0x08)>>4;
            gch = (gch+0x08)>>4;
            bch = (bch+0x08)>>4;

        } else {
            int idx1=0, idx2=0;
            int i1=-1, i2=-1;
            float f1=0, f2=0;
            // Find which gradient interval our points fall into.
            for (int i = 0; i < gradientsLength; i++) {
                if ((p1 < fractions[i+1]) && (i1 == -1)) { 
                    //this is the array we want
                    i1 = i;
                    f1 = p1 - fractions[i];

                    f1 = ((f1/normalizedIntervals[i])
                             *GRADIENT_SIZE_INDEX);
                    //this is the  interval we want.
                    idx1 = (int)f1;
                    if (i2 != -1) break;
                }
                if ((p2 < fractions[i+1]) && (i2 == -1)) { 
                    //this is the array we want
                    i2 = i;
                    f2 = p2 - fractions[i];
                    
                    f2 = ((f2/normalizedIntervals[i])
                             *GRADIENT_SIZE_INDEX);
                    //this is the interval we want.
                    idx2 = (int)f2;
                    if (i1 != -1) break;
                }
            }

            if (i1 == -1) {
                i1 = gradients.length - 1;
                f1 = idx1 = GRADIENT_SIZE_INDEX;
            }

            if (i2 == -1) {
                i2 = gradients.length - 1;
                f2 = idx2 = GRADIENT_SIZE_INDEX;
            }

            if (DEBUG) System.out.println("I1: " + i1 + " Idx1: " + idx1 +
                                          " I2: " + i2 + " Idx2: " + idx2); 

            // Simple case within one gradient array (so the average
            // of the two idx gives us the true average of colors).
            if ((i1 == i2) && (idx1 <= idx2) && p1_up && !p2_up)
                return gradients[i1][(idx1+idx2+1)>>1];

            // i1 != i2

            int pix, norm;
            int base = (int)((1<<16)/sz);
            if ((i1 < i2) && p1_up && !p2_up) {
                norm = (int)((base
                              *normalizedIntervals[i1]
                              *(GRADIENT_SIZE_INDEX-f1))
                             /GRADIENT_SIZE_INDEX);
                pix  = gradients[i1][(idx1+GRADIENT_SIZE)>>1];
                ach += (((pix>>>20)&0xFF0) *norm)>>16;
                rch += (((pix>>>12)&0xFF0) *norm)>>16;
                gch += (((pix>>> 4)&0xFF0) *norm)>>16;
                bch += (((pix<<  4)&0xFF0) *norm)>>16;

                for (int i=i1+1; i>1];
                  
                    ach += (((pix>>>20)&0xFF0) *norm)>>16;
                    rch += (((pix>>>12)&0xFF0) *norm)>>16;
                    gch += (((pix>>> 4)&0xFF0) *norm)>>16;
                    bch += (((pix<<  4)&0xFF0) *norm)>>16;
                }

                norm = (int)((base*normalizedIntervals[i2]*f2)
                             /GRADIENT_SIZE_INDEX);
                pix  = gradients[i2][(idx2+1)>>1];
                ach += (((pix>>>20)&0xFF0) *norm)>>16;
                rch += (((pix>>>12)&0xFF0) *norm)>>16;
                gch += (((pix>>> 4)&0xFF0) *norm)>>16;
                bch += (((pix<<  4)&0xFF0) *norm)>>16;
            } else {
                if (p1_up) {
                    norm = (int)((base
                                  *normalizedIntervals[i1]
                                  *(GRADIENT_SIZE_INDEX-f1))
                                 /GRADIENT_SIZE_INDEX);
                    pix  = gradients[i1][(idx1+GRADIENT_SIZE)>>1];
                } else {
                    norm = (int)((base*normalizedIntervals[i1]*f1)
                                 /GRADIENT_SIZE_INDEX);
                    pix  = gradients[i1][(idx1+1)>>1];
                }
                ach += (((pix>>>20)&0xFF0) *norm)>>16;
                rch += (((pix>>>12)&0xFF0) *norm)>>16;
                gch += (((pix>>> 4)&0xFF0) *norm)>>16;
                bch += (((pix<<  4)&0xFF0) *norm)>>16;

                if (p2_up) {
                    norm = (int)((base
                                  *normalizedIntervals[i2]
                                  *(GRADIENT_SIZE_INDEX-f2))
                                 /GRADIENT_SIZE_INDEX);
                    pix  =  gradients[i2][(idx2+GRADIENT_SIZE)>>1];
                } else {
                    norm = (int)((base*normalizedIntervals[i2]*f2)
                                 /GRADIENT_SIZE_INDEX);
                    pix  = gradients[i2][(idx2+1)>>1];
                }
                ach += (((pix>>>20)&0xFF0) *norm)>>16;
                rch += (((pix>>>12)&0xFF0) *norm)>>16;
                gch += (((pix>>> 4)&0xFF0) *norm)>>16;
                bch += (((pix<<  4)&0xFF0) *norm)>>16;

                if (p1_up) {
                    for (int i=i1+1; i>1];

                        ach += (((pix>>>20)&0xFF0) *norm)>>16;
                        rch += (((pix>>>12)&0xFF0) *norm)>>16;
                        gch += (((pix>>> 4)&0xFF0) *norm)>>16;
                        bch += (((pix<<  4)&0xFF0) *norm)>>16;
                    }
                } else {
                    for (int i=0; i>1];
                  
                        ach += (((pix>>>20)&0xFF0) *norm)>>16;
                        rch += (((pix>>>12)&0xFF0) *norm)>>16;
                        gch += (((pix>>> 4)&0xFF0) *norm)>>16;
                        bch += (((pix<<  4)&0xFF0) *norm)>>16;
                    }
                }

                if (p2_up) {
                    for (int i=i2+1; i>1];

                        ach += (((pix>>>20)&0xFF0) *norm)>>16;
                        rch += (((pix>>>12)&0xFF0) *norm)>>16;
                        gch += (((pix>>> 4)&0xFF0) *norm)>>16;
                        bch += (((pix<<  4)&0xFF0) *norm)>>16;
                    }
                } else {
                    for (int i=0; i>1];

                        ach += (((pix>>>20)&0xFF0) *norm)>>16;
                        rch += (((pix>>>12)&0xFF0) *norm)>>16;
                        gch += (((pix>>> 4)&0xFF0) *norm)>>16;
                        bch += (((pix<<  4)&0xFF0) *norm)>>16;
                    }
                }

            }
            ach = (ach+0x08)>>4;
            rch = (rch+0x08)>>4;
            gch = (gch+0x08)>>4;
            bch = (bch+0x08)>>4;
            if (DEBUG) System.out.println("Pix: [" + ach + ", " + rch + 
                                          ", " + gch + ", " + bch + "]");
        }

        if (weight != 1) {
            // System.out.println("ave: " + gradientAverage);
            int aveW = (int)((1<<16)*(1-weight));
            int aveA = ((gradientAverage>>>24) & 0xFF)*aveW;
            int aveR = ((gradientAverage>> 16) & 0xFF)*aveW;
            int aveG = ((gradientAverage>>  8) & 0xFF)*aveW;
            int aveB = ((gradientAverage     ) & 0xFF)*aveW;

            int iw = (int)(weight*(1<<16));
            ach = ((ach*iw)+aveA)>>16;
            rch = ((rch*iw)+aveR)>>16;
            gch = ((gch*iw)+aveG)>>16;
            bch = ((bch*iw)+aveB)>>16;
        }
              
        return ((ach<<24) | (rch<<16) | (gch<<8) | bch);
    }


    /** Helper function to convert a color component in sRGB space to linear
     * RGB space.  Used to build a static lookup table.
     */
    private static int convertSRGBtoLinearRGB(int color) {

        float input, output;

        input = ((float) color) / 255.0f;
        if (input <= 0.04045f) {
            output = input / 12.92f;
        }
        else {
            output = (float) Math.pow((input + 0.055) / 1.055, 2.4);
        }
        int o = Math.round(output * 255.0f);

        return o;
    }

     /** Helper function to convert a color component in linear RGB space to
      *  SRGB space. Used to build a static lookup table.
      */
    private static int convertLinearRGBtoSRGB(int color) {

        float input, output;

        input = ((float) color) / 255.0f;

        if (input <= 0.0031308) {
            output = input * 12.92f;
        }
        else {
            output = (1.055f *
                ((float) Math.pow(input, (1.0 / 2.4)))) - 0.055f;
        }

        int o = Math.round(output * 255.0f);

        return o;
    }


    /** Superclass getRaster... */
    public final Raster getRaster(int x, int y, int w, int h) {
        if (w == 0 || h == 0) {
            return null;
        }

        //
        // If working raster is big enough, reuse it. Otherwise,
        // build a large enough new one.
        //
        WritableRaster raster = saved;
        if (raster == null || raster.getWidth() < w || raster.getHeight() < h)
            {
                raster = getCachedRaster(dataModel, w, h);
                saved = raster;
            }

        // Access raster internal int array. Because we use a DirectColorModel,
        // we know the DataBuffer is of type DataBufferInt and the SampleModel
        // is SinglePixelPackedSampleModel.
        // Adjust for initial offset in DataBuffer and also for the scanline
        // stride.
        //
        DataBufferInt rasterDB = (DataBufferInt)raster.getDataBuffer();
        int[] pixels = rasterDB.getBankData()[0];
        int off = rasterDB.getOffset();
        int scanlineStride = ((SinglePixelPackedSampleModel)
                              raster.getSampleModel()).getScanlineStride();
        int adjust = scanlineStride - w;

        fillRaster(pixels, off, adjust, x, y, w, h); //delegate to subclass.

        GraphicsUtil.coerceData(raster, dataModel,
                                model.isAlphaPremultiplied());


        return raster;
    }

    /** Subclasses should implement this. */
    protected abstract void fillRaster(int pixels[], int off, int adjust,
                                       int x, int y, int w, int h);


    /** Took this cacheRaster code from GradientPaint. It appears to recycle
     * rasters for use by any other instance, as long as they are sufficiently
     * large.
     */
    protected final
    static synchronized WritableRaster getCachedRaster
        (ColorModel cm, int w, int h) {
        if (cm == cachedModel) {
            if (cached != null) {
                WritableRaster ras = (WritableRaster) cached.get();
                if (ras != null &&
                    ras.getWidth() >= w &&
                    ras.getHeight() >= h)
                    {
                        cached = null;
                        return ras;
                    }
            }
        }
        // Don't create rediculously small rasters...
        if (w<32) w=32;
        if (h<32) h=32;
        return cm.createCompatibleWritableRaster(w, h);
    }

    /** Took this cacheRaster code from GradientPaint. It appears to recycle
     * rasters for use by any other instance, as long as they are sufficiently
     * large.
     */
    protected final
    static synchronized void putCachedRaster(ColorModel cm,
                                             WritableRaster ras) {
        if (cached != null) {
            WritableRaster cras = (WritableRaster) cached.get();
            if (cras != null) {
                int cw = cras.getWidth();
                int ch = cras.getHeight();
                int iw = ras.getWidth();
                int ih = ras.getHeight();
                if (cw >= iw && ch >= ih) {
                    return;
                }
                if (cw * ch >= iw * ih) {
                    return;
                }
            }
        }
        cachedModel = cm;
        cached = new WeakReference(ras);
    }

    /**
     * Release the resources allocated for the operation.
     */
    public final void dispose() {
        if (saved != null) {
            putCachedRaster(model, saved);
            saved = null;
        }
    }

    /**
     * Return the ColorModel of the output.
     */
    public final ColorModel getColorModel() {
        return model;
    }
}





© 2015 - 2024 Weber Informatics LLC | Privacy Policy