utils.exampleextractor.ClassificationSequenceExampleExtractor.kt Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of simplednn Show documentation
Show all versions of simplednn Show documentation
SimpleDNN is a machine learning lightweight open-source library written in Kotlin whose purpose is to
support the development of feed-forward and recurrent Artificial Neural Networks.
/* Copyright 2016-present The KotlinNLP Authors. All Rights Reserved.
*
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, you can obtain one at http://mozilla.org/MPL/2.0/.
* ------------------------------------------------------------------*/
package utils.exampleextractor
import com.jsoniter.JsonIterator
import com.jsoniter.ValueType
import com.kotlinnlp.simplednn.dataset.SequenceExample
import com.kotlinnlp.simplednn.simplemath.ndarray.Shape
import com.kotlinnlp.simplednn.simplemath.ndarray.dense.DenseNDArray
import com.kotlinnlp.simplednn.simplemath.ndarray.dense.DenseNDArrayFactory
import utils.readDenseNDArray
/**
*
*/
class ClassificationSequenceExampleExtractor(val outputSize: Int) : ExampleExtractor> {
/**
*
*/
override fun extract(iterator: JsonIterator): SequenceExample {
val featuresList = ArrayList()
val outputGoldList = ArrayList()
while (iterator.readArray()) {
if (iterator.whatIsNext() == ValueType.ARRAY) {
val singleExample = iterator.readDenseNDArray()
val features = DenseNDArrayFactory.arrayOf(doubleArrayOf(singleExample[0]))
val outputGold = DenseNDArrayFactory.zeros(Shape(11))
outputGold[singleExample[1].toInt()] = 1.0
featuresList.add(features)
outputGoldList.add(outputGold)
}
}
return SequenceExample(featuresList, outputGoldList)
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy