com.landawn.abacus.util.stream.IntStream Maven / Gradle / Ivy
/*
* Copyright (C) 2016, 2017, 2018, 2019 HaiYang Li
*
* Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except
* in compliance with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software distributed under the License
* is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express
* or implied. See the License for the specific language governing permissions and limitations under
* the License.
*/
package com.landawn.abacus.util.stream;
import java.lang.reflect.Array;
import java.security.SecureRandom;
import java.util.ArrayList;
import java.util.Collection;
import java.util.Comparator;
import java.util.Iterator;
import java.util.List;
import java.util.Map;
import java.util.NoSuchElementException;
import java.util.PrimitiveIterator;
import java.util.Queue;
import java.util.Random;
import com.landawn.abacus.annotation.SequentialOnly;
import com.landawn.abacus.util.ClassUtil;
import com.landawn.abacus.util.ContinuableFuture;
import com.landawn.abacus.util.Fn.Fnn;
import com.landawn.abacus.util.IOUtil;
import com.landawn.abacus.util.IndexedInt;
import com.landawn.abacus.util.IntIterator;
import com.landawn.abacus.util.IntList;
import com.landawn.abacus.util.IntSummaryStatistics;
import com.landawn.abacus.util.MutableInt;
import com.landawn.abacus.util.N;
import com.landawn.abacus.util.Nth;
import com.landawn.abacus.util.Pair;
import com.landawn.abacus.util.Percentage;
import com.landawn.abacus.util.Try;
import com.landawn.abacus.util.u.Holder;
import com.landawn.abacus.util.u.Optional;
import com.landawn.abacus.util.u.OptionalDouble;
import com.landawn.abacus.util.u.OptionalInt;
import com.landawn.abacus.util.function.BiConsumer;
import com.landawn.abacus.util.function.BiFunction;
import com.landawn.abacus.util.function.BinaryOperator;
import com.landawn.abacus.util.function.BooleanSupplier;
import com.landawn.abacus.util.function.Function;
import com.landawn.abacus.util.function.IntBiFunction;
import com.landawn.abacus.util.function.IntBiPredicate;
import com.landawn.abacus.util.function.IntBinaryOperator;
import com.landawn.abacus.util.function.IntConsumer;
import com.landawn.abacus.util.function.IntFunction;
import com.landawn.abacus.util.function.IntNFunction;
import com.landawn.abacus.util.function.IntPredicate;
import com.landawn.abacus.util.function.IntSupplier;
import com.landawn.abacus.util.function.IntTernaryOperator;
import com.landawn.abacus.util.function.IntToByteFunction;
import com.landawn.abacus.util.function.IntToCharFunction;
import com.landawn.abacus.util.function.IntToDoubleFunction;
import com.landawn.abacus.util.function.IntToFloatFunction;
import com.landawn.abacus.util.function.IntToLongFunction;
import com.landawn.abacus.util.function.IntToShortFunction;
import com.landawn.abacus.util.function.IntUnaryOperator;
import com.landawn.abacus.util.function.ObjIntConsumer;
import com.landawn.abacus.util.function.Supplier;
import com.landawn.abacus.util.function.ToIntFunction;
/**
* The Stream will be automatically closed after execution(A terminal method is executed/triggered).
*
* @see Stream
*/
public abstract class IntStream extends StreamBase {
static final Random RAND = new SecureRandom();
IntStream(final boolean sorted, final Collection closeHandlers) {
super(sorted, null, closeHandlers);
}
public abstract IntStream map(IntUnaryOperator mapper);
public abstract CharStream mapToChar(IntToCharFunction mapper);
public abstract ByteStream mapToByte(IntToByteFunction mapper);
public abstract ShortStream mapToShort(IntToShortFunction mapper);
public abstract LongStream mapToLong(IntToLongFunction mapper);
public abstract FloatStream mapToFloat(IntToFloatFunction mapper);
public abstract DoubleStream mapToDouble(IntToDoubleFunction mapper);
public abstract Stream mapToObj(IntFunction extends U> mapper);
public abstract IntStream flatMap(IntFunction extends IntStream> mapper);
public abstract IntStream flattMap(IntFunction mapper);
public abstract CharStream flatMapToChar(IntFunction extends CharStream> mapper);
public abstract ByteStream flatMapToByte(IntFunction extends ByteStream> mapper);
public abstract ShortStream flatMapToShort(IntFunction extends ShortStream> mapper);
public abstract LongStream flatMapToLong(IntFunction extends LongStream> mapper);
public abstract FloatStream flatMapToFloat(IntFunction extends FloatStream> mapper);
public abstract DoubleStream flatMapToDouble(IntFunction extends DoubleStream> mapper);
public abstract Stream flatMapToObj(IntFunction extends Stream> mapper);
public abstract Stream flattMapToObj(IntFunction extends Collection> mapper);
public abstract Stream flatMappToObj(IntFunction mapper);
/**
* Note: copied from StreamEx: https://github.com/amaembo/streamex
*
*
*
* Returns a stream consisting of results of applying the given function to
* the ranges created from the source elements.
* This is a quasi-intermediate
* partial reduction operation.
*
* @param sameRange a non-interfering, stateless predicate to apply to
* the leftmost and next elements which returns true for elements
* which belong to the same range.
* @param mapper a non-interfering, stateless function to apply to the
* range borders and produce the resulting element. If value was
* not merged to the interval, then mapper will receive the same
* value twice, otherwise it will receive the leftmost and the
* rightmost values which were merged to the range.
* @return the new stream
* @see #collapse(IntBiPredicate, IntBinaryOperator)
* @see Stream#rangeMap(BiPredicate, BiFunction)
*/
@SequentialOnly
public abstract IntStream rangeMap(final IntBiPredicate sameRange, final IntBinaryOperator mapper);
/**
* Note: copied from StreamEx: https://github.com/amaembo/streamex
*
*
*
* Returns a stream consisting of results of applying the given function to
* the ranges created from the source elements.
* This is a quasi-intermediate
* partial reduction operation.
*
* @param sameRange a non-interfering, stateless predicate to apply to
* the leftmost and next elements which returns true for elements
* which belong to the same range.
* @param mapper a non-interfering, stateless function to apply to the
* range borders and produce the resulting element. If value was
* not merged to the interval, then mapper will receive the same
* value twice, otherwise it will receive the leftmost and the
* rightmost values which were merged to the range.
* @return the new stream
* @see Stream#rangeMap(BiPredicate, BiFunction)
*/
@SequentialOnly
public abstract Stream rangeMapp(final IntBiPredicate sameRange, final IntBiFunction mapper);
/**
* Merge series of adjacent elements which satisfy the given predicate using
* the merger function and return a new stream.
*
*
* This method only run sequentially, even in parallel stream.
*
* @param collapsible
* @return
*/
@SequentialOnly
public abstract Stream collapse(final IntBiPredicate collapsible);
/**
* Merge series of adjacent elements which satisfy the given predicate using
* the merger function and return a new stream.
*
*
* This method only run sequentially, even in parallel stream.
*
* @param collapsible
* @param mergeFunction
* @return
*/
@SequentialOnly
public abstract IntStream collapse(final IntBiPredicate collapsible, final IntBinaryOperator mergeFunction);
/**
* Returns a {@code Stream} produced by iterative application of a accumulation function
* to an initial element {@code init} and next element of the current stream.
* Produces a {@code Stream} consisting of {@code init}, {@code acc(init, value1)},
* {@code acc(acc(init, value1), value2)}, etc.
*
* This is an intermediate operation.
*
*
Example:
*
* accumulator: (a, b) -> a + b
* stream: [1, 2, 3, 4, 5]
* result: [1, 3, 6, 10, 15]
*
*
*
* This method only run sequentially, even in parallel stream.
*
* @param accumulator the accumulation function
* @return the new stream which has the extract same size as this stream.
*/
@SequentialOnly
public abstract IntStream scan(final IntBinaryOperator accumulator);
/**
* Returns a {@code Stream} produced by iterative application of a accumulation function
* to an initial element {@code init} and next element of the current stream.
* Produces a {@code Stream} consisting of {@code init}, {@code acc(init, value1)},
* {@code acc(acc(init, value1), value2)}, etc.
*
* This is an intermediate operation.
*
*
Example:
*
* init:10
* accumulator: (a, b) -> a + b
* stream: [1, 2, 3, 4, 5]
* result: [11, 13, 16, 20, 25]
*
*
*
* This method only run sequentially, even in parallel stream.
*
* @param init the initial value. it's only used once by accumulator
to calculate the fist element in the returned stream.
* It will be ignored if this stream is empty and won't be the first element of the returned stream.
*
* @param accumulator the accumulation function
* @return the new stream which has the extract same size as this stream.
*/
@SequentialOnly
public abstract IntStream scan(final int init, final IntBinaryOperator accumulator);
/**
*
* @param init
* @param accumulator
* @param initIncluded
* @return
*/
@SequentialOnly
public abstract IntStream scan(final int init, final IntBinaryOperator accumulator, final boolean initIncluded);
/**
*
*
* This method only run sequentially, even in parallel stream.
*
* @param n
* @return
*/
@SequentialOnly
public abstract IntStream top(int n);
/**
*
*
* This method only run sequentially, even in parallel stream.
*
* @param n
* @param comparator
* @return
*/
@SequentialOnly
public abstract IntStream top(final int n, Comparator super Integer> comparator);
public abstract IntList toIntList();
/**
*
* @param keyMapper
* @param valueMapper
* @return
* @see Collectors#toMap(Function, Function)
*/
public abstract Map toMap(IntFunction extends K> keyMapper, IntFunction extends V> valueMapper);
/**
*
* @param keyMapper
* @param valueMapper
* @param mapFactory
* @return
* @see Collectors#toMap(Function, Function, Supplier)
*/
public abstract > M toMap(IntFunction extends K> keyMapper, IntFunction extends V> valueMapper,
Supplier extends M> mapFactory);
/**
*
* @param keyMapper
* @param valueMapper
* @param mergeFunction
* @return
* @see Collectors#toMap(Function, Function, BinaryOperator)
*/
public abstract Map toMap(IntFunction extends K> keyMapper, IntFunction extends V> valueMapper, BinaryOperator mergeFunction);
/**
*
* @param keyMapper
* @param valueMapper
* @param mergeFunction
* @param mapFactory
* @return
* @see Collectors#toMap(Function, Function, BinaryOperator, Supplier)
*/
public abstract > M toMap(IntFunction extends K> keyMapper, IntFunction extends V> valueMapper,
BinaryOperator mergeFunction, Supplier extends M> mapFactory);
/**
*
* @param keyMapper
* @param downstream
* @return
* @see Collectors#groupingBy(Function, Collector)
*/
public abstract Map toMap(final IntFunction extends K> keyMapper, final Collector downstream);
/**
*
* @param keyMapper
* @param downstream
* @param mapFactory
* @return
* @see Collectors#groupingBy(Function, Collector, Supplier)
*/
public abstract > M toMap(final IntFunction extends K> keyMapper, final Collector downstream,
final Supplier extends M> mapFactory);
public abstract int reduce(int identity, IntBinaryOperator op);
public abstract OptionalInt reduce(IntBinaryOperator op);
public abstract R collect(Supplier supplier, ObjIntConsumer super R> accumulator, BiConsumer combiner);
/**
*
* @param supplier
* @param accumulator
* @return
*/
public abstract R collect(Supplier supplier, ObjIntConsumer super R> accumulator);
public abstract void forEach(final Try.IntConsumer action) throws E;
public abstract boolean anyMatch(final Try.IntPredicate predicate) throws E;
public abstract boolean allMatch(final Try.IntPredicate predicate) throws E;
public abstract boolean noneMatch(final Try.IntPredicate predicate) throws E;
public abstract OptionalInt findFirst(final Try.IntPredicate predicate) throws E;
public abstract OptionalInt findLast(final Try.IntPredicate predicate) throws E;
public abstract OptionalInt findFirstOrLast(Try.IntPredicate predicateForFirst,
Try.IntPredicate predicateForLast) throws E, E2;
public abstract OptionalInt findAny(final Try.IntPredicate predicate) throws E;
public abstract OptionalInt min();
public abstract OptionalInt max();
/**
*
* @param k
* @return OptionalByte.empty() if there is no element or count less than k, otherwise the kth largest element.
*/
public abstract OptionalInt kthLargest(int k);
public abstract int sum();
public abstract OptionalDouble average();
public abstract IntSummaryStatistics summarize();
public abstract Pair>> summarizeAndPercentiles();
/**
*
* @param b
* @param nextSelector first parameter is selected if Nth.FIRST
is returned, otherwise the second parameter is selected.
* @return
*/
public abstract IntStream merge(final IntStream b, final IntBiFunction nextSelector);
public abstract IntStream zipWith(IntStream b, IntBinaryOperator zipFunction);
public abstract IntStream zipWith(IntStream b, IntStream c, IntTernaryOperator zipFunction);
public abstract IntStream zipWith(IntStream b, int valueForNoneA, int valueForNoneB, IntBinaryOperator zipFunction);
public abstract IntStream zipWith(IntStream b, IntStream c, int valueForNoneA, int valueForNoneB, int valueForNoneC, IntTernaryOperator zipFunction);
public abstract LongStream asLongStream();
public abstract FloatStream asFloatStream();
public abstract DoubleStream asDoubleStream();
public abstract java.util.stream.IntStream toJdkStream();
public abstract Stream boxed();
/**
* Remember to close this Stream after the iteration is done, if required.
*
* @return
*/
@SequentialOnly
@Override
public IntIterator iterator() {
if (isEmptyCloseHandlers(closeHandlers) == false) {
if (logger.isWarnEnabled()) {
logger.warn("### Remember to close " + ClassUtil.getSimpleClassName(getClass()));
}
}
return iteratorEx();
}
abstract IntIteratorEx iteratorEx();
@Override
public R __(Function super IntStream, R> transfer) {
return transfer.apply(this);
}
public static IntStream empty() {
return new ArrayIntStream(N.EMPTY_INT_ARRAY, true, null);
}
@SafeVarargs
public static IntStream of(final int... a) {
return N.isNullOrEmpty(a) ? empty() : new ArrayIntStream(a);
}
public static IntStream of(final int[] a, final int startIndex, final int endIndex) {
return N.isNullOrEmpty(a) && (startIndex == 0 && endIndex == 0) ? empty() : new ArrayIntStream(a, startIndex, endIndex);
}
public static IntStream of(final Integer[] a) {
return Stream.of(a).mapToInt(Fnn.unboxI());
}
public static IntStream of(final Integer[] a, final int startIndex, final int endIndex) {
return Stream.of(a, startIndex, endIndex).mapToInt(Fnn.unboxI());
}
public static IntStream of(final Collection c) {
return Stream.of(c).mapToInt(Fnn.unboxI());
}
public static IntStream of(final IntIterator iterator) {
return iterator == null ? empty() : new IteratorIntStream(iterator);
}
/**
* Lazy evaluation.
* @param supplier
* @return
*/
public static IntStream of(final Supplier supplier) {
final IntIterator iter = new IntIteratorEx() {
private IntIterator iterator = null;
@Override
public boolean hasNext() {
if (iterator == null) {
init();
}
return iterator.hasNext();
}
@Override
public int nextInt() {
if (iterator == null) {
init();
}
return iterator.nextInt();
}
private void init() {
final IntList c = supplier.get();
if (N.isNullOrEmpty(c)) {
iterator = IntIterator.empty();
} else {
iterator = c.iterator();
}
}
};
return of(iter);
}
public static IntStream of(final java.util.stream.IntStream stream) {
return of(new IntIteratorEx() {
private PrimitiveIterator.OfInt iter = null;
@Override
public boolean hasNext() {
if (iter == null) {
iter = stream.iterator();
}
return iter.hasNext();
}
@Override
public int nextInt() {
if (iter == null) {
iter = stream.iterator();
}
return iter.nextInt();
}
@Override
public long count() {
return iter == null ? stream.count() : super.count();
}
@Override
public void skip(long n) {
if (iter == null) {
iter = stream.skip(n).iterator();
} else {
super.skip(n);
}
}
@Override
public int[] toArray() {
return iter == null ? stream.toArray() : super.toArray();
}
}).__(s -> stream.isParallel() ? s.parallel() : s.sequential()).onClose(new Runnable() {
@Override
public void run() {
stream.close();
}
});
}
public static IntStream ofCodePoints(final CharSequence str) {
if (N.isNullOrEmpty(str)) {
return empty();
}
final IntIterator iter = new IntIterator() {
private final int len = str.length();
private int cursor = 0;
@Override
public boolean hasNext() {
return cursor < len;
}
@Override
public int nextInt() {
if (cursor >= len) {
throw new NoSuchElementException();
}
char c1 = str.charAt(cursor++);
if (Character.isHighSurrogate(c1) && cursor < len) {
char c2 = str.charAt(cursor);
if (Character.isLowSurrogate(c2)) {
cursor++;
return Character.toCodePoint(c1, c2);
}
}
return c1;
}
};
return of(iter);
}
private static final Function flatMapper = new Function() {
@Override
public IntStream apply(int[] t) {
return IntStream.of(t);
}
};
private static final Function flatMappper = new Function() {
@Override
public IntStream apply(int[][] t) {
return IntStream.flat(t);
}
};
public static IntStream flat(final int[][] a) {
return N.isNullOrEmpty(a) ? empty() : Stream.of(a).flatMapToInt(flatMapper);
}
public static IntStream flat(final int[][] a, final boolean vertically) {
if (N.isNullOrEmpty(a)) {
return empty();
} else if (a.length == 1) {
return of(a[0]);
} else if (vertically == false) {
return Stream.of(a).flatMapToInt(flatMapper);
}
long n = 0;
for (int[] e : a) {
n += N.len(e);
}
if (n == 0) {
return empty();
}
final int rows = N.len(a);
final long count = n;
final IntIterator iter = new IntIteratorEx() {
private int rowNum = 0;
private int colNum = 0;
private long cnt = 0;
@Override
public boolean hasNext() {
return cnt < count;
}
@Override
public int nextInt() {
if (cnt++ >= count) {
throw new NoSuchElementException();
}
if (rowNum == rows) {
rowNum = 0;
colNum++;
}
while (a[rowNum] == null || colNum >= a[rowNum].length) {
if (rowNum < rows - 1) {
rowNum++;
} else {
rowNum = 0;
colNum++;
}
}
return a[rowNum++][colNum];
}
};
return of(iter);
}
public static IntStream flat(final int[][] a, final int valueForNone, final boolean vertically) {
if (N.isNullOrEmpty(a)) {
return empty();
} else if (a.length == 1) {
return of(a[0]);
}
long n = 0;
int maxLen = 0;
for (int[] e : a) {
n += N.len(e);
maxLen = N.max(maxLen, N.len(e));
}
if (n == 0) {
return empty();
}
final int rows = N.len(a);
final int cols = maxLen;
final long count = rows * cols;
IntIterator iter = null;
if (vertically) {
iter = new IntIteratorEx() {
private int rowNum = 0;
private int colNum = 0;
private long cnt = 0;
@Override
public boolean hasNext() {
return cnt < count;
}
@Override
public int nextInt() {
if (cnt++ >= count) {
throw new NoSuchElementException();
}
if (rowNum == rows) {
rowNum = 0;
colNum++;
}
if (a[rowNum] == null || colNum >= a[rowNum].length) {
rowNum++;
return valueForNone;
} else {
return a[rowNum++][colNum];
}
}
};
} else {
iter = new IntIteratorEx() {
private int rowNum = 0;
private int colNum = 0;
private long cnt = 0;
@Override
public boolean hasNext() {
return cnt < count;
}
@Override
public int nextInt() {
if (cnt++ >= count) {
throw new NoSuchElementException();
}
if (colNum >= cols) {
colNum = 0;
rowNum++;
}
if (a[rowNum] == null || colNum >= a[rowNum].length) {
colNum++;
return valueForNone;
} else {
return a[rowNum][colNum++];
}
}
};
}
return of(iter);
}
public static IntStream flat(final int[][][] a) {
return N.isNullOrEmpty(a) ? empty() : Stream.of(a).flatMapToInt(flatMappper);
}
@SafeVarargs
public static IntStream from(final char... a) {
return N.isNullOrEmpty(a) ? empty() : from(a, 0, a.length);
}
public static IntStream from(final char[] a, final int fromIndex, final int toIndex) {
N.checkFromToIndex(fromIndex, toIndex, N.len(a));
if (fromIndex == toIndex) {
return empty();
}
return new IteratorIntStream(new IntIteratorEx() {
private int cursor = fromIndex;
@Override
public boolean hasNext() {
return cursor < toIndex;
}
@Override
public int nextInt() {
if (cursor >= toIndex) {
throw new NoSuchElementException();
}
return a[cursor++];
}
@Override
public long count() {
return toIndex - cursor;
}
@Override
public void skip(long n) {
N.checkArgNotNegative(n, "n");
cursor = n < toIndex - cursor ? cursor + (int) n : toIndex;
}
@Override
public int[] toArray() {
final int[] result = new int[toIndex - cursor];
for (int i = cursor; i < toIndex; i++) {
result[i - cursor] = a[i];
}
return result;
}
});
}
@SafeVarargs
public static IntStream from(final byte... a) {
return N.isNullOrEmpty(a) ? empty() : from(a, 0, a.length);
}
public static IntStream from(final byte[] a, final int fromIndex, final int toIndex) {
N.checkFromToIndex(fromIndex, toIndex, N.len(a));
if (fromIndex == toIndex) {
return empty();
}
return new IteratorIntStream(new IntIteratorEx() {
private int cursor = fromIndex;
@Override
public boolean hasNext() {
return cursor < toIndex;
}
@Override
public int nextInt() {
if (cursor >= toIndex) {
throw new NoSuchElementException();
}
return a[cursor++];
}
@Override
public long count() {
return toIndex - cursor;
}
@Override
public void skip(long n) {
N.checkArgNotNegative(n, "n");
cursor = n < toIndex - cursor ? cursor + (int) n : toIndex;
}
@Override
public int[] toArray() {
final int[] result = new int[toIndex - cursor];
for (int i = cursor; i < toIndex; i++) {
result[i - cursor] = a[i];
}
return result;
}
});
}
@SafeVarargs
public static IntStream from(final short... a) {
return N.isNullOrEmpty(a) ? empty() : from(a, 0, a.length);
}
public static IntStream from(final short[] a, final int fromIndex, final int toIndex) {
N.checkFromToIndex(fromIndex, toIndex, N.len(a));
if (fromIndex == toIndex) {
return empty();
}
return new IteratorIntStream(new IntIteratorEx() {
private int cursor = fromIndex;
@Override
public boolean hasNext() {
return cursor < toIndex;
}
@Override
public int nextInt() {
if (cursor >= toIndex) {
throw new NoSuchElementException();
}
return a[cursor++];
}
@Override
public long count() {
return toIndex - cursor;
}
@Override
public void skip(long n) {
N.checkArgNotNegative(n, "n");
cursor = n < toIndex - cursor ? cursor + (int) n : toIndex;
}
@Override
public int[] toArray() {
final int[] result = new int[toIndex - cursor];
for (int i = cursor; i < toIndex; i++) {
result[i - cursor] = a[i];
}
return result;
}
});
}
public static IntStream range(final int startInclusive, final int endExclusive) {
if (startInclusive >= endExclusive) {
return empty();
}
return new IteratorIntStream(new IntIteratorEx() {
private int next = startInclusive;
private long cnt = endExclusive * 1L - startInclusive;
@Override
public boolean hasNext() {
return cnt > 0;
}
@Override
public int nextInt() {
if (cnt-- <= 0) {
throw new NoSuchElementException();
}
return next++;
}
@Override
public void skip(long n) {
N.checkArgNotNegative(n, "n");
cnt = n >= cnt ? 0 : cnt - (int) n;
next += n;
}
@Override
public long count() {
return cnt;
}
@Override
public int[] toArray() {
final int[] result = new int[(int) cnt];
for (int i = 0; i < cnt; i++) {
result[i] = next++;
}
cnt = 0;
return result;
}
});
}
public static IntStream range(final int startInclusive, final int endExclusive, final int by) {
if (by == 0) {
throw new IllegalArgumentException("'by' can't be zero");
}
if (endExclusive == startInclusive || endExclusive > startInclusive != by > 0) {
return empty();
}
return new IteratorIntStream(new IntIteratorEx() {
private int next = startInclusive;
private long cnt = (endExclusive * 1L - startInclusive) / by + ((endExclusive * 1L - startInclusive) % by == 0 ? 0 : 1);
@Override
public boolean hasNext() {
return cnt > 0;
}
@Override
public int nextInt() {
if (cnt-- <= 0) {
throw new NoSuchElementException();
}
int result = next;
next += by;
return result;
}
@Override
public void skip(long n) {
N.checkArgNotNegative(n, "n");
cnt = n >= cnt ? 0 : cnt - (int) n;
next += n * by;
}
@Override
public long count() {
return cnt;
}
@Override
public int[] toArray() {
final int[] result = new int[(int) cnt];
for (int i = 0; i < cnt; i++, next += by) {
result[i] = next;
}
cnt = 0;
return result;
}
});
}
public static IntStream rangeClosed(final int startInclusive, final int endInclusive) {
if (startInclusive > endInclusive) {
return empty();
} else if (startInclusive == endInclusive) {
return of(startInclusive);
}
return new IteratorIntStream(new IntIteratorEx() {
private int next = startInclusive;
private long cnt = endInclusive * 1L - startInclusive + 1;
@Override
public boolean hasNext() {
return cnt > 0;
}
@Override
public int nextInt() {
if (cnt-- <= 0) {
throw new NoSuchElementException();
}
return next++;
}
@Override
public void skip(long n) {
N.checkArgNotNegative(n, "n");
cnt = n >= cnt ? 0 : cnt - (int) n;
next += n;
}
@Override
public long count() {
return cnt;
}
@Override
public int[] toArray() {
final int[] result = new int[(int) cnt];
for (int i = 0; i < cnt; i++) {
result[i] = next++;
}
cnt = 0;
return result;
}
});
}
public static IntStream rangeClosed(final int startInclusive, final int endInclusive, final int by) {
if (by == 0) {
throw new IllegalArgumentException("'by' can't be zero");
}
if (endInclusive == startInclusive) {
return of(startInclusive);
} else if (endInclusive > startInclusive != by > 0) {
return empty();
}
return new IteratorIntStream(new IntIteratorEx() {
private int next = startInclusive;
private long cnt = (endInclusive * 1L - startInclusive) / by + 1;
@Override
public boolean hasNext() {
return cnt > 0;
}
@Override
public int nextInt() {
if (cnt-- <= 0) {
throw new NoSuchElementException();
}
int result = next;
next += by;
return result;
}
@Override
public void skip(long n) {
N.checkArgNotNegative(n, "n");
cnt = n >= cnt ? 0 : cnt - (int) n;
next += n * by;
}
@Override
public long count() {
return cnt;
}
@Override
public int[] toArray() {
final int[] result = new int[(int) cnt];
for (int i = 0; i < cnt; i++, next += by) {
result[i] = next;
}
cnt = 0;
return result;
}
});
}
public static IntStream repeat(final int element, final long n) {
N.checkArgNotNegative(n, "n");
if (n == 0) {
return empty();
}
return new IteratorIntStream(new IntIteratorEx() {
private long cnt = n;
@Override
public boolean hasNext() {
return cnt > 0;
}
@Override
public int nextInt() {
if (cnt-- <= 0) {
throw new NoSuchElementException();
}
return element;
}
@Override
public void skip(long n) {
N.checkArgNotNegative(n, "n");
cnt = n >= cnt ? 0 : cnt - (int) n;
}
@Override
public long count() {
return cnt;
}
@Override
public int[] toArray() {
final int[] result = new int[(int) cnt];
for (int i = 0; i < cnt; i++) {
result[i] = element;
}
cnt = 0;
return result;
}
});
}
public static IntStream random() {
return generate(new IntSupplier() {
@Override
public int getAsInt() {
return RAND.nextInt();
}
});
}
public static IntStream random(final int startInclusive, final int endExclusive) {
if (startInclusive >= endExclusive) {
throw new IllegalArgumentException("'startInclusive' must be less than 'endExclusive'");
}
final long mod = (long) endExclusive - (long) startInclusive;
if (mod < Integer.MAX_VALUE) {
final int n = (int) mod;
return generate(new IntSupplier() {
@Override
public int getAsInt() {
return RAND.nextInt(n) + startInclusive;
}
});
} else {
return generate(new IntSupplier() {
@Override
public int getAsInt() {
return (int) (Math.abs(RAND.nextLong() % mod) + startInclusive);
}
});
}
}
public static IntStream iterate(final BooleanSupplier hasNext, final IntSupplier next) {
N.checkArgNotNull(hasNext);
N.checkArgNotNull(next);
return new IteratorIntStream(new IntIteratorEx() {
private boolean hasNextVal = false;
@Override
public boolean hasNext() {
if (hasNextVal == false) {
hasNextVal = hasNext.getAsBoolean();
}
return hasNextVal;
}
@Override
public int nextInt() {
if (hasNextVal == false && hasNext() == false) {
throw new NoSuchElementException();
}
hasNextVal = false;
return next.getAsInt();
}
});
}
public static IntStream iterate(final int init, final BooleanSupplier hasNext, final IntUnaryOperator f) {
N.checkArgNotNull(hasNext);
N.checkArgNotNull(f);
return new IteratorIntStream(new IntIteratorEx() {
private int t = 0;
private boolean isFirst = true;
private boolean hasNextVal = false;
@Override
public boolean hasNext() {
if (hasNextVal == false) {
hasNextVal = hasNext.getAsBoolean();
}
return hasNextVal;
}
@Override
public int nextInt() {
if (hasNextVal == false && hasNext() == false) {
throw new NoSuchElementException();
}
hasNextVal = false;
if (isFirst) {
isFirst = false;
t = init;
} else {
t = f.applyAsInt(t);
}
return t;
}
});
}
/**
*
* @param init
* @param hasNext test if has next by hasNext.test(init) for first time and hasNext.test(f.apply(previous)) for remaining.
* @param f
* @return
*/
public static IntStream iterate(final int init, final IntPredicate hasNext, final IntUnaryOperator f) {
N.checkArgNotNull(hasNext);
N.checkArgNotNull(f);
return new IteratorIntStream(new IntIteratorEx() {
private int t = 0;
private int cur = 0;
private boolean isFirst = true;
private boolean hasMore = true;
private boolean hasNextVal = false;
@Override
public boolean hasNext() {
if (hasNextVal == false && hasMore) {
if (isFirst) {
isFirst = false;
hasNextVal = hasNext.test(cur = init);
} else {
hasNextVal = hasNext.test(cur = f.applyAsInt(t));
}
if (hasNextVal == false) {
hasMore = false;
}
}
return hasNextVal;
}
@Override
public int nextInt() {
if (hasNextVal == false && hasNext() == false) {
throw new NoSuchElementException();
}
t = cur;
hasNextVal = false;
return t;
}
});
}
public static IntStream iterate(final int init, final IntUnaryOperator f) {
N.checkArgNotNull(f);
return new IteratorIntStream(new IntIteratorEx() {
private int t = 0;
private boolean isFirst = true;
@Override
public boolean hasNext() {
return true;
}
@Override
public int nextInt() {
if (isFirst) {
isFirst = false;
t = init;
} else {
t = f.applyAsInt(t);
}
return t;
}
});
}
public static IntStream generate(final IntSupplier s) {
N.checkArgNotNull(s);
return new IteratorIntStream(new IntIteratorEx() {
@Override
public boolean hasNext() {
return true;
}
@Override
public int nextInt() {
return s.getAsInt();
}
});
}
/**
*
* @param source
* @param indexFunc
* @return
* @see #ofIndices(Object, int, int, BiFunction)
*/
public static IntStream ofIndices(final AC source, final BiFunction super AC, Integer, Integer> indexFunc) {
return ofIndices(source, 0, indexFunc);
};
/**
*
* @param source
* @param fromIndex
* @param indexFunc
* @return
* @see #ofIndices(Object, int, int, BiFunction)
*/
public static IntStream ofIndices(final AC source, final int fromIndex, final BiFunction super AC, Integer, Integer> indexFunc) {
return ofIndices(source, fromIndex, 1, indexFunc);
};
/**
*
*
* // Forwards:
* int[] a = {1, 2, 3, 2, 5, 1};
* IntStream.ofIndices(a, N::indexOf).println(); // [0, 5]
* IntStream.ofIndices(a, 1, N::indexOf).println(); // [5]
*
* // Backwards
* IntStream.ofIndices(a, 5, -1, N::lastIndexOf).println(); // [5, 0]
* IntStream.ofIndices(a, 4, -1, N::lastIndexOf).println(); // [0]
*
* // OR
* // Forwards:
* int[] source = { 1, 2, 3, 1, 2, 1 };
* int[] targetSubArray = { 1, 2 };
* IntStream.ofIndices(source, (a, fromIndex) -> Index.ofSubArray(a, fromIndex, targetSubArray, 0, targetSubArray.length).orElse(-1)).println(); // [0, 3]
*
* // Backwards
* IntStream.ofIndices(source, 5, -2, (a, fromIndex) -> Index.ofSubArray(a, fromIndex, targetSubArray, 0, targetSubArray.length).orElse(-1))
.println(); // [3, 0]
*
*
*
* @param source
* @param fromIndex
* @param increment
* @param indexFunc
* @return
* @see #ofIndices(Object, int, int, BiFunction)
*/
public static IntStream ofIndices(final AC source, final int fromIndex, final int increment,
final BiFunction super AC, Integer, Integer> indexFunc) {
@SuppressWarnings("rawtypes")
final int sourceLen = source.getClass().isArray() ? Array.getLength(source)
: (source instanceof Collection ? ((Collection) source).size()
: (source instanceof CharSequence ? ((CharSequence) source).length() : Integer.MAX_VALUE));
return ofIndices(source, fromIndex, increment, sourceLen, indexFunc);
};
public static IntStream ofIndices(final AC source, final int fromIndex, final int increment, final int sourceLen,
final BiFunction super AC, Integer, Integer> indexFunc) {
N.checkArgNotNegative(fromIndex, "fromIndex");
N.checkArgument(increment != 0, "'increment' can't be zero");
N.checkArgNotNull(indexFunc, "indexFunc");
if (source == null) {
return IntStream.empty();
}
final IntUnaryOperator f = new IntUnaryOperator() {
@Override
public int applyAsInt(int idx) {
return ((increment > 0 && idx >= sourceLen - increment) || (increment < 0 && idx + increment < 0)) ? N.INDEX_NOT_FOUND
: indexFunc.apply(source, idx + increment);
}
};
return iterate(indexFunc.apply(source, fromIndex), IntPredicate.NOT_NEGATIVE, f);
};
@SafeVarargs
public static IntStream concat(final int[]... a) {
return N.isNullOrEmpty(a) ? empty() : new IteratorIntStream(new IntIteratorEx() {
private final Iterator iter = N.asList(a).iterator();
private IntIterator cur;
@Override
public boolean hasNext() {
while ((cur == null || cur.hasNext() == false) && iter.hasNext()) {
cur = IntIteratorEx.of(iter.next());
}
return cur != null && cur.hasNext();
}
@Override
public int nextInt() {
if ((cur == null || cur.hasNext() == false) && hasNext() == false) {
throw new NoSuchElementException();
}
return cur.nextInt();
}
});
}
@SafeVarargs
public static IntStream concat(final IntIterator... a) {
return N.isNullOrEmpty(a) ? empty() : new IteratorIntStream(new IntIteratorEx() {
private final Iterator extends IntIterator> iter = N.asList(a).iterator();
private IntIterator cur;
@Override
public boolean hasNext() {
while ((cur == null || cur.hasNext() == false) && iter.hasNext()) {
cur = iter.next();
}
return cur != null && cur.hasNext();
}
@Override
public int nextInt() {
if ((cur == null || cur.hasNext() == false) && hasNext() == false) {
throw new NoSuchElementException();
}
return cur.nextInt();
}
});
}
@SafeVarargs
public static IntStream concat(final IntStream... a) {
return N.isNullOrEmpty(a) ? empty() : concat(N.asList(a));
}
public static IntStream concat(final Collection extends IntStream> c) {
return N.isNullOrEmpty(c) ? empty() : new IteratorIntStream(new IntIteratorEx() {
private final Iterator extends IntStream> iterators = c.iterator();
private IntStream cur;
private IntIterator iter;
@Override
public boolean hasNext() {
while ((iter == null || iter.hasNext() == false) && iterators.hasNext()) {
if (cur != null) {
cur.close();
}
cur = iterators.next();
iter = cur.iteratorEx();
}
return iter != null && iter.hasNext();
}
@Override
public int nextInt() {
if ((iter == null || iter.hasNext() == false) && hasNext() == false) {
throw new NoSuchElementException();
}
return iter.nextInt();
}
}).onClose(newCloseHandler(c));
}
/**
* Zip together the "a" and "b" arrays until one of them runs out of values.
* Each pair of values is combined into a single value using the supplied zipFunction function.
*
* @param a
* @param b
* @return
*/
public static IntStream zip(final int[] a, final int[] b, final IntBinaryOperator zipFunction) {
if (N.isNullOrEmpty(a) || N.isNullOrEmpty(b)) {
return empty();
}
return new IteratorIntStream(new IntIteratorEx() {
private final int len = N.min(N.len(a), N.len(b));
private int cursor = 0;
@Override
public boolean hasNext() {
return cursor < len;
}
@Override
public int nextInt() {
if (cursor >= len) {
throw new NoSuchElementException();
}
return zipFunction.applyAsInt(a[cursor], b[cursor++]);
}
});
}
/**
* Zip together the "a", "b" and "c" arrays until one of them runs out of values.
* Each triple of values is combined into a single value using the supplied zipFunction function.
*
* @param a
* @param b
* @param c
* @return
*/
public static IntStream zip(final int[] a, final int[] b, final int[] c, final IntTernaryOperator zipFunction) {
if (N.isNullOrEmpty(a) || N.isNullOrEmpty(b) || N.isNullOrEmpty(c)) {
return empty();
}
return new IteratorIntStream(new IntIteratorEx() {
private final int len = N.min(N.len(a), N.len(b), N.len(c));
private int cursor = 0;
@Override
public boolean hasNext() {
return cursor < len;
}
@Override
public int nextInt() {
if (cursor >= len) {
throw new NoSuchElementException();
}
return zipFunction.applyAsInt(a[cursor], b[cursor], c[cursor++]);
}
});
}
/**
* Zip together the "a" and "b" iterators until one of them runs out of values.
* Each pair of values is combined into a single value using the supplied zipFunction function.
*
* @param a
* @param b
* @return
*/
public static IntStream zip(final IntIterator a, final IntIterator b, final IntBinaryOperator zipFunction) {
return new IteratorIntStream(new IntIteratorEx() {
@Override
public boolean hasNext() {
return a.hasNext() && b.hasNext();
}
@Override
public int nextInt() {
return zipFunction.applyAsInt(a.nextInt(), b.nextInt());
}
});
}
/**
* Zip together the "a", "b" and "c" iterators until one of them runs out of values.
* Each triple of values is combined into a single value using the supplied zipFunction function.
*
* @param a
* @param b
* @return
*/
public static IntStream zip(final IntIterator a, final IntIterator b, final IntIterator c, final IntTernaryOperator zipFunction) {
return new IteratorIntStream(new IntIteratorEx() {
@Override
public boolean hasNext() {
return a.hasNext() && b.hasNext() && c.hasNext();
}
@Override
public int nextInt() {
return zipFunction.applyAsInt(a.nextInt(), b.nextInt(), c.nextInt());
}
});
}
/**
* Zip together the "a" and "b" streams until one of them runs out of values.
* Each pair of values is combined into a single value using the supplied zipFunction function.
*
* @param a
* @param b
* @return
*/
public static IntStream zip(final IntStream a, final IntStream b, final IntBinaryOperator zipFunction) {
return zip(a.iteratorEx(), b.iteratorEx(), zipFunction).onClose(newCloseHandler(N.asList(a, b)));
}
/**
* Zip together the "a", "b" and "c" streams until one of them runs out of values.
* Each triple of values is combined into a single value using the supplied zipFunction function.
*
* @param a
* @param b
* @return
*/
public static IntStream zip(final IntStream a, final IntStream b, final IntStream c, final IntTernaryOperator zipFunction) {
return zip(a.iteratorEx(), b.iteratorEx(), c.iteratorEx(), zipFunction).onClose(newCloseHandler(N.asList(a, b, c)));
}
/**
* Zip together the iterators until one of them runs out of values.
* Each array of values is combined into a single value using the supplied zipFunction function.
*
* @param c
* @param zipFunction
* @return
*/
public static IntStream zip(final Collection extends IntStream> c, final IntNFunction zipFunction) {
return Stream.zip(c, zipFunction).mapToInt(ToIntFunction.UNBOX);
}
/**
* Zip together the "a" and "b" iterators until all of them runs out of values.
* Each pair of values is combined into a single value using the supplied zipFunction function.
*
* @param a
* @param b
* @param valueForNoneA value to fill if "a" runs out of values first.
* @param valueForNoneB value to fill if "b" runs out of values first.
* @param zipFunction
* @return
*/
public static IntStream zip(final int[] a, final int[] b, final int valueForNoneA, final int valueForNoneB, final IntBinaryOperator zipFunction) {
if (N.isNullOrEmpty(a) && N.isNullOrEmpty(b)) {
return empty();
}
return new IteratorIntStream(new IntIteratorEx() {
private final int aLen = N.len(a), bLen = N.len(b), len = N.max(aLen, bLen);
private int cursor = 0;
private int ret = 0;
@Override
public boolean hasNext() {
return cursor < len;
}
@Override
public int nextInt() {
if (cursor >= len) {
throw new NoSuchElementException();
}
ret = zipFunction.applyAsInt(cursor < aLen ? a[cursor] : valueForNoneA, cursor < bLen ? b[cursor] : valueForNoneB);
cursor++;
return ret;
}
});
}
/**
* Zip together the "a", "b" and "c" iterators until all of them runs out of values.
* Each triple of values is combined into a single value using the supplied zipFunction function.
*
* @param a
* @param b
* @param c
* @param valueForNoneA value to fill if "a" runs out of values.
* @param valueForNoneB value to fill if "b" runs out of values.
* @param valueForNoneC value to fill if "c" runs out of values.
* @param zipFunction
* @return
*/
public static IntStream zip(final int[] a, final int[] b, final int[] c, final int valueForNoneA, final int valueForNoneB, final int valueForNoneC,
final IntTernaryOperator zipFunction) {
if (N.isNullOrEmpty(a) && N.isNullOrEmpty(b) && N.isNullOrEmpty(c)) {
return empty();
}
return new IteratorIntStream(new IntIteratorEx() {
private final int aLen = N.len(a), bLen = N.len(b), cLen = N.len(c), len = N.max(aLen, bLen, cLen);
private int cursor = 0;
private int ret = 0;
@Override
public boolean hasNext() {
return cursor < len;
}
@Override
public int nextInt() {
if (cursor >= len) {
throw new NoSuchElementException();
}
ret = zipFunction.applyAsInt(cursor < aLen ? a[cursor] : valueForNoneA, cursor < bLen ? b[cursor] : valueForNoneB,
cursor < cLen ? c[cursor] : valueForNoneC);
cursor++;
return ret;
}
});
}
/**
* Zip together the "a" and "b" iterators until all of them runs out of values.
* Each pair of values is combined into a single value using the supplied zipFunction function.
*
* @param a
* @param b
* @param valueForNoneA value to fill if "a" runs out of values first.
* @param valueForNoneB value to fill if "b" runs out of values first.
* @param zipFunction
* @return
*/
public static IntStream zip(final IntIterator a, final IntIterator b, final int valueForNoneA, final int valueForNoneB,
final IntBinaryOperator zipFunction) {
return new IteratorIntStream(new IntIteratorEx() {
@Override
public boolean hasNext() {
return a.hasNext() || b.hasNext();
}
@Override
public int nextInt() {
if (a.hasNext()) {
return zipFunction.applyAsInt(a.nextInt(), b.hasNext() ? b.nextInt() : valueForNoneB);
} else {
return zipFunction.applyAsInt(valueForNoneA, b.nextInt());
}
}
});
}
/**
* Zip together the "a", "b" and "c" iterators until all of them runs out of values.
* Each triple of values is combined into a single value using the supplied zipFunction function.
*
* @param a
* @param b
* @param c
* @param valueForNoneA value to fill if "a" runs out of values.
* @param valueForNoneB value to fill if "b" runs out of values.
* @param valueForNoneC value to fill if "c" runs out of values.
* @param zipFunction
* @return
*/
public static IntStream zip(final IntIterator a, final IntIterator b, final IntIterator c, final int valueForNoneA, final int valueForNoneB,
final int valueForNoneC, final IntTernaryOperator zipFunction) {
return new IteratorIntStream(new IntIteratorEx() {
@Override
public boolean hasNext() {
return a.hasNext() || b.hasNext() || c.hasNext();
}
@Override
public int nextInt() {
if (a.hasNext()) {
return zipFunction.applyAsInt(a.nextInt(), b.hasNext() ? b.nextInt() : valueForNoneB, c.hasNext() ? c.nextInt() : valueForNoneC);
} else if (b.hasNext()) {
return zipFunction.applyAsInt(valueForNoneA, b.nextInt(), c.hasNext() ? c.nextInt() : valueForNoneC);
} else {
return zipFunction.applyAsInt(valueForNoneA, valueForNoneB, c.nextInt());
}
}
});
}
/**
* Zip together the "a" and "b" iterators until all of them runs out of values.
* Each pair of values is combined into a single value using the supplied zipFunction function.
*
* @param a
* @param b
* @param valueForNoneA value to fill if "a" runs out of values first.
* @param valueForNoneB value to fill if "b" runs out of values first.
* @param zipFunction
* @return
*/
public static IntStream zip(final IntStream a, final IntStream b, final int valueForNoneA, final int valueForNoneB, final IntBinaryOperator zipFunction) {
return zip(a.iteratorEx(), b.iteratorEx(), valueForNoneA, valueForNoneB, zipFunction).onClose(newCloseHandler(N.asList(a, b)));
}
/**
* Zip together the "a", "b" and "c" iterators until all of them runs out of values.
* Each triple of values is combined into a single value using the supplied zipFunction function.
*
* @param a
* @param b
* @param c
* @param valueForNoneA value to fill if "a" runs out of values.
* @param valueForNoneB value to fill if "b" runs out of values.
* @param valueForNoneC value to fill if "c" runs out of values.
* @param zipFunction
* @return
*/
public static IntStream zip(final IntStream a, final IntStream b, final IntStream c, final int valueForNoneA, final int valueForNoneB,
final int valueForNoneC, final IntTernaryOperator zipFunction) {
return zip(a.iteratorEx(), b.iteratorEx(), c.iteratorEx(), valueForNoneA, valueForNoneB, valueForNoneC, zipFunction)
.onClose(newCloseHandler(N.asList(a, b, c)));
}
/**
* Zip together the iterators until all of them runs out of values.
* Each array of values is combined into a single value using the supplied zipFunction function.
*
* @param c
* @param valuesForNone value to fill for any iterator runs out of values.
* @param zipFunction
* @return
*/
public static IntStream zip(final Collection extends IntStream> c, final int[] valuesForNone, final IntNFunction zipFunction) {
return Stream.zip(c, valuesForNone, zipFunction).mapToInt(ToIntFunction.UNBOX);
}
/**
*
* @param a
* @param b
* @param nextSelector first parameter is selected if Nth.FIRST
is returned, otherwise the second parameter is selected.
* @return
*/
public static IntStream merge(final int[] a, final int[] b, final IntBiFunction nextSelector) {
if (N.isNullOrEmpty(a)) {
return of(b);
} else if (N.isNullOrEmpty(b)) {
return of(a);
}
return new IteratorIntStream(new IntIteratorEx() {
private final int lenA = a.length;
private final int lenB = b.length;
private int cursorA = 0;
private int cursorB = 0;
@Override
public boolean hasNext() {
return cursorA < lenA || cursorB < lenB;
}
@Override
public int nextInt() {
if (cursorA < lenA) {
if (cursorB < lenB) {
if (nextSelector.apply(a[cursorA], b[cursorB]) == Nth.FIRST) {
return a[cursorA++];
} else {
return b[cursorB++];
}
} else {
return a[cursorA++];
}
} else if (cursorB < lenB) {
return b[cursorB++];
} else {
throw new NoSuchElementException();
}
}
});
}
/**
*
* @param a
* @param b
* @param c
* @param nextSelector first parameter is selected if Nth.FIRST
is returned, otherwise the second parameter is selected.
* @return
*/
public static IntStream merge(final int[] a, final int[] b, final int[] c, final IntBiFunction nextSelector) {
return merge(merge(a, b, nextSelector).iteratorEx(), IntStream.of(c).iteratorEx(), nextSelector);
}
/**
*
* @param a
* @param b
* @param nextSelector first parameter is selected if Nth.FIRST
is returned, otherwise the second parameter is selected.
* @return
*/
public static IntStream merge(final IntIterator a, final IntIterator b, final IntBiFunction nextSelector) {
return new IteratorIntStream(new IntIteratorEx() {
private int nextA = 0;
private int nextB = 0;
private boolean hasNextA = false;
private boolean hasNextB = false;
@Override
public boolean hasNext() {
return a.hasNext() || b.hasNext() || hasNextA || hasNextB;
}
@Override
public int nextInt() {
if (hasNextA) {
if (b.hasNext()) {
if (nextSelector.apply(nextA, (nextB = b.nextInt())) == Nth.FIRST) {
hasNextA = false;
hasNextB = true;
return nextA;
} else {
return nextB;
}
} else {
hasNextA = false;
return nextA;
}
} else if (hasNextB) {
if (a.hasNext()) {
if (nextSelector.apply((nextA = a.nextInt()), nextB) == Nth.FIRST) {
return nextA;
} else {
hasNextA = true;
hasNextB = false;
return nextB;
}
} else {
hasNextB = false;
return nextB;
}
} else if (a.hasNext()) {
if (b.hasNext()) {
if (nextSelector.apply((nextA = a.nextInt()), (nextB = b.nextInt())) == Nth.FIRST) {
hasNextB = true;
return nextA;
} else {
hasNextA = true;
return nextB;
}
} else {
return a.nextInt();
}
} else if (b.hasNext()) {
return b.nextInt();
} else {
throw new NoSuchElementException();
}
}
});
}
/**
*
* @param a
* @param b
* @param c
* @param nextSelector first parameter is selected if Nth.FIRST
is returned, otherwise the second parameter is selected.
* @return
*/
public static IntStream merge(final IntIterator a, final IntIterator b, final IntIterator c, final IntBiFunction nextSelector) {
return merge(merge(a, b, nextSelector).iteratorEx(), c, nextSelector);
}
/**
*
* @param a
* @param b
* @param nextSelector first parameter is selected if Nth.FIRST
is returned, otherwise the second parameter is selected.
* @return
*/
public static IntStream merge(final IntStream a, final IntStream b, final IntBiFunction nextSelector) {
return merge(a.iteratorEx(), b.iteratorEx(), nextSelector).onClose(newCloseHandler(N.asList(a, b)));
}
/**
*
* @param a
* @param b
* @param c
* @param nextSelector first parameter is selected if Nth.FIRST
is returned, otherwise the second parameter is selected.
* @return
*/
public static IntStream merge(final IntStream a, final IntStream b, final IntStream c, final IntBiFunction nextSelector) {
return merge(merge(a, b, nextSelector), c, nextSelector);
}
/**
*
* @param c
* @param nextSelector first parameter is selected if Nth.FIRST
is returned, otherwise the second parameter is selected.
* @return
*/
public static IntStream merge(final Collection extends IntStream> c, final IntBiFunction nextSelector) {
if (N.isNullOrEmpty(c)) {
return empty();
} else if (c.size() == 1) {
return c.iterator().next();
} else if (c.size() == 2) {
final Iterator extends IntStream> iter = c.iterator();
return merge(iter.next(), iter.next(), nextSelector);
}
final Iterator extends IntStream> iter = c.iterator();
IntStream result = merge(iter.next(), iter.next(), nextSelector);
while (iter.hasNext()) {
result = merge(result, iter.next(), nextSelector);
}
return result;
}
/**
*
* @param c
* @param nextSelector first parameter is selected if Nth.FIRST
is returned, otherwise the second parameter is selected.
* @return
*/
public static IntStream parallelMerge(final Collection extends IntStream> c, final IntBiFunction nextSelector) {
return parallelMerge(c, nextSelector, DEFAULT_MAX_THREAD_NUM);
}
/**
*
* @param c
* @param nextSelector first parameter is selected if Nth.FIRST
is returned, otherwise the second parameter is selected.
* @param maxThreadNum
* @return
*/
public static IntStream parallelMerge(final Collection extends IntStream> c, final IntBiFunction nextSelector, final int maxThreadNum) {
N.checkArgument(maxThreadNum > 0, "'maxThreadNum' must not less than 1");
if (maxThreadNum <= 1) {
return merge(c, nextSelector);
} else if (N.isNullOrEmpty(c)) {
return empty();
} else if (c.size() == 1) {
return c.iterator().next();
} else if (c.size() == 2) {
final Iterator extends IntStream> iter = c.iterator();
return merge(iter.next(), iter.next(), nextSelector);
} else if (c.size() == 3) {
final Iterator extends IntStream> iter = c.iterator();
return merge(iter.next(), iter.next(), iter.next(), nextSelector);
}
final Queue queue = N.newLinkedList();
for (IntStream e : c) {
queue.add(e);
}
final Holder eHolder = new Holder<>();
final MutableInt cnt = MutableInt.of(c.size());
final List> futureList = new ArrayList<>(c.size() - 1);
for (int i = 0, n = N.min(maxThreadNum, c.size() / 2 + 1); i < n; i++) {
futureList.add(DEFAULT_ASYNC_EXECUTOR.execute(new Try.Runnable() {
@Override
public void run() {
IntStream a = null;
IntStream b = null;
IntStream c = null;
try {
while (eHolder.value() == null) {
synchronized (queue) {
if (cnt.intValue() > 2 && queue.size() > 1) {
a = queue.poll();
b = queue.poll();
cnt.decrement();
} else {
break;
}
}
c = IntStream.of(merge(a, b, nextSelector).toArray());
synchronized (queue) {
queue.offer(c);
}
}
} catch (Exception e) {
setError(eHolder, e);
}
}
}));
}
try {
complete(futureList, eHolder);
} finally {
if (eHolder.value() != null) {
IOUtil.closeAllQuietly(c);
}
}
return merge(queue.poll(), queue.poll(), nextSelector);
}
public static abstract class IntStreamEx extends IntStream {
private IntStreamEx(boolean sorted, Collection closeHandlers) {
super(sorted, closeHandlers);
// Factory class.
}
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy