com.kitfox.svg.batik.MultipleGradientPaintContext Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of svg-salamander Show documentation
Show all versions of svg-salamander Show documentation
SVG Salamander - tools and components for SVG rendering, manipulation and animation
The newest version!
/*****************************************************************************
* Copyright (C) The Apache Software Foundation. All rights reserved. *
* ------------------------------------------------------------------------- *
* This software is published under the terms of the Apache Software License *
* version 1.1, a copy of which has been included with this distribution in *
* the LICENSE file. *
*****************************************************************************/
package com.kitfox.svg.batik;
import java.awt.Color;
import java.awt.PaintContext;
import java.awt.Rectangle;
import java.awt.RenderingHints;
import java.awt.color.ColorSpace;
import java.awt.geom.AffineTransform;
import java.awt.geom.NoninvertibleTransformException;
import java.awt.geom.Rectangle2D;
import java.awt.image.ColorModel;
import java.awt.image.DataBuffer;
import java.awt.image.DataBufferInt;
import java.awt.image.DirectColorModel;
import java.awt.image.Raster;
import java.awt.image.SinglePixelPackedSampleModel;
import java.awt.image.WritableRaster;
import java.lang.ref.WeakReference;
//import org.apache.batik.ext.awt.image.GraphicsUtil;
/** This is the superclass for all PaintContexts which use a multiple color
* gradient to fill in their raster. It provides the actual color interpolation
* functionality. Subclasses only have to deal with using the gradient to fill
* pixels in a raster.
*
* @author Nicholas Talian, Vincent Hardy, Jim Graham, Jerry Evans
* @author Vincent Hardy
* @version $Id: MultipleGradientPaintContext.java,v 1.1 2004/09/06 19:35:39 kitfox Exp $
*
*/
abstract class MultipleGradientPaintContext implements PaintContext {
protected final static boolean DEBUG = false;
/**
* The color model data is generated in (always un premult).
*/
protected ColorModel dataModel;
/**
* PaintContext's output ColorModel ARGB if colors are not all
* opaque, RGB otherwise. Linear and premult are matched to
* output ColorModel.
*/
protected ColorModel model;
/** Color model used if gradient colors are all opaque */
private static ColorModel lrgbmodel_NA = new DirectColorModel
(ColorSpace.getInstance(ColorSpace.CS_LINEAR_RGB),
24, 0xff0000, 0xFF00, 0xFF, 0x0,
false, DataBuffer.TYPE_INT);
private static ColorModel srgbmodel_NA = new DirectColorModel
(ColorSpace.getInstance(ColorSpace.CS_sRGB),
24, 0xff0000, 0xFF00, 0xFF, 0x0,
false, DataBuffer.TYPE_INT);
/** Color model used if some gradient colors are transparent */
private static ColorModel lrgbmodel_A = new DirectColorModel
(ColorSpace.getInstance(ColorSpace.CS_LINEAR_RGB),
32, 0xff0000, 0xFF00, 0xFF, 0xFF000000,
false, DataBuffer.TYPE_INT);
private static ColorModel srgbmodel_A = new DirectColorModel
(ColorSpace.getInstance(ColorSpace.CS_sRGB),
32, 0xff0000, 0xFF00, 0xFF, 0xFF000000,
false, DataBuffer.TYPE_INT);
/** The cached colorModel */
protected static ColorModel cachedModel;
/** The cached raster, which is reusable among instances */
protected static WeakReference cached;
/** Raster is reused whenever possible */
protected WritableRaster saved;
/** The method to use when painting out of the gradient bounds. */
protected MultipleGradientPaint.CycleMethodEnum cycleMethod;
/** The colorSpace in which to perform the interpolation */
protected MultipleGradientPaint.ColorSpaceEnum colorSpace;
/** Elements of the inverse transform matrix. */
protected float a00, a01, a10, a11, a02, a12;
/** This boolean specifies wether we are in simple lookup mode, where an
* input value between 0 and 1 may be used to directly index into a single
* array of gradient colors. If this boolean value is false, then we have
* to use a 2-step process where we have to determine which gradient array
* we fall into, then determine the index into that array.
*/
protected boolean isSimpleLookup = true;
/** This boolean indicates if the gradient appears to have sudden
* discontinuities in it, this may be because of multiple stops
* at the same location or use of the REPEATE mode.
*/
protected boolean hasDiscontinuity = false;
/** Size of gradients array for scaling the 0-1 index when looking up
* colors the fast way. */
protected int fastGradientArraySize;
/**
* Array which contains the interpolated color values for each interval,
* used by calculateSingleArrayGradient(). It is protected for possible
* direct access by subclasses.
*/
protected int[] gradient;
/** Array of gradient arrays, one array for each interval. Used by
* calculateMultipleArrayGradient().
*/
protected int[][] gradients;
/** This holds the blend of all colors in the gradient.
* we use this at extreamly low resolutions to ensure we
* get a decent blend of the colors.
*/
protected int gradientAverage;
/** This holds the color to use when we are off the bottom of the
* gradient */
protected int gradientUnderflow;
/** This holds the color to use when we are off the top of the
* gradient */
protected int gradientOverflow;
/** Length of the 2D slow lookup gradients array. */
protected int gradientsLength;
/** Normalized intervals array */
protected float[] normalizedIntervals;
/** fractions array */
protected float[] fractions;
/** Used to determine if gradient colors are all opaque */
private int transparencyTest;
/** Colorspace conversion lookup tables */
private static final int SRGBtoLinearRGB[] = new int[256];
private static final int LinearRGBtoSRGB[] = new int[256];
//build the tables
static{
for (int k = 0; k < 256; k++) {
SRGBtoLinearRGB[k] = convertSRGBtoLinearRGB(k);
LinearRGBtoSRGB[k] = convertLinearRGBtoSRGB(k);
}
}
/** Constant number of max colors between any 2 arbitrary colors.
* Used for creating and indexing gradients arrays.
*/
protected static final int GRADIENT_SIZE = 256;
protected static final int GRADIENT_SIZE_INDEX = GRADIENT_SIZE -1;
/** Maximum length of the fast single-array. If the estimated array size
* is greater than this, switch over to the slow lookup method.
* No particular reason for choosing this number, but it seems to provide
* satisfactory performance for the common case (fast lookup).
*/
private static final int MAX_GRADIENT_ARRAY_SIZE = 5000;
/** Constructor for superclass. Does some initialization, but leaves most
* of the heavy-duty math for calculateGradient(), so the subclass may do
* some other manipulation beforehand if necessary. This is not possible
* if this computation is done in the superclass constructor which always
* gets called first.
**/
public MultipleGradientPaintContext(ColorModel cm,
Rectangle deviceBounds,
Rectangle2D userBounds,
AffineTransform t,
RenderingHints hints,
float[] fractions,
Color[] colors,
MultipleGradientPaint.CycleMethodEnum
cycleMethod,
MultipleGradientPaint.ColorSpaceEnum
colorSpace)
throws NoninvertibleTransformException
{
//We have to deal with the cases where the 1st gradient stop is not
//equal to 0 and/or the last gradient stop is not equal to 1.
//In both cases, create a new point and replicate the previous
//extreme point's color.
boolean fixFirst = false;
boolean fixLast = false;
int len = fractions.length;
//if the first gradient stop is not equal to zero, fix this condition
if (fractions[0] != 0f) {
fixFirst = true;
len++;
}
//if the last gradient stop is not equal to one, fix this condition
if (fractions[fractions.length - 1] != 1f) {
fixLast = true;
len++;
}
for (int i=0; i normalizedIntervals[i]) ?
normalizedIntervals[i] : Imin;
}
//estimate the size of the entire gradients array.
//This is to prevent a tiny interval from causing the size of array to
//explode. If the estimated size is too large, break to using
//seperate arrays for each interval, and using an indexing scheme at
//look-up time.
int estimatedSize = 0;
if (Imin == 0) {
estimatedSize = Integer.MAX_VALUE;
hasDiscontinuity = true;
} else {
for (int i = 0; i < normalizedIntervals.length; i++) {
estimatedSize += (normalizedIntervals[i]/Imin) * GRADIENT_SIZE;
}
}
if (estimatedSize > MAX_GRADIENT_ARRAY_SIZE) {
//slow method
calculateMultipleArrayGradient(loColors, hiColors);
if ((cycleMethod == MultipleGradientPaint.REPEAT) &&
(gradients[0][0] !=
gradients[gradients.length-1][GRADIENT_SIZE_INDEX]))
hasDiscontinuity = true;
} else {
//fast method
calculateSingleArrayGradient(loColors, hiColors, Imin);
if ((cycleMethod == MultipleGradientPaint.REPEAT) &&
(gradient[0] != gradient[fastGradientArraySize]))
hasDiscontinuity = true;
}
// Use the most 'economical' model (no alpha).
if((transparencyTest >>> 24) == 0xff) {
if (dataModel.getColorSpace() == lrgbmodel_NA.getColorSpace())
dataModel = lrgbmodel_NA;
else if (dataModel.getColorSpace() == srgbmodel_NA.getColorSpace())
dataModel = srgbmodel_NA;
model = dataModel;
}
}
/**
* FAST LOOKUP METHOD
*
* This method calculates the gradient color values and places them in a
* single int array, gradient[]. It does this by allocating space for
* each interval based on its size relative to the smallest interval in
* the array. The smallest interval is allocated 255 interpolated values
* (the maximum number of unique in-between colors in a 24 bit color
* system), and all other intervals are allocated
* size = (255 * the ratio of their size to the smallest interval).
*
* This scheme expedites a speedy retrieval because the colors are
* distributed along the array according to their user-specified
* distribution. All that is needed is a relative index from 0 to 1.
*
* The only problem with this method is that the possibility exists for
* the array size to balloon in the case where there is a
* disproportionately small gradient interval. In this case the other
* intervals will be allocated huge space, but much of that data is
* redundant. We thus need to use the space conserving scheme below.
*
* @param Imin the size of the smallest interval
*
*/
private void calculateSingleArrayGradient
(Color [] loColors, Color [] hiColors, float Imin) {
//set the flag so we know later it is a non-simple lookup
isSimpleLookup = true;
int rgb1; //2 colors to interpolate
int rgb2;
int gradientsTot = 1; //the eventual size of the single array
// These are fixed point 8.16 (start with 0.5)
int aveA = 0x008000;
int aveR = 0x008000;
int aveG = 0x008000;
int aveB = 0x008000;
//for every interval (transition between 2 colors)
for(int i=0; i < gradients.length; i++){
//create an array whose size is based on the ratio to the
//smallest interval.
int nGradients = (int)((normalizedIntervals[i]/Imin)*255f);
gradientsTot += nGradients;
gradients[i] = new int[nGradients];
//the the 2 colors (keyframes) to interpolate between
rgb1 = loColors[i].getRGB();
rgb2 = hiColors[i].getRGB();
//fill this array with the colors in between rgb1 and rgb2
interpolate(rgb1, rgb2, gradients[i]);
// Calculate Average of two colors...
int argb = gradients[i][GRADIENT_SIZE/2];
float norm = normalizedIntervals[i];
aveA += (int)(((argb>> 8)&0xFF0000)*norm);
aveR += (int)(((argb )&0xFF0000)*norm);
aveG += (int)(((argb<< 8)&0xFF0000)*norm);
aveB += (int)(((argb<<16)&0xFF0000)*norm);
//if the colors are opaque, transparency should still be 0xff000000
transparencyTest &= rgb1;
transparencyTest &= rgb2;
}
gradientAverage = (((aveA & 0xFF0000)<< 8) |
((aveR & 0xFF0000) ) |
((aveG & 0xFF0000)>> 8) |
((aveB & 0xFF0000)>>16));
// Put all gradients in a single array
gradient = new int[gradientsTot];
int curOffset = 0;
for(int i = 0; i < gradients.length; i++){
System.arraycopy(gradients[i], 0, gradient,
curOffset, gradients[i].length);
curOffset += gradients[i].length;
}
gradient[gradient.length-1] = hiColors[hiColors.length-1].getRGB();
//if interpolation occurred in Linear RGB space, convert the
//gradients back to SRGB using the lookup table
if (colorSpace == LinearGradientPaint.LINEAR_RGB) {
if (dataModel.getColorSpace() ==
ColorSpace.getInstance(ColorSpace.CS_sRGB)) {
for (int i = 0; i < gradient.length; i++) {
gradient[i] =
convertEntireColorLinearRGBtoSRGB(gradient[i]);
}
gradientAverage =
convertEntireColorLinearRGBtoSRGB(gradientAverage);
}
} else {
if (dataModel.getColorSpace() ==
ColorSpace.getInstance(ColorSpace.CS_LINEAR_RGB)) {
for (int i = 0; i < gradient.length; i++) {
gradient[i] =
convertEntireColorSRGBtoLinearRGB(gradient[i]);
}
gradientAverage =
convertEntireColorSRGBtoLinearRGB(gradientAverage);
}
}
fastGradientArraySize = gradient.length - 1;
}
/**
* SLOW LOOKUP METHOD
*
* This method calculates the gradient color values for each interval and
* places each into its own 255 size array. The arrays are stored in
* gradients[][]. (255 is used because this is the maximum number of
* unique colors between 2 arbitrary colors in a 24 bit color system)
*
* This method uses the minimum amount of space (only 255 * number of
* intervals), but it aggravates the lookup procedure, because now we
* have to find out which interval to select, then calculate the index
* within that interval. This causes a significant performance hit,
* because it requires this calculation be done for every point in
* the rendering loop.
*
* For those of you who are interested, this is a classic example of the
* time-space tradeoff.
*
*/
private void calculateMultipleArrayGradient
(Color [] loColors, Color [] hiColors) {
//set the flag so we know later it is a non-simple lookup
isSimpleLookup = false;
int rgb1; //2 colors to interpolate
int rgb2;
// These are fixed point 8.16 (start with 0.5)
int aveA = 0x008000;
int aveR = 0x008000;
int aveG = 0x008000;
int aveB = 0x008000;
//for every interval (transition between 2 colors)
for(int i=0; i < gradients.length; i++){
// This interval will never actually be used (zero size)
if (normalizedIntervals[i] == 0)
continue;
//create an array of the maximum theoretical size for each interval
gradients[i] = new int[GRADIENT_SIZE];
//get the the 2 colors
rgb1 = loColors[i].getRGB();
rgb2 = hiColors[i].getRGB();
//fill this array with the colors in between rgb1 and rgb2
interpolate(rgb1, rgb2, gradients[i]);
// Calculate Average of two colors...
int argb = gradients[i][GRADIENT_SIZE/2];
float norm = normalizedIntervals[i];
aveA += (int)(((argb>> 8)&0xFF0000)*norm);
aveR += (int)(((argb )&0xFF0000)*norm);
aveG += (int)(((argb<< 8)&0xFF0000)*norm);
aveB += (int)(((argb<<16)&0xFF0000)*norm);
//if the colors are opaque, transparency should still be 0xff000000
transparencyTest &= rgb1;
transparencyTest &= rgb2;
}
gradientAverage = (((aveA & 0xFF0000)<< 8) |
((aveR & 0xFF0000) ) |
((aveG & 0xFF0000)>> 8) |
((aveB & 0xFF0000)>>16));
//if interpolation occurred in Linear RGB space, convert the
//gradients back to SRGB using the lookup table
if (colorSpace == LinearGradientPaint.LINEAR_RGB) {
if (dataModel.getColorSpace() ==
ColorSpace.getInstance(ColorSpace.CS_sRGB)) {
for (int j = 0; j < gradients.length; j++) {
for (int i = 0; i < gradients[j].length; i++) {
gradients[j][i] =
convertEntireColorLinearRGBtoSRGB(gradients[j][i]);
}
}
gradientAverage =
convertEntireColorLinearRGBtoSRGB(gradientAverage);
}
} else {
if (dataModel.getColorSpace() ==
ColorSpace.getInstance(ColorSpace.CS_LINEAR_RGB)) {
for (int j = 0; j < gradients.length; j++) {
for (int i = 0; i < gradients[j].length; i++) {
gradients[j][i] =
convertEntireColorSRGBtoLinearRGB(gradients[j][i]);
}
}
gradientAverage =
convertEntireColorSRGBtoLinearRGB(gradientAverage);
}
}
}
/** Yet another helper function. This one linearly interpolates between
* 2 colors, filling up the output array.
*
* @param rgb1 the start color
* @param rgb2 the end color
* @param output the output array of colors... assuming this is not null.
*
*/
private void interpolate(int rgb1, int rgb2, int[] output) {
int a1, r1, g1, b1, da, dr, dg, db; //color components
//step between interpolated values.
float stepSize = 1/(float)output.length;
//extract color components from packed integer
a1 = (rgb1 >> 24) & 0xff;
r1 = (rgb1 >> 16) & 0xff;
g1 = (rgb1 >> 8) & 0xff;
b1 = (rgb1 ) & 0xff;
//calculate the total change in alpha, red, green, blue
da = ((rgb2 >> 24) & 0xff) - a1;
dr = ((rgb2 >> 16) & 0xff) - r1;
dg = ((rgb2 >> 8) & 0xff) - g1;
db = ((rgb2 ) & 0xff) - b1;
//for each step in the interval calculate the in-between color by
//multiplying the normalized current position by the total color change
//(.5 is added to prevent truncation round-off error)
for (int i = 0; i < output.length; i++) {
output[i] =
(((int) ((a1 + i * da * stepSize) + .5) << 24)) |
(((int) ((r1 + i * dr * stepSize) + .5) << 16)) |
(((int) ((g1 + i * dg * stepSize) + .5) << 8)) |
(((int) ((b1 + i * db * stepSize) + .5) ));
}
}
/** Yet another helper function. This one extracts the color components
* of an integer RGB triple, converts them from LinearRGB to SRGB, then
* recompacts them into an int.
*/
private int convertEntireColorLinearRGBtoSRGB(int rgb) {
int a1, r1, g1, b1; //color components
//extract red, green, blue components
a1 = (rgb >> 24) & 0xff;
r1 = (rgb >> 16) & 0xff;
g1 = (rgb >> 8) & 0xff;
b1 = rgb & 0xff;
//use the lookup table
r1 = LinearRGBtoSRGB[r1];
g1 = LinearRGBtoSRGB[g1];
b1 = LinearRGBtoSRGB[b1];
//re-compact the components
return ((a1 << 24) |
(r1 << 16) |
(g1 << 8) |
b1);
}
/** Yet another helper function. This one extracts the color components
* of an integer RGB triple, converts them from LinearRGB to SRGB, then
* recompacts them into an int.
*/
private int convertEntireColorSRGBtoLinearRGB(int rgb) {
int a1, r1, g1, b1; //color components
//extract red, green, blue components
a1 = (rgb >> 24) & 0xff;
r1 = (rgb >> 16) & 0xff;
g1 = (rgb >> 8) & 0xff;
b1 = rgb & 0xff;
//use the lookup table
r1 = SRGBtoLinearRGB[r1];
g1 = SRGBtoLinearRGB[g1];
b1 = SRGBtoLinearRGB[b1];
//re-compact the components
return ((a1 << 24) |
(r1 << 16) |
(g1 << 8) |
b1);
}
/** Helper function to index into the gradients array. This is necessary
* because each interval has an array of colors with uniform size 255.
* However, the color intervals are not necessarily of uniform length, so
* a conversion is required.
*
* @param position the unmanipulated position. want to map this into the
* range 0 to 1
*
* @returns integer color to display
*
*/
protected final int indexIntoGradientsArrays(float position) {
//first, manipulate position value depending on the cycle method.
if (cycleMethod == MultipleGradientPaint.NO_CYCLE) {
if (position >= 1) { //upper bound is 1
return gradientOverflow;
}
else if (position <= 0) { //lower bound is 0
return gradientUnderflow;
}
}
else if (cycleMethod == MultipleGradientPaint.REPEAT) {
//get the fractional part
//(modulo behavior discards integer component)
position = position - (int)position;
//position now be between -1 and 1
if (position < 0) {
position = position + 1; //force it to be in the range 0-1
}
int w=0, c1=0, c2=0;
if (isSimpleLookup) {
position *= gradient.length;
int idx1 = (int)(position);
if (idx1+1 < gradient.length)
return gradient[idx1];
w = (int)((position-idx1)*(1<<16));
c1 = gradient[idx1];
c2 = gradient[0];
} else {
//for all the gradient interval arrays
for (int i = 0; i < gradientsLength; i++) {
if (position < fractions[i+1]) { //this is the array we want
float delta = position - fractions[i];
delta = ((delta / normalizedIntervals[i]) * GRADIENT_SIZE);
//this is the interval we want.
int index = (int)delta;
if ((index+1> 8) &0xFF0000)+
((((c2>>>24) )-((c1>>>24) ))*w))&0xFF0000)<< 8) |
((( ( (c1 ) &0xFF0000)+
((((c2>> 16)&0xFF)-((c1>> 16)&0xFF))*w))&0xFF0000) ) |
((( ( (c1<< 8) &0xFF0000)+
((((c2>> 8)&0xFF)-((c1>> 8)&0xFF))*w))&0xFF0000)>> 8) |
((( ( (c1<< 16) &0xFF0000)+
((((c2 )&0xFF)-((c1 )&0xFF))*w))&0xFF0000)>>16));
// return c1 +
// ((( ((((c2>>>24) )-((c1>>>24) ))*w)&0xFF0000)<< 8) |
// (( ((((c2>> 16)&0xFF)-((c1>> 16)&0xFF))*w)&0xFF0000) ) |
// (( ((((c2>> 8)&0xFF)-((c1>> 8)&0xFF))*w)&0xFF0000)>> 8) |
// (( ((((c2 )&0xFF)-((c1 )&0xFF))*w)&0xFF0000)>>16));
}
else { //cycleMethod == MultipleGradientPaint.REFLECT
if (position < 0) {
position = -position; //take absolute value
}
int part = (int)position; //take the integer part
position = position - part; //get the fractional part
if ((part & 0x00000001) == 1) { //if integer part is odd
position = 1 - position; //want the reflected color instead
}
}
//now, get the color based on this 0-1 position:
if (isSimpleLookup) { //easy to compute: just scale index by array size
return gradient[(int)(position * fastGradientArraySize)];
}
else { //more complicated computation, to save space
//for all the gradient interval arrays
for (int i = 0; i < gradientsLength; i++) {
if (position < fractions[i+1]) { //this is the array we want
float delta = position - fractions[i];
//this is the interval we want.
int index = (int)((delta / normalizedIntervals[i])
* (GRADIENT_SIZE_INDEX));
return gradients[i][index];
}
}
}
return gradientOverflow;
}
/** Helper function to index into the gradients array. This is necessary
* because each interval has an array of colors with uniform size 255.
* However, the color intervals are not necessarily of uniform length, so
* a conversion is required. This version also does anti-aliasing by
* averaging the gradient over position+/-(sz/2).
*
* @param position the unmanipulated position. want to map this into the
* range 0 to 1
* @param sz the size in gradient space to average.
*
* @returns ARGB integer color to display
*/
protected final int indexGradientAntiAlias(float position, float sz) {
//first, manipulate position value depending on the cycle method.
if (cycleMethod == MultipleGradientPaint.NO_CYCLE) {
if (DEBUG) System.out.println("NO_CYCLE");
float p1 = position-(sz/2);
float p2 = position+(sz/2);
if (p1 >= 1)
return gradientOverflow;
if (p2 <= 0)
return gradientUnderflow;
int interior;
float top_weight=0, bottom_weight=0, frac;
if (p2 >= 1) {
top_weight = (p2-1)/sz;
if (p1 <= 0) {
bottom_weight = -p1/sz;
frac=1;
interior = gradientAverage;
} else {
frac=1-p1;
interior = getAntiAlias(p1, true, 1, false, 1-p1, 1);
}
} else if (p1 <= 0) {
bottom_weight = -p1/sz;
frac = p2;
interior = getAntiAlias(0, true, p2, false, p2, 1);
} else
return getAntiAlias(p1, true, p2, false, sz, 1);
int norm = (int)((1<<16)*frac/sz);
int pA = (((interior>>>20)&0xFF0)*norm)>>16;
int pR = (((interior>> 12)&0xFF0)*norm)>>16;
int pG = (((interior>> 4)&0xFF0)*norm)>>16;
int pB = (((interior<< 4)&0xFF0)*norm)>>16;
if (bottom_weight != 0) {
int bPix = gradientUnderflow;
// System.out.println("ave: " + gradientAverage);
norm = (int)((1<<16)*bottom_weight);
pA += (((bPix>>>20) & 0xFF0)*norm)>>16;
pR += (((bPix>> 12) & 0xFF0)*norm)>>16;
pG += (((bPix>> 4) & 0xFF0)*norm)>>16;
pB += (((bPix<< 4) & 0xFF0)*norm)>>16;
}
if (top_weight != 0) {
int tPix = gradientOverflow;
norm = (int)((1<<16)*top_weight);
pA += (((tPix>>>20) & 0xFF0)*norm)>>16;
pR += (((tPix>> 12) & 0xFF0)*norm)>>16;
pG += (((tPix>> 4) & 0xFF0)*norm)>>16;
pB += (((tPix<< 4) & 0xFF0)*norm)>>16;
}
return (((pA&0xFF0)<<20) |
((pR&0xFF0)<<12) |
((pG&0xFF0)<< 4) |
((pB&0xFF0)>> 4));
}
// See how many times we are going to "wrap around" the gradient,
// array.
int intSz = (int)sz;
float weight = 1f;
if (intSz != 0) {
// We need to make sure that sz is < 1.0 otherwise
// p1 and p2 my pass each other which will cause no end of
// trouble.
sz -= intSz;
weight = sz/(intSz+sz);
if (weight < 0.1)
// The part of the color from the location will be swamped
// by the averaged part of the gradient so just use the
// average color for the gradient.
return gradientAverage;
}
// So close to full gradient just use the average value...
if (sz > 0.99)
return gradientAverage;
// Go up and down from position by 1/2 sz.
float p1 = position-(sz/2);
float p2 = position+(sz/2);
if (DEBUG) System.out.println("P1: " + p1 + " P2: " + p2);
// These indicate the direction to go from p1 and p2 when
// averaging...
boolean p1_up=true;
boolean p2_up=false;
if (cycleMethod == MultipleGradientPaint.REPEAT) {
if (DEBUG) System.out.println("REPEAT");
// Get positions between -1 and 1
p1=p1-(int)p1;
p2=p2-(int)p2;
// force to be in rage 0-1.
if (p1 <0) p1 += 1;
if (p2 <0) p2 += 1;
}
else { //cycleMethod == MultipleGradientPaint.REFLECT
if (DEBUG) System.out.println("REFLECT");
//take absolute values
// Note when we reflect we change sense of p1/2_up.
if (p2 < 0) {
p1 = -p1; p1_up = !p1_up;
p2 = -p2; p2_up = !p2_up;
} else if (p1 < 0) {
p1 = -p1; p1_up = !p1_up;
}
int part1, part2;
part1 = (int)p1; // take the integer part
p1 = p1 - part1; // get the fractional part
part2 = (int)p2; // take the integer part
p2 = p2 - part2; // get the fractional part
// if integer part is odd we want the reflected color instead.
// Note when we reflect we change sense of p1/2_up.
if ((part1 & 0x01) == 1) {
p1 = 1-p1;
p1_up = !p1_up;
}
if ((part2 & 0x01) == 1) {
p2 = 1-p2;
p2_up = !p2_up;
}
// Check if in the end they just got switched around.
// this commonly happens if they both end up negative.
if ((p1 > p2) && !p1_up && p2_up) {
float t = p1;
p1 = p2;
p2 = t;
p1_up = true;
p2_up = false;
}
}
return getAntiAlias(p1, p1_up, p2, p2_up, sz, weight);
}
private final int getAntiAlias(float p1, boolean p1_up,
float p2, boolean p2_up,
float sz, float weight) {
// Until the last set of ops these are 28.4 fixed point values.
int ach=0, rch=0, gch=0, bch=0;
if (isSimpleLookup) {
p1 *= fastGradientArraySize;
p2 *= fastGradientArraySize;
int idx1 = (int)p1;
int idx2 = (int)p2;
int i, pix;
if (p1_up && !p2_up && (idx1 <= idx2)) {
if (idx1 == idx2)
return gradient[idx1];
// Sum between idx1 and idx2.
for (i=idx1+1; i>>20)&0xFF0);
rch += ((pix>>>12)&0xFF0);
gch += ((pix>>> 4)&0xFF0);
bch += ((pix<< 4)&0xFF0);
}
} else {
// Do the bulk of the work, all the whole gradient entries
// for idx1 and idx2.
if (p1_up) {
for (i=idx1+1; i>>20)&0xFF0);
rch += ((pix>>>12)&0xFF0);
gch += ((pix>>> 4)&0xFF0);
bch += ((pix<< 4)&0xFF0);
}
} else {
for (i=0; i>>20)&0xFF0);
rch += ((pix>>>12)&0xFF0);
gch += ((pix>>> 4)&0xFF0);
bch += ((pix<< 4)&0xFF0);
}
}
if (p2_up) {
for (i=idx2+1; i>>20)&0xFF0);
rch += ((pix>>>12)&0xFF0);
gch += ((pix>>> 4)&0xFF0);
bch += ((pix<< 4)&0xFF0);
}
} else {
for (i=0; i>>20)&0xFF0);
rch += ((pix>>>12)&0xFF0);
gch += ((pix>>> 4)&0xFF0);
bch += ((pix<< 4)&0xFF0);
}
}
}
int norm, isz;
// Normalize the summation so far...
isz = (int)((1<<16)/(sz*fastGradientArraySize));
ach = (ach*isz)>>16;
rch = (rch*isz)>>16;
gch = (gch*isz)>>16;
bch = (bch*isz)>>16;
// Clean up with the partial buckets at each end.
if (p1_up) norm = (int)((1-(p1-idx1))*isz);
else norm = (int)( (p1-idx1) *isz);
pix = gradient[idx1];
ach += (((pix>>>20)&0xFF0) *norm)>>16;
rch += (((pix>>>12)&0xFF0) *norm)>>16;
gch += (((pix>>> 4)&0xFF0) *norm)>>16;
bch += (((pix<< 4)&0xFF0) *norm)>>16;
if (p2_up) norm = (int)((1-(p2-idx2))*isz);
else norm = (int)( (p2-idx2) *isz);
pix = gradient[idx2];
ach += (((pix>>>20)&0xFF0) *norm)>>16;
rch += (((pix>>>12)&0xFF0) *norm)>>16;
gch += (((pix>>> 4)&0xFF0) *norm)>>16;
bch += (((pix<< 4)&0xFF0) *norm)>>16;
// Round and drop the 4bits frac.
ach = (ach+0x08)>>4;
rch = (rch+0x08)>>4;
gch = (gch+0x08)>>4;
bch = (bch+0x08)>>4;
} else {
int idx1=0, idx2=0;
int i1=-1, i2=-1;
float f1=0, f2=0;
// Find which gradient interval our points fall into.
for (int i = 0; i < gradientsLength; i++) {
if ((p1 < fractions[i+1]) && (i1 == -1)) {
//this is the array we want
i1 = i;
f1 = p1 - fractions[i];
f1 = ((f1/normalizedIntervals[i])
*GRADIENT_SIZE_INDEX);
//this is the interval we want.
idx1 = (int)f1;
if (i2 != -1) break;
}
if ((p2 < fractions[i+1]) && (i2 == -1)) {
//this is the array we want
i2 = i;
f2 = p2 - fractions[i];
f2 = ((f2/normalizedIntervals[i])
*GRADIENT_SIZE_INDEX);
//this is the interval we want.
idx2 = (int)f2;
if (i1 != -1) break;
}
}
if (i1 == -1) {
i1 = gradients.length - 1;
f1 = idx1 = GRADIENT_SIZE_INDEX;
}
if (i2 == -1) {
i2 = gradients.length - 1;
f2 = idx2 = GRADIENT_SIZE_INDEX;
}
if (DEBUG) System.out.println("I1: " + i1 + " Idx1: " + idx1 +
" I2: " + i2 + " Idx2: " + idx2);
// Simple case within one gradient array (so the average
// of the two idx gives us the true average of colors).
if ((i1 == i2) && (idx1 <= idx2) && p1_up && !p2_up)
return gradients[i1][(idx1+idx2+1)>>1];
// i1 != i2
int pix, norm;
int base = (int)((1<<16)/sz);
if ((i1 < i2) && p1_up && !p2_up) {
norm = (int)((base
*normalizedIntervals[i1]
*(GRADIENT_SIZE_INDEX-f1))
/GRADIENT_SIZE_INDEX);
pix = gradients[i1][(idx1+GRADIENT_SIZE)>>1];
ach += (((pix>>>20)&0xFF0) *norm)>>16;
rch += (((pix>>>12)&0xFF0) *norm)>>16;
gch += (((pix>>> 4)&0xFF0) *norm)>>16;
bch += (((pix<< 4)&0xFF0) *norm)>>16;
for (int i=i1+1; i>1];
ach += (((pix>>>20)&0xFF0) *norm)>>16;
rch += (((pix>>>12)&0xFF0) *norm)>>16;
gch += (((pix>>> 4)&0xFF0) *norm)>>16;
bch += (((pix<< 4)&0xFF0) *norm)>>16;
}
norm = (int)((base*normalizedIntervals[i2]*f2)
/GRADIENT_SIZE_INDEX);
pix = gradients[i2][(idx2+1)>>1];
ach += (((pix>>>20)&0xFF0) *norm)>>16;
rch += (((pix>>>12)&0xFF0) *norm)>>16;
gch += (((pix>>> 4)&0xFF0) *norm)>>16;
bch += (((pix<< 4)&0xFF0) *norm)>>16;
} else {
if (p1_up) {
norm = (int)((base
*normalizedIntervals[i1]
*(GRADIENT_SIZE_INDEX-f1))
/GRADIENT_SIZE_INDEX);
pix = gradients[i1][(idx1+GRADIENT_SIZE)>>1];
} else {
norm = (int)((base*normalizedIntervals[i1]*f1)
/GRADIENT_SIZE_INDEX);
pix = gradients[i1][(idx1+1)>>1];
}
ach += (((pix>>>20)&0xFF0) *norm)>>16;
rch += (((pix>>>12)&0xFF0) *norm)>>16;
gch += (((pix>>> 4)&0xFF0) *norm)>>16;
bch += (((pix<< 4)&0xFF0) *norm)>>16;
if (p2_up) {
norm = (int)((base
*normalizedIntervals[i2]
*(GRADIENT_SIZE_INDEX-f2))
/GRADIENT_SIZE_INDEX);
pix = gradients[i2][(idx2+GRADIENT_SIZE)>>1];
} else {
norm = (int)((base*normalizedIntervals[i2]*f2)
/GRADIENT_SIZE_INDEX);
pix = gradients[i2][(idx2+1)>>1];
}
ach += (((pix>>>20)&0xFF0) *norm)>>16;
rch += (((pix>>>12)&0xFF0) *norm)>>16;
gch += (((pix>>> 4)&0xFF0) *norm)>>16;
bch += (((pix<< 4)&0xFF0) *norm)>>16;
if (p1_up) {
for (int i=i1+1; i>1];
ach += (((pix>>>20)&0xFF0) *norm)>>16;
rch += (((pix>>>12)&0xFF0) *norm)>>16;
gch += (((pix>>> 4)&0xFF0) *norm)>>16;
bch += (((pix<< 4)&0xFF0) *norm)>>16;
}
} else {
for (int i=0; i>1];
ach += (((pix>>>20)&0xFF0) *norm)>>16;
rch += (((pix>>>12)&0xFF0) *norm)>>16;
gch += (((pix>>> 4)&0xFF0) *norm)>>16;
bch += (((pix<< 4)&0xFF0) *norm)>>16;
}
}
if (p2_up) {
for (int i=i2+1; i>1];
ach += (((pix>>>20)&0xFF0) *norm)>>16;
rch += (((pix>>>12)&0xFF0) *norm)>>16;
gch += (((pix>>> 4)&0xFF0) *norm)>>16;
bch += (((pix<< 4)&0xFF0) *norm)>>16;
}
} else {
for (int i=0; i>1];
ach += (((pix>>>20)&0xFF0) *norm)>>16;
rch += (((pix>>>12)&0xFF0) *norm)>>16;
gch += (((pix>>> 4)&0xFF0) *norm)>>16;
bch += (((pix<< 4)&0xFF0) *norm)>>16;
}
}
}
ach = (ach+0x08)>>4;
rch = (rch+0x08)>>4;
gch = (gch+0x08)>>4;
bch = (bch+0x08)>>4;
if (DEBUG) System.out.println("Pix: [" + ach + ", " + rch +
", " + gch + ", " + bch + "]");
}
if (weight != 1) {
// System.out.println("ave: " + gradientAverage);
int aveW = (int)((1<<16)*(1-weight));
int aveA = ((gradientAverage>>>24) & 0xFF)*aveW;
int aveR = ((gradientAverage>> 16) & 0xFF)*aveW;
int aveG = ((gradientAverage>> 8) & 0xFF)*aveW;
int aveB = ((gradientAverage ) & 0xFF)*aveW;
int iw = (int)(weight*(1<<16));
ach = ((ach*iw)+aveA)>>16;
rch = ((rch*iw)+aveR)>>16;
gch = ((gch*iw)+aveG)>>16;
bch = ((bch*iw)+aveB)>>16;
}
return ((ach<<24) | (rch<<16) | (gch<<8) | bch);
}
/** Helper function to convert a color component in sRGB space to linear
* RGB space. Used to build a static lookup table.
*/
private static int convertSRGBtoLinearRGB(int color) {
float input, output;
input = ((float) color) / 255.0f;
if (input <= 0.04045f) {
output = input / 12.92f;
}
else {
output = (float) Math.pow((input + 0.055) / 1.055, 2.4);
}
int o = Math.round(output * 255.0f);
return o;
}
/** Helper function to convert a color component in linear RGB space to
* SRGB space. Used to build a static lookup table.
*/
private static int convertLinearRGBtoSRGB(int color) {
float input, output;
input = ((float) color) / 255.0f;
if (input <= 0.0031308) {
output = input * 12.92f;
}
else {
output = (1.055f *
((float) Math.pow(input, (1.0 / 2.4)))) - 0.055f;
}
int o = Math.round(output * 255.0f);
return o;
}
/** Superclass getRaster... */
public final Raster getRaster(int x, int y, int w, int h) {
if (w == 0 || h == 0) {
return null;
}
//
// If working raster is big enough, reuse it. Otherwise,
// build a large enough new one.
//
WritableRaster raster = saved;
if (raster == null || raster.getWidth() < w || raster.getHeight() < h)
{
raster = getCachedRaster(dataModel, w, h);
saved = raster;
}
// Access raster internal int array. Because we use a DirectColorModel,
// we know the DataBuffer is of type DataBufferInt and the SampleModel
// is SinglePixelPackedSampleModel.
// Adjust for initial offset in DataBuffer and also for the scanline
// stride.
//
DataBufferInt rasterDB = (DataBufferInt)raster.getDataBuffer();
int[] pixels = rasterDB.getBankData()[0];
int off = rasterDB.getOffset();
int scanlineStride = ((SinglePixelPackedSampleModel)
raster.getSampleModel()).getScanlineStride();
int adjust = scanlineStride - w;
fillRaster(pixels, off, adjust, x, y, w, h); //delegate to subclass.
GraphicsUtil.coerceData(raster, dataModel,
model.isAlphaPremultiplied());
return raster;
}
/** Subclasses should implement this. */
protected abstract void fillRaster(int pixels[], int off, int adjust,
int x, int y, int w, int h);
/** Took this cacheRaster code from GradientPaint. It appears to recycle
* rasters for use by any other instance, as long as they are sufficiently
* large.
*/
protected final
static synchronized WritableRaster getCachedRaster
(ColorModel cm, int w, int h) {
if (cm == cachedModel) {
if (cached != null) {
WritableRaster ras = (WritableRaster) cached.get();
if (ras != null &&
ras.getWidth() >= w &&
ras.getHeight() >= h)
{
cached = null;
return ras;
}
}
}
// Don't create rediculously small rasters...
if (w<32) w=32;
if (h<32) h=32;
return cm.createCompatibleWritableRaster(w, h);
}
/** Took this cacheRaster code from GradientPaint. It appears to recycle
* rasters for use by any other instance, as long as they are sufficiently
* large.
*/
protected final
static synchronized void putCachedRaster(ColorModel cm,
WritableRaster ras) {
if (cached != null) {
WritableRaster cras = (WritableRaster) cached.get();
if (cras != null) {
int cw = cras.getWidth();
int ch = cras.getHeight();
int iw = ras.getWidth();
int ih = ras.getHeight();
if (cw >= iw && ch >= ih) {
return;
}
if (cw * ch >= iw * ih) {
return;
}
}
}
cachedModel = cm;
cached = new WeakReference(ras);
}
/**
* Release the resources allocated for the operation.
*/
public final void dispose() {
if (saved != null) {
putCachedRaster(model, saved);
saved = null;
}
}
/**
* Return the ColorModel of the output.
*/
public final ColorModel getColorModel() {
return model;
}
}