logicgates.ORGate.kt Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of simplednn Show documentation
Show all versions of simplednn Show documentation
SimpleDNN is a machine learning lightweight open-source library written in Kotlin whose purpose is to
support the development of feed-forward and recurrent Artificial Neural Networks.
/* Copyright 2016-present The KotlinNLP Authors. All Rights Reserved.
*
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, you can obtain one at http://mozilla.org/MPL/2.0/.
* ------------------------------------------------------------------*/
package logicgates
import com.kotlinnlp.simplednn.dataset.SimpleExample
import com.kotlinnlp.simplednn.simplemath.ndarray.dense.DenseNDArray
fun main(args: Array) {
println("Start 'OR Gate Test'")
println("Accuracy (softmax): %.1f%%".format(100.0 * ORGate.testAccuracyWithSoftmax()))
println("Accuracy (sigmoid): %.1f%%".format(100.0 * ORGate.testAccuracyWithSigmoid()))
println("End.")
}
object ORGate {
/**
*
*/
fun testAccuracyWithSoftmax(): Double {
val examples: ArrayList> = ArrayList()
examples.addAll(listOf(
SimpleExample(doubleArrayOf(0.0, 0.0), doubleArrayOf(1.0, 0.0)),
SimpleExample(doubleArrayOf(0.0, 1.0), doubleArrayOf(0.0, 1.0)),
SimpleExample(doubleArrayOf(1.0, 0.0), doubleArrayOf(0.0, 1.0)),
SimpleExample(doubleArrayOf(1.0, 1.0), doubleArrayOf(0.0, 1.0))
))
return GateTestUtils.testAccuracyWithSoftmax(inputSize = 2, examples = examples, epochs = 1000)
}
/**
*
*/
fun testAccuracyWithSigmoid(): Double {
val examples: ArrayList> = ArrayList()
examples.addAll(listOf(
SimpleExample(doubleArrayOf(0.0, 0.0), doubleArrayOf(0.0)),
SimpleExample(doubleArrayOf(0.0, 1.0), doubleArrayOf(1.0)),
SimpleExample(doubleArrayOf(1.0, 0.0), doubleArrayOf(1.0)),
SimpleExample(doubleArrayOf(1.0, 1.0), doubleArrayOf(1.0))
))
return GateTestUtils.testAccuracyWithSigmoid(inputSize = 2, examples = examples, epochs = 1000)
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy