com.landawn.abacus.util.stream.ParallelArrayCharStream Maven / Gradle / Ivy
/*
* Copyright (C) 2016 HaiYang Li
*
* Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except
* in compliance with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software distributed under the License
* is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express
* or implied. See the License for the specific language governing permissions and limitations under
* the License.
*/
package com.landawn.abacus.util.stream;
import java.util.ArrayList;
import java.util.Collection;
import java.util.HashSet;
import java.util.List;
import java.util.Map;
import java.util.NoSuchElementException;
import java.util.Set;
import java.util.concurrent.Callable;
import com.landawn.abacus.util.CharList;
import com.landawn.abacus.util.CharSummaryStatistics;
import com.landawn.abacus.util.CompletableFuture;
import com.landawn.abacus.util.Holder;
import com.landawn.abacus.util.IndexedChar;
import com.landawn.abacus.util.LongMultiset;
import com.landawn.abacus.util.Multiset;
import com.landawn.abacus.util.MutableBoolean;
import com.landawn.abacus.util.MutableInt;
import com.landawn.abacus.util.N;
import com.landawn.abacus.util.Nth;
import com.landawn.abacus.util.Nullable;
import com.landawn.abacus.util.OptionalChar;
import com.landawn.abacus.util.OptionalDouble;
import com.landawn.abacus.util.Pair;
import com.landawn.abacus.util.Try;
import com.landawn.abacus.util.function.BiConsumer;
import com.landawn.abacus.util.function.BiPredicate;
import com.landawn.abacus.util.function.BinaryOperator;
import com.landawn.abacus.util.function.CharBiFunction;
import com.landawn.abacus.util.function.CharBinaryOperator;
import com.landawn.abacus.util.function.CharConsumer;
import com.landawn.abacus.util.function.CharFunction;
import com.landawn.abacus.util.function.CharPredicate;
import com.landawn.abacus.util.function.CharToIntFunction;
import com.landawn.abacus.util.function.CharTriFunction;
import com.landawn.abacus.util.function.CharUnaryOperator;
import com.landawn.abacus.util.function.Consumer;
import com.landawn.abacus.util.function.Function;
import com.landawn.abacus.util.function.ObjCharConsumer;
import com.landawn.abacus.util.function.Predicate;
import com.landawn.abacus.util.function.Supplier;
import com.landawn.abacus.util.function.ToCharFunction;
import com.landawn.abacus.util.function.ToIntFunction;
/**
* This class is a sequential, stateful and immutable stream implementation.
*
* @since 0.8
*
* @author Haiyang Li
*/
final class ParallelArrayCharStream extends ArrayCharStream {
private final int maxThreadNum;
private final Splitor splitor;
private volatile ArrayCharStream sequential;
private volatile Stream boxed;
ParallelArrayCharStream(final char[] values, final int fromIndex, final int toIndex, final boolean sorted, int maxThreadNum, Splitor splitor,
final Collection closeHandlers) {
super(values, sorted, closeHandlers);
this.maxThreadNum = N.min(maxThreadNum, MAX_THREAD_NUM_PER_OPERATION);
this.splitor = splitor == null ? DEFAULT_SPLITOR : splitor;
}
@Override
public CharStream filter(final CharPredicate predicate) {
if (maxThreadNum <= 1) {
return new ParallelIteratorCharStream(sequential().filter(predicate).iteratorEx(), sorted, maxThreadNum, splitor, closeHandlers);
}
final Stream stream = boxed().filter(new Predicate() {
@Override
public boolean test(Character value) {
return predicate.test(value);
}
});
return new ParallelIteratorCharStream(stream, false, maxThreadNum, splitor, closeHandlers);
}
@Override
public CharStream takeWhile(final CharPredicate predicate) {
if (maxThreadNum <= 1) {
return new ParallelIteratorCharStream(sequential().takeWhile(predicate).iteratorEx(), sorted, maxThreadNum, splitor, closeHandlers);
}
final Stream stream = boxed().takeWhile(new Predicate() {
@Override
public boolean test(Character value) {
return predicate.test(value);
}
});
return new ParallelIteratorCharStream(stream, false, maxThreadNum, splitor, closeHandlers);
}
@Override
public CharStream dropWhile(final CharPredicate predicate) {
if (maxThreadNum <= 1) {
return new ParallelIteratorCharStream(sequential().dropWhile(predicate).iteratorEx(), sorted, maxThreadNum, splitor, closeHandlers);
}
final Stream stream = boxed().dropWhile(new Predicate() {
@Override
public boolean test(Character value) {
return predicate.test(value);
}
});
return new ParallelIteratorCharStream(stream, false, maxThreadNum, splitor, closeHandlers);
}
@Override
public CharStream map(final CharUnaryOperator mapper) {
if (maxThreadNum <= 1) {
return new ParallelIteratorCharStream(sequential().map(mapper).iteratorEx(), false, maxThreadNum, splitor, closeHandlers);
}
final CharStream stream = boxed().mapToChar(new ToCharFunction() {
@Override
public char applyAsChar(Character value) {
return mapper.applyAsChar(value);
}
});
return new ParallelIteratorCharStream(stream, false, maxThreadNum, splitor, closeHandlers);
}
@Override
public IntStream mapToInt(final CharToIntFunction mapper) {
if (maxThreadNum <= 1) {
return new ParallelIteratorIntStream(sequential().mapToInt(mapper).iteratorEx(), false, maxThreadNum, splitor, closeHandlers);
}
final IntStream stream = boxed().mapToInt(new ToIntFunction() {
@Override
public int applyAsInt(Character value) {
return mapper.applyAsInt(value);
}
});
return new ParallelIteratorIntStream(stream, false, maxThreadNum, splitor, closeHandlers);
}
@Override
public Stream mapToObj(final CharFunction extends U> mapper) {
if (maxThreadNum <= 1) {
return new ParallelIteratorStream(sequential().mapToObj(mapper).iterator(), false, null, maxThreadNum, splitor, closeHandlers);
}
return boxed().map(new Function() {
@Override
public U apply(Character value) {
return mapper.apply(value);
}
});
}
@Override
public CharStream flatMap(final CharFunction extends CharStream> mapper) {
if (maxThreadNum <= 1) {
return new ParallelIteratorCharStream(sequential().flatMap(mapper), false, maxThreadNum, splitor, null);
}
final CharStream stream = boxed().flatMapToChar(new Function() {
@Override
public CharStream apply(Character value) {
return mapper.apply(value);
}
});
return new ParallelIteratorCharStream(stream, false, maxThreadNum, splitor, null);
}
@Override
public IntStream flatMapToInt(final CharFunction extends IntStream> mapper) {
if (maxThreadNum <= 1) {
return new ParallelIteratorIntStream(sequential().flatMapToInt(mapper), false, maxThreadNum, splitor, null);
}
final IntStream stream = boxed().flatMapToInt(new Function() {
@Override
public IntStream apply(Character value) {
return mapper.apply(value);
}
});
return new ParallelIteratorIntStream(stream, false, maxThreadNum, splitor, null);
}
@Override
public Stream flatMapToObj(final CharFunction extends Stream> mapper) {
if (maxThreadNum <= 1) {
return new ParallelIteratorStream<>(sequential().flatMapToObj(mapper), false, null, maxThreadNum, splitor, null);
}
return boxed().flatMap(new Function>() {
@Override
public Stream apply(Character value) {
return mapper.apply(value);
}
});
}
@Override
public Stream split(final int size) {
return new ParallelIteratorStream(sequential().split(size).iterator(), false, null, maxThreadNum, splitor, closeHandlers);
}
@Override
public Stream splitToList(final int size) {
return new ParallelIteratorStream(sequential().splitToList(size).iterator(), false, null, maxThreadNum, splitor, closeHandlers);
}
@Override
public Stream split(final U seed, final BiPredicate super Character, ? super U> predicate, final Consumer super U> seedUpdate) {
return new ParallelIteratorStream(sequential().split(seed, predicate, seedUpdate).iterator(), false, null, maxThreadNum, splitor,
closeHandlers);
}
@Override
public Stream splitToList(final U seed, final BiPredicate super Character, ? super U> predicate, final Consumer super U> seedUpdate) {
return new ParallelIteratorStream(sequential().splitToList(seed, predicate, seedUpdate).iterator(), false, null, maxThreadNum, splitor,
closeHandlers);
}
@Override
public Stream splitAt(final int n) {
if (n < 0) {
throw new IllegalArgumentException("'n' can't be negative");
}
final CharStream[] a = new CharStream[2];
final int middleIndex = n < toIndex - fromIndex ? fromIndex + n : toIndex;
a[0] = middleIndex == fromIndex ? CharStream.empty() : new ArrayCharStream(elements, fromIndex, middleIndex, sorted, null);
a[1] = middleIndex == toIndex ? CharStream.empty() : new ArrayCharStream(elements, middleIndex, toIndex, sorted, null);
return new ParallelArrayStream<>(a, 0, a.length, false, null, maxThreadNum, splitor, closeHandlers);
}
@Override
public Stream splitBy(final CharPredicate where) {
N.requireNonNull(where);
final Nullable first = indexed().findFirst(new Predicate() {
@Override
public boolean test(IndexedChar indexed) {
return !where.test(indexed.value());
}
});
return splitAt(first.isPresent() ? (int) first.get().index() : toIndex - fromIndex);
}
@Override
public Stream sliding(final int windowSize, final int increment) {
return new ParallelIteratorStream(sequential().sliding(windowSize, increment).iterator(), false, null, maxThreadNum, splitor,
closeHandlers);
}
@Override
public Stream slidingToList(final int windowSize, final int increment) {
return new ParallelIteratorStream(sequential().slidingToList(windowSize, increment).iterator(), false, null, maxThreadNum, splitor,
closeHandlers);
}
@Override
public CharStream sorted() {
if (sorted) {
return this;
}
final char[] a = N.copyOfRange(elements, fromIndex, toIndex);
N.parallelSort(a);
return new ParallelArrayCharStream(a, 0, a.length, true, maxThreadNum, splitor, closeHandlers);
}
@Override
public CharStream peek(final CharConsumer action) {
if (maxThreadNum <= 1) {
return new ParallelIteratorCharStream(sequential().peek(action).iteratorEx(), false, maxThreadNum, splitor, closeHandlers);
}
final CharStream stream = boxed().peek(new Consumer() {
@Override
public void accept(Character t) {
action.accept(t);
}
}).sequential().mapToChar(ToCharFunction.UNBOX);
return new ParallelIteratorCharStream(stream, false, maxThreadNum, splitor, closeHandlers);
}
@Override
public CharStream limit(long maxSize) {
if (maxSize < 0) {
throw new IllegalArgumentException("'maxSize' can't be negative: " + maxSize);
} else if (maxSize >= toIndex - fromIndex) {
return this;
}
return new ParallelArrayCharStream(elements, fromIndex, (int) (fromIndex + maxSize), sorted, maxThreadNum, splitor, closeHandlers);
}
@Override
public CharStream skip(long n) {
if (n < 0) {
throw new IllegalArgumentException("The skipped number can't be negative: " + n);
} else if (n == 0) {
return this;
}
if (n >= toIndex - fromIndex) {
return new ParallelArrayCharStream(elements, toIndex, toIndex, sorted, maxThreadNum, splitor, closeHandlers);
} else {
return new ParallelArrayCharStream(elements, (int) (fromIndex + n), toIndex, sorted, maxThreadNum, splitor, closeHandlers);
}
}
@Override
public void forEach(final Try.CharConsumer action) throws E {
if (maxThreadNum <= 1) {
sequential().forEach(action);
return;
}
final int threadNum = N.min(maxThreadNum, (toIndex - fromIndex));
final List> futureList = new ArrayList<>(threadNum);
final Holder eHolder = new Holder<>();
if (splitor == Splitor.ARRAY) {
final int sliceSize = (toIndex - fromIndex) / threadNum + ((toIndex - fromIndex) % threadNum == 0 ? 0 : 1);
for (int i = 0; i < threadNum; i++) {
final int sliceIndex = i;
futureList.add(asyncExecutor.execute(new Runnable() {
@Override
public void run() {
int cursor = fromIndex + sliceIndex * sliceSize;
final int to = toIndex - cursor > sliceSize ? cursor + sliceSize : toIndex;
try {
while (cursor < to && eHolder.value() == null) {
action.accept(elements[cursor++]);
}
} catch (Throwable e) {
setError(eHolder, e);
}
}
}));
}
} else {
final MutableInt cursor = MutableInt.of(fromIndex);
for (int i = 0; i < threadNum; i++) {
futureList.add(asyncExecutor.execute(new Runnable() {
@Override
public void run() {
char next = 0;
try {
while (eHolder.value() == null) {
synchronized (elements) {
if (cursor.intValue() < toIndex) {
next = elements[cursor.getAndIncrement()];
} else {
break;
}
}
action.accept(next);
}
} catch (Throwable e) {
setError(eHolder, e);
}
}
}));
}
}
complete2(futureList, eHolder, (E) null);
}
@Override
public char[] toArray() {
return N.copyOfRange(elements, fromIndex, toIndex);
}
@Override
public CharList toCharList() {
return CharList.of(N.copyOfRange(elements, fromIndex, toIndex));
}
@Override
public List toList() {
final List result = new ArrayList<>(toIndex - fromIndex);
for (int i = fromIndex; i < toIndex; i++) {
result.add(elements[i]);
}
return result;
}
@Override
public > R toList(Supplier supplier) {
final R result = supplier.get();
for (int i = fromIndex; i < toIndex; i++) {
result.add(elements[i]);
}
return result;
}
@Override
public Set toSet() {
final Set result = new HashSet<>(N.min(9, N.initHashCapacity(toIndex - fromIndex)));
for (int i = fromIndex; i < toIndex; i++) {
result.add(elements[i]);
}
return result;
}
@Override
public > R toSet(Supplier supplier) {
final R result = supplier.get();
for (int i = fromIndex; i < toIndex; i++) {
result.add(elements[i]);
}
return result;
}
@Override
public Multiset toMultiset() {
final Multiset result = new Multiset<>(N.min(9, N.initHashCapacity(toIndex - fromIndex)));
for (int i = fromIndex; i < toIndex; i++) {
result.add(elements[i]);
}
return result;
}
@Override
public Multiset toMultiset(Supplier extends Multiset> supplier) {
final Multiset result = supplier.get();
for (int i = fromIndex; i < toIndex; i++) {
result.add(elements[i]);
}
return result;
}
@Override
public LongMultiset toLongMultiset() {
final LongMultiset result = new LongMultiset<>(N.min(9, N.initHashCapacity(toIndex - fromIndex)));
for (int i = fromIndex; i < toIndex; i++) {
result.add(elements[i]);
}
return result;
}
@Override
public LongMultiset toLongMultiset(Supplier extends LongMultiset> supplier) {
final LongMultiset result = supplier.get();
for (int i = fromIndex; i < toIndex; i++) {
result.add(elements[i]);
}
return result;
}
@Override
public > M toMap(final CharFunction extends K> keyExtractor, final CharFunction extends U> valueMapper,
final BinaryOperator mergeFunction, final Supplier mapFactory) {
if (maxThreadNum <= 1) {
return sequential().toMap(keyExtractor, valueMapper, mergeFunction, mapFactory);
}
final Function super Character, ? extends K> keyExtractor2 = new Function() {
@Override
public K apply(Character value) {
return keyExtractor.apply(value);
}
};
final Function super Character, ? extends U> valueMapper2 = new Function() {
@Override
public U apply(Character value) {
return valueMapper.apply(value);
}
};
return boxed().toMap(keyExtractor2, valueMapper2, mergeFunction, mapFactory);
}
@Override
public > M toMap(final CharFunction extends K> classifier, final Collector downstream,
final Supplier mapFactory) {
if (maxThreadNum <= 1) {
return sequential().toMap(classifier, downstream, mapFactory);
}
final Function super Character, ? extends K> classifier2 = new Function() {
@Override
public K apply(Character value) {
return classifier.apply(value);
}
};
return boxed().toMap(classifier2, downstream, mapFactory);
}
@Override
public OptionalChar first() {
return fromIndex < toIndex ? OptionalChar.of(elements[fromIndex]) : OptionalChar.empty();
}
@Override
public OptionalChar last() {
return fromIndex < toIndex ? OptionalChar.of(elements[toIndex - 1]) : OptionalChar.empty();
}
@Override
public char reduce(final char identity, final CharBinaryOperator op) {
if (maxThreadNum <= 1) {
return sequential().reduce(identity, op);
}
final int threadNum = N.min(maxThreadNum, (toIndex - fromIndex));
final List> futureList = new ArrayList<>(threadNum);
final Holder eHolder = new Holder<>();
if (splitor == Splitor.ARRAY) {
final int sliceSize = (toIndex - fromIndex) / threadNum + ((toIndex - fromIndex) % threadNum == 0 ? 0 : 1);
for (int i = 0; i < threadNum; i++) {
final int sliceIndex = i;
futureList.add(asyncExecutor.execute(new Callable() {
@Override
public Character call() {
int cursor = fromIndex + sliceIndex * sliceSize;
final int to = toIndex - cursor > sliceSize ? cursor + sliceSize : toIndex;
char result = identity;
try {
while (cursor < to && eHolder.value() == null) {
result = op.applyAsChar(result, elements[cursor++]);
}
} catch (Throwable e) {
setError(eHolder, e);
}
return result;
}
}));
}
} else {
final MutableInt cursor = MutableInt.of(fromIndex);
for (int i = 0; i < threadNum; i++) {
futureList.add(asyncExecutor.execute(new Callable() {
@Override
public Character call() {
char result = identity;
char next = 0;
try {
while (eHolder.value() == null) {
synchronized (elements) {
if (cursor.intValue() < toIndex) {
next = elements[cursor.getAndIncrement()];
} else {
break;
}
}
result = op.applyAsChar(result, next);
}
} catch (Throwable e) {
setError(eHolder, e);
}
return result;
}
}));
}
}
if (eHolder.value() != null) {
throw N.toRuntimeException(eHolder.value());
}
Character result = null;
try {
for (CompletableFuture future : futureList) {
if (result == null) {
result = future.get();
} else {
result = op.applyAsChar(result, future.get());
}
}
} catch (Exception e) {
throw N.toRuntimeException(e);
}
return result == null ? identity : result;
}
@Override
public OptionalChar reduce(final CharBinaryOperator accumulator) {
if (maxThreadNum <= 1) {
return sequential().reduce(accumulator);
}
final int threadNum = N.min(maxThreadNum, (toIndex - fromIndex));
final List> futureList = new ArrayList<>(threadNum);
final Holder eHolder = new Holder<>();
if (splitor == Splitor.ARRAY) {
final int sliceSize = (toIndex - fromIndex) / threadNum + ((toIndex - fromIndex) % threadNum == 0 ? 0 : 1);
for (int i = 0; i < threadNum; i++) {
final int sliceIndex = i;
futureList.add(asyncExecutor.execute(new Callable() {
@Override
public Character call() {
int cursor = fromIndex + sliceIndex * sliceSize;
final int to = toIndex - cursor > sliceSize ? cursor + sliceSize : toIndex;
if (cursor >= to) {
return null;
}
char result = elements[cursor++];
try {
while (cursor < to && eHolder.value() == null) {
result = accumulator.applyAsChar(result, elements[cursor++]);
}
} catch (Throwable e) {
setError(eHolder, e);
}
return result;
}
}));
}
} else {
final MutableInt cursor = MutableInt.of(fromIndex);
for (int i = 0; i < threadNum; i++) {
futureList.add(asyncExecutor.execute(new Callable() {
@Override
public Character call() {
char result = 0;
synchronized (elements) {
if (cursor.intValue() < toIndex) {
result = elements[cursor.getAndIncrement()];
} else {
return null;
}
}
char next = 0;
try {
while (eHolder.value() == null) {
synchronized (elements) {
if (cursor.intValue() < toIndex) {
next = elements[cursor.getAndIncrement()];
} else {
break;
}
}
result = accumulator.applyAsChar(result, next);
}
} catch (Throwable e) {
setError(eHolder, e);
}
return result;
}
}));
}
}
if (eHolder.value() != null) {
throw N.toRuntimeException(eHolder.value());
}
Character result = null;
try {
for (CompletableFuture future : futureList) {
final Character tmp = future.get();
if (tmp == null) {
continue;
} else if (result == null) {
result = tmp;
} else {
result = accumulator.applyAsChar(result, tmp);
}
}
} catch (Exception e) {
throw N.toRuntimeException(e);
}
return result == null ? OptionalChar.empty() : OptionalChar.of(result);
}
@Override
public R collect(final Supplier supplier, final ObjCharConsumer accumulator, final BiConsumer combiner) {
if (maxThreadNum <= 1) {
return sequential().collect(supplier, accumulator, combiner);
}
final int threadNum = N.min(maxThreadNum, (toIndex - fromIndex));
final List> futureList = new ArrayList<>(threadNum);
final Holder eHolder = new Holder<>();
if (splitor == Splitor.ARRAY) {
final int sliceSize = (toIndex - fromIndex) / threadNum + ((toIndex - fromIndex) % threadNum == 0 ? 0 : 1);
for (int i = 0; i < threadNum; i++) {
final int sliceIndex = i;
futureList.add(asyncExecutor.execute(new Callable() {
@Override
public R call() {
int cursor = fromIndex + sliceIndex * sliceSize;
final int to = toIndex - cursor > sliceSize ? cursor + sliceSize : toIndex;
final R container = supplier.get();
try {
while (cursor < to && eHolder.value() == null) {
accumulator.accept(container, elements[cursor++]);
}
} catch (Throwable e) {
setError(eHolder, e);
}
return container;
}
}));
}
} else {
final MutableInt cursor = MutableInt.of(fromIndex);
for (int i = 0; i < threadNum; i++) {
futureList.add(asyncExecutor.execute(new Callable() {
@Override
public R call() {
final R container = supplier.get();
char next = 0;
try {
while (eHolder.value() == null) {
synchronized (elements) {
if (cursor.intValue() < toIndex) {
next = elements[cursor.getAndIncrement()];
} else {
break;
}
}
accumulator.accept(container, next);
}
} catch (Throwable e) {
setError(eHolder, e);
}
return container;
}
}));
}
}
if (eHolder.value() != null) {
throw N.toRuntimeException(eHolder.value());
}
R container = (R) NONE;
try {
for (CompletableFuture future : futureList) {
if (container == NONE) {
container = future.get();
} else {
combiner.accept(container, future.get());
}
}
} catch (Exception e) {
throw N.toRuntimeException(e);
}
return container == NONE ? supplier.get() : container;
}
@Override
public CharStream tail() {
if (fromIndex == toIndex) {
return this;
}
return new ParallelArrayCharStream(elements, fromIndex + 1, toIndex, sorted, maxThreadNum, splitor, closeHandlers);
}
@Override
public CharStream head2() {
if (fromIndex == toIndex) {
return this;
}
return new ParallelArrayCharStream(elements, fromIndex, toIndex - 1, sorted, maxThreadNum, splitor, closeHandlers);
}
@Override
public OptionalChar min() {
if (fromIndex == toIndex) {
return OptionalChar.empty();
} else if (sorted) {
return OptionalChar.of(elements[fromIndex]);
} else if (maxThreadNum <= 1) {
return OptionalChar.of(N.min(elements, fromIndex, toIndex));
}
final int threadNum = N.min(maxThreadNum, (toIndex - fromIndex));
final List> futureList = new ArrayList<>(threadNum);
final int sliceSize = (toIndex - fromIndex) / threadNum + ((toIndex - fromIndex) % threadNum == 0 ? 0 : 1);
for (int i = 0; i < threadNum; i++) {
final int sliceIndex = i;
futureList.add(asyncExecutor.execute(new Callable() {
@Override
public Character call() {
int cursor = fromIndex + sliceIndex * sliceSize;
final int to = toIndex - cursor > sliceSize ? cursor + sliceSize : toIndex;
return cursor >= to ? null : N.min(elements, cursor, to);
}
}));
}
Character candidate = null;
try {
for (CompletableFuture future : futureList) {
final Character tmp = future.get();
if (tmp == null) {
continue;
} else if (candidate == null || tmp.charValue() < candidate.charValue()) {
candidate = tmp;
}
}
} catch (Exception e) {
throw N.toRuntimeException(e);
}
return candidate == null ? OptionalChar.empty() : OptionalChar.of(candidate);
}
@Override
public OptionalChar max() {
if (fromIndex == toIndex) {
return OptionalChar.empty();
} else if (sorted) {
return OptionalChar.of(elements[toIndex - 1]);
} else if (maxThreadNum <= 1) {
return OptionalChar.of(N.max(elements, fromIndex, toIndex));
}
final int threadNum = N.min(maxThreadNum, (toIndex - fromIndex));
final List> futureList = new ArrayList<>(threadNum);
final int sliceSize = (toIndex - fromIndex) / threadNum + ((toIndex - fromIndex) % threadNum == 0 ? 0 : 1);
for (int i = 0; i < threadNum; i++) {
final int sliceIndex = i;
futureList.add(asyncExecutor.execute(new Callable() {
@Override
public Character call() {
int cursor = fromIndex + sliceIndex * sliceSize;
final int to = toIndex - cursor > sliceSize ? cursor + sliceSize : toIndex;
return cursor >= to ? null : N.max(elements, cursor, to);
}
}));
}
Character candidate = null;
try {
for (CompletableFuture future : futureList) {
final Character tmp = future.get();
if (tmp == null) {
continue;
} else if (candidate == null || tmp.charValue() > candidate.charValue()) {
candidate = tmp;
}
}
} catch (Exception e) {
throw N.toRuntimeException(e);
}
return candidate == null ? OptionalChar.empty() : OptionalChar.of(candidate);
}
@Override
public OptionalChar kthLargest(int k) {
N.checkArgument(k > 0, "'k' must be bigger than 0");
if (k > toIndex - fromIndex) {
return OptionalChar.empty();
} else if (sorted) {
return OptionalChar.of(elements[toIndex - k]);
}
return OptionalChar.of(N.kthLargest(elements, fromIndex, toIndex, k));
}
@Override
public long sum() {
if (fromIndex == toIndex) {
return 0L;
} else if (maxThreadNum <= 1) {
return sum(elements, fromIndex, toIndex);
}
final int threadNum = N.min(maxThreadNum, (toIndex - fromIndex));
final List> futureList = new ArrayList<>(threadNum);
final int sliceSize = (toIndex - fromIndex) / threadNum + ((toIndex - fromIndex) % threadNum == 0 ? 0 : 1);
for (int i = 0; i < threadNum; i++) {
final int sliceIndex = i;
futureList.add(asyncExecutor.execute(new Callable() {
@Override
public Long call() {
int cursor = fromIndex + sliceIndex * sliceSize;
final int to = toIndex - cursor > sliceSize ? cursor + sliceSize : toIndex;
return cursor >= to ? null : sum(elements, cursor, to);
}
}));
}
long result = 0;
try {
for (CompletableFuture future : futureList) {
final Long tmp = future.get();
if (tmp == null) {
continue;
} else {
result += tmp.longValue();
}
}
} catch (Exception e) {
throw N.toRuntimeException(e);
}
return result;
}
@Override
public OptionalDouble average() {
if (fromIndex == toIndex) {
return OptionalDouble.empty();
}
return OptionalDouble.of(sum() / toIndex - fromIndex);
}
@Override
public long count() {
return toIndex - fromIndex;
}
@Override
public CharStream reversed() {
return new ParallelIteratorCharStream(sequential().reversed().iteratorEx(), false, maxThreadNum, splitor, closeHandlers);
}
@Override
public CharSummaryStatistics summarize() {
if (fromIndex == toIndex) {
return new CharSummaryStatistics();
} else if (maxThreadNum <= 1) {
return sequential().summarize();
}
final int threadNum = N.min(maxThreadNum, (toIndex - fromIndex));
final List> futureList = new ArrayList<>(threadNum);
final int sliceSize = (toIndex - fromIndex) / threadNum + ((toIndex - fromIndex) % threadNum == 0 ? 0 : 1);
for (int i = 0; i < threadNum; i++) {
final int sliceIndex = i;
futureList.add(asyncExecutor.execute(new Callable() {
@Override
public CharSummaryStatistics call() {
int cursor = fromIndex + sliceIndex * sliceSize;
final int to = toIndex - cursor > sliceSize ? cursor + sliceSize : toIndex;
final CharSummaryStatistics result = new CharSummaryStatistics();
for (int i = cursor; i < to; i++) {
result.accept(elements[i]);
}
return result;
}
}));
}
CharSummaryStatistics result = null;
try {
for (CompletableFuture future : futureList) {
final CharSummaryStatistics tmp = future.get();
if (tmp == null) {
continue;
} else if (result == null) {
result = tmp;
} else {
result.combine(tmp);
}
}
} catch (Exception e) {
throw N.toRuntimeException(e);
}
return result;
}
@Override
public boolean anyMatch(final Try.CharPredicate predicate) throws E {
if (maxThreadNum <= 1) {
return sequential().anyMatch(predicate);
}
final int threadNum = N.min(maxThreadNum, (toIndex - fromIndex));
final List> futureList = new ArrayList<>(threadNum);
final Holder eHolder = new Holder<>();
final MutableBoolean result = MutableBoolean.of(false);
if (splitor == Splitor.ARRAY) {
final int sliceSize = (toIndex - fromIndex) / threadNum + ((toIndex - fromIndex) % threadNum == 0 ? 0 : 1);
for (int i = 0; i < threadNum; i++) {
final int sliceIndex = i;
futureList.add(asyncExecutor.execute(new Runnable() {
@Override
public void run() {
int cursor = fromIndex + sliceIndex * sliceSize;
final int to = toIndex - cursor > sliceSize ? cursor + sliceSize : toIndex;
try {
while (cursor < to && result.isFalse() && eHolder.value() == null) {
if (predicate.test(elements[cursor++])) {
result.setTrue();
break;
}
}
} catch (Throwable e) {
setError(eHolder, e);
}
}
}));
}
} else {
final MutableInt cursor = MutableInt.of(fromIndex);
for (int i = 0; i < threadNum; i++) {
futureList.add(asyncExecutor.execute(new Runnable() {
@Override
public void run() {
char next = 0;
try {
while (result.isFalse() && eHolder.value() == null) {
synchronized (elements) {
if (cursor.intValue() < toIndex) {
next = elements[cursor.getAndIncrement()];
} else {
break;
}
}
if (predicate.test(next)) {
result.setTrue();
break;
}
}
} catch (Throwable e) {
setError(eHolder, e);
}
}
}));
}
}
complete2(futureList, eHolder, (E) null);
return result.value();
}
@Override
public boolean allMatch(final Try.CharPredicate predicate) throws E {
if (maxThreadNum <= 1) {
return sequential().allMatch(predicate);
}
final int threadNum = N.min(maxThreadNum, (toIndex - fromIndex));
final List> futureList = new ArrayList<>(threadNum);
final Holder eHolder = new Holder<>();
final MutableBoolean result = MutableBoolean.of(true);
if (splitor == Splitor.ARRAY) {
final int sliceSize = (toIndex - fromIndex) / threadNum + ((toIndex - fromIndex) % threadNum == 0 ? 0 : 1);
for (int i = 0; i < threadNum; i++) {
final int sliceIndex = i;
futureList.add(asyncExecutor.execute(new Runnable() {
@Override
public void run() {
int cursor = fromIndex + sliceIndex * sliceSize;
final int to = toIndex - cursor > sliceSize ? cursor + sliceSize : toIndex;
try {
while (cursor < to && result.isTrue() && eHolder.value() == null) {
if (predicate.test(elements[cursor++]) == false) {
result.setFalse();
break;
}
}
} catch (Throwable e) {
setError(eHolder, e);
}
}
}));
}
} else {
final MutableInt cursor = MutableInt.of(fromIndex);
for (int i = 0; i < threadNum; i++) {
futureList.add(asyncExecutor.execute(new Runnable() {
@Override
public void run() {
char next = 0;
try {
while (result.isTrue() && eHolder.value() == null) {
synchronized (elements) {
if (cursor.intValue() < toIndex) {
next = elements[cursor.getAndIncrement()];
} else {
break;
}
}
if (predicate.test(next) == false) {
result.setFalse();
break;
}
}
} catch (Throwable e) {
setError(eHolder, e);
}
}
}));
}
}
complete2(futureList, eHolder, (E) null);
return result.value();
}
@Override
public boolean noneMatch(final Try.CharPredicate predicate) throws E {
if (maxThreadNum <= 1) {
return sequential().noneMatch(predicate);
}
final int threadNum = N.min(maxThreadNum, (toIndex - fromIndex));
final List> futureList = new ArrayList<>(threadNum);
final Holder eHolder = new Holder<>();
final MutableBoolean result = MutableBoolean.of(true);
if (splitor == Splitor.ARRAY) {
final int sliceSize = (toIndex - fromIndex) / threadNum + ((toIndex - fromIndex) % threadNum == 0 ? 0 : 1);
for (int i = 0; i < threadNum; i++) {
final int sliceIndex = i;
futureList.add(asyncExecutor.execute(new Runnable() {
@Override
public void run() {
int cursor = fromIndex + sliceIndex * sliceSize;
final int to = toIndex - cursor > sliceSize ? cursor + sliceSize : toIndex;
try {
while (cursor < to && result.isTrue() && eHolder.value() == null) {
if (predicate.test(elements[cursor++])) {
result.setFalse();
break;
}
}
} catch (Throwable e) {
setError(eHolder, e);
}
}
}));
}
} else {
final MutableInt cursor = MutableInt.of(fromIndex);
for (int i = 0; i < threadNum; i++) {
futureList.add(asyncExecutor.execute(new Runnable() {
@Override
public void run() {
char next = 0;
try {
while (result.isTrue() && eHolder.value() == null) {
synchronized (elements) {
if (cursor.intValue() < toIndex) {
next = elements[cursor.getAndIncrement()];
} else {
break;
}
}
if (predicate.test(next)) {
result.setFalse();
break;
}
}
} catch (Throwable e) {
setError(eHolder, e);
}
}
}));
}
}
complete2(futureList, eHolder, (E) null);
return result.value();
}
@Override
public OptionalChar findFirst(final Try.CharPredicate predicate) throws E {
if (maxThreadNum <= 1) {
return sequential().findFirst(predicate);
}
final int threadNum = N.min(maxThreadNum, (toIndex - fromIndex));
final List> futureList = new ArrayList<>(threadNum);
final Holder eHolder = new Holder<>();
final Holder> resultHolder = new Holder<>();
if (splitor == Splitor.ARRAY) {
final int sliceSize = (toIndex - fromIndex) / threadNum + ((toIndex - fromIndex) % threadNum == 0 ? 0 : 1);
for (int i = 0; i < threadNum; i++) {
final int sliceIndex = i;
futureList.add(asyncExecutor.execute(new Runnable() {
@Override
public void run() {
int cursor = fromIndex + sliceIndex * sliceSize;
final int to = toIndex - cursor > sliceSize ? cursor + sliceSize : toIndex;
final Pair pair = new Pair<>();
try {
while (cursor < to && (resultHolder.value() == null || cursor < resultHolder.value().left) && eHolder.value() == null) {
pair.left = cursor;
pair.right = elements[cursor++];
if (predicate.test(pair.right)) {
synchronized (resultHolder) {
if (resultHolder.value() == null || pair.left < resultHolder.value().left) {
resultHolder.setValue(pair.copy());
}
}
break;
}
}
} catch (Throwable e) {
setError(eHolder, e);
}
}
}));
}
} else {
final MutableInt cursor = MutableInt.of(fromIndex);
for (int i = 0; i < threadNum; i++) {
futureList.add(asyncExecutor.execute(new Runnable() {
@Override
public void run() {
final Pair pair = new Pair<>();
try {
while (resultHolder.value() == null && eHolder.value() == null) {
synchronized (elements) {
if (cursor.intValue() < toIndex) {
pair.left = cursor.intValue();
pair.right = elements[cursor.getAndIncrement()];
} else {
break;
}
}
if (predicate.test(pair.right)) {
synchronized (resultHolder) {
if (resultHolder.value() == null || pair.left < resultHolder.value().left) {
resultHolder.setValue(pair.copy());
}
}
break;
}
}
} catch (Throwable e) {
setError(eHolder, e);
}
}
}));
}
}
complete2(futureList, eHolder, (E) null);
return resultHolder.value() == null ? OptionalChar.empty() : OptionalChar.of(resultHolder.value().right);
}
@Override
public OptionalChar findLast(final Try.CharPredicate predicate) throws E {
if (maxThreadNum <= 1) {
return sequential().findLast(predicate);
}
final int threadNum = N.min(maxThreadNum, (toIndex - fromIndex));
final List> futureList = new ArrayList<>(threadNum);
final Holder eHolder = new Holder<>();
final Holder> resultHolder = new Holder<>();
if (splitor == Splitor.ARRAY) {
final int sliceSize = (toIndex - fromIndex) / threadNum + ((toIndex - fromIndex) % threadNum == 0 ? 0 : 1);
for (int i = 0; i < threadNum; i++) {
final int sliceIndex = i;
futureList.add(asyncExecutor.execute(new Runnable() {
@Override
public void run() {
final int from = fromIndex + sliceIndex * sliceSize;
int cursor = toIndex - from > sliceSize ? from + sliceSize : toIndex;
final Pair pair = new Pair<>();
try {
while (cursor > from && (resultHolder.value() == null || cursor > resultHolder.value().left) && eHolder.value() == null) {
pair.left = cursor;
pair.right = elements[--cursor];
if (predicate.test(pair.right)) {
synchronized (resultHolder) {
if (resultHolder.value() == null || pair.left > resultHolder.value().left) {
resultHolder.setValue(pair.copy());
}
}
break;
}
}
} catch (Throwable e) {
setError(eHolder, e);
}
}
}));
}
} else {
final MutableInt cursor = MutableInt.of(toIndex);
for (int i = 0; i < threadNum; i++) {
futureList.add(asyncExecutor.execute(new Runnable() {
@Override
public void run() {
final Pair pair = new Pair<>();
try {
while (resultHolder.value() == null && eHolder.value() == null) {
synchronized (elements) {
if (cursor.intValue() > fromIndex) {
pair.left = cursor.intValue();
pair.right = elements[cursor.decrementAndGet()];
} else {
break;
}
}
if (predicate.test(pair.right)) {
synchronized (resultHolder) {
if (resultHolder.value() == null || pair.left > resultHolder.value().left) {
resultHolder.setValue(pair.copy());
}
}
break;
}
}
} catch (Throwable e) {
setError(eHolder, e);
}
}
}));
}
}
complete2(futureList, eHolder, (E) null);
return resultHolder.value() == null ? OptionalChar.empty() : OptionalChar.of(resultHolder.value().right);
}
@Override
public OptionalChar findAny(final Try.CharPredicate predicate) throws E {
if (maxThreadNum <= 1) {
return sequential().findAny(predicate);
}
final int threadNum = N.min(maxThreadNum, (toIndex - fromIndex));
final List> futureList = new ArrayList<>(threadNum);
final Holder eHolder = new Holder<>();
final Holder
© 2015 - 2025 Weber Informatics LLC | Privacy Policy