com.landawn.abacus.util.Math2 Maven / Gradle / Ivy
Show all versions of abacus-android Show documentation
/*
* Copyright (C) 2017 HaiYang Li
*
* Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except
* in compliance with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software distributed under the License
* is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express
* or implied. See the License for the specific language governing permissions and limitations under
* the License.
*/
package com.landawn.abacus.util;
import static java.lang.Double.MAX_EXPONENT;
import static java.lang.Double.MIN_EXPONENT;
import static java.lang.Double.POSITIVE_INFINITY;
import static java.lang.Double.doubleToRawLongBits;
import static java.lang.Double.isNaN;
import static java.lang.Double.longBitsToDouble;
import static java.lang.Math.abs;
import static java.lang.Math.getExponent;
import static java.lang.Math.min;
import static java.math.RoundingMode.CEILING;
import static java.math.RoundingMode.FLOOR;
import static java.math.RoundingMode.HALF_EVEN;
import static java.math.RoundingMode.HALF_UP;
import java.math.BigDecimal;
import java.math.BigInteger;
import java.math.RoundingMode;
import java.util.ArrayList;
import java.util.List;
/**
* Note: A lot of codes in this classed are copied from Google Guava and Apache Common Math under under the Apache License, Version 2.0.
* The purpose of copying the code is to re-organize the APIs.
*
*/
public final class Math2 {
private Math2() {
// singleton
}
private static final long ONE_BITS = doubleToRawLongBits(1.0);
/** The biggest half power of two that can fit in an unsigned int. */
static final int INT_MAX_POWER_OF_SQRT2_UNSIGNED = 0xB504F333;
/** The biggest half power of two that fits into an unsigned long */
static final long MAX_POWER_OF_SQRT2_UNSIGNED = 0xB504F333F9DE6484L;
static final long MAX_SIGNED_POWER_OF_TWO = 1L << (Long.SIZE - 2);
static final long FLOOR_SQRT_MAX_LONG = 3037000499L;
static final int FLOOR_SQRT_MAX_INT = 46340;
// The mask for the significand, according to the {@link
// Double#doubleToRawLongBits(double)} spec.
static final long SIGNIFICAND_MASK = 0x000fffffffffffffL;
static final int SIGNIFICAND_BITS = 52;
// The mask for the exponent, according to the {@link
// Double#doubleToRawLongBits(double)} spec.
static final long EXPONENT_MASK = 0x7ff0000000000000L;
// The mask for the sign, according to the {@link
// Double#doubleToRawLongBits(double)} spec.
static final long SIGN_MASK = 0x8000000000000000L;
static final int EXPONENT_BIAS = 1023;
/**
* The implicit 1 bit that is omitted in significands of normal doubles.
*/
static final long IMPLICIT_BIT = SIGNIFICAND_MASK + 1;
private static final double MIN_INT_AS_DOUBLE = -0x1p31;
private static final double MAX_INT_AS_DOUBLE = 0x1p31 - 1.0;
private static final double MIN_LONG_AS_DOUBLE = -0x1p63;
/*
* We cannot store Long.MAX_VALUE as a double without losing precision. Instead, we store
* Long.MAX_VALUE + 1 == -Long.MIN_VALUE, and then offset all comparisons by 1.
*/
private static final double MAX_LONG_AS_DOUBLE_PLUS_ONE = 0x1p63;
// maxLog10ForLeadingZeros[i] == floor(log10(2^(Long.SIZE - i)))
static final byte[] int_maxLog10ForLeadingZeros = { 9, 9, 9, 8, 8, 8, 7, 7, 7, 6, 6, 6, 6, 5, 5, 5, 4, 4, 4, 3, 3, 3, 3, 2, 2, 2, 1, 1, 1, 0, 0, 0, 0 };
static final int[] int_powersOf10 = { 1, 10, 100, 1000, 10000, 100000, 1000000, 10000000, 100000000, 1000000000 };
private static final int[] int_factorials = { 1, 1, 1 * 2, 1 * 2 * 3, 1 * 2 * 3 * 4, 1 * 2 * 3 * 4 * 5, 1 * 2 * 3 * 4 * 5 * 6, 1 * 2 * 3 * 4 * 5 * 6 * 7,
1 * 2 * 3 * 4 * 5 * 6 * 7 * 8, 1 * 2 * 3 * 4 * 5 * 6 * 7 * 8 * 9, 1 * 2 * 3 * 4 * 5 * 6 * 7 * 8 * 9 * 10,
1 * 2 * 3 * 4 * 5 * 6 * 7 * 8 * 9 * 10 * 11, 1 * 2 * 3 * 4 * 5 * 6 * 7 * 8 * 9 * 10 * 11 * 12 };
// binomial(biggestBinomials[k], k) fits in an int, but not binomial(biggestBinomials[k]+1,k).
static int[] int_biggestBinomials = { Integer.MAX_VALUE, Integer.MAX_VALUE, 65536, 2345, 477, 193, 110, 75, 58, 49, 43, 39, 37, 35, 34, 34, 33 };
// halfPowersOf10[i] = largest int less than 10^(i + 0.5)
static final int[] int_halfPowersOf10 = { 3, 31, 316, 3162, 31622, 316227, 3162277, 31622776, 316227766, Integer.MAX_VALUE };
// maxLog10ForLeadingZeros[i] == floor(log10(2^(Long.SIZE - i)))
static final byte[] maxLog10ForLeadingZeros = { 19, 18, 18, 18, 18, 17, 17, 17, 16, 16, 16, 15, 15, 15, 15, 14, 14, 14, 13, 13, 13, 12, 12, 12, 12, 11, 11,
11, 10, 10, 10, 9, 9, 9, 9, 8, 8, 8, 7, 7, 7, 6, 6, 6, 6, 5, 5, 5, 4, 4, 4, 3, 3, 3, 3, 2, 2, 2, 1, 1, 1, 0, 0, 0 };
static final long[] powersOf10 = { 1L, 10L, 100L, 1000L, 10000L, 100000L, 1000000L, 10000000L, 100000000L, 1000000000L, 10000000000L, 100000000000L,
1000000000000L, 10000000000000L, 100000000000000L, 1000000000000000L, 10000000000000000L, 100000000000000000L, 1000000000000000000L };
// halfPowersOf10[i] = largest long less than 10^(i + 0.5)
static final long[] halfPowersOf10 = { 3L, 31L, 316L, 3162L, 31622L, 316227L, 3162277L, 31622776L, 316227766L, 3162277660L, 31622776601L, 316227766016L,
3162277660168L, 31622776601683L, 316227766016837L, 3162277660168379L, 31622776601683793L, 316227766016837933L, 3162277660168379331L };
static final long[] long_factorials = { 1L, 1L, 1L * 2, 1L * 2 * 3, 1L * 2 * 3 * 4, 1L * 2 * 3 * 4 * 5, 1L * 2 * 3 * 4 * 5 * 6, 1L * 2 * 3 * 4 * 5 * 6 * 7,
1L * 2 * 3 * 4 * 5 * 6 * 7 * 8, 1L * 2 * 3 * 4 * 5 * 6 * 7 * 8 * 9, 1L * 2 * 3 * 4 * 5 * 6 * 7 * 8 * 9 * 10,
1L * 2 * 3 * 4 * 5 * 6 * 7 * 8 * 9 * 10 * 11, 1L * 2 * 3 * 4 * 5 * 6 * 7 * 8 * 9 * 10 * 11 * 12,
1L * 2 * 3 * 4 * 5 * 6 * 7 * 8 * 9 * 10 * 11 * 12 * 13, 1L * 2 * 3 * 4 * 5 * 6 * 7 * 8 * 9 * 10 * 11 * 12 * 13 * 14,
1L * 2 * 3 * 4 * 5 * 6 * 7 * 8 * 9 * 10 * 11 * 12 * 13 * 14 * 15, 1L * 2 * 3 * 4 * 5 * 6 * 7 * 8 * 9 * 10 * 11 * 12 * 13 * 14 * 15 * 16,
1L * 2 * 3 * 4 * 5 * 6 * 7 * 8 * 9 * 10 * 11 * 12 * 13 * 14 * 15 * 16 * 17,
1L * 2 * 3 * 4 * 5 * 6 * 7 * 8 * 9 * 10 * 11 * 12 * 13 * 14 * 15 * 16 * 17 * 18,
1L * 2 * 3 * 4 * 5 * 6 * 7 * 8 * 9 * 10 * 11 * 12 * 13 * 14 * 15 * 16 * 17 * 18 * 19,
1L * 2 * 3 * 4 * 5 * 6 * 7 * 8 * 9 * 10 * 11 * 12 * 13 * 14 * 15 * 16 * 17 * 18 * 19 * 20 };
/*
* binomial(biggestBinomials[k], k) fits in a long, but not binomial(biggestBinomials[k] + 1, k).
*/
static final int[] biggestBinomials = { Integer.MAX_VALUE, Integer.MAX_VALUE, Integer.MAX_VALUE, 3810779, 121977, 16175, 4337, 1733, 887, 534, 361, 265,
206, 169, 143, 125, 111, 101, 94, 88, 83, 79, 76, 74, 72, 70, 69, 68, 67, 67, 66, 66, 66, 66 };
/*
* binomial(biggestSimpleBinomials[k], k) doesn't need to use the slower GCD-based impl, but
* binomial(biggestSimpleBinomials[k] + 1, k) does.
*/
static final int[] biggestSimpleBinomials = { Integer.MAX_VALUE, Integer.MAX_VALUE, Integer.MAX_VALUE, 2642246, 86251, 11724, 3218, 1313, 684, 419, 287,
214, 169, 139, 119, 105, 95, 87, 81, 76, 73, 70, 68, 66, 64, 63, 62, 62, 61, 61, 61 };
/*
* This bitmask is used as an optimization for cheaply testing for divisiblity by 2, 3, or 5.
* Each bit is set to 1 for all remainders that indicate divisibility by 2, 3, or 5, so
* 1, 7, 11, 13, 17, 19, 23, 29 are set to 0. 30 and up don't matter because they won't be hit.
*/
private static final int SIEVE_30 = ~((1 << 1) | (1 << 7) | (1 << 11) | (1 << 13) | (1 << 17) | (1 << 19) | (1 << 23) | (1 << 29));
/*
* If n <= millerRabinBases[i][0], then testing n against bases millerRabinBases[i][1..] suffices
* to prove its primality. Values from miller-rabin.appspot.com.
*
* NOTE: We could get slightly better bases that would be treated as unsigned, but benchmarks
* showed negligible performance improvements.
*/
private static final long[][] millerRabinBaseSets = { { 291830, 126401071349994536L }, { 885594168, 725270293939359937L, 3569819667048198375L },
{ 273919523040L, 15, 7363882082L, 992620450144556L }, { 47636622961200L, 2, 2570940, 211991001, 3749873356L },
{ 7999252175582850L, 2, 4130806001517L, 149795463772692060L, 186635894390467037L, 3967304179347715805L },
{ 585226005592931976L, 2, 123635709730000L, 9233062284813009L, 43835965440333360L, 761179012939631437L, 1263739024124850375L },
{ Long.MAX_VALUE, 2, 325, 9375, 28178, 450775, 9780504, 1795265022 } };
// /**
// * Primality test: tells if the argument is a (provable) prime or not.
// *
// * @param n number to test.
// * @return true if n is prime. (All numbers < 2 return false).
// */
// public static boolean isPrime(int n) {
// if (n < 2) {
// return false;
// } else if (n < 4) {
// return true;
// }
//
// for (int i = 2, to = (int) Math.sqrt(n); i <= to; i++) {
// if (n % i == 0) {
// return false;
// }
// }
//
// return true;
// }
/**
* Returns {@code true} if {@code n} is a
* prime number: an integer greater
* than one that cannot be factored into a product of smaller positive integers.
* Returns {@code false} if {@code n} is zero, one, or a composite number (one which can
* be factored into smaller positive integers).
*
* To test larger numbers, use {@link BigInteger#isProbablePrime}.
*
* @throws IllegalArgumentException if {@code n} is negative
* @since 20.0
*/
public static boolean isPrime(long n) {
if (n < 2) {
checkNonNegative("n", n);
return false;
}
if (n == 2 || n == 3 || n == 5 || n == 7 || n == 11 || n == 13) {
return true;
}
if ((SIEVE_30 & (1 << (n % 30))) != 0) {
return false;
}
if (n % 7 == 0 || n % 11 == 0 || n % 13 == 0) {
return false;
}
if (n < 17 * 17) {
return true;
}
for (long[] baseSet : millerRabinBaseSets) {
if (n <= baseSet[0]) {
for (int i = 1; i < baseSet.length; i++) {
if (!MillerRabinTester.test(baseSet[i], n)) {
return false;
}
}
return true;
}
}
throw new AssertionError();
}
public static boolean isPerfectSquare(int n) {
if (n < 0) {
return false;
}
switch (n & 0xF) {
case 0:
case 1:
case 4:
case 9:
long tst = (long) Math.sqrt(n);
return tst * tst == n;
default:
return false;
}
}
public static boolean isPerfectSquare(long n) {
if (n < 0) {
return false;
}
switch ((int) (n & 0xF)) {
case 0:
case 1:
case 4:
case 9:
long tst = (long) Math.sqrt(n);
return tst * tst == n;
default:
return false;
}
}
public static boolean isPowerOfTwo(int x) {
return x > 0 & (x & (x - 1)) == 0;
}
public static boolean isPowerOfTwo(long x) {
return x > 0 & (x & (x - 1)) == 0;
}
public static boolean isPowerOfTwo(double x) {
return x > 0.0 && isFinite(x) && isPowerOfTwo(getSignificand(x));
}
/**
* Returns {@code true} if {@code x} represents a power of two.
*/
public static boolean isPowerOfTwo(BigInteger x) {
N.requireNonNull(x);
return x.signum() > 0 && x.getLowestSetBit() == x.bitLength() - 1;
}
// public static boolean isPowerOfFour(int n) {
// return (n > 0) && ((n & (n - 1)) == 0) && ((n & 0x55555555) == n);
// }
//
// public static boolean isPowerOfFour(long n) {
// return (n > 0) && ((n & (n - 1)) == 0) && ((n & 0x5555555555555555L) == n);
// }
public static double log(double a) {
return Math.log(a);
}
public static int log2(int x, RoundingMode mode) {
checkPositive("x", x);
switch (mode) {
case UNNECESSARY:
checkRoundingUnnecessary(isPowerOfTwo(x));
// fall through
case DOWN:
case FLOOR:
return (Integer.SIZE - 1) - Integer.numberOfLeadingZeros(x);
case UP:
case CEILING:
return Integer.SIZE - Integer.numberOfLeadingZeros(x - 1);
case HALF_DOWN:
case HALF_UP:
case HALF_EVEN:
// Since sqrt(2) is irrational, log2(x) - logFloor cannot be exactly 0.5
int leadingZeros = Integer.numberOfLeadingZeros(x);
int cmp = INT_MAX_POWER_OF_SQRT2_UNSIGNED >>> leadingZeros;
// floor(2^(logFloor + 0.5))
int logFloor = (Integer.SIZE - 1) - leadingZeros;
return logFloor + lessThanBranchFree(cmp, x);
default:
throw new AssertionError();
}
}
/**
* Returns the base-2 logarithm of {@code x}, rounded according to the specified rounding mode.
*
* @throws IllegalArgumentException if {@code x <= 0}
* @throws ArithmeticException if {@code mode} is {@link RoundingMode#UNNECESSARY} and {@code x}
* is not a power of two
*/
@SuppressWarnings("fallthrough")
// TODO(kevinb): remove after this warning is disabled globally
public static int log2(long x, RoundingMode mode) {
checkPositive("x", x);
switch (mode) {
case UNNECESSARY:
checkRoundingUnnecessary(isPowerOfTwo(x));
// fall through
case DOWN:
case FLOOR:
return (Long.SIZE - 1) - Long.numberOfLeadingZeros(x);
case UP:
case CEILING:
return Long.SIZE - Long.numberOfLeadingZeros(x - 1);
case HALF_DOWN:
case HALF_UP:
case HALF_EVEN:
// Since sqrt(2) is irrational, log2(x) - logFloor cannot be exactly 0.5
int leadingZeros = Long.numberOfLeadingZeros(x);
long cmp = MAX_POWER_OF_SQRT2_UNSIGNED >>> leadingZeros;
// floor(2^(logFloor + 0.5))
int logFloor = (Long.SIZE - 1) - leadingZeros;
return logFloor + lessThanBranchFree(cmp, x);
default:
throw new AssertionError("impossible");
}
}
/**
* Returns the base 2 logarithm of a double value.
*
*
Special cases:
*
* - If {@code x} is NaN or less than zero, the result is NaN.
*
- If {@code x} is positive infinity, the result is positive infinity.
*
- If {@code x} is positive or negative zero, the result is negative infinity.
*
*
* The computed result is within 1 ulp of the exact result.
*
*
If the result of this method will be immediately rounded to an {@code int},
* {@link #log2(double, RoundingMode)} is faster.
*/
public static double log2(double x) {
return Math.log(x) / LN_2; // surprisingly within 1 ulp according to tests
}
/**
* Returns the base 2 logarithm of a double value, rounded with the specified rounding mode to an
* {@code int}.
*
*
Regardless of the rounding mode, this is faster than {@code (int) log2(x)}.
*
* @throws IllegalArgumentException if {@code x <= 0.0}, {@code x} is NaN, or {@code x} is
* infinite
*/
@SuppressWarnings("fallthrough")
public static int log2(double x, RoundingMode mode) {
N.checkArgument(x > 0.0 && isFinite(x), "x must be positive and finite");
int exponent = getExponent(x);
if (!isNormal(x)) {
return log2(x * IMPLICIT_BIT, mode) - SIGNIFICAND_BITS;
// Do the calculation on a normal value.
}
// x is positive, finite, and normal
boolean increment;
switch (mode) {
case UNNECESSARY:
checkRoundingUnnecessary(isPowerOfTwo(x));
// fall through
case FLOOR:
increment = false;
break;
case CEILING:
increment = !isPowerOfTwo(x);
break;
case DOWN:
increment = exponent < 0 & !isPowerOfTwo(x);
break;
case UP:
increment = exponent >= 0 & !isPowerOfTwo(x);
break;
case HALF_DOWN:
case HALF_EVEN:
case HALF_UP:
double xScaled = scaleNormalize(x);
// sqrt(2) is irrational, and the spec is relative to the "exact numerical result,"
// so log2(x) is never exactly exponent + 0.5.
increment = (xScaled * xScaled) > 2.0;
break;
default:
throw new AssertionError();
}
return increment ? exponent + 1 : exponent;
}
/**
* Returns the base-2 logarithm of {@code x}, rounded according to the specified rounding mode.
*
* @throws IllegalArgumentException if {@code x <= 0}
* @throws ArithmeticException if {@code mode} is {@link RoundingMode#UNNECESSARY} and {@code x}
* is not a power of two
*/
@SuppressWarnings("fallthrough")
// TODO(kevinb): remove after this warning is disabled globally
public static int log2(BigInteger x, RoundingMode mode) {
checkPositive("x", N.requireNonNull(x));
int logFloor = x.bitLength() - 1;
switch (mode) {
case UNNECESSARY:
checkRoundingUnnecessary(isPowerOfTwo(x)); // fall through
case DOWN:
case FLOOR:
return logFloor;
case UP:
case CEILING:
return isPowerOfTwo(x) ? logFloor : logFloor + 1;
case HALF_DOWN:
case HALF_UP:
case HALF_EVEN:
if (logFloor < SQRT2_PRECOMPUTE_THRESHOLD) {
BigInteger halfPower = SQRT2_PRECOMPUTED_BITS.shiftRight(SQRT2_PRECOMPUTE_THRESHOLD - logFloor);
if (x.compareTo(halfPower) <= 0) {
return logFloor;
} else {
return logFloor + 1;
}
}
// Since sqrt(2) is irrational, log2(x) - logFloor cannot be exactly 0.5
//
// To determine which side of logFloor.5 the logarithm is,
// we compare x^2 to 2^(2 * logFloor + 1).
BigInteger x2 = x.pow(2);
int logX2Floor = x2.bitLength() - 1;
return (logX2Floor < 2 * logFloor + 1) ? logFloor : logFloor + 1;
default:
throw new AssertionError();
}
}
public static int log10(int x, RoundingMode mode) {
checkPositive("x", x);
int logFloor = log10Floor(x);
int floorPow = int_powersOf10[logFloor];
switch (mode) {
case UNNECESSARY:
checkRoundingUnnecessary(x == floorPow);
// fall through
case FLOOR:
case DOWN:
return logFloor;
case CEILING:
case UP:
return logFloor + lessThanBranchFree(floorPow, x);
case HALF_DOWN:
case HALF_UP:
case HALF_EVEN:
// sqrt(10) is irrational, so log10(x) - logFloor is never exactly 0.5
return logFloor + lessThanBranchFree(int_halfPowersOf10[logFloor], x);
default:
throw new AssertionError();
}
}
private static int log10Floor(int x) {
/*
* Based on Hacker's Delight Fig. 11-5, the two-table-lookup, branch-free implementation.
*
* The key idea is that based on the number of leading zeros (equivalently, floor(log2(x))),
* we can narrow the possible floor(log10(x)) values to two. For example, if floor(log2(x))
* is 6, then 64 <= x < 128, so floor(log10(x)) is either 1 or 2.
*/
int y = int_maxLog10ForLeadingZeros[Integer.numberOfLeadingZeros(x)];
/*
* y is the higher of the two possible values of floor(log10(x)). If x < 10^y, then we want the
* lower of the two possible values, or y - 1, otherwise, we want y.
*/
return y - lessThanBranchFree(x, int_powersOf10[y]);
}
/**
* Returns the base-10 logarithm of {@code x}, rounded according to the specified rounding mode.
*
* @throws IllegalArgumentException if {@code x <= 0}
* @throws ArithmeticException if {@code mode} is {@link RoundingMode#UNNECESSARY} and {@code x}
* is not a power of ten
*/
@SuppressWarnings("fallthrough")
// TODO(kevinb): remove after this warning is disabled globally
public static int log10(long x, RoundingMode mode) {
checkPositive("x", x);
int logFloor = log10Floor(x);
long floorPow = powersOf10[logFloor];
switch (mode) {
case UNNECESSARY:
checkRoundingUnnecessary(x == floorPow);
// fall through
case FLOOR:
case DOWN:
return logFloor;
case CEILING:
case UP:
return logFloor + lessThanBranchFree(floorPow, x);
case HALF_DOWN:
case HALF_UP:
case HALF_EVEN:
// sqrt(10) is irrational, so log10(x)-logFloor is never exactly 0.5
return logFloor + lessThanBranchFree(halfPowersOf10[logFloor], x);
default:
throw new AssertionError();
}
}
public static double log10(double x) {
return Math.log10(x);
}
/*
* The maximum number of bits in a square root for which we'll precompute an explicit half power
* of two. This can be any value, but higher values incur more class load time and linearly
* increasing memory consumption.
*/
static final int SQRT2_PRECOMPUTE_THRESHOLD = 256;
static final BigInteger SQRT2_PRECOMPUTED_BITS = new BigInteger("16a09e667f3bcc908b2fb1366ea957d3e3adec17512775099da2f590b0667322a", 16);
/**
* Returns the base-10 logarithm of {@code x}, rounded according to the specified rounding mode.
*
* @throws IllegalArgumentException if {@code x <= 0}
* @throws ArithmeticException if {@code mode} is {@link RoundingMode#UNNECESSARY} and {@code x}
* is not a power of ten
*/
@SuppressWarnings("fallthrough")
public static int log10(BigInteger x, RoundingMode mode) {
checkPositive("x", x);
if (fitsInLong(x)) {
return log10(x.longValue(), mode);
}
int approxLog10 = (int) (log2(x, FLOOR) * LN_2 / LN_10);
BigInteger approxPow = BigInteger.TEN.pow(approxLog10);
int approxCmp = approxPow.compareTo(x);
/*
* We adjust approxLog10 and approxPow until they're equal to floor(log10(x)) and
* 10^floor(log10(x)).
*/
if (approxCmp > 0) {
/*
* The code is written so that even completely incorrect approximations will still yield the
* correct answer eventually, but in practice this branch should almost never be entered, and
* even then the loop should not run more than once.
*/
do {
approxLog10--;
approxPow = approxPow.divide(BigInteger.TEN);
approxCmp = approxPow.compareTo(x);
} while (approxCmp > 0);
} else {
BigInteger nextPow = BigInteger.TEN.multiply(approxPow);
int nextCmp = nextPow.compareTo(x);
while (nextCmp <= 0) {
approxLog10++;
approxPow = nextPow;
approxCmp = nextCmp;
nextPow = BigInteger.TEN.multiply(approxPow);
nextCmp = nextPow.compareTo(x);
}
}
int floorLog = approxLog10;
BigInteger floorPow = approxPow;
int floorCmp = approxCmp;
switch (mode) {
case UNNECESSARY:
checkRoundingUnnecessary(floorCmp == 0);
// fall through
case FLOOR:
case DOWN:
return floorLog;
case CEILING:
case UP:
return floorPow.equals(x) ? floorLog : floorLog + 1;
case HALF_DOWN:
case HALF_UP:
case HALF_EVEN:
// Since sqrt(10) is irrational, log10(x) - floorLog can never be exactly 0.5
BigInteger x2 = x.pow(2);
BigInteger halfPowerSquared = floorPow.pow(2).multiply(BigInteger.TEN);
return (x2.compareTo(halfPowerSquared) <= 0) ? floorLog : floorLog + 1;
default:
throw new AssertionError();
}
}
static boolean fitsInLong(BigInteger x) {
return x.bitLength() <= Long.SIZE - 1;
}
private static final double LN_10 = Math.log(10);
private static final double LN_2 = Math.log(2);
public static int pow(int b, int k) {
checkNonNegative("exponent", k);
switch (b) {
case 0:
return (k == 0) ? 1 : 0;
case 1:
return 1;
case (-1):
return ((k & 1) == 0) ? 1 : -1;
case 2:
return (k < Integer.SIZE) ? (1 << k) : 0;
case (-2):
if (k < Integer.SIZE) {
return ((k & 1) == 0) ? (1 << k) : -(1 << k);
} else {
return 0;
}
default:
// continue below to handle the general case
}
for (int accum = 1;; k >>= 1) {
switch (k) {
case 0:
return accum;
case 1:
return b * accum;
default:
accum *= ((k & 1) == 0) ? 1 : b;
b *= b;
}
}
}
/**
* Returns {@code b} to the {@code k}th power. Even if the result overflows, it will be equal to
* {@code BigInteger.valueOf(b).pow(k).longValue()}. This implementation runs in {@code O(log k)}
* time.
*
* @throws IllegalArgumentException if {@code k < 0}
*/
public static long pow(long b, int k) {
checkNonNegative("exponent", k);
if (-2 <= b && b <= 2) {
switch ((int) b) {
case 0:
return (k == 0) ? 1 : 0;
case 1:
return 1;
case (-1):
return ((k & 1) == 0) ? 1 : -1;
case 2:
return (k < Long.SIZE) ? 1L << k : 0;
case (-2):
if (k < Long.SIZE) {
return ((k & 1) == 0) ? 1L << k : -(1L << k);
} else {
return 0;
}
default:
throw new AssertionError();
}
}
for (long accum = 1;; k >>= 1) {
switch (k) {
case 0:
return accum;
case 1:
return accum * b;
default:
accum *= ((k & 1) == 0) ? 1 : b;
b *= b;
}
}
}
/**
* Returns the smallest power of two greater than or equal to {@code x}. This is equivalent to
* {@code checkedPow(2, log2(x, CEILING))}.
*
* @throws IllegalArgumentException if {@code x <= 0}
* @throws ArithmeticException of the next-higher power of two is not representable as a
* {@code long}, i.e. when {@code x > 2^62}
* @since 20.0
*/
public static long ceilingPowerOfTwo(long x) {
checkPositive("x", x);
if (x > MAX_SIGNED_POWER_OF_TWO) {
throw new ArithmeticException("ceilingPowerOfTwo(" + x + ") is not representable as a long");
}
return 1L << -Long.numberOfLeadingZeros(x - 1);
}
public static BigInteger ceilingPowerOfTwo(BigInteger x) {
return BigInteger.ZERO.setBit(log2(x, RoundingMode.CEILING));
}
/**
* Returns the largest power of two less than or equal to {@code x}. This is equivalent to
* {@code checkedPow(2, log2(x, FLOOR))}.
*
* @throws IllegalArgumentException if {@code x <= 0}
* @since 20.0
*/
public static long floorPowerOfTwo(long x) {
checkPositive("x", x);
// Long.highestOneBit was buggy on GWT. We've fixed it, but I'm not certain when the fix will
// be released.
return 1L << ((Long.SIZE - 1) - Long.numberOfLeadingZeros(x));
}
public static BigInteger floorPowerOfTwo(BigInteger x) {
return BigInteger.ZERO.setBit(log2(x, RoundingMode.FLOOR));
}
/**
* Returns the square root of {@code x}, rounded with the specified rounding mode.
*
* @throws IllegalArgumentException if {@code x < 0}
* @throws ArithmeticException if {@code mode} is {@link RoundingMode#UNNECESSARY} and
* {@code sqrt(x)} is not an integer
*/
@SuppressWarnings("fallthrough")
public static int sqrt(int x, RoundingMode mode) {
checkNonNegative("x", x);
int sqrtFloor = sqrtFloor(x);
switch (mode) {
case UNNECESSARY:
checkRoundingUnnecessary(sqrtFloor * sqrtFloor == x); // fall through
case FLOOR:
case DOWN:
return sqrtFloor;
case CEILING:
case UP:
return sqrtFloor + lessThanBranchFree(sqrtFloor * sqrtFloor, x);
case HALF_DOWN:
case HALF_UP:
case HALF_EVEN:
int halfSquare = sqrtFloor * sqrtFloor + sqrtFloor;
/*
* We wish to test whether or not x <= (sqrtFloor + 0.5)^2 = halfSquare + 0.25. Since both
* x and halfSquare are integers, this is equivalent to testing whether or not x <=
* halfSquare. (We have to deal with overflow, though.)
*
* If we treat halfSquare as an unsigned int, we know that
* sqrtFloor^2 <= x < (sqrtFloor + 1)^2
* halfSquare - sqrtFloor <= x < halfSquare + sqrtFloor + 1
* so |x - halfSquare| <= sqrtFloor. Therefore, it's safe to treat x - halfSquare as a
* signed int, so lessThanBranchFree is safe for use.
*/
return sqrtFloor + lessThanBranchFree(halfSquare, x);
default:
throw new AssertionError();
}
}
private static int sqrtFloor(int x) {
// There is no loss of precision in converting an int to a double, according to
// http://java.sun.com/docs/books/jls/third_edition/html/conversions.html#5.1.2
return (int) Math.sqrt(x);
}
/**
* Returns the square root of {@code x}, rounded with the specified rounding mode.
*
* @throws IllegalArgumentException if {@code x < 0}
* @throws ArithmeticException if {@code mode} is {@link RoundingMode#UNNECESSARY} and
* {@code sqrt(x)} is not an integer
*/
@SuppressWarnings("fallthrough")
public static long sqrt(long x, RoundingMode mode) {
checkNonNegative("x", x);
if (fitsInInt(x)) {
return sqrt((int) x, mode);
}
/*
* Let k be the true value of floor(sqrt(x)), so that
*
* k * k <= x < (k + 1) * (k + 1)
* (double) (k * k) <= (double) x <= (double) ((k + 1) * (k + 1))
* since casting to double is nondecreasing.
* Note that the right-hand inequality is no longer strict.
* Math.sqrt(k * k) <= Math.sqrt(x) <= Math.sqrt((k + 1) * (k + 1))
* since Math.sqrt is monotonic.
* (long) Math.sqrt(k * k) <= (long) Math.sqrt(x) <= (long) Math.sqrt((k + 1) * (k + 1))
* since casting to long is monotonic
* k <= (long) Math.sqrt(x) <= k + 1
* since (long) Math.sqrt(k * k) == k, as checked exhaustively in
* {@link LongMathTest#testSqrtOfPerfectSquareAsDoubleIsPerfect}
*/
long guess = (long) Math.sqrt(x);
// Note: guess is always <= FLOOR_SQRT_MAX_LONG.
long guessSquared = guess * guess;
// Note (2013-2-26): benchmarks indicate that, inscrutably enough, using if statements is
// faster here than using lessThanBranchFree.
switch (mode) {
case UNNECESSARY:
checkRoundingUnnecessary(guessSquared == x);
return guess;
case FLOOR:
case DOWN:
if (x < guessSquared) {
return guess - 1;
}
return guess;
case CEILING:
case UP:
if (x > guessSquared) {
return guess + 1;
}
return guess;
case HALF_DOWN:
case HALF_UP:
case HALF_EVEN:
long sqrtFloor = guess - ((x < guessSquared) ? 1 : 0);
long halfSquare = sqrtFloor * sqrtFloor + sqrtFloor;
/*
* We wish to test whether or not x <= (sqrtFloor + 0.5)^2 = halfSquare + 0.25. Since both x
* and halfSquare are integers, this is equivalent to testing whether or not x <=
* halfSquare. (We have to deal with overflow, though.)
*
* If we treat halfSquare as an unsigned long, we know that
* sqrtFloor^2 <= x < (sqrtFloor + 1)^2
* halfSquare - sqrtFloor <= x < halfSquare + sqrtFloor + 1
* so |x - halfSquare| <= sqrtFloor. Therefore, it's safe to treat x - halfSquare as a
* signed long, so lessThanBranchFree is safe for use.
*/
return sqrtFloor + lessThanBranchFree(halfSquare, x);
default:
throw new AssertionError();
}
}
public static BigInteger sqrt(BigInteger x, RoundingMode mode) {
checkNonNegative("x", x);
if (fitsInLong(x)) {
return BigInteger.valueOf(sqrt(x.longValue(), mode));
}
BigInteger sqrtFloor = sqrtFloor(x);
switch (mode) {
case UNNECESSARY:
checkRoundingUnnecessary(sqrtFloor.pow(2).equals(x)); // fall through
case FLOOR:
case DOWN:
return sqrtFloor;
case CEILING:
case UP:
int sqrtFloorInt = sqrtFloor.intValue();
boolean sqrtFloorIsExact = (sqrtFloorInt * sqrtFloorInt == x.intValue()) // fast check mod 2^32
&& sqrtFloor.pow(2).equals(x); // slow exact check
return sqrtFloorIsExact ? sqrtFloor : sqrtFloor.add(BigInteger.ONE);
case HALF_DOWN:
case HALF_UP:
case HALF_EVEN:
BigInteger halfSquare = sqrtFloor.pow(2).add(sqrtFloor);
/*
* We wish to test whether or not x <= (sqrtFloor + 0.5)^2 = halfSquare + 0.25. Since both x
* and halfSquare are integers, this is equivalent to testing whether or not x <=
* halfSquare.
*/
return (halfSquare.compareTo(x) >= 0) ? sqrtFloor : sqrtFloor.add(BigInteger.ONE);
default:
throw new AssertionError();
}
}
private static BigInteger sqrtFloor(BigInteger x) {
/*
* Adapted from Hacker's Delight, Figure 11-1.
*
* Using DoubleUtils.bigToDouble, getting a double approximation of x is extremely fast, and
* then we can get a double approximation of the square root. Then, we iteratively improve this
* guess with an application of Newton's method, which sets guess := (guess + (x / guess)) / 2.
* This iteration has the following two properties:
*
* a) every iteration (except potentially the first) has guess >= floor(sqrt(x)). This is
* because guess' is the arithmetic mean of guess and x / guess, sqrt(x) is the geometric mean,
* and the arithmetic mean is always higher than the geometric mean.
*
* b) this iteration converges to floor(sqrt(x)). In fact, the number of correct digits doubles
* with each iteration, so this algorithm takes O(log(digits)) iterations.
*
* We start out with a double-precision approximation, which may be higher or lower than the
* true value. Therefore, we perform at least one Newton iteration to get a guess that's
* definitely >= floor(sqrt(x)), and then continue the iteration until we reach a fixed point.
*/
BigInteger sqrt0;
int log2 = log2(x, FLOOR);
if (log2 < Double.MAX_EXPONENT) {
sqrt0 = sqrtApproxWithDoubles(x);
} else {
int shift = (log2 - SIGNIFICAND_BITS) & ~1; // even!
/*
* We have that x / 2^shift < 2^54. Our initial approximation to sqrtFloor(x) will be
* 2^(shift/2) * sqrtApproxWithDoubles(x / 2^shift).
*/
sqrt0 = sqrtApproxWithDoubles(x.shiftRight(shift)).shiftLeft(shift >> 1);
}
BigInteger sqrt1 = sqrt0.add(x.divide(sqrt0)).shiftRight(1);
if (sqrt0.equals(sqrt1)) {
return sqrt0;
}
do {
sqrt0 = sqrt1;
sqrt1 = sqrt0.add(x.divide(sqrt0)).shiftRight(1);
} while (sqrt1.compareTo(sqrt0) < 0);
return sqrt0;
}
private static BigInteger sqrtApproxWithDoubles(BigInteger x) {
return roundToBigInteger(Math.sqrt(bigToDouble(x)), HALF_EVEN);
}
/**
* Returns the result of dividing {@code p} by {@code q}, rounding using the specified
* {@code RoundingMode}.
*
* @throws ArithmeticException if {@code q == 0}, or if {@code mode == UNNECESSARY} and {@code a}
* is not an integer multiple of {@code b}
*/
@SuppressWarnings("fallthrough")
public static int divide(int p, int q, RoundingMode mode) {
N.requireNonNull(mode);
if (q == 0) {
throw new ArithmeticException("/ by zero"); // for GWT
}
int div = p / q;
int rem = p - q * div; // equal to p % q
if (rem == 0) {
return div;
}
/*
* Normal Java division rounds towards 0, consistently with RoundingMode.DOWN. We just have to
* deal with the cases where rounding towards 0 is wrong, which typically depends on the sign of
* p / q.
*
* signum is 1 if p and q are both nonnegative or both negative, and -1 otherwise.
*/
int signum = 1 | ((p ^ q) >> (Integer.SIZE - 1));
boolean increment;
switch (mode) {
case UNNECESSARY:
checkRoundingUnnecessary(rem == 0);
// fall through
case DOWN:
increment = false;
break;
case UP:
increment = true;
break;
case CEILING:
increment = signum > 0;
break;
case FLOOR:
increment = signum < 0;
break;
case HALF_EVEN:
case HALF_DOWN:
case HALF_UP:
int absRem = abs(rem);
int cmpRemToHalfDivisor = absRem - (abs(q) - absRem);
// subtracting two nonnegative ints can't overflow
// cmpRemToHalfDivisor has the same sign as compare(abs(rem), abs(q) / 2).
if (cmpRemToHalfDivisor == 0) { // exactly on the half mark
increment = (mode == HALF_UP || (mode == HALF_EVEN & (div & 1) != 0));
} else {
increment = cmpRemToHalfDivisor > 0; // closer to the UP value
}
break;
default:
throw new AssertionError();
}
return increment ? div + signum : div;
}
/**
* Returns the result of dividing {@code p} by {@code q}, rounding using the specified
* {@code RoundingMode}.
*
* @throws ArithmeticException if {@code q == 0}, or if {@code mode == UNNECESSARY} and {@code a}
* is not an integer multiple of {@code b}
*/
@SuppressWarnings("fallthrough")
public static long divide(long p, long q, RoundingMode mode) {
N.requireNonNull(mode);
long div = p / q; // throws if q == 0
long rem = p - q * div; // equals p % q
if (rem == 0) {
return div;
}
/*
* Normal Java division rounds towards 0, consistently with RoundingMode.DOWN. We just have to
* deal with the cases where rounding towards 0 is wrong, which typically depends on the sign of
* p / q.
*
* signum is 1 if p and q are both nonnegative or both negative, and -1 otherwise.
*/
int signum = 1 | (int) ((p ^ q) >> (Long.SIZE - 1));
boolean increment;
switch (mode) {
case UNNECESSARY:
checkRoundingUnnecessary(rem == 0);
// fall through
case DOWN:
increment = false;
break;
case UP:
increment = true;
break;
case CEILING:
increment = signum > 0;
break;
case FLOOR:
increment = signum < 0;
break;
case HALF_EVEN:
case HALF_DOWN:
case HALF_UP:
long absRem = abs(rem);
long cmpRemToHalfDivisor = absRem - (abs(q) - absRem);
// subtracting two nonnegative longs can't overflow
// cmpRemToHalfDivisor has the same sign as compare(abs(rem), abs(q) / 2).
if (cmpRemToHalfDivisor == 0) { // exactly on the half mark
increment = (mode == HALF_UP | (mode == HALF_EVEN & (div & 1) != 0));
} else {
increment = cmpRemToHalfDivisor > 0; // closer to the UP value
}
break;
default:
throw new AssertionError();
}
return increment ? div + signum : div;
}
public static BigInteger divide(BigInteger p, BigInteger q, RoundingMode mode) {
BigDecimal pDec = new BigDecimal(p);
BigDecimal qDec = new BigDecimal(q);
return pDec.divide(qDec, 0, mode).toBigIntegerExact();
}
/**
* Returns {@code x mod m}, a non-negative value less than {@code m}.
* This differs from {@code x % m}, which might be negative.
*
*
For example:
{@code
*
* mod(7, 4) == 3
* mod(-7, 4) == 1
* mod(-1, 4) == 3
* mod(-8, 4) == 0
* mod(8, 4) == 0}
*
* @throws ArithmeticException if {@code m <= 0}
* @see
* Remainder Operator
*/
public static int mod(int x, int m) {
if (m <= 0) {
throw new ArithmeticException("Modulus " + m + " must be > 0");
}
int result = x % m;
return (result >= 0) ? result : result + m;
}
/**
* Returns {@code x mod m}, a non-negative value less than {@code m}. This differs from
* {@code x % m}, which might be negative.
*
* For example:
*
*
{@code
*
* mod(7, 4) == 3
* mod(-7, 4) == 1
* mod(-1, 4) == 3
* mod(-8, 4) == 0
* mod(8, 4) == 0}
*
* @throws ArithmeticException if {@code m <= 0}
* @see
* Remainder Operator
*/
public static int mod(long x, int m) {
// Cast is safe because the result is guaranteed in the range [0, m)
return (int) mod(x, (long) m);
}
/**
* Returns {@code x mod m}, a non-negative value less than {@code m}. This differs from
* {@code x % m}, which might be negative.
*
* For example:
*
*
{@code
*
* mod(7, 4) == 3
* mod(-7, 4) == 1
* mod(-1, 4) == 3
* mod(-8, 4) == 0
* mod(8, 4) == 0}
*
* @throws ArithmeticException if {@code m <= 0}
* @see
* Remainder Operator
*/
public static long mod(long x, long m) {
if (m <= 0) {
throw new ArithmeticException("Modulus must be positive");
}
long result = x % m;
return (result >= 0) ? result : result + m;
}
/**
* Returns the greatest common divisor of {@code a, b}. Returns {@code 0} if
* {@code a == 0 && b == 0}.
*
* @throws IllegalArgumentException if {@code a < 0} or {@code b < 0}
*/
public static int gcd(int a, int b) {
/*
* The reason we require both arguments to be >= 0 is because otherwise, what do you return on
* gcd(0, Integer.MIN_VALUE)? BigInteger.gcd would return positive 2^31, but positive 2^31
* isn't an int.
*/
checkNonNegative("a", a);
checkNonNegative("b", b);
if (a == 0) {
// 0 % b == 0, so b divides a, but the converse doesn't hold.
// BigInteger.gcd is consistent with this decision.
return b;
} else if (b == 0) {
return a; // similar logic
}
/*
* Uses the binary GCD algorithm; see http://en.wikipedia.org/wiki/Binary_GCD_algorithm.
* This is >40% faster than the Euclidean algorithm in benchmarks.
*/
int aTwos = Integer.numberOfTrailingZeros(a);
a >>= aTwos; // divide out all 2s
int bTwos = Integer.numberOfTrailingZeros(b);
b >>= bTwos; // divide out all 2s
while (a != b) { // both a, b are odd
// The key to the binary GCD algorithm is as follows:
// Both a and b are odd. Assume a > b; then gcd(a - b, b) = gcd(a, b).
// But in gcd(a - b, b), a - b is even and b is odd, so we can divide out powers of two.
// We bend over backwards to avoid branching, adapting a technique from
// http://graphics.stanford.edu/~seander/bithacks.html#IntegerMinOrMax
int delta = a - b; // can't overflow, since a and b are nonnegative
int minDeltaOrZero = delta & (delta >> (Integer.SIZE - 1));
// equivalent to Math.min(delta, 0)
a = delta - minDeltaOrZero - minDeltaOrZero; // sets a to Math.abs(a - b)
// a is now nonnegative and even
b += minDeltaOrZero; // sets b to min(old a, b)
a >>= Integer.numberOfTrailingZeros(a); // divide out all 2s, since 2 doesn't divide b
}
return a << min(aTwos, bTwos);
}
/**
* Returns the greatest common divisor of {@code a, b}. Returns {@code 0} if
* {@code a == 0 && b == 0}.
*
* @throws IllegalArgumentException if {@code a < 0} or {@code b < 0}
*/
public static long gcd(long a, long b) {
/*
* The reason we require both arguments to be >= 0 is because otherwise, what do you return on
* gcd(0, Long.MIN_VALUE)? BigInteger.gcd would return positive 2^63, but positive 2^63 isn't an
* int.
*/
checkNonNegative("a", a);
checkNonNegative("b", b);
if (a == 0) {
// 0 % b == 0, so b divides a, but the converse doesn't hold.
// BigInteger.gcd is consistent with this decision.
return b;
} else if (b == 0) {
return a; // similar logic
}
/*
* Uses the binary GCD algorithm; see http://en.wikipedia.org/wiki/Binary_GCD_algorithm. This is
* >60% faster than the Euclidean algorithm in benchmarks.
*/
int aTwos = Long.numberOfTrailingZeros(a);
a >>= aTwos; // divide out all 2s
int bTwos = Long.numberOfTrailingZeros(b);
b >>= bTwos; // divide out all 2s
while (a != b) { // both a, b are odd
// The key to the binary GCD algorithm is as follows:
// Both a and b are odd. Assume a > b; then gcd(a - b, b) = gcd(a, b).
// But in gcd(a - b, b), a - b is even and b is odd, so we can divide out powers of two.
// We bend over backwards to avoid branching, adapting a technique from
// http://graphics.stanford.edu/~seander/bithacks.html#IntegerMinOrMax
long delta = a - b; // can't overflow, since a and b are nonnegative
long minDeltaOrZero = delta & (delta >> (Long.SIZE - 1));
// equivalent to Math.min(delta, 0)
a = delta - minDeltaOrZero - minDeltaOrZero; // sets a to Math.abs(a - b)
// a is now nonnegative and even
b += minDeltaOrZero; // sets b to min(old a, b)
a >>= Long.numberOfTrailingZeros(a); // divide out all 2s, since 2 doesn't divide b
}
return a << min(aTwos, bTwos);
}
/**
*
* Returns the least common multiple of the absolute value of two numbers,
* using the formula {@code lcm(a,b) = (a / gcd(a,b)) * b}.
*
* Special cases:
*
* - The invocations {@code lcm(Integer.MIN_VALUE, n)} and
* {@code lcm(n, Integer.MIN_VALUE)}, where {@code abs(n)} is a
* power of 2, throw an {@code ArithmeticException}, because the result
* would be 2^31, which is too large for an int value.
* - The result of {@code lcm(0, x)} and {@code lcm(x, 0)} is
* {@code 0} for any {@code x}.
*
*
* @param a Number.
* @param b Number.
* @return the least common multiple, never negative.
* @throws ArithmeticException if the result cannot be represented as
* a non-negative {@code int} value.
* @since 1.1
*/
public static int lcm(int a, int b) throws ArithmeticException {
if (a == 0 || b == 0) {
return 0;
}
int lcm = Math.abs(addExact(a / gcd(a, b), b));
if (lcm == Integer.MIN_VALUE) {
throw new ArithmeticException();
}
return lcm;
}
/**
*
* Returns the least common multiple of the absolute value of two numbers,
* using the formula {@code lcm(a,b) = (a / gcd(a,b)) * b}.
*
* Special cases:
*
* - The invocations {@code lcm(Long.MIN_VALUE, n)} and
* {@code lcm(n, Long.MIN_VALUE)}, where {@code abs(n)} is a
* power of 2, throw an {@code ArithmeticException}, because the result
* would be 2^63, which is too large for an int value.
* - The result of {@code lcm(0L, x)} and {@code lcm(x, 0L)} is
* {@code 0L} for any {@code x}.
*
*
* @param a Number.
* @param b Number.
* @return the least common multiple, never negative.
* @throws ArithmeticException if the result cannot be represented
* as a non-negative {@code long} value.
* @since 2.1
*/
public static long lcm(long a, long b) throws ArithmeticException {
if (a == 0 || b == 0) {
return 0;
}
long lcm = Math.abs(addExact(a / gcd(a, b), b));
if (lcm == Integer.MIN_VALUE) {
throw new ArithmeticException();
}
return lcm;
}
/**
* Returns the sum of {@code a} and {@code b}, provided it does not overflow.
*
* @throws ArithmeticException if {@code a + b} overflows in signed {@code int} arithmetic
*/
public static int addExact(int a, int b) {
long result = (long) a + b;
checkNoOverflow(result == (int) result);
return (int) result;
}
/**
* Returns the sum of {@code a} and {@code b}, provided it does not overflow.
*
* @throws ArithmeticException if {@code a + b} overflows in signed {@code long} arithmetic
*/
public static long addExact(long a, long b) {
long result = a + b;
checkNoOverflow((a ^ b) < 0 | (a ^ result) >= 0);
return result;
}
/**
* Returns the difference of {@code a} and {@code b}, provided it does not overflow.
*
* @throws ArithmeticException if {@code a - b} overflows in signed {@code int} arithmetic
*/
public static int subtractExact(int a, int b) {
long result = (long) a - b;
checkNoOverflow(result == (int) result);
return (int) result;
}
/**
* Returns the difference of {@code a} and {@code b}, provided it does not overflow.
*
* @throws ArithmeticException if {@code a - b} overflows in signed {@code long} arithmetic
*/
public static long subtractExact(long a, long b) {
long result = a - b;
checkNoOverflow((a ^ b) >= 0 | (a ^ result) >= 0);
return result;
}
/**
* Returns the product of {@code a} and {@code b}, provided it does not overflow.
*
* @throws ArithmeticException if {@code a * b} overflows in signed {@code int} arithmetic
*/
public static int multiplyExact(int a, int b) {
long result = (long) a * b;
checkNoOverflow(result == (int) result);
return (int) result;
}
/**
* Returns the product of {@code a} and {@code b}, provided it does not overflow.
*
* @throws ArithmeticException if {@code a * b} overflows in signed {@code long} arithmetic
*/
public static long multiplyExact(long a, long b) {
// Hacker's Delight, Section 2-12
int leadingZeros = Long.numberOfLeadingZeros(a) + Long.numberOfLeadingZeros(~a) + Long.numberOfLeadingZeros(b) + Long.numberOfLeadingZeros(~b);
/*
* If leadingZeros > Long.SIZE + 1 it's definitely fine, if it's < Long.SIZE it's definitely
* bad. We do the leadingZeros check to avoid the division below if at all possible.
*
* Otherwise, if b == Long.MIN_VALUE, then the only allowed values of a are 0 and 1. We take
* care of all a < 0 with their own check, because in particular, the case a == -1 will
* incorrectly pass the division check below.
*
* In all other cases, we check that either a is 0 or the result is consistent with division.
*/
if (leadingZeros > Long.SIZE + 1) {
return a * b;
}
checkNoOverflow(leadingZeros >= Long.SIZE);
checkNoOverflow(a >= 0 | b != Long.MIN_VALUE);
long result = a * b;
checkNoOverflow(a == 0 || result / a == b);
return result;
}
/**
* Returns the {@code b} to the {@code k}th power, provided it does not overflow.
*
* {@link #pow} may be faster, but does not check for overflow.
*
* @throws ArithmeticException if {@code b} to the {@code k}th power overflows in signed
* {@code int} arithmetic
*/
public static int powExact(int b, int k) {
checkNonNegative("exponent", k);
switch (b) {
case 0:
return (k == 0) ? 1 : 0;
case 1:
return 1;
case (-1):
return ((k & 1) == 0) ? 1 : -1;
case 2:
checkNoOverflow(k < Integer.SIZE - 1);
return 1 << k;
case (-2):
checkNoOverflow(k < Integer.SIZE);
return ((k & 1) == 0) ? 1 << k : -1 << k;
default:
// continue below to handle the general case
}
int accum = 1;
while (true) {
switch (k) {
case 0:
return accum;
case 1:
return multiplyExact(accum, b);
default:
if ((k & 1) != 0) {
accum = multiplyExact(accum, b);
}
k >>= 1;
if (k > 0) {
checkNoOverflow(-FLOOR_SQRT_MAX_INT <= b & b <= FLOOR_SQRT_MAX_INT);
b *= b;
}
}
}
}
/**
* Returns the {@code b} to the {@code k}th power, provided it does not overflow.
*
* @throws ArithmeticException if {@code b} to the {@code k}th power overflows in signed
* {@code long} arithmetic
*/
public static long powExact(long b, int k) {
checkNonNegative("exponent", k);
if (b >= -2 & b <= 2) {
switch ((int) b) {
case 0:
return (k == 0) ? 1 : 0;
case 1:
return 1;
case (-1):
return ((k & 1) == 0) ? 1 : -1;
case 2:
checkNoOverflow(k < Long.SIZE - 1);
return 1L << k;
case (-2):
checkNoOverflow(k < Long.SIZE);
return ((k & 1) == 0) ? (1L << k) : (-1L << k);
default:
throw new AssertionError();
}
}
long accum = 1;
while (true) {
switch (k) {
case 0:
return accum;
case 1:
return multiplyExact(accum, b);
default:
if ((k & 1) != 0) {
accum = multiplyExact(accum, b);
}
k >>= 1;
if (k > 0) {
checkNoOverflow(-FLOOR_SQRT_MAX_LONG <= b && b <= FLOOR_SQRT_MAX_LONG);
b *= b;
}
}
}
}
/**
* Returns the {@code int} value that is equal to {@code value}, if possible.
*
* @param value any value in the range of the {@code int} type
* @return the {@code int} value that equals {@code value}
* @throws IllegalArgumentException if {@code value} is greater than {@link Integer#MAX_VALUE} or
* less than {@link Integer#MIN_VALUE}
*/
public static int castExact(long value) {
int result = (int) value;
if (result != value) {
// don't use checkArgument here, to avoid boxing
throw new IllegalArgumentException("Out of range: " + value);
}
return result;
}
/**
* Returns the sum of {@code a} and {@code b} unless it would overflow or underflow in which case
* {@code Integer.MAX_VALUE} or {@code Integer.MIN_VALUE} is returned, respectively.
*
* @since 20.0
*/
public static int saturatedAdd(int a, int b) {
return saturatedCast((long) a + b);
}
/**
* Returns the sum of {@code a} and {@code b} unless it would overflow or underflow in which case
* {@code Long.MAX_VALUE} or {@code Long.MIN_VALUE} is returned, respectively.
*
* @since 20.0
*/
public static long saturatedAdd(long a, long b) {
long naiveSum = a + b;
if ((a ^ b) < 0 | (a ^ naiveSum) >= 0) {
// If a and b have different signs or a has the same sign as the result then there was no
// overflow, return.
return naiveSum;
}
// we did over/under flow, if the sign is negative we should return MAX otherwise MIN
return Long.MAX_VALUE + ((naiveSum >>> (Long.SIZE - 1)) ^ 1);
}
/**
* Returns the difference of {@code a} and {@code b} unless it would overflow or underflow in
* which case {@code Integer.MAX_VALUE} or {@code Integer.MIN_VALUE} is returned, respectively.
*
* @since 20.0
*/
public static int saturatedSubtract(int a, int b) {
return saturatedCast((long) a - b);
}
/**
* Returns the difference of {@code a} and {@code b} unless it would overflow or underflow in
* which case {@code Long.MAX_VALUE} or {@code Long.MIN_VALUE} is returned, respectively.
*
* @since 20.0
*/
public static long saturatedSubtract(long a, long b) {
long naiveDifference = a - b;
if ((a ^ b) >= 0 | (a ^ naiveDifference) >= 0) {
// If a and b have the same signs or a has the same sign as the result then there was no
// overflow, return.
return naiveDifference;
}
// we did over/under flow
return Long.MAX_VALUE + ((naiveDifference >>> (Long.SIZE - 1)) ^ 1);
}
/**
* Returns the product of {@code a} and {@code b} unless it would overflow or underflow in which
* case {@code Integer.MAX_VALUE} or {@code Integer.MIN_VALUE} is returned, respectively.
*
* @since 20.0
*/
public static int saturatedMultiply(int a, int b) {
return saturatedCast((long) a * b);
}
/**
* Returns the product of {@code a} and {@code b} unless it would overflow or underflow in which
* case {@code Long.MAX_VALUE} or {@code Long.MIN_VALUE} is returned, respectively.
*
* @since 20.0
*/
public static long saturatedMultiply(long a, long b) {
// see checkedMultiply for explanation
int leadingZeros = Long.numberOfLeadingZeros(a) + Long.numberOfLeadingZeros(~a) + Long.numberOfLeadingZeros(b) + Long.numberOfLeadingZeros(~b);
if (leadingZeros > Long.SIZE + 1) {
return a * b;
}
// the return value if we will overflow (which we calculate by overflowing a long :) )
long limit = Long.MAX_VALUE + ((a ^ b) >>> (Long.SIZE - 1));
if (leadingZeros < Long.SIZE | (a < 0 & b == Long.MIN_VALUE)) {
// overflow
return limit;
}
long result = a * b;
if (a == 0 || result / a == b) {
return result;
}
return limit;
}
/**
* Returns the {@code b} to the {@code k}th power, unless it would overflow or underflow in which
* case {@code Integer.MAX_VALUE} or {@code Integer.MIN_VALUE} is returned, respectively.
*
* @since 20.0
*/
public static int saturatedPow(int b, int k) {
checkNonNegative("exponent", k);
switch (b) {
case 0:
return (k == 0) ? 1 : 0;
case 1:
return 1;
case (-1):
return ((k & 1) == 0) ? 1 : -1;
case 2:
if (k >= Integer.SIZE - 1) {
return Integer.MAX_VALUE;
}
return 1 << k;
case (-2):
if (k >= Integer.SIZE) {
return Integer.MAX_VALUE + (k & 1);
}
return ((k & 1) == 0) ? 1 << k : -1 << k;
default:
// continue below to handle the general case
}
int accum = 1;
// if b is negative and k is odd then the limit is MIN otherwise the limit is MAX
int limit = Integer.MAX_VALUE + ((b >>> Integer.SIZE - 1) & (k & 1));
while (true) {
switch (k) {
case 0:
return accum;
case 1:
return saturatedMultiply(accum, b);
default:
if ((k & 1) != 0) {
accum = saturatedMultiply(accum, b);
}
k >>= 1;
if (k > 0) {
if (-FLOOR_SQRT_MAX_INT > b | b > FLOOR_SQRT_MAX_INT) {
return limit;
}
b *= b;
}
}
}
}
/**
* Returns the {@code b} to the {@code k}th power, unless it would overflow or underflow in which
* case {@code Long.MAX_VALUE} or {@code Long.MIN_VALUE} is returned, respectively.
*
* @since 20.0
*/
public static long saturatedPow(long b, int k) {
checkNonNegative("exponent", k);
if (b >= -2 & b <= 2) {
switch ((int) b) {
case 0:
return (k == 0) ? 1 : 0;
case 1:
return 1;
case (-1):
return ((k & 1) == 0) ? 1 : -1;
case 2:
if (k >= Long.SIZE - 1) {
return Long.MAX_VALUE;
}
return 1L << k;
case (-2):
if (k >= Long.SIZE) {
return Long.MAX_VALUE + (k & 1);
}
return ((k & 1) == 0) ? (1L << k) : (-1L << k);
default:
throw new AssertionError();
}
}
long accum = 1;
// if b is negative and k is odd then the limit is MIN otherwise the limit is MAX
long limit = Long.MAX_VALUE + ((b >>> Long.SIZE - 1) & (k & 1));
while (true) {
switch (k) {
case 0:
return accum;
case 1:
return saturatedMultiply(accum, b);
default:
if ((k & 1) != 0) {
accum = saturatedMultiply(accum, b);
}
k >>= 1;
if (k > 0) {
if (-FLOOR_SQRT_MAX_LONG > b | b > FLOOR_SQRT_MAX_LONG) {
return limit;
}
b *= b;
}
}
}
}
/**
* Returns the {@code int} nearest in value to {@code value}.
*
* @param value any {@code long} value
* @return the same value cast to {@code int} if it is in the range of the {@code int} type,
* {@link Integer#MAX_VALUE} if it is too large, or {@link Integer#MIN_VALUE} if it is too
* small
*/
public static int saturatedCast(long value) {
if (value > Integer.MAX_VALUE) {
return Integer.MAX_VALUE;
}
if (value < Integer.MIN_VALUE) {
return Integer.MIN_VALUE;
}
return (int) value;
}
/**
* Returns {@code n!}, that is, the product of the first {@code n} positive
* integers, {@code 1} if {@code n == 0}, or {@link Integer#MAX_VALUE} if the
* result does not fit in a {@code int}.
*
* @throws IllegalArgumentException if {@code n < 0}
*/
public static int factorial(int n) {
checkNonNegative("n", n);
return (n < int_factorials.length) ? int_factorials[n] : Integer.MAX_VALUE;
}
/**
* Returns {@code n!}, that is, the product of the first {@code n} positive integers, {@code 1} if
* {@code n == 0}, or {@link Long#MAX_VALUE} if the result does not fit in a {@code long}.
*
* @throws IllegalArgumentException if {@code n < 0}
*/
public static long factorial2(int n) {
checkNonNegative("n", n);
return (n < long_factorials.length) ? long_factorials[n] : Long.MAX_VALUE;
}
/**
* Returns {@code n!}, that is, the product of the first {@code n} positive integers, {@code 1} if
* {@code n == 0}, or {@code n!}, or {@link Double#POSITIVE_INFINITY} if
* {@code n! > Double.MAX_VALUE}.
*
*
The result is within 1 ulp of the true value.
*
* @throws IllegalArgumentException if {@code n < 0}
*/
public static double factorial3(int n) {
checkNonNegative("n", n);
if (n > MAX_FACTORIAL) {
return Double.POSITIVE_INFINITY;
} else {
// Multiplying the last (n & 0xf) values into their own accumulator gives a more accurate
// result than multiplying by everySixteenthFactorial[n >> 4] directly.
double accum = 1.0;
for (int i = 1 + (n & ~0xf); i <= n; i++) {
accum *= i;
}
return accum * everySixteenthFactorial[n >> 4];
}
}
/**
* Returns {@code n!}, that is, the product of the first {@code n} positive integers, or {@code 1}
* if {@code n == 0}.
*
*
Warning: the result takes O(n log n) space, so use cautiously.
*
*
This uses an efficient binary recursive algorithm to compute the factorial with balanced
* multiplies. It also removes all the 2s from the intermediate products (shifting them back in at
* the end).
*
* @throws IllegalArgumentException if {@code n < 0}
*/
public static BigInteger factorial5(int n) {
checkNonNegative("n", n);
// If the factorial is small enough, just use LongMath to do it.
if (n < long_factorials.length) {
return BigInteger.valueOf(long_factorials[n]);
}
// Pre-allocate space for our list of intermediate BigIntegers.
int approxSize = divide(n * log2(n, CEILING), Long.SIZE, CEILING);
ArrayList bignums = new ArrayList<>(approxSize);
// Start from the pre-computed maximum long factorial.
int startingNumber = long_factorials.length;
long product = long_factorials[startingNumber - 1];
// Strip off 2s from this value.
int shift = Long.numberOfTrailingZeros(product);
product >>= shift;
// Use floor(log2(num)) + 1 to prevent overflow of multiplication.
int productBits = log2(product, FLOOR) + 1;
int bits = log2(startingNumber, FLOOR) + 1;
// Check for the next power of two boundary, to save us a CLZ operation.
int nextPowerOfTwo = 1 << (bits - 1);
// Iteratively multiply the longs as big as they can go.
for (long num = startingNumber; num <= n; num++) {
// Check to see if the floor(log2(num)) + 1 has changed.
if ((num & nextPowerOfTwo) != 0) {
nextPowerOfTwo <<= 1;
bits++;
}
// Get rid of the 2s in num.
int tz = Long.numberOfTrailingZeros(num);
long normalizedNum = num >> tz;
shift += tz;
// Adjust floor(log2(num)) + 1.
int normalizedBits = bits - tz;
// If it won't fit in a long, then we store off the intermediate product.
if (normalizedBits + productBits >= Long.SIZE) {
bignums.add(BigInteger.valueOf(product));
product = 1;
productBits = 0;
}
product *= normalizedNum;
productBits = log2(product, FLOOR) + 1;
}
// Check for leftovers.
if (product > 1) {
bignums.add(BigInteger.valueOf(product));
}
// Efficiently multiply all the intermediate products together.
return listProduct(bignums).shiftLeft(shift);
}
static BigInteger listProduct(List nums) {
return listProduct(nums, 0, nums.size());
}
static BigInteger listProduct(List nums, int start, int end) {
switch (end - start) {
case 0:
return BigInteger.ONE;
case 1:
return nums.get(start);
case 2:
return nums.get(start).multiply(nums.get(start + 1));
case 3:
return nums.get(start).multiply(nums.get(start + 1)).multiply(nums.get(start + 2));
default:
// Otherwise, split the list in half and recursively do this.
int m = (end + start) >>> 1;
return listProduct(nums, start, m).multiply(listProduct(nums, m, end));
}
}
/**
* Returns {@code n} choose {@code k}, also known as the binomial coefficient of {@code n} and
* {@code k}, or {@link Integer#MAX_VALUE} if the result does not fit in an {@code int}.
*
* @throws IllegalArgumentException if {@code n < 0}, {@code k < 0} or {@code k > n}
*/
public static int binomial(int n, int k) {
checkNonNegative("n", n);
checkNonNegative("k", k);
N.checkArgument(k <= n, "k (%s) > n (%s)", k, n);
if (k > (n >> 1)) {
k = n - k;
}
if (k >= int_biggestBinomials.length || n > int_biggestBinomials[k]) {
return Integer.MAX_VALUE;
}
switch (k) {
case 0:
return 1;
case 1:
return n;
default:
long result = 1;
for (int i = 0; i < k; i++) {
result *= n - i;
result /= i + 1;
}
return (int) result;
}
}
/**
* Returns {@code n} choose {@code k}, also known as the binomial coefficient of {@code n} and
* {@code k}, or {@link Long#MAX_VALUE} if the result does not fit in a {@code long}.
*
* @throws IllegalArgumentException if {@code n < 0}, {@code k < 0}, or {@code k > n}
*/
public static long binomial2(int n, int k) {
checkNonNegative("n", n);
checkNonNegative("k", k);
N.checkArgument(k <= n, "k (%s) > n (%s)", k, n);
if (k > (n >> 1)) {
k = n - k;
}
switch (k) {
case 0:
return 1;
case 1:
return n;
default:
if (n < long_factorials.length) {
return long_factorials[n] / (long_factorials[k] * long_factorials[n - k]);
} else if (k >= biggestBinomials.length || n > biggestBinomials[k]) {
return Long.MAX_VALUE;
} else if (k < biggestSimpleBinomials.length && n <= biggestSimpleBinomials[k]) {
// guaranteed not to overflow
long result = n--;
for (int i = 2; i <= k; n--, i++) {
result *= n;
result /= i;
}
return result;
} else {
int nBits = log2(n, RoundingMode.CEILING);
long result = 1;
long numerator = n--;
long denominator = 1;
int numeratorBits = nBits;
// This is an upper bound on log2(numerator, ceiling).
/*
* We want to do this in long math for speed, but want to avoid overflow. We adapt the
* technique previously used by BigIntegerMath: maintain separate numerator and
* denominator accumulators, multiplying the fraction into result when near overflow.
*/
for (int i = 2; i <= k; i++, n--) {
if (numeratorBits + nBits < Long.SIZE - 1) {
// It's definitely safe to multiply into numerator and denominator.
numerator *= n;
denominator *= i;
numeratorBits += nBits;
} else {
// It might not be safe to multiply into numerator and denominator,
// so multiply (numerator / denominator) into result.
result = multiplyFraction(result, numerator, denominator);
numerator = n;
denominator = i;
numeratorBits = nBits;
}
}
return multiplyFraction(result, numerator, denominator);
}
}
}
/**
* Returns {@code n} choose {@code k}, also known as the binomial coefficient of {@code n} and
* {@code k}, that is, {@code n! / (k! (n - k)!)}.
*
* Warning: the result can take as much as O(k log n) space.
*
* @throws IllegalArgumentException if {@code n < 0}, {@code k < 0}, or {@code k > n}
*/
public static BigInteger binomial5(int n, int k) {
checkNonNegative("n", n);
checkNonNegative("k", k);
N.checkArgument(k <= n, "k (%s) > n (%s)", k, n);
if (k > (n >> 1)) {
k = n - k;
}
if (k < biggestBinomials.length && n <= biggestBinomials[k]) {
return BigInteger.valueOf(binomial(n, k));
}
BigInteger accum = BigInteger.ONE;
long numeratorAccum = n;
long denominatorAccum = 1;
int bits = log2(n, RoundingMode.CEILING);
int numeratorBits = bits;
for (int i = 1; i < k; i++) {
int p = n - i;
int q = i + 1;
// log2(p) >= bits - 1, because p >= n/2
if (numeratorBits + bits >= Long.SIZE - 1) {
// The numerator is as big as it can get without risking overflow.
// Multiply numeratorAccum / denominatorAccum into accum.
accum = accum.multiply(BigInteger.valueOf(numeratorAccum)).divide(BigInteger.valueOf(denominatorAccum));
numeratorAccum = p;
denominatorAccum = q;
numeratorBits = bits;
} else {
// We can definitely multiply into the long accumulators without overflowing them.
numeratorAccum *= p;
denominatorAccum *= q;
numeratorBits += bits;
}
}
return accum.multiply(BigInteger.valueOf(numeratorAccum)).divide(BigInteger.valueOf(denominatorAccum));
}
/**
* Returns the arithmetic mean of {@code x} and {@code y}, rounded towards
* negative infinity. This method is overflow resilient.
*
* @since 14.0
*/
public static int mean(int x, int y) {
// Efficient method for computing the arithmetic mean.
// The alternative (x + y) / 2 fails for large values.
// The alternative (x + y) >>> 1 fails for negative values.
return (x & y) + ((x ^ y) >> 1);
}
/**
* Returns the arithmetic mean of {@code x} and {@code y}, rounded toward negative infinity. This
* method is resilient to overflow.
*
* @since 14.0
*/
public static long mean(long x, long y) {
// Efficient method for computing the arithmetic mean.
// The alternative (x + y) / 2 fails for large values.
// The alternative (x + y) >>> 1 fails for negative values.
return (x & y) + ((x ^ y) >> 1);
}
public static double mean(double x, double y) {
return checkFinite(x) + (checkFinite(x) - x) / 2;
}
/**
* Returns the arithmetic mean of
* {@code values}.
*
*
If these values are a sample drawn from a population, this is also an unbiased estimator of
* the arithmetic mean of the population.
*
* @param values a nonempty series of values
* @throws IllegalArgumentException if {@code values} is empty
*/
@SafeVarargs
public static double mean(int... values) {
N.checkArgument(values.length > 0, "Cannot take mean of 0 values");
// The upper bound on the the length of an array and the bounds on the int values mean that, in
// this case only, we can compute the sum as a long without risking overflow or loss of
// precision. So we do that, as it's slightly quicker than the Knuth algorithm.
long sum = 0;
for (int index = 0; index < values.length; ++index) {
sum += values[index];
}
return (double) sum / values.length;
}
/**
* Returns the arithmetic mean of
* {@code values}.
*
*
If these values are a sample drawn from a population, this is also an unbiased estimator of
* the arithmetic mean of the population.
*
* @param values a nonempty series of values, which will be converted to {@code double} values
* (this may cause loss of precision for longs of magnitude over 2^53 (slightly over 9e15))
* @throws IllegalArgumentException if {@code values} is empty
*/
@SafeVarargs
public static double mean(long... values) {
N.checkArgument(values.length > 0, "Cannot take mean of 0 values");
long count = 1;
double mean = values[0];
for (int index = 1; index < values.length; ++index) {
count++;
// Art of Computer Programming vol. 2, Knuth, 4.2.2, (15)
mean += (values[index] - mean) / count;
}
return mean;
}
@SafeVarargs
public static double mean(double... values) {
N.checkArgument(values.length > 0, "Cannot take mean of 0 values");
long count = 1;
double mean = checkFinite(values[0]);
for (int index = 1; index < values.length; ++index) {
checkFinite(values[index]);
count++;
// Art of Computer Programming vol. 2, Knuth, 4.2.2, (15)
mean += (values[index] - mean) / count;
}
return mean;
}
private static double checkFinite(double argument) {
N.checkArgument(isFinite(argument));
return argument;
}
static double roundIntermediate(double x, RoundingMode mode) {
if (!isFinite(x)) {
throw new ArithmeticException("input is infinite or NaN");
}
switch (mode) {
case UNNECESSARY:
checkRoundingUnnecessary(isMathematicalInteger(x));
return x;
case FLOOR:
if (x >= 0.0 || isMathematicalInteger(x)) {
return x;
} else {
return (long) x - 1;
}
case CEILING:
if (x <= 0.0 || isMathematicalInteger(x)) {
return x;
} else {
return (long) x + 1;
}
case DOWN:
return x;
case UP:
if (isMathematicalInteger(x)) {
return x;
} else {
return (long) x + (x > 0 ? 1 : -1);
}
case HALF_EVEN:
return Math.rint(x);
case HALF_UP: {
double z = Math.rint(x);
if (abs(x - z) == 0.5) {
return x + Math.copySign(0.5, x);
} else {
return z;
}
}
case HALF_DOWN: {
double z = Math.rint(x);
if (abs(x - z) == 0.5) {
return x;
} else {
return z;
}
}
default:
throw new AssertionError();
}
}
/**
* Returns the {@code int} value that is equal to {@code x} rounded with the specified rounding
* mode, if possible.
*
* @throws ArithmeticException if
*
* - {@code x} is infinite or NaN
*
- {@code x}, after being rounded to a mathematical integer using the specified rounding
* mode, is either less than {@code Integer.MIN_VALUE} or greater than {@code
* Integer.MAX_VALUE}
*
- {@code x} is not a mathematical integer and {@code mode} is
* {@link RoundingMode#UNNECESSARY}
*
*/
public static int roundToInt(double x, RoundingMode mode) {
double z = roundIntermediate(x, mode);
checkInRange(z > MIN_INT_AS_DOUBLE - 1.0 & z < MAX_INT_AS_DOUBLE + 1.0);
return (int) z;
}
/**
* Returns the {@code long} value that is equal to {@code x} rounded with the specified rounding
* mode, if possible.
*
* @throws ArithmeticException if
*
* - {@code x} is infinite or NaN
*
- {@code x}, after being rounded to a mathematical integer using the specified rounding
* mode, is either less than {@code Long.MIN_VALUE} or greater than {@code
* Long.MAX_VALUE}
*
- {@code x} is not a mathematical integer and {@code mode} is
* {@link RoundingMode#UNNECESSARY}
*
*/
public static long roundToLong(double x, RoundingMode mode) {
double z = roundIntermediate(x, mode);
checkInRange(MIN_LONG_AS_DOUBLE - z < 1.0 & z < MAX_LONG_AS_DOUBLE_PLUS_ONE);
return (long) z;
}
/**
* Returns the {@code BigInteger} value that is equal to {@code x} rounded with the specified
* rounding mode, if possible.
*
* @throws ArithmeticException if
*
* - {@code x} is infinite or NaN
*
- {@code x} is not a mathematical integer and {@code mode} is
* {@link RoundingMode#UNNECESSARY}
*
*/
// #roundIntermediate, java.lang.Math.getExponent, com.google.common.math.DoubleUtils
public static BigInteger roundToBigInteger(double x, RoundingMode mode) {
x = roundIntermediate(x, mode);
if (MIN_LONG_AS_DOUBLE - x < 1.0 & x < MAX_LONG_AS_DOUBLE_PLUS_ONE) {
return BigInteger.valueOf((long) x);
}
int exponent = getExponent(x);
long significand = getSignificand(x);
BigInteger result = BigInteger.valueOf(significand).shiftLeft(exponent - SIGNIFICAND_BITS);
return (x < 0) ? result.negate() : result;
}
static final int MAX_FACTORIAL = 170;
static final double[] everySixteenthFactorial = { 0x1.0p0, 0x1.30777758p44, 0x1.956ad0aae33a4p117, 0x1.ee69a78d72cb6p202, 0x1.fe478ee34844ap295,
0x1.c619094edabffp394, 0x1.3638dd7bd6347p498, 0x1.7cac197cfe503p605, 0x1.1e5dfc140e1e5p716, 0x1.8ce85fadb707ep829, 0x1.95d5f3d928edep945 };
/**
* Returns {@code true} if {@code a} and {@code b} are within {@code tolerance} of each other.
*
* Technically speaking, this is equivalent to
* {@code Math.abs(a - b) <= tolerance || Double.valueOf(a).equals(Double.valueOf(b))}.
*
*
Notable special cases include:
*
* - All NaNs are fuzzily equal.
*
- If {@code a == b}, then {@code a} and {@code b} are always fuzzily equal.
*
- Positive and negative zero are always fuzzily equal.
*
- If {@code tolerance} is zero, and neither {@code a} nor {@code b} is NaN, then {@code a}
* and {@code b} are fuzzily equal if and only if {@code a == b}.
*
- With {@link Double#POSITIVE_INFINITY} tolerance, all non-NaN values are fuzzily equal.
*
- With finite tolerance, {@code Double.POSITIVE_INFINITY} and {@code
* Double.NEGATIVE_INFINITY} are fuzzily equal only to themselves.
*
*
This is reflexive and symmetric, but not transitive, so it is not an
* equivalence relation and not suitable for use in {@link Object#equals}
* implementations.
*
* @throws IllegalArgumentException if {@code tolerance} is {@code < 0} or NaN
* @since 13.0
*/
public static boolean fuzzyEquals(double a, double b, double tolerance) {
checkNonNegative("tolerance", tolerance);
return Math.copySign(a - b, 1.0) <= tolerance
// copySign(x, 1.0) is a branch-free version of abs(x), but with different NaN semantics
|| (a == b) // needed to ensure that infinities equal themselves
|| (Double.isNaN(a) && Double.isNaN(b));
}
/**
* Compares {@code a} and {@code b} "fuzzily," with a tolerance for nearly-equal values.
*
*
This method is equivalent to
* {@code fuzzyEquals(a, b, tolerance) ? 0 : Double.compare(a, b)}. In particular, like
* {@link Double#compare(double, double)}, it treats all NaN values as equal and greater than all
* other values (including {@link Double#POSITIVE_INFINITY}).
*
*
This is not a total ordering and is not suitable for use in
* {@link Comparable#compareTo} implementations. In particular, it is not transitive.
*
* @throws IllegalArgumentException if {@code tolerance} is {@code < 0} or NaN
* @since 13.0
*/
public static int fuzzyCompare(double a, double b, double tolerance) {
if (fuzzyEquals(a, b, tolerance)) {
return 0;
} else if (a < b) {
return -1;
} else if (a > b) {
return 1;
} else {
return Boolean.compare(Double.isNaN(a), Double.isNaN(b));
}
}
/**
* Returns {@code true} if {@code x} represents a mathematical integer.
*
*
This is equivalent to, but not necessarily implemented as, the expression {@code
* !Double.isNaN(x) && !Double.isInfinite(x) && x == Math.rint(x)}.
*/
public static boolean isMathematicalInteger(double x) {
return isFinite(x) && (x == 0.0 || SIGNIFICAND_BITS - Long.numberOfTrailingZeros(getSignificand(x)) <= getExponent(x));
}
/**
* Returns 1 if {@code x < y} as unsigned longs, and 0 otherwise. Assumes that x - y fits into a
* signed long. The implementation is branch-free, and benchmarks suggest it is measurably faster
* than the straightforward ternary expression.
*/
static int lessThanBranchFree(long x, long y) {
// Returns the sign bit of x - y.
return (int) (~~(x - y) >>> (Long.SIZE - 1));
}
static int log10Floor(long x) {
/*
* Based on Hacker's Delight Fig. 11-5, the two-table-lookup, branch-free implementation.
*
* The key idea is that based on the number of leading zeros (equivalently, floor(log2(x))), we
* can narrow the possible floor(log10(x)) values to two. For example, if floor(log2(x)) is 6,
* then 64 <= x < 128, so floor(log10(x)) is either 1 or 2.
*/
int y = maxLog10ForLeadingZeros[Long.numberOfLeadingZeros(x)];
/*
* y is the higher of the two possible values of floor(log10(x)). If x < 10^y, then we want the
* lower of the two possible values, or y - 1, otherwise, we want y.
*/
return y - lessThanBranchFree(x, powersOf10[y]);
}
/**
* Returns (x * numerator / denominator), which is assumed to come out to an integral value.
*/
static long multiplyFraction(long x, long numerator, long denominator) {
if (x == 1) {
return numerator / denominator;
}
long commonDivisor = gcd(x, denominator);
x /= commonDivisor;
denominator /= commonDivisor;
// We know gcd(x, denominator) = 1, and x * numerator / denominator is exact,
// so denominator must be a divisor of numerator.
return x * (numerator / denominator);
}
static double nextDown(double d) {
return -Math.nextUp(-d);
}
static long getSignificand(double d) {
N.checkArgument(isFinite(d), "not a normal value");
int exponent = getExponent(d);
long bits = doubleToRawLongBits(d);
bits &= SIGNIFICAND_MASK;
return (exponent == MIN_EXPONENT - 1) ? bits << 1 : bits | IMPLICIT_BIT;
}
// These values were generated by using checkedMultiply to see when the simple multiply/divide
// algorithm would lead to an overflow.
static boolean isFinite(double d) {
return getExponent(d) <= MAX_EXPONENT;
}
static boolean isNormal(double d) {
return getExponent(d) >= MIN_EXPONENT;
}
/*
* Returns x scaled by a power of 2 such that it is in the range [1, 2). Assumes x is positive,
* normal, and finite.
*/
static double scaleNormalize(double x) {
long significand = doubleToRawLongBits(x) & SIGNIFICAND_MASK;
return longBitsToDouble(significand | ONE_BITS);
}
static double bigToDouble(BigInteger x) {
// This is an extremely fast implementation of BigInteger.doubleValue(). JDK patch pending.
BigInteger absX = x.abs();
int exponent = absX.bitLength() - 1;
// exponent == floor(log2(abs(x)))
if (exponent < Long.SIZE - 1) {
return x.longValue();
} else if (exponent > MAX_EXPONENT) {
return x.signum() * POSITIVE_INFINITY;
}
/*
* We need the top SIGNIFICAND_BITS + 1 bits, including the "implicit" one bit. To make rounding
* easier, we pick out the top SIGNIFICAND_BITS + 2 bits, so we have one to help us round up or
* down. twiceSignifFloor will contain the top SIGNIFICAND_BITS + 2 bits, and signifFloor the
* top SIGNIFICAND_BITS + 1.
*
* It helps to consider the real number signif = absX * 2^(SIGNIFICAND_BITS - exponent).
*/
int shift = exponent - SIGNIFICAND_BITS - 1;
long twiceSignifFloor = absX.shiftRight(shift).longValue();
long signifFloor = twiceSignifFloor >> 1;
signifFloor &= SIGNIFICAND_MASK; // remove the implied bit
/*
* We round up if either the fractional part of signif is strictly greater than 0.5 (which is
* true if the 0.5 bit is set and any lower bit is set), or if the fractional part of signif is
* >= 0.5 and signifFloor is odd (which is true if both the 0.5 bit and the 1 bit are set).
*/
boolean increment = (twiceSignifFloor & 1) != 0 && ((signifFloor & 1) != 0 || absX.getLowestSetBit() < shift);
long signifRounded = increment ? signifFloor + 1 : signifFloor;
long bits = (long) ((exponent + EXPONENT_BIAS)) << SIGNIFICAND_BITS;
bits += signifRounded;
/*
* If signifRounded == 2^53, we'd need to set all of the significand bits to zero and add 1 to
* the exponent. This is exactly the behavior we get from just adding signifRounded to bits
* directly. If the exponent is MAX_DOUBLE_EXPONENT, we round up (correctly) to
* Double.POSITIVE_INFINITY.
*/
bits |= x.signum() & SIGN_MASK;
return longBitsToDouble(bits);
}
/**
* Returns its argument if it is non-negative, zero if it is negative.
*/
static double ensureNonNegative(double value) {
N.checkArgument(!isNaN(value));
if (value > 0.0) {
return value;
} else {
return 0.0;
}
}
static int lessThanBranchFree(int x, int y) {
// The double negation is optimized away by normal Java, but is necessary for GWT
// to make sure bit twiddling works as expected.
return ~~(x - y) >>> (Integer.SIZE - 1);
}
// These values were generated by using checkedMultiply to see when the simple multiply/divide
// algorithm would lead to an overflow.
static boolean fitsInInt(long x) {
return (int) x == x;
}
static int checkPositive(String role, int x) {
if (x <= 0) {
throw new IllegalArgumentException(role + " (" + x + ") must be > 0");
}
return x;
}
static long checkPositive(String role, long x) {
if (x <= 0) {
throw new IllegalArgumentException(role + " (" + x + ") must be > 0");
}
return x;
}
static BigInteger checkPositive(String role, BigInteger x) {
if (x.signum() <= 0) {
throw new IllegalArgumentException(role + " (" + x + ") must be > 0");
}
return x;
}
static int checkNonNegative(String role, int x) {
if (x < 0) {
throw new IllegalArgumentException(role + " (" + x + ") must be >= 0");
}
return x;
}
static long checkNonNegative(String role, long x) {
if (x < 0) {
throw new IllegalArgumentException(role + " (" + x + ") must be >= 0");
}
return x;
}
static BigInteger checkNonNegative(String role, BigInteger x) {
if (x.signum() < 0) {
throw new IllegalArgumentException(role + " (" + x + ") must be >= 0");
}
return x;
}
static double checkNonNegative(String role, double x) {
if (!(x >= 0)) { // not x < 0, to work with NaN.
throw new IllegalArgumentException(role + " (" + x + ") must be >= 0");
}
return x;
}
static void checkRoundingUnnecessary(boolean condition) {
if (!condition) {
throw new ArithmeticException("mode was UNNECESSARY, but rounding was necessary");
}
}
static void checkInRange(boolean condition) {
if (!condition) {
throw new ArithmeticException("not in range");
}
}
static void checkNoOverflow(boolean condition) {
if (!condition) {
throw new ArithmeticException("overflow");
}
}
static final class UnsignedLongs {
private UnsignedLongs() {
}
public static final long MAX_VALUE = -1L; // Equivalent to 2^64 - 1
/**
* A (self-inverse) bijection which converts the ordering on unsigned longs to the ordering on
* longs, that is, {@code a <= b} as unsigned longs if and only if {@code flip(a) <= flip(b)} as
* signed longs.
*/
private static long flip(long a) {
return a ^ Long.MIN_VALUE;
}
/**
* Compares the two specified {@code long} values, treating them as unsigned values between
* {@code 0} and {@code 2^64 - 1} inclusive.
*
* @param a the first unsigned {@code long} to compare
* @param b the second unsigned {@code long} to compare
* @return a negative value if {@code a} is less than {@code b}; a positive value if {@code a} is
* greater than {@code b}; or zero if they are equal
*/
static int compare(long a, long b) {
return Long.compare(flip(a), flip(b));
}
/**
* Returns dividend % divisor, where the dividend and divisor are treated as unsigned 64-bit
* quantities.
*
* @param dividend the dividend (numerator)
* @param divisor the divisor (denominator)
* @throws ArithmeticException if divisor is 0
* @since 11.0
*/
static long remainder(long dividend, long divisor) {
if (divisor < 0) { // i.e., divisor >= 2^63:
if (compare(dividend, divisor) < 0) {
return dividend; // dividend < divisor
} else {
return dividend - divisor; // dividend >= divisor
}
}
// Optimization - use signed modulus if dividend < 2^63
if (dividend >= 0) {
return dividend % divisor;
}
/*
* Otherwise, approximate the quotient, check, and correct if necessary. Our approximation is
* guaranteed to be either exact or one less than the correct value. This follows from the fact
* that floor(floor(x)/i) == floor(x/i) for any real x and integer i != 0. The proof is not
* quite trivial.
*/
long quotient = ((dividend >>> 1) / divisor) << 1;
long rem = dividend - quotient * divisor;
return rem - (compare(rem, divisor) >= 0 ? divisor : 0);
}
}
private enum MillerRabinTester {
/**
* Works for inputs <= FLOOR_SQRT_MAX_LONG.
*/
SMALL {
@Override
long mulMod(long a, long b, long m) {
/*
* NOTE(lowasser, 2015-Feb-12): Benchmarks suggest that changing this to
* UnsignedLongs.remainder and increasing the threshold to 2^32 doesn't pay for itself, and
* adding another enum constant hurts performance further -- I suspect because bimorphic
* implementation is a sweet spot for the JVM.
*/
return (a * b) % m;
}
@Override
long squareMod(long a, long m) {
return (a * a) % m;
}
},
/**
* Works for all nonnegative signed longs.
*/
LARGE {
/**
* Returns (a + b) mod m. Precondition: 0 <= a, b < m < 2^63.
*/
private long plusMod(long a, long b, long m) {
return (a >= m - b) ? (a + b - m) : (a + b);
}
/**
* Returns (a * 2^32) mod m. a may be any unsigned long.
*/
private long times2ToThe32Mod(long a, long m) {
int remainingPowersOf2 = 32;
do {
int shift = Math.min(remainingPowersOf2, Long.numberOfLeadingZeros(a));
// shift is either the number of powers of 2 left to multiply a by, or the biggest shift
// possible while keeping a in an unsigned long.
a = UnsignedLongs.remainder(a << shift, m);
remainingPowersOf2 -= shift;
} while (remainingPowersOf2 > 0);
return a;
}
@Override
long mulMod(long a, long b, long m) {
long aHi = a >>> 32; // < 2^31
long bHi = b >>> 32; // < 2^31
long aLo = a & 0xFFFFFFFFL; // < 2^32
long bLo = b & 0xFFFFFFFFL; // < 2^32
/*
* a * b == aHi * bHi * 2^64 + (aHi * bLo + aLo * bHi) * 2^32 + aLo * bLo.
* == (aHi * bHi * 2^32 + aHi * bLo + aLo * bHi) * 2^32 + aLo * bLo
*
* We carry out this computation in modular arithmetic. Since times2ToThe32Mod accepts any
* unsigned long, we don't have to do a mod on every operation, only when intermediate
* results can exceed 2^63.
*/
long result = times2ToThe32Mod(aHi * bHi /* < 2^62 */, m); // < m < 2^63
result += aHi * bLo; // aHi * bLo < 2^63, result < 2^64
if (result < 0) {
result = UnsignedLongs.remainder(result, m);
}
// result < 2^63 again
result += aLo * bHi; // aLo * bHi < 2^63, result < 2^64
result = times2ToThe32Mod(result, m); // result < m < 2^63
return plusMod(result, UnsignedLongs.remainder(aLo * bLo /* < 2^64 */, m), m);
}
@Override
long squareMod(long a, long m) {
long aHi = a >>> 32; // < 2^31
long aLo = a & 0xFFFFFFFFL; // < 2^32
/*
* a^2 == aHi^2 * 2^64 + aHi * aLo * 2^33 + aLo^2
* == (aHi^2 * 2^32 + aHi * aLo * 2) * 2^32 + aLo^2
* We carry out this computation in modular arithmetic. Since times2ToThe32Mod accepts any
* unsigned long, we don't have to do a mod on every operation, only when intermediate
* results can exceed 2^63.
*/
long result = times2ToThe32Mod(aHi * aHi /* < 2^62 */, m); // < m < 2^63
long hiLo = aHi * aLo * 2;
if (hiLo < 0) {
hiLo = UnsignedLongs.remainder(hiLo, m);
}
// hiLo < 2^63
result += hiLo; // result < 2^64
result = times2ToThe32Mod(result, m); // result < m < 2^63
return plusMod(result, UnsignedLongs.remainder(aLo * aLo /* < 2^64 */, m), m);
}
};
static boolean test(long base, long n) {
// Since base will be considered % n, it's okay if base > FLOOR_SQRT_MAX_LONG,
// so long as n <= FLOOR_SQRT_MAX_LONG.
return ((n <= FLOOR_SQRT_MAX_LONG) ? SMALL : LARGE).testWitness(base, n);
}
/**
* Returns a * b mod m.
*/
abstract long mulMod(long a, long b, long m);
/**
* Returns a^2 mod m.
*/
abstract long squareMod(long a, long m);
/**
* Returns a^p mod m.
*/
private long powMod(long a, long p, long m) {
long res = 1;
for (; p != 0; p >>= 1) {
if ((p & 1) != 0) {
res = mulMod(res, a, m);
}
a = squareMod(a, m);
}
return res;
}
/**
* Returns true if n is a strong probable prime relative to the specified base.
*/
private boolean testWitness(long base, long n) {
int r = Long.numberOfTrailingZeros(n - 1);
long d = (n - 1) >> r;
base %= n;
if (base == 0) {
return true;
}
// Calculate a := base^d mod n.
long a = powMod(base, d, n);
// n passes this test if
// base^d = 1 (mod n)
// or base^(2^j * d) = -1 (mod n) for some 0 <= j < r.
if (a == 1) {
return true;
}
int j = 0;
while (a != n - 1) {
if (++j == r) {
return false;
}
a = squareMod(a, n);
}
return true;
}
}
}