com.landawn.abacus.util.stream.ParallelArrayByteStream Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of abacus-android Show documentation
Show all versions of abacus-android Show documentation
A general programming library in Java
/*
* Copyright (C) 2016 HaiYang Li
*
* Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except
* in compliance with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software distributed under the License
* is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express
* or implied. See the License for the specific language governing permissions and limitations under
* the License.
*/
package com.landawn.abacus.util.stream;
import java.util.ArrayList;
import java.util.Collection;
import java.util.HashSet;
import java.util.List;
import java.util.Map;
import java.util.NoSuchElementException;
import java.util.Set;
import java.util.concurrent.Callable;
import com.landawn.abacus.util.ByteList;
import com.landawn.abacus.util.ByteSummaryStatistics;
import com.landawn.abacus.util.CompletableFuture;
import com.landawn.abacus.util.Holder;
import com.landawn.abacus.util.IndexedByte;
import com.landawn.abacus.util.LongMultiset;
import com.landawn.abacus.util.Multimap;
import com.landawn.abacus.util.Multiset;
import com.landawn.abacus.util.MutableBoolean;
import com.landawn.abacus.util.MutableInt;
import com.landawn.abacus.util.N;
import com.landawn.abacus.util.Nth;
import com.landawn.abacus.util.NullabLe;
import com.landawn.abacus.util.OptionalByte;
import com.landawn.abacus.util.OptionalDouble;
import com.landawn.abacus.util.Pair;
import com.landawn.abacus.util.function.BiConsumer;
import com.landawn.abacus.util.function.BiFunction;
import com.landawn.abacus.util.function.BinaryOperator;
import com.landawn.abacus.util.function.ByteBiFunction;
import com.landawn.abacus.util.function.ByteBinaryOperator;
import com.landawn.abacus.util.function.ByteConsumer;
import com.landawn.abacus.util.function.ByteFunction;
import com.landawn.abacus.util.function.BytePredicate;
import com.landawn.abacus.util.function.ByteToIntFunction;
import com.landawn.abacus.util.function.ByteTriFunction;
import com.landawn.abacus.util.function.ByteUnaryOperator;
import com.landawn.abacus.util.function.Consumer;
import com.landawn.abacus.util.function.Function;
import com.landawn.abacus.util.function.ObjByteConsumer;
import com.landawn.abacus.util.function.Predicate;
import com.landawn.abacus.util.function.Supplier;
import com.landawn.abacus.util.function.ToByteFunction;
import com.landawn.abacus.util.function.ToIntFunction;
/**
* This class is a sequential, stateful and immutable stream implementation.
*
* @since 0.8
*
* @author Haiyang Li
*/
final class ParallelArrayByteStream extends ArrayByteStream {
private final int maxThreadNum;
private final Splitor splitor;
private volatile ArrayByteStream sequential;
private volatile Stream boxed;
ParallelArrayByteStream(final byte[] values, final int fromIndex, final int toIndex, final Collection closeHandlers, final boolean sorted,
int maxThreadNum, Splitor splitor) {
super(values, fromIndex, toIndex, closeHandlers, sorted);
this.maxThreadNum = fromIndex >= toIndex ? 1 : N.min(maxThreadNum, MAX_THREAD_NUM_PER_OPERATION, toIndex - fromIndex);
this.splitor = splitor == null ? DEFAULT_SPLITOR : splitor;
}
@Override
public ByteStream filter(final BytePredicate predicate) {
if (maxThreadNum <= 1) {
return new ParallelIteratorByteStream(sequential().filter(predicate).exIterator(), closeHandlers, sorted, maxThreadNum, splitor);
}
final Stream stream = boxed().filter(new Predicate() {
@Override
public boolean test(Byte value) {
return predicate.test(value.byteValue());
}
});
return new ParallelIteratorByteStream(stream, closeHandlers, false, maxThreadNum, splitor);
}
@Override
public ByteStream takeWhile(final BytePredicate predicate) {
if (maxThreadNum <= 1) {
return new ParallelIteratorByteStream(sequential().takeWhile(predicate).exIterator(), closeHandlers, sorted, maxThreadNum, splitor);
}
final Stream stream = boxed().takeWhile(new Predicate() {
@Override
public boolean test(Byte value) {
return predicate.test(value.byteValue());
}
});
return new ParallelIteratorByteStream(stream, closeHandlers, false, maxThreadNum, splitor);
}
@Override
public ByteStream dropWhile(final BytePredicate predicate) {
if (maxThreadNum <= 1) {
return new ParallelIteratorByteStream(sequential().dropWhile(predicate).exIterator(), closeHandlers, sorted, maxThreadNum, splitor);
}
final Stream stream = boxed().dropWhile(new Predicate() {
@Override
public boolean test(Byte value) {
return predicate.test(value.byteValue());
}
});
return new ParallelIteratorByteStream(stream, closeHandlers, false, maxThreadNum, splitor);
}
@Override
public ByteStream map(final ByteUnaryOperator mapper) {
if (maxThreadNum <= 1) {
return new ParallelIteratorByteStream(sequential().map(mapper).exIterator(), closeHandlers, false, maxThreadNum, splitor);
}
final ByteStream stream = boxed().mapToByte(new ToByteFunction() {
@Override
public byte applyAsByte(Byte value) {
return mapper.applyAsByte(value.byteValue());
}
});
return new ParallelIteratorByteStream(stream, closeHandlers, false, maxThreadNum, splitor);
}
@Override
public IntStream mapToInt(final ByteToIntFunction mapper) {
if (maxThreadNum <= 1) {
return new ParallelIteratorIntStream(sequential().mapToInt(mapper).exIterator(), closeHandlers, false, maxThreadNum, splitor);
}
final IntStream stream = boxed().mapToInt(new ToIntFunction() {
@Override
public int applyAsInt(Byte value) {
return mapper.applyAsInt(value);
}
});
return new ParallelIteratorIntStream(stream, closeHandlers, false, maxThreadNum, splitor);
}
@Override
public Stream mapToObj(final ByteFunction extends U> mapper) {
if (maxThreadNum <= 1) {
return new ParallelIteratorStream(sequential().mapToObj(mapper).iterator(), closeHandlers, false, null, maxThreadNum, splitor);
}
return boxed().map(new Function() {
@Override
public U apply(Byte value) {
return mapper.apply(value);
}
});
}
@Override
public ByteStream flatMap(final ByteFunction extends ByteStream> mapper) {
if (maxThreadNum <= 1) {
return new ParallelIteratorByteStream(sequential().flatMap(mapper).exIterator(), closeHandlers, false, maxThreadNum, splitor);
}
final ByteStream stream = boxed().flatMapToByte(new Function() {
@Override
public ByteStream apply(Byte value) {
return mapper.apply(value);
}
});
return new ParallelIteratorByteStream(stream, closeHandlers, false, maxThreadNum, splitor);
}
@Override
public IntStream flatMapToInt(final ByteFunction extends IntStream> mapper) {
if (maxThreadNum <= 1) {
return new ParallelIteratorIntStream(sequential().flatMapToInt(mapper).exIterator(), closeHandlers, false, maxThreadNum, splitor);
}
final IntStream stream = boxed().flatMapToInt(new Function() {
@Override
public IntStream apply(Byte value) {
return mapper.apply(value);
}
});
return new ParallelIteratorIntStream(stream, closeHandlers, false, maxThreadNum, splitor);
}
@Override
public Stream flatMapToObj(final ByteFunction extends Stream> mapper) {
if (maxThreadNum <= 1) {
return new ParallelIteratorStream<>(sequential().flatMapToObj(mapper).iterator(), closeHandlers, false, null, maxThreadNum, splitor);
}
return boxed().flatMap(new Function>() {
@Override
public Stream apply(Byte value) {
return mapper.apply(value);
}
});
}
@Override
public Stream split(final int size) {
return new ParallelIteratorStream(sequential().split(size).iterator(), closeHandlers, false, null, maxThreadNum, splitor);
}
@Override
public Stream splitToList(final int size) {
return new ParallelIteratorStream(sequential().splitToList(size).iterator(), closeHandlers, false, null, maxThreadNum, splitor);
}
@Override
public Stream split(final U identity, final BiFunction super Byte, ? super U, Boolean> predicate,
final Consumer super U> identityUpdate) {
return new ParallelIteratorStream(sequential().split(identity, predicate, identityUpdate).iterator(), closeHandlers, false, null,
maxThreadNum, splitor);
}
@Override
public Stream splitToList(final U identity, final BiFunction super Byte, ? super U, Boolean> predicate,
final Consumer super U> identityUpdate) {
return new ParallelIteratorStream(sequential().splitToList(identity, predicate, identityUpdate).iterator(), closeHandlers, false, null,
maxThreadNum, splitor);
}
@Override
public Stream splitAt(final int n) {
if (n < 0) {
throw new IllegalArgumentException("'n' can't be negative");
}
final ByteStream[] a = new ByteStream[2];
final int middleIndex = n < toIndex - fromIndex ? fromIndex + n : toIndex;
a[0] = middleIndex == fromIndex ? ByteStream.empty() : new ArrayByteStream(elements, fromIndex, middleIndex, null, sorted);
a[1] = middleIndex == toIndex ? ByteStream.empty() : new ArrayByteStream(elements, middleIndex, toIndex, null, sorted);
return new ParallelArrayStream<>(a, 0, a.length, closeHandlers, false, null, maxThreadNum, splitor);
}
@Override
public Stream splitBy(final BytePredicate where) {
N.requireNonNull(where);
final NullabLe first = indexed().findFirst(new Predicate() {
@Override
public boolean test(IndexedByte indexed) {
return !where.test(indexed.value());
}
});
return splitAt(first.isPresent() ? (int) first.get().index() : toIndex - fromIndex);
}
@Override
public Stream sliding(final int windowSize, final int increment) {
return new ParallelIteratorStream(sequential().sliding(windowSize, increment).iterator(), closeHandlers, false, null, maxThreadNum,
splitor);
}
@Override
public Stream slidingToList(final int windowSize, final int increment) {
return new ParallelIteratorStream(sequential().slidingToList(windowSize, increment).iterator(), closeHandlers, false, null, maxThreadNum,
splitor);
}
@Override
public ByteStream sorted() {
if (sorted) {
return this;
}
final byte[] a = N.copyOfRange(elements, fromIndex, toIndex);
N.parallelSort(a);
return new ParallelArrayByteStream(a, 0, a.length, closeHandlers, true, maxThreadNum, splitor);
}
@Override
public ByteStream peek(final ByteConsumer action) {
if (maxThreadNum <= 1) {
return new ParallelIteratorByteStream(sequential().peek(action).exIterator(), closeHandlers, false, maxThreadNum, splitor);
}
final ByteStream stream = boxed().peek(new Consumer() {
@Override
public void accept(Byte t) {
action.accept(t);
}
}).sequential().mapToByte(ToByteFunction.UNBOX);
return new ParallelIteratorByteStream(stream, closeHandlers, false, maxThreadNum, splitor);
}
@Override
public ByteStream limit(long maxSize) {
if (maxSize < 0) {
throw new IllegalArgumentException("'maxSize' can't be negative: " + maxSize);
} else if (maxSize >= toIndex - fromIndex) {
return this;
}
return new ParallelArrayByteStream(elements, fromIndex, (int) (fromIndex + maxSize), closeHandlers, sorted, maxThreadNum, splitor);
}
@Override
public ByteStream skip(long n) {
if (n < 0) {
throw new IllegalArgumentException("The skipped number can't be negative: " + n);
} else if (n == 0) {
return this;
}
if (n >= toIndex - fromIndex) {
return new ParallelArrayByteStream(elements, toIndex, toIndex, closeHandlers, sorted, maxThreadNum, splitor);
} else {
return new ParallelArrayByteStream(elements, (int) (fromIndex + n), toIndex, closeHandlers, sorted, maxThreadNum, splitor);
}
}
@Override
public void forEach(final ByteConsumer action) {
if (maxThreadNum <= 1) {
sequential().forEach(action);
return;
}
final List> futureList = new ArrayList<>(maxThreadNum);
final Holder eHolder = new Holder<>();
if (splitor == Splitor.ARRAY) {
final int sliceSize = (toIndex - fromIndex) / maxThreadNum + ((toIndex - fromIndex) % maxThreadNum == 0 ? 0 : 1);
for (int i = 0; i < maxThreadNum; i++) {
final int sliceIndex = i;
futureList.add(asyncExecutor.execute(new Runnable() {
@Override
public void run() {
int cursor = fromIndex + sliceIndex * sliceSize;
final int to = toIndex - cursor > sliceSize ? cursor + sliceSize : toIndex;
try {
while (cursor < to && eHolder.value() == null) {
action.accept(elements[cursor++]);
}
} catch (Throwable e) {
setError(eHolder, e);
}
}
}));
}
} else {
final MutableInt cursor = MutableInt.of(fromIndex);
for (int i = 0; i < maxThreadNum; i++) {
futureList.add(asyncExecutor.execute(new Runnable() {
@Override
public void run() {
byte next = 0;
try {
while (eHolder.value() == null) {
synchronized (elements) {
if (cursor.intValue() < toIndex) {
next = elements[cursor.getAndIncrement()];
} else {
break;
}
}
action.accept(next);
}
} catch (Throwable e) {
setError(eHolder, e);
}
}
}));
}
}
complete(futureList, eHolder);
}
@Override
public byte[] toArray() {
return N.copyOfRange(elements, fromIndex, toIndex);
}
@Override
public ByteList toByteList() {
return ByteList.of(N.copyOfRange(elements, fromIndex, toIndex));
}
@Override
public List toList() {
final List result = new ArrayList<>(toIndex - fromIndex);
for (int i = fromIndex; i < toIndex; i++) {
result.add(elements[i]);
}
return result;
}
@Override
public > R toList(Supplier supplier) {
final R result = supplier.get();
for (int i = fromIndex; i < toIndex; i++) {
result.add(elements[i]);
}
return result;
}
@Override
public Set toSet() {
final Set result = new HashSet<>(N.min(9, N.initHashCapacity(toIndex - fromIndex)));
for (int i = fromIndex; i < toIndex; i++) {
result.add(elements[i]);
}
return result;
}
@Override
public > R toSet(Supplier supplier) {
final R result = supplier.get();
for (int i = fromIndex; i < toIndex; i++) {
result.add(elements[i]);
}
return result;
}
@Override
public Multiset toMultiset() {
final Multiset result = new Multiset<>(N.min(9, N.initHashCapacity(toIndex - fromIndex)));
for (int i = fromIndex; i < toIndex; i++) {
result.add(elements[i]);
}
return result;
}
@Override
public Multiset toMultiset(Supplier extends Multiset> supplier) {
final Multiset result = supplier.get();
for (int i = fromIndex; i < toIndex; i++) {
result.add(elements[i]);
}
return result;
}
@Override
public LongMultiset toLongMultiset() {
final LongMultiset result = new LongMultiset<>(N.min(9, N.initHashCapacity(toIndex - fromIndex)));
for (int i = fromIndex; i < toIndex; i++) {
result.add(elements[i]);
}
return result;
}
@Override
public LongMultiset toLongMultiset(Supplier extends LongMultiset> supplier) {
final LongMultiset result = supplier.get();
for (int i = fromIndex; i < toIndex; i++) {
result.add(elements[i]);
}
return result;
}
@Override
public > M toMap(final ByteFunction extends K> keyExtractor, final ByteFunction extends U> valueMapper,
final BinaryOperator mergeFunction, final Supplier mapFactory) {
if (maxThreadNum <= 1) {
return sequential().toMap(keyExtractor, valueMapper, mergeFunction, mapFactory);
}
final Function super Byte, ? extends K> keyExtractor2 = new Function() {
@Override
public K apply(Byte value) {
return keyExtractor.apply(value);
}
};
final Function super Byte, ? extends U> valueMapper2 = new Function() {
@Override
public U apply(Byte value) {
return valueMapper.apply(value);
}
};
return boxed().toMap(keyExtractor2, valueMapper2, mergeFunction, mapFactory);
}
@Override
public > M toMap(final ByteFunction extends K> classifier, final Collector downstream,
final Supplier mapFactory) {
if (maxThreadNum <= 1) {
return sequential().toMap(classifier, downstream, mapFactory);
}
final Function super Byte, ? extends K> classifier2 = new Function() {
@Override
public K apply(Byte value) {
return classifier.apply(value);
}
};
return boxed().toMap(classifier2, downstream, mapFactory);
}
@Override
public > Multimap toMultimap(final ByteFunction extends K> keyExtractor,
final ByteFunction extends U> valueMapper, final Supplier> mapFactory) {
if (maxThreadNum <= 1) {
return sequential().toMultimap(keyExtractor, valueMapper, mapFactory);
}
final Function super Byte, ? extends K> keyExtractor2 = new Function() {
@Override
public K apply(Byte value) {
return keyExtractor.apply(value);
}
};
final Function super Byte, ? extends U> valueMapper2 = new Function() {
@Override
public U apply(Byte value) {
return valueMapper.apply(value);
}
};
return boxed().toMultimap(keyExtractor2, valueMapper2, mapFactory);
}
@Override
public OptionalByte first() {
return fromIndex < toIndex ? OptionalByte.of(elements[fromIndex]) : OptionalByte.empty();
}
@Override
public OptionalByte last() {
return fromIndex < toIndex ? OptionalByte.of(elements[toIndex - 1]) : OptionalByte.empty();
}
@Override
public byte reduce(final byte identity, final ByteBinaryOperator op) {
if (maxThreadNum <= 1) {
return sequential().reduce(identity, op);
}
final List> futureList = new ArrayList<>(maxThreadNum);
final Holder eHolder = new Holder<>();
if (splitor == Splitor.ARRAY) {
final int sliceSize = (toIndex - fromIndex) / maxThreadNum + ((toIndex - fromIndex) % maxThreadNum == 0 ? 0 : 1);
for (int i = 0; i < maxThreadNum; i++) {
final int sliceIndex = i;
futureList.add(asyncExecutor.execute(new Callable() {
@Override
public Byte call() {
int cursor = fromIndex + sliceIndex * sliceSize;
final int to = toIndex - cursor > sliceSize ? cursor + sliceSize : toIndex;
byte result = identity;
try {
while (cursor < to && eHolder.value() == null) {
result = op.applyAsByte(result, elements[cursor++]);
}
} catch (Throwable e) {
setError(eHolder, e);
}
return result;
}
}));
}
} else {
final MutableInt cursor = MutableInt.of(fromIndex);
for (int i = 0; i < maxThreadNum; i++) {
futureList.add(asyncExecutor.execute(new Callable() {
@Override
public Byte call() {
byte result = identity;
byte next = 0;
try {
while (eHolder.value() == null) {
synchronized (elements) {
if (cursor.intValue() < toIndex) {
next = elements[cursor.getAndIncrement()];
} else {
break;
}
}
result = op.applyAsByte(result, next);
}
} catch (Throwable e) {
setError(eHolder, e);
}
return result;
}
}));
}
}
if (eHolder.value() != null) {
throw N.toRuntimeException(eHolder.value());
}
Byte result = null;
try {
for (CompletableFuture future : futureList) {
if (result == null) {
result = future.get();
} else {
result = op.applyAsByte(result, future.get());
}
}
} catch (Exception e) {
throw N.toRuntimeException(e);
}
return result == null ? identity : result;
}
@Override
public OptionalByte reduce(final ByteBinaryOperator accumulator) {
if (maxThreadNum <= 1) {
return sequential().reduce(accumulator);
}
final List> futureList = new ArrayList<>(maxThreadNum);
final Holder eHolder = new Holder<>();
if (splitor == Splitor.ARRAY) {
final int sliceSize = (toIndex - fromIndex) / maxThreadNum + ((toIndex - fromIndex) % maxThreadNum == 0 ? 0 : 1);
for (int i = 0; i < maxThreadNum; i++) {
final int sliceIndex = i;
futureList.add(asyncExecutor.execute(new Callable() {
@Override
public Byte call() {
int cursor = fromIndex + sliceIndex * sliceSize;
final int to = toIndex - cursor > sliceSize ? cursor + sliceSize : toIndex;
if (cursor >= to) {
return null;
}
byte result = elements[cursor++];
try {
while (cursor < to && eHolder.value() == null) {
result = accumulator.applyAsByte(result, elements[cursor++]);
}
} catch (Throwable e) {
setError(eHolder, e);
}
return result;
}
}));
}
} else {
final MutableInt cursor = MutableInt.of(fromIndex);
for (int i = 0; i < maxThreadNum; i++) {
futureList.add(asyncExecutor.execute(new Callable() {
@Override
public Byte call() {
byte result = 0;
synchronized (elements) {
if (cursor.intValue() < toIndex) {
result = elements[cursor.getAndIncrement()];
} else {
return null;
}
}
byte next = 0;
try {
while (eHolder.value() == null) {
synchronized (elements) {
if (cursor.intValue() < toIndex) {
next = elements[cursor.getAndIncrement()];
} else {
break;
}
}
result = accumulator.applyAsByte(result, next);
}
} catch (Throwable e) {
setError(eHolder, e);
}
return result;
}
}));
}
}
if (eHolder.value() != null) {
throw N.toRuntimeException(eHolder.value());
}
Byte result = null;
try {
for (CompletableFuture future : futureList) {
final Byte tmp = future.get();
if (tmp == null) {
continue;
} else if (result == null) {
result = tmp;
} else {
result = accumulator.applyAsByte(result, tmp);
}
}
} catch (Exception e) {
throw N.toRuntimeException(e);
}
return result == null ? OptionalByte.empty() : OptionalByte.of(result);
}
@Override
public ByteStream tail() {
if (fromIndex == toIndex) {
return this;
}
return new ParallelArrayByteStream(elements, fromIndex + 1, toIndex, closeHandlers, sorted, maxThreadNum, splitor);
}
@Override
public ByteStream head2() {
if (fromIndex == toIndex) {
return this;
}
return new ParallelArrayByteStream(elements, fromIndex, toIndex - 1, closeHandlers, sorted, maxThreadNum, splitor);
}
@Override
public R collect(final Supplier supplier, final ObjByteConsumer accumulator, final BiConsumer combiner) {
if (maxThreadNum <= 1) {
return sequential().collect(supplier, accumulator, combiner);
}
final List> futureList = new ArrayList<>(maxThreadNum);
final Holder eHolder = new Holder<>();
if (splitor == Splitor.ARRAY) {
final int sliceSize = (toIndex - fromIndex) / maxThreadNum + ((toIndex - fromIndex) % maxThreadNum == 0 ? 0 : 1);
for (int i = 0; i < maxThreadNum; i++) {
final int sliceIndex = i;
futureList.add(asyncExecutor.execute(new Callable() {
@Override
public R call() {
int cursor = fromIndex + sliceIndex * sliceSize;
final int to = toIndex - cursor > sliceSize ? cursor + sliceSize : toIndex;
final R container = supplier.get();
try {
while (cursor < to && eHolder.value() == null) {
accumulator.accept(container, elements[cursor++]);
}
} catch (Throwable e) {
setError(eHolder, e);
}
return container;
}
}));
}
} else {
final MutableInt cursor = MutableInt.of(fromIndex);
for (int i = 0; i < maxThreadNum; i++) {
futureList.add(asyncExecutor.execute(new Callable() {
@Override
public R call() {
final R container = supplier.get();
byte next = 0;
try {
while (eHolder.value() == null) {
synchronized (elements) {
if (cursor.intValue() < toIndex) {
next = elements[cursor.getAndIncrement()];
} else {
break;
}
}
accumulator.accept(container, next);
}
} catch (Throwable e) {
setError(eHolder, e);
}
return container;
}
}));
}
}
if (eHolder.value() != null) {
throw N.toRuntimeException(eHolder.value());
}
R container = (R) NONE;
try {
for (CompletableFuture future : futureList) {
if (container == NONE) {
container = future.get();
} else {
combiner.accept(container, future.get());
}
}
} catch (Exception e) {
throw N.toRuntimeException(e);
}
return container == NONE ? supplier.get() : container;
}
@Override
public OptionalByte min() {
if (fromIndex == toIndex) {
return OptionalByte.empty();
} else if (sorted) {
return OptionalByte.of(elements[fromIndex]);
} else if (maxThreadNum <= 1) {
return OptionalByte.of(N.min(elements, fromIndex, toIndex));
}
final List> futureList = new ArrayList<>(maxThreadNum);
final int sliceSize = (toIndex - fromIndex) / maxThreadNum + ((toIndex - fromIndex) % maxThreadNum == 0 ? 0 : 1);
for (int i = 0; i < maxThreadNum; i++) {
final int sliceIndex = i;
futureList.add(asyncExecutor.execute(new Callable() {
@Override
public Byte call() {
int cursor = fromIndex + sliceIndex * sliceSize;
final int to = toIndex - cursor > sliceSize ? cursor + sliceSize : toIndex;
return cursor >= to ? null : N.min(elements, cursor, to);
}
}));
}
Byte candidate = null;
try {
for (CompletableFuture future : futureList) {
final Byte tmp = future.get();
if (tmp == null) {
continue;
} else if (candidate == null || tmp.byteValue() < candidate.byteValue()) {
candidate = tmp;
}
}
} catch (Exception e) {
throw N.toRuntimeException(e);
}
return candidate == null ? OptionalByte.empty() : OptionalByte.of(candidate);
}
@Override
public OptionalByte max() {
if (fromIndex == toIndex) {
return OptionalByte.empty();
} else if (sorted) {
return OptionalByte.of(elements[toIndex - 1]);
} else if (maxThreadNum <= 1) {
return OptionalByte.of(N.max(elements, fromIndex, toIndex));
}
final List> futureList = new ArrayList<>(maxThreadNum);
final int sliceSize = (toIndex - fromIndex) / maxThreadNum + ((toIndex - fromIndex) % maxThreadNum == 0 ? 0 : 1);
for (int i = 0; i < maxThreadNum; i++) {
final int sliceIndex = i;
futureList.add(asyncExecutor.execute(new Callable() {
@Override
public Byte call() {
int cursor = fromIndex + sliceIndex * sliceSize;
final int to = toIndex - cursor > sliceSize ? cursor + sliceSize : toIndex;
return cursor >= to ? null : N.max(elements, cursor, to);
}
}));
}
Byte candidate = null;
try {
for (CompletableFuture future : futureList) {
final Byte tmp = future.get();
if (tmp == null) {
continue;
} else if (candidate == null || tmp.byteValue() > candidate.byteValue()) {
candidate = tmp;
}
}
} catch (Exception e) {
throw N.toRuntimeException(e);
}
return candidate == null ? OptionalByte.empty() : OptionalByte.of(candidate);
}
@Override
public OptionalByte kthLargest(int k) {
N.checkArgument(k > 0, "'k' must be bigger than 0");
if (k > toIndex - fromIndex) {
return OptionalByte.empty();
} else if (sorted) {
return OptionalByte.of(elements[toIndex - k]);
}
return OptionalByte.of(N.kthLargest(elements, fromIndex, toIndex, k));
}
@Override
public long sum() {
if (fromIndex == toIndex) {
return 0L;
} else if (maxThreadNum <= 1) {
return sum(elements, fromIndex, toIndex);
}
final List> futureList = new ArrayList<>(maxThreadNum);
final int sliceSize = (toIndex - fromIndex) / maxThreadNum + ((toIndex - fromIndex) % maxThreadNum == 0 ? 0 : 1);
for (int i = 0; i < maxThreadNum; i++) {
final int sliceIndex = i;
futureList.add(asyncExecutor.execute(new Callable() {
@Override
public Long call() {
int cursor = fromIndex + sliceIndex * sliceSize;
final int to = toIndex - cursor > sliceSize ? cursor + sliceSize : toIndex;
return cursor >= to ? null : sum(elements, cursor, to);
}
}));
}
long result = 0;
try {
for (CompletableFuture future : futureList) {
final Long tmp = future.get();
if (tmp == null) {
continue;
} else {
result += tmp.longValue();
}
}
} catch (Exception e) {
throw N.toRuntimeException(e);
}
return result;
}
@Override
public OptionalDouble average() {
if (fromIndex == toIndex) {
return OptionalDouble.empty();
}
return OptionalDouble.of(sum() / toIndex - fromIndex);
}
@Override
public long count() {
return toIndex - fromIndex;
}
@Override
public ByteStream reversed() {
return new ParallelIteratorByteStream(sequential().reversed().exIterator(), closeHandlers, false, maxThreadNum, splitor);
}
@Override
public ByteSummaryStatistics summarize() {
if (fromIndex == toIndex) {
return new ByteSummaryStatistics();
} else if (maxThreadNum <= 1) {
return sequential().summarize();
}
final List> futureList = new ArrayList<>(maxThreadNum);
final int sliceSize = (toIndex - fromIndex) / maxThreadNum + ((toIndex - fromIndex) % maxThreadNum == 0 ? 0 : 1);
for (int i = 0; i < maxThreadNum; i++) {
final int sliceIndex = i;
futureList.add(asyncExecutor.execute(new Callable() {
@Override
public ByteSummaryStatistics call() {
int cursor = fromIndex + sliceIndex * sliceSize;
final int to = toIndex - cursor > sliceSize ? cursor + sliceSize : toIndex;
final ByteSummaryStatistics result = new ByteSummaryStatistics();
for (int i = cursor; i < to; i++) {
result.accept(elements[i]);
}
return result;
}
}));
}
ByteSummaryStatistics result = null;
try {
for (CompletableFuture future : futureList) {
final ByteSummaryStatistics tmp = future.get();
if (tmp == null) {
continue;
} else if (result == null) {
result = tmp;
} else {
result.combine(tmp);
}
}
} catch (Exception e) {
throw N.toRuntimeException(e);
}
return result;
}
@Override
public boolean anyMatch(final BytePredicate predicate) {
if (maxThreadNum <= 1) {
return sequential().anyMatch(predicate);
}
final List> futureList = new ArrayList<>(maxThreadNum);
final Holder eHolder = new Holder<>();
final MutableBoolean result = MutableBoolean.of(false);
if (splitor == Splitor.ARRAY) {
final int sliceSize = (toIndex - fromIndex) / maxThreadNum + ((toIndex - fromIndex) % maxThreadNum == 0 ? 0 : 1);
for (int i = 0; i < maxThreadNum; i++) {
final int sliceIndex = i;
futureList.add(asyncExecutor.execute(new Runnable() {
@Override
public void run() {
int cursor = fromIndex + sliceIndex * sliceSize;
final int to = toIndex - cursor > sliceSize ? cursor + sliceSize : toIndex;
try {
while (cursor < to && result.isFalse() && eHolder.value() == null) {
if (predicate.test(elements[cursor++])) {
result.setTrue();
break;
}
}
} catch (Throwable e) {
setError(eHolder, e);
}
}
}));
}
} else {
final MutableInt cursor = MutableInt.of(fromIndex);
for (int i = 0; i < maxThreadNum; i++) {
futureList.add(asyncExecutor.execute(new Runnable() {
@Override
public void run() {
byte next = 0;
try {
while (result.isFalse() && eHolder.value() == null) {
synchronized (elements) {
if (cursor.intValue() < toIndex) {
next = elements[cursor.getAndIncrement()];
} else {
break;
}
}
if (predicate.test(next)) {
result.setTrue();
break;
}
}
} catch (Throwable e) {
setError(eHolder, e);
}
}
}));
}
}
complete(futureList, eHolder);
return result.value();
}
@Override
public boolean allMatch(final BytePredicate predicate) {
if (maxThreadNum <= 1) {
return sequential().allMatch(predicate);
}
final List> futureList = new ArrayList<>(maxThreadNum);
final Holder eHolder = new Holder<>();
final MutableBoolean result = MutableBoolean.of(true);
if (splitor == Splitor.ARRAY) {
final int sliceSize = (toIndex - fromIndex) / maxThreadNum + ((toIndex - fromIndex) % maxThreadNum == 0 ? 0 : 1);
for (int i = 0; i < maxThreadNum; i++) {
final int sliceIndex = i;
futureList.add(asyncExecutor.execute(new Runnable() {
@Override
public void run() {
int cursor = fromIndex + sliceIndex * sliceSize;
final int to = toIndex - cursor > sliceSize ? cursor + sliceSize : toIndex;
try {
while (cursor < to && result.isTrue() && eHolder.value() == null) {
if (predicate.test(elements[cursor++]) == false) {
result.setFalse();
break;
}
}
} catch (Throwable e) {
setError(eHolder, e);
}
}
}));
}
} else {
final MutableInt cursor = MutableInt.of(fromIndex);
for (int i = 0; i < maxThreadNum; i++) {
futureList.add(asyncExecutor.execute(new Runnable() {
@Override
public void run() {
byte next = 0;
try {
while (result.isTrue() && eHolder.value() == null) {
synchronized (elements) {
if (cursor.intValue() < toIndex) {
next = elements[cursor.getAndIncrement()];
} else {
break;
}
}
if (predicate.test(next) == false) {
result.setFalse();
break;
}
}
} catch (Throwable e) {
setError(eHolder, e);
}
}
}));
}
}
complete(futureList, eHolder);
return result.value();
}
@Override
public boolean noneMatch(final BytePredicate predicate) {
if (maxThreadNum <= 1) {
return sequential().noneMatch(predicate);
}
final List> futureList = new ArrayList<>(maxThreadNum);
final Holder eHolder = new Holder<>();
final MutableBoolean result = MutableBoolean.of(true);
if (splitor == Splitor.ARRAY) {
final int sliceSize = (toIndex - fromIndex) / maxThreadNum + ((toIndex - fromIndex) % maxThreadNum == 0 ? 0 : 1);
for (int i = 0; i < maxThreadNum; i++) {
final int sliceIndex = i;
futureList.add(asyncExecutor.execute(new Runnable() {
@Override
public void run() {
int cursor = fromIndex + sliceIndex * sliceSize;
final int to = toIndex - cursor > sliceSize ? cursor + sliceSize : toIndex;
try {
while (cursor < to && result.isTrue() && eHolder.value() == null) {
if (predicate.test(elements[cursor++])) {
result.setFalse();
break;
}
}
} catch (Throwable e) {
setError(eHolder, e);
}
}
}));
}
} else {
final MutableInt cursor = MutableInt.of(fromIndex);
for (int i = 0; i < maxThreadNum; i++) {
futureList.add(asyncExecutor.execute(new Runnable() {
@Override
public void run() {
byte next = 0;
try {
while (result.isTrue() && eHolder.value() == null) {
synchronized (elements) {
if (cursor.intValue() < toIndex) {
next = elements[cursor.getAndIncrement()];
} else {
break;
}
}
if (predicate.test(next)) {
result.setFalse();
break;
}
}
} catch (Throwable e) {
setError(eHolder, e);
}
}
}));
}
}
complete(futureList, eHolder);
return result.value();
}
@Override
public OptionalByte findFirst(final BytePredicate predicate) {
if (maxThreadNum <= 1) {
return sequential().findFirst(predicate);
}
final List> futureList = new ArrayList<>(maxThreadNum);
final Holder eHolder = new Holder<>();
final Holder> resultHolder = new Holder<>();
if (splitor == Splitor.ARRAY) {
final int sliceSize = (toIndex - fromIndex) / maxThreadNum + ((toIndex - fromIndex) % maxThreadNum == 0 ? 0 : 1);
for (int i = 0; i < maxThreadNum; i++) {
final int sliceIndex = i;
futureList.add(asyncExecutor.execute(new Runnable() {
@Override
public void run() {
int cursor = fromIndex + sliceIndex * sliceSize;
final int to = toIndex - cursor > sliceSize ? cursor + sliceSize : toIndex;
final Pair pair = new Pair<>();
try {
while (cursor < to && (resultHolder.value() == null || cursor < resultHolder.value().left) && eHolder.value() == null) {
pair.left = cursor;
pair.right = elements[cursor++];
if (predicate.test(pair.right)) {
synchronized (resultHolder) {
if (resultHolder.value() == null || pair.left < resultHolder.value().left) {
resultHolder.setValue(pair.copy());
}
}
break;
}
}
} catch (Throwable e) {
setError(eHolder, e);
}
}
}));
}
} else {
final MutableInt cursor = MutableInt.of(fromIndex);
for (int i = 0; i < maxThreadNum; i++) {
futureList.add(asyncExecutor.execute(new Runnable() {
@Override
public void run() {
final Pair pair = new Pair<>();
try {
while (resultHolder.value() == null && eHolder.value() == null) {
synchronized (elements) {
if (cursor.intValue() < toIndex) {
pair.left = cursor.intValue();
pair.right = elements[cursor.getAndIncrement()];
} else {
break;
}
}
if (predicate.test(pair.right)) {
synchronized (resultHolder) {
if (resultHolder.value() == null || pair.left < resultHolder.value().left) {
resultHolder.setValue(pair.copy());
}
}
break;
}
}
} catch (Throwable e) {
setError(eHolder, e);
}
}
}));
}
}
complete(futureList, eHolder);
return resultHolder.value() == null ? OptionalByte.empty() : OptionalByte.of(resultHolder.value().right);
}
@Override
public OptionalByte findLast(final BytePredicate predicate) {
if (maxThreadNum <= 1) {
return sequential().findLast(predicate);
}
final List> futureList = new ArrayList<>(maxThreadNum);
final Holder eHolder = new Holder<>();
final Holder> resultHolder = new Holder<>();
if (splitor == Splitor.ARRAY) {
final int sliceSize = (toIndex - fromIndex) / maxThreadNum + ((toIndex - fromIndex) % maxThreadNum == 0 ? 0 : 1);
for (int i = 0; i < maxThreadNum; i++) {
final int sliceIndex = i;
futureList.add(asyncExecutor.execute(new Runnable() {
@Override
public void run() {
final int from = fromIndex + sliceIndex * sliceSize;
int cursor = toIndex - from > sliceSize ? from + sliceSize : toIndex;
final Pair pair = new Pair<>();
try {
while (cursor > from && (resultHolder.value() == null || cursor > resultHolder.value().left) && eHolder.value() == null) {
pair.left = cursor;
pair.right = elements[--cursor];
if (predicate.test(pair.right)) {
synchronized (resultHolder) {
if (resultHolder.value() == null || pair.left > resultHolder.value().left) {
resultHolder.setValue(pair.copy());
}
}
break;
}
}
} catch (Throwable e) {
setError(eHolder, e);
}
}
}));
}
} else {
final MutableInt cursor = MutableInt.of(toIndex);
for (int i = 0; i < maxThreadNum; i++) {
futureList.add(asyncExecutor.execute(new Runnable() {
@Override
public void run() {
final Pair pair = new Pair<>();
try {
while (resultHolder.value() == null && eHolder.value() == null) {
synchronized (elements) {
if (cursor.intValue() > fromIndex) {
pair.left = cursor.intValue();
pair.right = elements[cursor.decrementAndGet()];
} else {
break;
}
}
if (predicate.test(pair.right)) {
synchronized (resultHolder) {
if (resultHolder.value() == null || pair.left > resultHolder.value().left) {
resultHolder.setValue(pair.copy());
}
}
break;
}
}
} catch (Throwable e) {
setError(eHolder, e);
}
}
}));
}
}
complete(futureList, eHolder);
return resultHolder.value() == null ? OptionalByte.empty() : OptionalByte.of(resultHolder.value().right);
}
@Override
public OptionalByte findAny(final BytePredicate predicate) {
if (maxThreadNum <= 1) {
return sequential().findAny(predicate);
}
final List> futureList = new ArrayList<>(maxThreadNum);
final Holder eHolder = new Holder<>();
final Holder
© 2015 - 2025 Weber Informatics LLC | Privacy Policy