All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.landawn.abacus.util.N Maven / Gradle / Ivy

There is a newer version: 1.10.1
Show newest version
/*
 * Copyright (c) 2015, Haiyang Li.
 * 
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package com.landawn.abacus.util;

import java.io.File;
import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStream;
import java.io.Reader;
import java.io.Serializable;
import java.io.Writer;
import java.lang.reflect.Constructor;
import java.lang.reflect.Field;
import java.lang.reflect.InvocationHandler;
import java.lang.reflect.InvocationTargetException;
import java.lang.reflect.Method;
import java.lang.reflect.Modifier;
import java.lang.reflect.Proxy;
import java.nio.charset.Charset;
import java.security.SecureRandom;
import java.sql.SQLException;
import java.util.AbstractCollection;
import java.util.AbstractList;
import java.util.AbstractMap;
import java.util.AbstractSet;
import java.util.ArrayDeque;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Calendar;
import java.util.Collection;
import java.util.Collections;
import java.util.Comparator;
import java.util.ConcurrentModificationException;
import java.util.Deque;
import java.util.EnumMap;
import java.util.EnumSet;
import java.util.HashMap;
import java.util.HashSet;
import java.util.IdentityHashMap;
import java.util.Iterator;
import java.util.LinkedHashMap;
import java.util.LinkedHashSet;
import java.util.LinkedList;
import java.util.List;
import java.util.ListIterator;
import java.util.Map;
import java.util.NavigableMap;
import java.util.NavigableSet;
import java.util.NoSuchElementException;
import java.util.PriorityQueue;
import java.util.Queue;
import java.util.Random;
import java.util.RandomAccess;
import java.util.Set;
import java.util.SortedMap;
import java.util.SortedSet;
import java.util.TreeMap;
import java.util.TreeSet;
import java.util.UUID;
import java.util.concurrent.ArrayBlockingQueue;
import java.util.concurrent.Callable;
import java.util.concurrent.ConcurrentHashMap;
import java.util.concurrent.ConcurrentLinkedDeque;
import java.util.concurrent.ConcurrentLinkedQueue;
import java.util.concurrent.DelayQueue;
import java.util.concurrent.Delayed;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.LinkedBlockingDeque;
import java.util.concurrent.LinkedBlockingQueue;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.atomic.AtomicInteger;

import com.landawn.abacus.DataSet;
import com.landawn.abacus.DirtyMarker;
import com.landawn.abacus.EntityId;
import com.landawn.abacus.annotation.NullSafe;
import com.landawn.abacus.core.EntityUtil;
import com.landawn.abacus.core.MapEntity;
import com.landawn.abacus.core.RowDataSet;
import com.landawn.abacus.exception.UncheckedException;
import com.landawn.abacus.exception.UncheckedIOException;
import com.landawn.abacus.exception.UncheckedSQLException;
import com.landawn.abacus.logging.Logger;
import com.landawn.abacus.logging.LoggerFactory;
import com.landawn.abacus.parser.DeserializationConfig;
import com.landawn.abacus.parser.JSONDeserializationConfig;
import com.landawn.abacus.parser.JSONDeserializationConfig.JDC;
import com.landawn.abacus.parser.JSONSerializationConfig;
import com.landawn.abacus.parser.XMLDeserializationConfig;
import com.landawn.abacus.parser.XMLDeserializationConfig.XDC;
import com.landawn.abacus.parser.XMLSerializationConfig;
import com.landawn.abacus.type.EntityType;
import com.landawn.abacus.type.Type;
import com.landawn.abacus.type.TypeFactory;
import com.landawn.abacus.util.function.BiFunction;
import com.landawn.abacus.util.function.BiPredicate;
import com.landawn.abacus.util.function.IntFunction;
import com.landawn.abacus.util.function.Predicate;
import com.landawn.abacus.util.function.Supplier;
import com.landawn.abacus.util.function.ToDoubleFunction;
import com.landawn.abacus.util.stream.DoubleStream;
import com.landawn.abacus.util.stream.FloatStream;
import com.landawn.abacus.util.stream.Stream;

/**
 * 

* Note: This class includes codes copied from Apache Commons Lang, Google Guava and other open source projects under the Apache License 2.0. * The methods copied from other libraries/frameworks/projects may be modified in this class. *

* Class N is a general java utility class. It provides the most daily used operations for Object/primitive types/String/Array/Collection/Map/Entity...: * *
    *
    *
  • ======================================================================= *
  • String operations:
    * stringOf/valueOf/join/isNullOrEmpty/notNullOrEmpty/ * checkNullOrEmpty/indexOfXXX/lastIndexOfXXX * /ordinalIndexOf/startsWithXXX/endsWithXXX * /containsXXX/commonPrefix/commonSuffix/difference/equals/equalsIgnoreCase/trim * /strip/capitalize/uncapitalize/lowerCase/upperCase/swapCase/padStart/padEnd * /repeat/reverse/replace/replaceAll/replacePattern/unicodeEscaped/formatQuotation * /normalizeSpace/deleteWhitespace/chomp/chop/abbreviate/... * *
    *
    *
  • ======================================================================= *
  • Array operations:
    * newArray/asArray/asXXX/array2XXX/isNullOrEmpty * /notNullOrEmpty/checkNullOrEmpty/sort/parallelSort/binarySearch * /copy/copyOf/copyOfRange/clone * /indexOfXXX/lastIndexOfXXX/containsXXX/fill/concat/add * /addAll/insert/remove/removeAll/delete/deleteAll/replaceAll * /reverse/swap/rotate/shuffle * /sum/avg/min/max/median/join/filter/... * *
    *
    *
  • ======================================================================= *
  • Collection operations:
    * newXXX/asXXX/sort/parallelSort/binarySearch/isNullOrEmpty * /notNullOrEmpty/checkNullOrEmpty/indexOfXXX/containsXXX * /xxx2String/string2XXX/fill/reverse/swap/sum/avg/min/max/median/filter/... * *
    *
    *
  • ======================================================================= *
  • Map operations:
    * newXXX/asXXX/isNullOrEmpty/notNullOrEmpty/checkNullOrEmpty/entity2Map/ * deepEntity2Map/entity2FlatMap/map2Entity/filter/... * *
    *
    *
  • ======================================================================= *
  • Entity/Properties operations:
    * newXXX/asXXX/copy/clone/erase/eraseAll/getPropValue/setPropValue/ * setPropValueByGet/entity2Map/deepEntity2Map/entity2FlatMap/map2Entity/formalizePropName/getPropNameByMethod/... *
  • * *
    *
    *
  • ======================================================================= *
  • primitive types operations:
    * arrayOf/listOf/isPrimitive/isPrimitiveWapper/isPrimitiveOrWapper/sum/avg/min/max/median/unwrap/wrap/... * *
    *
    *
  • ======================================================================= *
  • Factory(create/new) operations/:
    * newXXX/createXXX/asXXX/... * *
    *
    *
  • ======================================================================= *
  • Reflect Class/Method operations:
    * newXXX/getPackage/getPackageName/forClass/getClassName/getSimpleClassName * /getCanonicalClassName /getDeclaredConstructor * /getDeclaredMethod/findDeclaredMethodByName * /getEnclosingClass/getPropField/getPropGetMethod/getPropGetMethodList * /getPropSetMethod/getPropSetMethodList/invokeConstructor/invokeMethod/... * *
    *
    *
  • ======================================================================= *
  • General Object operations:
    * stringOf/valueOf/toString/hashCod/equals/deepToString/deepHashCodee * /deepEquals/compare/json2XML/xml2JSON * /base64XXXEncode/base64XXXDecode/urlEncode * /urlDecode/getDefaultValue/uuid/enumListOf/enumSetOf * /registerNonEntityClass/registerPropGetSetMethod/registerXMLBindingClassForPropGetSetMethod/getType * /asyncExecute/getCharsForReadOnly/sleep/println/... * *
* *

* * When to throw exception? It's designed to avoid throwing any unnecessary * exception if the contract defined by method is not broken. for example, if * user tries to reverse a null or empty String. the input String will be * returned. But exception will be thrown if trying to repeat/swap a null or * empty string or operate Array/Collection by adding/removing...
* * @author Haiyang Li * * @version $Revision: 0.8 $ 07/03/10 */ public final class N { private static final Logger logger = LoggerFactory.getLogger(N.class); private static final AsyncExecutor asyncExecutor = new AsyncExecutor(256, 300L, TimeUnit.SECONDS); // ... it has to be big enough to make it's safety to add element to // ArrayBlockingQueue. static final int POOL_SIZE; static { int multi = (int) (Runtime.getRuntime().maxMemory() / ((1024 * 1024) * 256)); POOL_SIZE = N.max(1000, N.min(1000 * multi, 8192)); } // ... static final String ELEMENT_SEPARATOR = Type.ELEMENT_SEPARATOR; static final char[] ELEMENT_SEPARATOR_CHAR_ARRAY = Type.ELEMENT_SEPARATOR_CHAR_ARRAY; /** * An empty immutable {@code Boolean} array. */ static final Boolean[] EMPTY_BOOLEAN_OBJECT_ARRAY = new Boolean[0]; /** * An empty immutable {@code Character} array. */ static final Character[] EMPTY_CHARACTER_OBJECT_ARRAY = new Character[0]; /** * An empty immutable {@code Byte} array. */ static final Byte[] EMPTY_BYTE_OBJECT_ARRAY = new Byte[0]; /** * An empty immutable {@code Short} array. */ static final Short[] EMPTY_SHORT_OBJECT_ARRAY = new Short[0]; /** * An empty immutable {@code Integer} array. */ static final Integer[] EMPTY_INTEGER_OBJECT_ARRAY = new Integer[0]; /** * An empty immutable {@code Long} array. */ static final Long[] EMPTY_LONG_OBJECT_ARRAY = new Long[0]; /** * An empty immutable {@code Float} array. */ static final Float[] EMPTY_FLOAT_OBJECT_ARRAY = new Float[0]; /** * An empty immutable {@code Double} array. */ static final Double[] EMPTY_DOUBLE_OBJECT_ARRAY = new Double[0]; /** * An empty immutable {@code Class} array. */ static final Class[] EMPTY_CLASS_ARRAY = new Class[0]; static final String NULL_STRING = "null".intern(); static final char[] NULL_CHAR_ARRAY = NULL_STRING.toCharArray(); static final String TRUE = Boolean.TRUE.toString().intern(); static final char[] TRUE_CHAR_ARRAY = TRUE.toCharArray(); static final String FALSE = Boolean.FALSE.toString().intern(); static final char[] FALSE_CHAR_ARRAY = FALSE.toCharArray(); // ... static final char CHAR_0 = WD.CHAR_0; /** * * @see JLF: * Escape Sequences for Character and String Literals * @since 2.2 */ static final char CHAR_LF = WD.CHAR_LF; /** * * @see JLF: * Escape Sequences for Character and String Literals * @since 2.2 */ static final char CHAR_CR = WD.CHAR_CR; // ... /** * The index value when an element is not found in a list or array: * {@code -1}. This value is returned by methods in this class and can also * be used in comparisons with values returned by various method from * {@link java.util.List} . */ public static final int INDEX_NOT_FOUND = -1; // ... public static final String EMPTY_STRING = "".intern(); /** * An empty immutable {@code boolean} array. */ public static final boolean[] EMPTY_BOOLEAN_ARRAY = new boolean[0]; /** * An empty immutable {@code char} array. */ public static final char[] EMPTY_CHAR_ARRAY = new char[0]; /** * An empty immutable {@code byte} array. */ public static final byte[] EMPTY_BYTE_ARRAY = new byte[0]; /** * An empty immutable {@code short} array. */ public static final short[] EMPTY_SHORT_ARRAY = new short[0]; /** * An empty immutable {@code int} array. */ public static final int[] EMPTY_INT_ARRAY = new int[0]; /** * An empty immutable {@code long} array. */ public static final long[] EMPTY_LONG_ARRAY = new long[0]; /** * An empty immutable {@code float} array. */ public static final float[] EMPTY_FLOAT_ARRAY = new float[0]; /** * An empty immutable {@code double} array. */ public static final double[] EMPTY_DOUBLE_ARRAY = new double[0]; /** * An empty immutable {@code Boolean} array. */ public static final Boolean[] EMPTY_BOOLEAN_OBJ_ARRAY = new Boolean[0]; /** * An empty immutable {@code Character} array. */ public static final Character[] EMPTY_CHAR_OBJ_ARRAY = new Character[0]; /** * An empty immutable {@code Byte} array. */ public static final Byte[] EMPTY_BYTE_OBJ_ARRAY = new Byte[0]; /** * An empty immutable {@code Short} array. */ public static final Short[] EMPTY_SHORT_OBJ_ARRAY = new Short[0]; /** * An empty immutable {@code Integer} array. */ public static final Integer[] EMPTY_INT_OBJ_ARRAY = new Integer[0]; /** * An empty immutable {@code Long} array. */ public static final Long[] EMPTY_LONG_OBJ_ARRAY = new Long[0]; /** * An empty immutable {@code Float} array. */ public static final Float[] EMPTY_FLOAT_OBJ_ARRAY = new Float[0]; /** * An empty immutable {@code Double} array. */ public static final Double[] EMPTY_DOUBLE_OBJ_ARRAY = new Double[0]; /** * An empty immutable {@code String} array. */ public static final String[] EMPTY_STRING_ARRAY = new String[0]; /** * An empty immutable {@code Object} array. */ public static final Object[] EMPTY_OBJECT_ARRAY = new Object[0]; @SuppressWarnings("rawtypes") static final List EMPTY_LIST = Collections.emptyList(); @SuppressWarnings("rawtypes") static final Set EMPTY_SET = Collections.emptySet(); @SuppressWarnings("rawtypes") static final SortedSet EMPTY_SORTED_SET = Collections.emptySortedSet(); @SuppressWarnings("rawtypes") static final NavigableSet EMPTY_NAVIGABLE_SET = Collections.emptyNavigableSet(); @SuppressWarnings("rawtypes") static final Map EMPTY_MAP = Collections.emptyMap(); @SuppressWarnings("rawtypes") static final SortedMap EMPTY_SORTED_MAP = Collections.emptySortedMap(); @SuppressWarnings("rawtypes") static final NavigableMap EMPTY_NAVIGABLE_MAP = Collections.emptyNavigableMap(); @SuppressWarnings("rawtypes") static final Iterator EMPTY_ITERATOR = Collections.emptyIterator(); @SuppressWarnings("rawtypes") static final ListIterator EMPTY_LIST_ITERATOR = Collections.emptyListIterator(); // ... static final Object NULL_MASK = new NullMask(); static final String BACKSLASH_ASTERISK = "*"; // ... private static final int REVERSE_THRESHOLD = 18; private static final int FILL_THRESHOLD = 25; private static final int REPLACEALL_THRESHOLD = 11; // ... static final Random RAND = new SecureRandom(); @SuppressWarnings("rawtypes") private static final Comparator NULL_MIN_COMPARATOR = Comparators.nullsFirst(); @SuppressWarnings("rawtypes") private static final Comparator NULL_MAX_COMPARATOR = Comparators.nullsLast(); @SuppressWarnings("rawtypes") private static final Comparator NATURAL_ORDER = Comparators.naturalOrder(); // ... static final Map, Object> CLASS_EMPTY_ARRAY = new ConcurrentHashMap<>(); static { CLASS_EMPTY_ARRAY.put(boolean.class, N.EMPTY_BOOLEAN_ARRAY); CLASS_EMPTY_ARRAY.put(Boolean.class, N.EMPTY_BOOLEAN_OBJECT_ARRAY); CLASS_EMPTY_ARRAY.put(char.class, N.EMPTY_CHAR_ARRAY); CLASS_EMPTY_ARRAY.put(Character.class, N.EMPTY_CHARACTER_OBJECT_ARRAY); CLASS_EMPTY_ARRAY.put(byte.class, N.EMPTY_BYTE_ARRAY); CLASS_EMPTY_ARRAY.put(Byte.class, N.EMPTY_BYTE_OBJECT_ARRAY); CLASS_EMPTY_ARRAY.put(short.class, N.EMPTY_SHORT_ARRAY); CLASS_EMPTY_ARRAY.put(Short.class, N.EMPTY_SHORT_OBJECT_ARRAY); CLASS_EMPTY_ARRAY.put(int.class, N.EMPTY_INT_ARRAY); CLASS_EMPTY_ARRAY.put(Integer.class, N.EMPTY_INTEGER_OBJECT_ARRAY); CLASS_EMPTY_ARRAY.put(long.class, N.EMPTY_LONG_ARRAY); CLASS_EMPTY_ARRAY.put(Long.class, N.EMPTY_LONG_OBJECT_ARRAY); CLASS_EMPTY_ARRAY.put(float.class, N.EMPTY_FLOAT_ARRAY); CLASS_EMPTY_ARRAY.put(Float.class, N.EMPTY_FLOAT_OBJECT_ARRAY); CLASS_EMPTY_ARRAY.put(double.class, N.EMPTY_DOUBLE_ARRAY); CLASS_EMPTY_ARRAY.put(Double.class, N.EMPTY_DOUBLE_OBJECT_ARRAY); CLASS_EMPTY_ARRAY.put(String.class, N.EMPTY_STRING_ARRAY); CLASS_EMPTY_ARRAY.put(Object.class, N.EMPTY_OBJECT_ARRAY); } // ... static final Map, Integer> CLASS_TYPE_ENUM = new HashMap<>(); static { CLASS_TYPE_ENUM.put(boolean.class, 1); CLASS_TYPE_ENUM.put(char.class, 2); CLASS_TYPE_ENUM.put(byte.class, 3); CLASS_TYPE_ENUM.put(short.class, 4); CLASS_TYPE_ENUM.put(int.class, 5); CLASS_TYPE_ENUM.put(long.class, 6); CLASS_TYPE_ENUM.put(float.class, 7); CLASS_TYPE_ENUM.put(double.class, 8); CLASS_TYPE_ENUM.put(String.class, 9); CLASS_TYPE_ENUM.put(boolean[].class, 11); CLASS_TYPE_ENUM.put(char[].class, 12); CLASS_TYPE_ENUM.put(byte[].class, 13); CLASS_TYPE_ENUM.put(short[].class, 14); CLASS_TYPE_ENUM.put(int[].class, 15); CLASS_TYPE_ENUM.put(long[].class, 16); CLASS_TYPE_ENUM.put(float[].class, 17); CLASS_TYPE_ENUM.put(double[].class, 18); CLASS_TYPE_ENUM.put(String[].class, 19); CLASS_TYPE_ENUM.put(Boolean.class, 21); CLASS_TYPE_ENUM.put(Character.class, 22); CLASS_TYPE_ENUM.put(Byte.class, 23); CLASS_TYPE_ENUM.put(Short.class, 24); CLASS_TYPE_ENUM.put(Integer.class, 25); CLASS_TYPE_ENUM.put(Long.class, 26); CLASS_TYPE_ENUM.put(Float.class, 27); CLASS_TYPE_ENUM.put(Double.class, 28); } // ... private static final Map>, List>> enumListPool = new ObjectPool<>(POOL_SIZE); private static final Map>, Set>> enumSetPool = new ObjectPool<>(POOL_SIZE); private static final Map>, BiMap, String>> enumMapPool = new ObjectPool<>(POOL_SIZE); private static final Map> nameTypePool = new ObjectPool<>(POOL_SIZE); private static final Map, Type> clsTypePool = new ObjectPool<>(POOL_SIZE); // ... private static final Map, Boolean> entityClassPool = new ObjectPool<>(POOL_SIZE); private static final Map, Boolean> dirtyMarkerClassPool = new ObjectPool<>(POOL_SIZE); private static final Map, Boolean> dirtyMarkerEntityClassPool = new ObjectPool<>(POOL_SIZE); // ... static final Field listElementDataField; static final Field listSizeField; static volatile boolean isListElementDataFieldGettable = true; static volatile boolean isListElementDataFieldSettable = true; static { Field tmp = null; try { tmp = String.class.getDeclaredField("offset"); } catch (Exception e) { // ignore. } if (tmp == null) { try { tmp = String.class.getDeclaredField("count"); } catch (Exception e) { // ignore. } } if (tmp == null) { try { tmp = String.class.getDeclaredField("value"); } catch (Exception e) { // ignore. } } tmp = null; try { tmp = ArrayList.class.getDeclaredField("elementData"); } catch (Exception e) { // ignore. } listElementDataField = tmp != null && tmp.getType().equals(Object[].class) ? tmp : null; if (listElementDataField != null) { listElementDataField.setAccessible(true); } tmp = null; try { tmp = ArrayList.class.getDeclaredField("size"); } catch (Exception e) { // ignore. } listSizeField = tmp != null && tmp.getType().equals(int.class) ? tmp : null; if (listSizeField != null) { listSizeField.setAccessible(true); } } static final String[] charStringCache = new String[128]; static final int intStringCacheLow = -1001; static final int intStringCacheHigh = 10001; static final String[] intStringCache = new String[intStringCacheHigh - intStringCacheLow]; static final Map stringIntCache = new HashMap<>((int) (intStringCache.length * 1.5)); static { for (int i = 0, j = intStringCacheLow, len = intStringCache.length; i < len; i++, j++) { intStringCache[i] = Integer.valueOf(j).toString(); stringIntCache.put(intStringCache[i], j); } for (int i = 0; i < charStringCache.length; i++) { charStringCache[i] = String.valueOf((char) i); } } private static final int MIN_SIZE_FOR_COPY_ALL = 9; /** * Constructor for */ private N() { // no instance(); } @SuppressWarnings("unchecked") public static Type typeOf(final String typeName) { if (typeName == null) { return null; } Type type = nameTypePool.get(typeName); if (type == null) { type = TypeFactory.getType(typeName); nameTypePool.put(typeName, type); } return (Type) type; } @SuppressWarnings("unchecked") public static Type typeOf(final Class cls) { if (cls == null) { return null; } Type type = clsTypePool.get(cls); if (type == null) { type = TypeFactory.getType(cls); clsTypePool.put(cls, type); } return (Type) type; } @SuppressWarnings("unchecked") // @SafeVarargs // public static List> typeOf(final Class... classes) { // if (N.isNullOrEmpty(classes)) { // return new ArrayList<>(); // } // // final List> result = new ArrayList<>(classes.length); // // for (int i = 0, len = classes.length; i < len; i++) { // result.add((Type) typeOf(classes[i])); // } // // return result; // } // // @SuppressWarnings("unchecked") // public static List> typeOf(final Collection> classes) { // final List> result = new ArrayList<>(classes.size()); // // for (Class cls : classes) { // result.add((Type) typeOf(cls)); // } // // return result; // } public static String stringOf(final boolean val) { return String.valueOf(val); } public static String stringOf(final char val) { if (val < 128) { return charStringCache[val]; } return String.valueOf(val); } public static String stringOf(final byte val) { if (val > intStringCacheLow && val < intStringCacheHigh) { return intStringCache[val - intStringCacheLow]; } return String.valueOf(val); } public static String stringOf(final short val) { if (val > intStringCacheLow && val < intStringCacheHigh) { return intStringCache[val - intStringCacheLow]; } return String.valueOf(val); } public static String stringOf(final int val) { if (val > intStringCacheLow && val < intStringCacheHigh) { return intStringCache[val - intStringCacheLow]; } return String.valueOf(val); } public static String stringOf(final long val) { if (val > intStringCacheLow && val < intStringCacheHigh) { return intStringCache[(int) (val - intStringCacheLow)]; } return String.valueOf(val); } public static String stringOf(final float val) { return String.valueOf(val); } public static String stringOf(final double val) { return String.valueOf(val); } /** * * @param obj * @return null if the specified object is null. */ public static String stringOf(final Object obj) { return (obj == null) ? null : N.typeOf(obj.getClass()).stringOf(obj); } /** * * @param targetClass * @param str * @return the default value of the specified targetClass if the specified string is null. */ @SuppressWarnings("unchecked") public static T valueOf(final Class targetClass, final String str) { return (str == null) ? defaultValueOf(targetClass) : (T) N.typeOf(targetClass).valueOf(str); } @SuppressWarnings("unchecked") public static T defaultValueOf(final Class cls) { return (T) N.typeOf(cls).defaultValue(); } public static > List enumListOf(final Class enumClass) { List enumList = (List) enumListPool.get(enumClass); if (enumList == null) { enumList = ImmutableList.of(N.asList(enumClass.getEnumConstants())); enumListPool.put(enumClass, enumList); } return enumList; } public static > Set enumSetOf(final Class enumClass) { Set enumSet = (Set) enumSetPool.get(enumClass); if (enumSet == null) { enumSet = ImmutableSet.of(EnumSet.allOf(enumClass)); enumSetPool.put(enumClass, enumSet); } return enumSet; } public static > BiMap enumMapOf(final Class enumClass) { BiMap enumMap = (BiMap) enumMapPool.get(enumClass); if (enumMap == null) { final EnumMap keyMap = new EnumMap<>(enumClass); final Map valueMap = new HashMap<>(); for (final E e : enumClass.getEnumConstants()) { keyMap.put(e, e.name()); valueMap.put(e.name(), e); } enumMap = new BiMap<>(ImmutableMap.of(keyMap), ImmutableMap.of(valueMap)); enumMapPool.put(enumClass, enumMap); } return enumMap; } /** * Method newInstance. * * @param cls * @return T */ public static T newInstance(final Class cls) { if (Modifier.isAbstract(cls.getModifiers())) { if (cls.equals(Map.class)) { return (T) new HashMap<>(); } else if (cls.equals(List.class)) { return (T) new ArrayList<>(); } else if (cls.equals(Set.class)) { return (T) new HashSet<>(); } else if (cls.equals(Queue.class)) { return (T) new LinkedList<>(); } else if (cls.equals(Deque.class)) { return (T) new LinkedList<>(); } else if (cls.equals(SortedSet.class) || cls.equals(NavigableSet.class)) { return (T) new TreeSet<>(); } else if (cls.equals(SortedMap.class) || cls.equals(NavigableMap.class)) { return (T) new TreeMap<>(); } } try { if (Modifier.isStatic(cls.getModifiers()) == false && (cls.isAnonymousClass() || cls.isMemberClass())) { // http://stackoverflow.com/questions/2097982/is-it-possible-to-create-an-instance-of-nested-class-using-java-reflection final List> toInstantiate = new ArrayList<>(); Class parent = cls.getEnclosingClass(); do { toInstantiate.add(parent); parent = parent.getEnclosingClass(); } while (parent != null && Modifier.isStatic(parent.getModifiers()) == false && (parent.isAnonymousClass() || parent.isMemberClass())); if (parent != null) { toInstantiate.add(parent); } N.reverse(toInstantiate); Object instance = null; for (Class current : toInstantiate) { instance = instance == null ? invoke(ClassUtil.getDeclaredConstructor(current)) : invoke(ClassUtil.getDeclaredConstructor(current, instance.getClass()), instance); } return invoke(ClassUtil.getDeclaredConstructor(cls, instance.getClass()), instance); } else { return invoke(ClassUtil.getDeclaredConstructor(cls)); } } catch (InstantiationException | IllegalAccessException | IllegalArgumentException | InvocationTargetException e) { throw N.toRuntimeException(e); } } @SuppressWarnings("unchecked") private static T invoke(final Constructor c, final Object... args) throws InstantiationException, IllegalAccessException, IllegalArgumentException, InvocationTargetException { if (c.isAccessible() == false) { c.setAccessible(true); } return c.newInstance(args); } public static T newProxyInstance(final Class interfaceClass, final InvocationHandler h) { return newProxyInstance(N.asArray(interfaceClass), h); } /** * Refer to {@code java.lang.reflect} * * @param interfaceClasses * @param h * @return */ public static T newProxyInstance(final Class[] interfaceClasses, final InvocationHandler h) { return (T) Proxy.newProxyInstance(N.class.getClassLoader(), interfaceClasses, h); } /** * Method newArray. * * @param componentType * @param length * @return T[] */ @SuppressWarnings("unchecked") public static T newArray(final Class componentType, final int length) { // if (length == 0) { // final Object result = CLASS_EMPTY_ARRAY.get(componentType); // // if (result != null) { // return (T) result; // } // } return (T) Array.newInstance(componentType, length); } @SuppressWarnings("unchecked") public static T newEntity(final Class cls) { return newEntity(cls, null); } public static T newEntity(final Class cls, final String entityName) { if (MapEntity.class.isAssignableFrom(cls)) { return (T) asMapEntity(entityName); } final Class enclosingClass = ClassUtil.getEnclosingClass(cls); if (enclosingClass == null || Modifier.isStatic(cls.getModifiers())) { return newInstance(cls); } else { return ClassUtil.invokeConstructor(ClassUtil.getDeclaredConstructor(cls, enclosingClass), newInstance(enclosingClass)); } } /** * Returns a set backed by the specified map. * * @param map the backing map * @return the set backed by the map * @see Collections#newSetFromMap(Map) */ public static Set newSetFromMap(final Map map) { return Collections.newSetFromMap(map); } public static int initHashCapacity(final int size) { N.checkArgNotNegative(size, "size"); if (size == 0) { return 0; } int res = size < MAX_HASH_LENGTH ? (int) (size * 1.25) + 1 : MAX_ARRAY_SIZE; switch (res / 64) { case 0: return res; case 1: case 2: case 3: case 4: return 64; default: return 128; } } public static ArrayList newArrayList() { return new ArrayList<>(); } public static ArrayList newArrayList(int initialCapacity) { return new ArrayList<>(initialCapacity); } public static ArrayList newArrayList(Collection c) { return N.isNullOrEmpty(c) ? new ArrayList() : new ArrayList(c); } public static LinkedList newLinkedList() { return new LinkedList<>(); } public static LinkedList newLinkedList(Collection c) { return N.isNullOrEmpty(c) ? new LinkedList() : new LinkedList<>(c); } public static HashSet newHashSet() { return new HashSet<>(); } /** * * @param initialCapacity multiply 1.25 as the initial capacity of new HashSet * @return */ public static HashSet newHashSet(int initialCapacity) { return new HashSet<>(initialCapacity); } public static HashSet newHashSet(Collection c) { return N.isNullOrEmpty(c) ? new HashSet() : new HashSet<>(c); } public static LinkedHashSet newLinkedHashSet() { return new LinkedHashSet<>(); } /** * * @param initialCapacity multiply 1.25 as the initial capacity of new HashSet * @return */ public static LinkedHashSet newLinkedHashSet(int initialCapacity) { return new LinkedHashSet<>(initialCapacity); } public static LinkedHashSet newLinkedHashSet(Collection c) { return N.isNullOrEmpty(c) ? new LinkedHashSet() : new LinkedHashSet<>(c); } @SuppressWarnings("rawtypes") public static TreeSet newTreeSet() { return new TreeSet<>(); } public static TreeSet newTreeSet(Comparator comparator) { return new TreeSet<>(comparator); } @SuppressWarnings("rawtypes") public static TreeSet newTreeSet(Collection c) { return N.isNullOrEmpty(c) ? new TreeSet() : new TreeSet<>(c); } public static TreeSet newTreeSet(SortedSet c) { return N.isNullOrEmpty(c) ? new TreeSet() : new TreeSet<>(c); } public static Multiset newMultiset() { return new Multiset<>(); } public static Multiset newMultiset(final int initialCapacity) { return new Multiset<>(initialCapacity); } @SuppressWarnings("rawtypes") public static Multiset newMultiset(final Class valueMapType) { return new Multiset<>(valueMapType); } public static Multiset newMultiset(final Supplier> mapSupplier) { return new Multiset<>(mapSupplier); } public static Multiset newMultiset(final Collection c) { return new Multiset<>(c); } public static ArrayDeque newArrayDeque() { return new ArrayDeque<>(); } /** * Constructs an empty array deque with an initial capacity sufficient to hold the specified number of elements. * * @param numElements lower bound on initial capacity of the deque. * @return */ public static ArrayDeque newArrayDeque(int numElements) { return new ArrayDeque<>(numElements); } /** * Constructs a deque containing the elements of the specified collection, in the order they are returned by the collection's iterator. * * @param c * @return */ public static ArrayDeque newArrayDeque(Collection c) { return new ArrayDeque<>(c); } public static Map.Entry newEntry(K key, V value) { return new AbstractMap.SimpleEntry<>(key, value); } public static ImmutableEntry newImmutableEntry(K key, V value) { return new ImmutableEntry<>(key, value); } public static HashMap newHashMap() { return new HashMap<>(); } /** * * @param initialCapacity multiply 1.25 as the initial capacity of new HashSet * @return */ public static HashMap newHashMap(int initialCapacity) { return new HashMap<>(initialCapacity); } public static HashMap newHashMap(Map m) { return N.isNullOrEmpty(m) ? new HashMap() : new HashMap(m); } public static HashMap newHashMap(final Collection c, final Try.Function keyExtractor) throws E { N.checkArgNotNull(keyExtractor); if (isNullOrEmpty(c)) { return new HashMap<>(); } final HashMap result = new HashMap<>(N.initHashCapacity(c.size())); for (V v : c) { result.put(keyExtractor.apply(v), v); } return result; } public static LinkedHashMap newLinkedHashMap() { return new LinkedHashMap<>(); } /** * * @param initialCapacity multiply 1.25 as the initial capacity of new HashSet * @return */ public static LinkedHashMap newLinkedHashMap(int initialCapacity) { return new LinkedHashMap<>(initialCapacity); } public static LinkedHashMap newLinkedHashMap(Map m) { return N.isNullOrEmpty(m) ? new LinkedHashMap() : new LinkedHashMap(m); } public static LinkedHashMap newLinkedHashMap(final Collection c, final Try.Function keyExtractor) throws E { N.checkArgNotNull(keyExtractor); if (isNullOrEmpty(c)) { return new LinkedHashMap<>(); } final LinkedHashMap result = new LinkedHashMap<>(N.initHashCapacity(c.size())); for (V v : c) { result.put(keyExtractor.apply(v), v); } return result; } @SuppressWarnings("rawtypes") public static TreeMap newTreeMap() { return new TreeMap<>(); } public static TreeMap newTreeMap(Comparator comparator) { return new TreeMap<>(comparator); } @SuppressWarnings("rawtypes") public static TreeMap newTreeMap(Map m) { return N.isNullOrEmpty(m) ? new TreeMap() : new TreeMap(m); } public static TreeMap newTreeMap(SortedMap m) { return N.isNullOrEmpty(m) ? new TreeMap() : new TreeMap(m); } public static IdentityHashMap newIdentityHashMap() { return new IdentityHashMap<>(); } /** * * @param initialCapacity multiply 1.25 as the initial capacity of new HashSet * @return */ public static IdentityHashMap newIdentityHashMap(int initialCapacity) { return new IdentityHashMap<>(initialCapacity); } public static IdentityHashMap newIdentityHashMap(Map m) { return N.isNullOrEmpty(m) ? new IdentityHashMap() : new IdentityHashMap(m); } public static ConcurrentHashMap newConcurrentHashMap() { return new ConcurrentHashMap<>(); } /** * * @param initCapacity multiply 1.25 as the initial capacity of new HashSet * @return */ public static ConcurrentHashMap newConcurrentHashMap(int initialCapacity) { return new ConcurrentHashMap<>(initialCapacity); } public static ConcurrentHashMap newConcurrentHashMap(Map m) { return N.isNullOrEmpty(m) ? new ConcurrentHashMap() : new ConcurrentHashMap(m); } public static BiMap newBiMap() { return new BiMap<>(); } public static BiMap newBiMap(int initialCapacity) { return new BiMap<>(initialCapacity); } public static BiMap newBiMap(int initialCapacity, float loadFactor) { return new BiMap<>(initialCapacity, loadFactor); } @SuppressWarnings("rawtypes") public static BiMap newBiMap(final Class keyMapType, final Class valueMapType) { return new BiMap<>(keyMapType, valueMapType); } public static BiMap newBiMap(final Supplier> keyMapSupplier, final Supplier> valueMapSupplier) { return new BiMap<>(keyMapSupplier, valueMapSupplier); } public static ListMultimap newListMultimap() { return new ListMultimap<>(); } public static ListMultimap newListMultimap(final int initialCapacity) { return new ListMultimap<>(initialCapacity); } public static ListMultimap newListMultimap(final Map m) { final ListMultimap multiMap = newListMultimap(); multiMap.putAll(m); return multiMap; } public static ListMultimap newListLinkedMultimap() { return new ListMultimap<>(LinkedHashMap.class, ArrayList.class); } public static ListMultimap newListLinkedMultimap(final int initialCapacity) { return new ListMultimap<>(new LinkedHashMap>(initialCapacity), ArrayList.class); } public static ListMultimap newListLinkedMultimap(final Map m) { final ListMultimap multiMap = new ListMultimap<>(new LinkedHashMap>(), ArrayList.class); multiMap.putAll(m); return multiMap; } public static ListMultimap newListSortedMultimap() { return new ListMultimap<>(new TreeMap>(), ArrayList.class); } public static ListMultimap newListSortedMultimap(final Map m) { final ListMultimap multiMap = new ListMultimap<>(new TreeMap>(), ArrayList.class); multiMap.putAll(m); return multiMap; } @SuppressWarnings("rawtypes") public static ListMultimap newListMultimap(final Class mapType) { return new ListMultimap<>(mapType, ArrayList.class); } @SuppressWarnings("rawtypes") public static ListMultimap newListMultimap(final Class mapType, final Class valueType) { return new ListMultimap<>(mapType, valueType); } public static ListMultimap newListMultimap(final Supplier>> mapSupplier, final Supplier> valueSupplier) { return new ListMultimap<>(mapSupplier, valueSupplier); } public static SetMultimap newSetMultimap() { return new SetMultimap<>(); } public static SetMultimap newSetMultimap(final int initialCapacity) { return new SetMultimap<>(initialCapacity); } public static SetMultimap newSetMultimap(final Map m) { final SetMultimap multiMap = newSetMultimap(); multiMap.putAll(m); return multiMap; } public static SetMultimap newSetLinkedMultimap() { return new SetMultimap<>(LinkedHashMap.class, HashSet.class); } public static SetMultimap newSetLinkedMultimap(final int initialCapacity) { return new SetMultimap<>(new LinkedHashMap>(initialCapacity), HashSet.class); } public static SetMultimap newSetLinkedMultimap(final Map m) { final SetMultimap multiMap = new SetMultimap<>(new LinkedHashMap>(), HashSet.class); multiMap.putAll(m); return multiMap; } public static SetMultimap newSetSortedMultimap() { return new SetMultimap<>(new TreeMap>(), HashSet.class); } public static SetMultimap newSetSortedMultimap(final Map m) { final SetMultimap multiMap = new SetMultimap<>(new TreeMap>(), HashSet.class); multiMap.putAll(m); return multiMap; } @SuppressWarnings("rawtypes") public static SetMultimap newSetMultimap(final Class mapType) { return new SetMultimap<>(mapType, HashSet.class); } @SuppressWarnings("rawtypes") public static SetMultimap newSetMultimap(final Class mapType, final Class valueType) { return new SetMultimap<>(mapType, valueType); } public static SetMultimap newSetMultimap(final Supplier>> mapSupplier, final Supplier> valueSupplier) { return new SetMultimap<>(mapSupplier, valueSupplier); } static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8; static final int MAX_HASH_LENGTH = (int) (MAX_ARRAY_SIZE / 1.25) - 1; public static DataSet newEmptyDataSet() { return new RowDataSet(new ArrayList(), new ArrayList>()); } public static DataSet newEmptyDataSet(final Collection columnNames) { if (N.isNullOrEmpty(columnNames)) { return newEmptyDataSet(); } return new RowDataSet(new ArrayList(columnNames), new ArrayList>()); } /** * Convert the specified Map to a two columns DataSet: one column is for keys and one column is for values * * @param keyColumnName * @param valueColumnName * @param m * @return */ public static DataSet newDataSet(final String keyColumnName, final String valueColumnName, final Map m) { final List keyColumn = new ArrayList<>(m.size()); final List valueColumn = new ArrayList<>(m.size()); for (Map.Entry entry : m.entrySet()) { keyColumn.add(entry.getKey()); valueColumn.add(entry.getValue()); } final List columnNameList = N.asList(keyColumnName, valueColumnName); final List> columnList = N.asList(keyColumn, valueColumn); return newDataSet(columnNameList, columnList); } /** * Converts a list of row(which can be: Map/Entity) into a DataSet. * * @param rows list of row which can be: Map/Entity. */ public static DataSet newDataSet(final Collection rows) { return newDataSet(null, rows); } /** * Converts a list of row(which can be: Map/Entity/Array/Collection) into a DataSet. * * @param columnNames * @param rows list of row which can be: Map/Entity or Array/Collection if {@code columnNames} is null or empty. * @return */ @SuppressWarnings("deprecation") public static DataSet newDataSet(Collection columnNames, Collection rowList) { if (N.isNullOrEmpty(columnNames) && N.isNullOrEmpty(rowList)) { // throw new IllegalArgumentException("Column name list and row list can not be both null or empty"); return new RowDataSet(new ArrayList(0), new ArrayList>(0)); } else if (N.isNullOrEmpty(rowList)) { return new RowDataSet(new ArrayList(columnNames), new ArrayList>(0)); } final int rowSize = rowList.size(); if (N.isNullOrEmpty(columnNames)) { final Set columnNameSet = new LinkedHashSet<>(); Set> clsSet = null; Map, Set> clsSignedPropNameSetMap = new HashMap<>(); Class cls = null; Type type = null; for (Object e : rowList) { if (e == null) { continue; } cls = e.getClass(); type = N.typeOf(cls); if (type.isMap()) { columnNameSet.addAll(((Map) e).keySet()); } else if (type.isEntity()) { if (e instanceof DirtyMarker) { Set clsSignedPropNameSet = clsSignedPropNameSetMap.get(cls); if (clsSignedPropNameSet == null) { clsSignedPropNameSet = new HashSet<>(); clsSignedPropNameSetMap.put(cls, clsSignedPropNameSet); } Method method = null; for (String signedPropName : ((DirtyMarker) e).signedPropNames()) { if (clsSignedPropNameSet.add(signedPropName) == false) { continue; } method = ClassUtil.getPropGetMethod(cls, signedPropName); if (method != null) { columnNameSet.add(ClassUtil.getPropNameByMethod(method)); } } } else { if (clsSet == null) { clsSet = new HashSet<>(); } if (clsSet.contains(cls)) { continue; } columnNameSet.addAll(ClassUtil.checkPropGetMethodList(cls).keySet()); clsSet.add(cls); } } else { throw new IllegalArgumentException("'columnNameList' is required if the sepcified row type is not Entity or Map"); } } // re-order column. for (Map.Entry, Set> entry : clsSignedPropNameSetMap.entrySet()) { final List intersecion = N.intersection(ClassUtil.getPropGetMethodList(entry.getKey()).keySet(), columnNameSet); columnNameSet.removeAll(intersecion); columnNameSet.addAll(intersecion); } columnNames = new ArrayList<>(columnNameSet); if (N.isNullOrEmpty(columnNames)) { throw new IllegalArgumentException("Column name list can not be obtained from row list because it's empty or null"); } } final int columnCount = columnNames.size(); final List columnNameList = new ArrayList<>(columnNames); final List> columnList = new ArrayList<>(columnCount); for (int i = 0; i < columnCount; i++) { columnList.add(new ArrayList<>(rowSize)); } Type type = null; for (Object e : rowList) { if (e == null) { for (int i = 0; i < columnCount; i++) { columnList.get(i).add(null); } continue; } type = N.typeOf(e.getClass()); if (type.isMap()) { Map props = (Map) e; for (int i = 0; i < columnCount; i++) { columnList.get(i).add(props.get(columnNameList.get(i))); } } else if (type.isEntity()) { Class cls = e.getClass(); Method method = null; for (int i = 0; i < columnCount; i++) { method = ClassUtil.getPropGetMethod(cls, columnNameList.get(i)); if (method == null) { columnList.get(i).add(null); } else { columnList.get(i).add(ClassUtil.getPropValue(e, method)); } } } else if (type.isArray()) { if (type.isPrimitiveArray()) { for (int i = 0; i < columnCount; i++) { columnList.get(i).add(Array.get(e, i)); } } else { Object[] array = (Object[]) e; for (int i = 0; i < columnCount; i++) { columnList.get(i).add(array[i]); } } } else if (type.isCollection()) { final Iterator it = ((Collection) e).iterator(); for (int i = 0; i < columnCount; i++) { columnList.get(i).add(it.next()); } } else { throw new IllegalArgumentException( "Unsupported row type: " + ClassUtil.getCanonicalClassName(e.getClass()) + ". Only array, collection, map and entity are supported"); } } return new RowDataSet(columnNameList, columnList); } @SuppressWarnings("deprecation") static MapEntity asMapEntity(final String entityName, final Object... props) { final MapEntity mapEntity = new MapEntity(entityName); if (N.isNullOrEmpty(props)) { return mapEntity; } if (props.length == 1) { if (props[0] instanceof Map) { Map map = (Map) props[0]; for (String key : map.keySet()) { mapEntity.set(key, map.get(key)); } } else if (N.isEntity(props[0].getClass())) { Object anEntity = props[0]; if (anEntity instanceof DirtyMarker) { Class entityClass = anEntity.getClass(); Method propGetMethod = null; for (String propName : ((DirtyMarker) anEntity).signedPropNames()) { propGetMethod = ClassUtil.getPropGetMethod(entityClass, propName); propName = ClassUtil.getPropNameByMethod(propGetMethod); mapEntity.set(propName, ClassUtil.getPropValue(anEntity, propGetMethod)); } } else { final Map getterMethodList = ClassUtil.checkPropGetMethodList(anEntity.getClass()); for (Map.Entry entry : getterMethodList.entrySet()) { mapEntity.set(entry.getKey(), ClassUtil.getPropValue(anEntity, entry.getValue())); } } } else { throw new IllegalArgumentException( "The parameters must be the pairs of property name and value, or Map, or an entity class with getter/setter methods."); } } else { if ((props.length % 2) != 0) { throw new IllegalArgumentException( "The parameters must be the pairs of property name and value, or Map, or an entity class with getter/setter methods."); } for (int i = 0; i < props.length; i++) { mapEntity.set((String) props[i], props[++i]); } } return mapEntity; } // /** // * Wrap the specified map with a unmodifiable BiMap. // * // * Note: To avoid the side-effects in the initialization of auto-generated interface *PNL/*CNL class, // * This method just return null if the specified keyMap has duplicated values, instead of throwing exception. // * // * @param keyMap // * @return null if the specified keyMap has duplicated values // */ // @Internal // public static BiMap newImmutableBiMapForInterface(final Map keyMap) { // final Map valueMap = new LinkedHashMap<>(); // // for (Map.Entry entry : keyMap.entrySet()) { // valueMap.put(entry.getValue(), entry.getKey()); // } // // if (valueMap.size() != keyMap.size()) { // return null; // } // // return new BiMap<>(ImmutableMap.of(keyMap), ImmutableMap.of(valueMap)); // } /** * * @param arrayClass * @param c * @return * @deprecated replaced by {@code N#toArray(Class, Collection)} */ @Deprecated public static T collection2Array(final Class arrayClass, final Collection c) { if (c == null) { return N.newArray(arrayClass.getComponentType(), 0); } return (T) N.typeOf(arrayClass).collection2Array(c); } /** * * @param a * @return * @deprecated replaced by {@code N#toList(Object[])} */ @Deprecated public static List array2List(final Object a) { if (a == null) { return asList(); } final List c = asList(); N.typeOf(a.getClass()).array2Collection(c, a); return c; } /** * * @param a * @return * @deprecated replaced by {@code N#toSet(Object[])} */ @Deprecated public static Set array2Set(final Object a) { if (a == null) { return asSet(); } final Set c = asSet(); N.typeOf(a.getClass()).array2Collection(c, a); return c; } /** * The input collection is returned * @param c * @param a * @return the input collection. * @deprecated replaced by {@code N#toCollection(Object[], IntFunction)} */ @Deprecated @SuppressWarnings({ "unchecked" }) public static > C array2Collection(final Object a, final IntFunction supplier) { if (a == null) { return supplier.apply(0); } final C c = supplier.apply(Array.getLength(a)); N.typeOf(a.getClass()).array2Collection((Collection) c, a); return c; } /** * Returns an empty array if the specified collection is null or empty. * * @param c * @return */ @SuppressWarnings("unchecked") public static Object[] toArray(final Collection c) { if (N.isNullOrEmpty(c)) { return N.EMPTY_OBJECT_ARRAY; } return c.toArray(new Object[c.size()]); } @SuppressWarnings("rawtypes") public static Object[] toArray(final Collection c, final int fromIndex, final int toIndex) { N.checkFromToIndex(fromIndex, toIndex, len(c)); if (N.isNullOrEmpty(c)) { return N.EMPTY_OBJECT_ARRAY; } else if (fromIndex == 0 || toIndex == c.size()) { return c.toArray(new Object[c.size()]); } else if (c instanceof List) { return ((List) c).subList(fromIndex, toIndex).toArray(new Object[toIndex - fromIndex]); } else { final Object[] res = new Object[toIndex - fromIndex]; final Iterator iter = c.iterator(); int idx = 0; while (idx < fromIndex && iter.hasNext()) { iter.next(); idx++; } while (idx < toIndex && iter.hasNext()) { res[idx - fromIndex] = iter.next(); idx++; } return res; } } public static A[] toArray(final Collection c, final A[] a) { if (N.isNullOrEmpty(c)) { return a; } return c.toArray(a); } public static A[] toArray(final Collection c, final int fromIndex, final int toIndex, final A[] a) { N.checkFromToIndex(fromIndex, toIndex, len(c)); if (N.isNullOrEmpty(c)) { return a; } else if (fromIndex == 0 || toIndex == c.size()) { return c.toArray(a); } else if (c instanceof List) { return ((List) c).subList(fromIndex, toIndex).toArray(a); } else { final A[] res = a.length >= toIndex - fromIndex ? a : (A[]) N.newArray(a.getClass().getComponentType(), toIndex - fromIndex); final Iterator iter = c.iterator(); int idx = 0; while (idx < fromIndex && iter.hasNext()) { iter.next(); idx++; } while (idx < toIndex && iter.hasNext()) { res[idx - fromIndex] = iter.next(); idx++; } return res; } } public static A[] toArray(final Class targetClass, final Collection c) { if (N.isNullOrEmpty(c)) { return N.newArray(targetClass.getComponentType(), 0); } return c.toArray((A[]) N.newArray(targetClass.getComponentType(), c.size())); } public static A[] toArray(final Class targetClass, final Collection c, final int fromIndex, final int toIndex) { N.checkFromToIndex(fromIndex, toIndex, len(c)); final A[] res = N.newArray(targetClass.getComponentType(), toIndex - fromIndex); if (N.isNullOrEmpty(c)) { return res; } else if (fromIndex == 0 || toIndex == c.size()) { return c.toArray(res); } else if (c instanceof List) { return ((List) c).subList(fromIndex, toIndex).toArray(res); } else { final Iterator iter = c.iterator(); int idx = 0; while (idx < fromIndex && iter.hasNext()) { iter.next(); idx++; } while (idx < toIndex && iter.hasNext()) { res[idx - fromIndex] = iter.next(); idx++; } return res; } } public static boolean[] toBooleanArray(final Collection c) { return toBooleanArray(c, false); } public static boolean[] toBooleanArray(final Collection c, final int fromIndex, final int toIndex) { return toBooleanArray(c, fromIndex, toIndex, false); } public static boolean[] toBooleanArray(final Collection c, final boolean defaultForNull) { return toBooleanArray(c, 0, len(c), defaultForNull); } public static boolean[] toBooleanArray(final Collection c, final int fromIndex, final int toIndex, final boolean defaultForNull) { N.checkFromToIndex(fromIndex, toIndex, len(c)); if (fromIndex == toIndex) { return EMPTY_BOOLEAN_ARRAY; } final int len = toIndex - fromIndex; boolean[] result = new boolean[len]; if (c instanceof List && c instanceof RandomAccess) { final List list = (List) c; Boolean val = null; for (int i = 0; i < len; i++) { if ((val = list.get(i + fromIndex)) == null) { result[i] = defaultForNull; } else { result[i] = val; } } } else { final Iterator iter = c.iterator(); if (fromIndex > 0) { int offset = 0; while (offset++ < fromIndex) { iter.next(); } } Boolean val = null; for (int i = 0; i < len; i++) { if ((val = iter.next()) == null) { result[i] = defaultForNull; } else { result[i] = val; } } } return result; } public static char[] toCharArray(final Collection c) { return toCharArray(c, (char) 0); } public static char[] toCharArray(final Collection c, final int fromIndex, final int toIndex) { return toCharArray(c, fromIndex, toIndex, (char) 0); } public static char[] toCharArray(final Collection c, final char defaultForNull) { return toCharArray(c, 0, len(c), defaultForNull); } public static char[] toCharArray(final Collection c, final int fromIndex, final int toIndex, final char defaultForNull) { N.checkFromToIndex(fromIndex, toIndex, len(c)); if (fromIndex == toIndex) { return EMPTY_CHAR_ARRAY; } final int len = toIndex - fromIndex; char[] result = new char[len]; if (c instanceof List && c instanceof RandomAccess) { final List list = (List) c; Character val = null; for (int i = 0; i < len; i++) { if ((val = list.get(i + fromIndex)) == null) { result[i] = defaultForNull; } else { result[i] = val; } } } else { final Iterator iter = c.iterator(); if (fromIndex > 0) { int offset = 0; while (offset++ < fromIndex) { iter.next(); } } Character val = null; for (int i = 0; i < len; i++) { if ((val = iter.next()) == null) { result[i] = defaultForNull; } else { result[i] = val; } } } return result; } public static byte[] toByteArray(final Collection c) { return toByteArray(c, (byte) 0); } public static byte[] toByteArray(final Collection c, final int fromIndex, final int toIndex) { return toByteArray(c, fromIndex, toIndex, (byte) 0); } public static byte[] toByteArray(final Collection c, final byte defaultForNull) { return toByteArray(c, 0, len(c), defaultForNull); } public static byte[] toByteArray(final Collection c, final int fromIndex, final int toIndex, final byte defaultForNull) { N.checkFromToIndex(fromIndex, toIndex, len(c)); if (fromIndex == toIndex) { return EMPTY_BYTE_ARRAY; } final int len = toIndex - fromIndex; byte[] result = new byte[len]; if (c instanceof List && c instanceof RandomAccess) { final List list = (List) c; Byte val = null; for (int i = 0; i < len; i++) { if ((val = list.get(i + fromIndex)) == null) { result[i] = defaultForNull; } else { result[i] = val; } } } else { final Iterator iter = c.iterator(); if (fromIndex > 0) { int offset = 0; while (offset++ < fromIndex) { iter.next(); } } Byte val = null; for (int i = 0; i < len; i++) { if ((val = iter.next()) == null) { result[i] = defaultForNull; } else { result[i] = val; } } } return result; } public static short[] toShortArray(final Collection c) { return toShortArray(c, (short) 0); } public static short[] toShortArray(final Collection c, final int fromIndex, final int toIndex) { return toShortArray(c, fromIndex, toIndex, (short) 0); } public static short[] toShortArray(final Collection c, final short defaultForNull) { return toShortArray(c, 0, len(c), defaultForNull); } public static short[] toShortArray(final Collection c, final int fromIndex, final int toIndex, final short defaultForNull) { N.checkFromToIndex(fromIndex, toIndex, len(c)); if (fromIndex == toIndex) { return EMPTY_SHORT_ARRAY; } final int len = toIndex - fromIndex; short[] result = new short[len]; if (c instanceof List && c instanceof RandomAccess) { final List list = (List) c; Short val = null; for (int i = 0; i < len; i++) { if ((val = list.get(i + fromIndex)) == null) { result[i] = defaultForNull; } else { result[i] = val; } } } else { final Iterator iter = c.iterator(); if (fromIndex > 0) { int offset = 0; while (offset++ < fromIndex) { iter.next(); } } Short val = null; for (int i = 0; i < len; i++) { if ((val = iter.next()) == null) { result[i] = defaultForNull; } else { result[i] = val; } } } return result; } public static int[] toIntArray(final Collection c) { return toIntArray(c, 0); } public static int[] toIntArray(final Collection c, final int fromIndex, final int toIndex) { return toIntArray(c, fromIndex, toIndex, 0); } public static int[] toIntArray(final Collection c, final int defaultForNull) { return toIntArray(c, 0, len(c), defaultForNull); } public static int[] toIntArray(final Collection c, final int fromIndex, final int toIndex, final int defaultForNull) { N.checkFromToIndex(fromIndex, toIndex, len(c)); if (fromIndex == toIndex) { return EMPTY_INT_ARRAY; } final int len = toIndex - fromIndex; int[] result = new int[len]; if (c instanceof List && c instanceof RandomAccess) { final List list = (List) c; Integer val = null; for (int i = 0; i < len; i++) { if ((val = list.get(i + fromIndex)) == null) { result[i] = defaultForNull; } else { result[i] = val; } } } else { final Iterator iter = c.iterator(); if (fromIndex > 0) { int offset = 0; while (offset++ < fromIndex) { iter.next(); } } Integer val = null; for (int i = 0; i < len; i++) { if ((val = iter.next()) == null) { result[i] = defaultForNull; } else { result[i] = val; } } } return result; } public static long[] toLongArray(final Collection c) { return toLongArray(c, 0); } public static long[] toLongArray(final Collection c, final int fromIndex, final int toIndex) { return toLongArray(c, fromIndex, toIndex, 0); } public static long[] toLongArray(final Collection c, final long defaultForNull) { return toLongArray(c, 0, len(c), defaultForNull); } public static long[] toLongArray(final Collection c, final int fromIndex, final int toIndex, final long defaultForNull) { N.checkFromToIndex(fromIndex, toIndex, len(c)); if (fromIndex == toIndex) { return EMPTY_LONG_ARRAY; } final int len = toIndex - fromIndex; long[] result = new long[len]; if (c instanceof List && c instanceof RandomAccess) { final List list = (List) c; Long val = null; for (int i = 0; i < len; i++) { if ((val = list.get(i + fromIndex)) == null) { result[i] = defaultForNull; } else { result[i] = val; } } } else { final Iterator iter = c.iterator(); if (fromIndex > 0) { int offset = 0; while (offset++ < fromIndex) { iter.next(); } } Long val = null; for (int i = 0; i < len; i++) { if ((val = iter.next()) == null) { result[i] = defaultForNull; } else { result[i] = val; } } } return result; } public static float[] toFloatArray(final Collection c) { return toFloatArray(c, 0); } public static float[] toFloatArray(final Collection c, final int fromIndex, final int toIndex) { return toFloatArray(c, fromIndex, toIndex, 0); } public static float[] toFloatArray(final Collection c, final float defaultForNull) { return toFloatArray(c, 0, len(c), defaultForNull); } public static float[] toFloatArray(final Collection c, final int fromIndex, final int toIndex, final float defaultForNull) { N.checkFromToIndex(fromIndex, toIndex, len(c)); if (fromIndex == toIndex) { return EMPTY_FLOAT_ARRAY; } final int len = toIndex - fromIndex; float[] result = new float[len]; if (c instanceof List && c instanceof RandomAccess) { final List list = (List) c; Float val = null; for (int i = 0; i < len; i++) { if ((val = list.get(i + fromIndex)) == null) { result[i] = defaultForNull; } else { result[i] = val; } } } else { final Iterator iter = c.iterator(); if (fromIndex > 0) { int offset = 0; while (offset++ < fromIndex) { iter.next(); } } Float val = null; for (int i = 0; i < len; i++) { if ((val = iter.next()) == null) { result[i] = defaultForNull; } else { result[i] = val; } } } return result; } public static double[] toDoubleArray(final Collection c) { return toDoubleArray(c, 0); } public static double[] toDoubleArray(final Collection c, final int fromIndex, final int toIndex) { return toDoubleArray(c, fromIndex, toIndex, 0); } public static double[] toDoubleArray(final Collection c, final double defaultForNull) { return toDoubleArray(c, 0, len(c), defaultForNull); } public static double[] toDoubleArray(final Collection c, final int fromIndex, final int toIndex, final double defaultForNull) { N.checkFromToIndex(fromIndex, toIndex, len(c)); if (fromIndex == toIndex) { return EMPTY_DOUBLE_ARRAY; } final int len = toIndex - fromIndex; double[] result = new double[len]; if (c instanceof List && c instanceof RandomAccess) { final List list = (List) c; Double val = null; for (int i = 0; i < len; i++) { if ((val = list.get(i + fromIndex)) == null) { result[i] = defaultForNull; } else { result[i] = val; } } } else { final Iterator iter = c.iterator(); if (fromIndex > 0) { int offset = 0; while (offset++ < fromIndex) { iter.next(); } } Double val = null; for (int i = 0; i < len; i++) { if ((val = iter.next()) == null) { result[i] = defaultForNull; } else { result[i] = val; } } } return result; } public static List toList(final boolean[] a) { return toList(a, 0, len(a)); } public static List toList(final boolean[] a, final int fromIndex, final int toIndex) { N.checkFromToIndex(fromIndex, toIndex, len(a)); if (fromIndex == toIndex) { return new ArrayList<>(); } final List result = new ArrayList<>(toIndex - fromIndex); for (int i = fromIndex; i < toIndex; i++) { result.add(a[i]); } return result; } public static List toList(final char[] a) { return toList(a, 0, len(a)); } public static List toList(final char[] a, final int fromIndex, final int toIndex) { N.checkFromToIndex(fromIndex, toIndex, len(a)); if (fromIndex == toIndex) { return new ArrayList<>(); } final List result = new ArrayList<>(toIndex - fromIndex); for (int i = fromIndex; i < toIndex; i++) { result.add(a[i]); } return result; } public static List toList(final byte[] a) { return toList(a, 0, len(a)); } public static List toList(final byte[] a, final int fromIndex, final int toIndex) { N.checkFromToIndex(fromIndex, toIndex, len(a)); if (fromIndex == toIndex) { return new ArrayList<>(); } final List result = new ArrayList<>(toIndex - fromIndex); for (int i = fromIndex; i < toIndex; i++) { result.add(a[i]); } return result; } public static List toList(final short[] a) { return toList(a, 0, len(a)); } public static List toList(final short[] a, final int fromIndex, final int toIndex) { N.checkFromToIndex(fromIndex, toIndex, len(a)); if (fromIndex == toIndex) { return new ArrayList<>(); } final List result = new ArrayList<>(toIndex - fromIndex); for (int i = fromIndex; i < toIndex; i++) { result.add(a[i]); } return result; } public static List toList(final int[] a) { return toList(a, 0, len(a)); } public static List toList(final int[] a, final int fromIndex, final int toIndex) { N.checkFromToIndex(fromIndex, toIndex, len(a)); if (fromIndex == toIndex) { return new ArrayList<>(); } final List result = new ArrayList<>(toIndex - fromIndex); for (int i = fromIndex; i < toIndex; i++) { result.add(a[i]); } return result; } public static List toList(final long[] a) { return toList(a, 0, len(a)); } public static List toList(final long[] a, final int fromIndex, final int toIndex) { N.checkFromToIndex(fromIndex, toIndex, len(a)); if (fromIndex == toIndex) { return new ArrayList<>(); } final List result = new ArrayList<>(toIndex - fromIndex); for (int i = fromIndex; i < toIndex; i++) { result.add(a[i]); } return result; } public static List toList(final float[] a) { return toList(a, 0, len(a)); } public static List toList(final float[] a, final int fromIndex, final int toIndex) { N.checkFromToIndex(fromIndex, toIndex, len(a)); if (fromIndex == toIndex) { return new ArrayList<>(); } final List result = new ArrayList<>(toIndex - fromIndex); for (int i = fromIndex; i < toIndex; i++) { result.add(a[i]); } return result; } public static List toList(final double[] a) { return toList(a, 0, len(a)); } public static List toList(final double[] a, final int fromIndex, final int toIndex) { N.checkFromToIndex(fromIndex, toIndex, len(a)); if (fromIndex == toIndex) { return new ArrayList<>(); } final List result = new ArrayList<>(toIndex - fromIndex); for (int i = fromIndex; i < toIndex; i++) { result.add(a[i]); } return result; } public static List toList(final T[] a) { if (N.isNullOrEmpty(a)) { return new ArrayList<>(); } return N.asList(a); } public static List toList(final T[] a, final int fromIndex, final int toIndex) { N.checkFromToIndex(fromIndex, toIndex, len(a)); if (fromIndex == toIndex) { return new ArrayList<>(); } else if (fromIndex == 0 && toIndex == a.length) { return N.asList(a); } final List result = new ArrayList<>(toIndex - fromIndex); for (int i = fromIndex; i < toIndex; i++) { result.add(a[i]); } return result; } public static Set toSet(final boolean[] a) { return toSet(a, 0, len(a)); } public static Set toSet(final boolean[] a, final int fromIndex, final int toIndex) { N.checkFromToIndex(fromIndex, toIndex, len(a)); if (fromIndex == toIndex) { return new HashSet<>(); } final Set result = new HashSet<>(toIndex - fromIndex); for (int i = fromIndex; i < toIndex; i++) { result.add(a[i]); } return result; } public static Set toSet(final char[] a) { return toSet(a, 0, len(a)); } public static Set toSet(final char[] a, final int fromIndex, final int toIndex) { N.checkFromToIndex(fromIndex, toIndex, len(a)); if (fromIndex == toIndex) { return new HashSet<>(); } final Set result = new HashSet<>(toIndex - fromIndex); for (int i = fromIndex; i < toIndex; i++) { result.add(a[i]); } return result; } public static Set toSet(final byte[] a) { return toSet(a, 0, len(a)); } public static Set toSet(final byte[] a, final int fromIndex, final int toIndex) { N.checkFromToIndex(fromIndex, toIndex, len(a)); if (fromIndex == toIndex) { return new HashSet<>(); } final Set result = new HashSet<>(toIndex - fromIndex); for (int i = fromIndex; i < toIndex; i++) { result.add(a[i]); } return result; } public static Set toSet(final short[] a) { return toSet(a, 0, len(a)); } public static Set toSet(final short[] a, final int fromIndex, final int toIndex) { N.checkFromToIndex(fromIndex, toIndex, len(a)); if (fromIndex == toIndex) { return new HashSet<>(); } final Set result = new HashSet<>(toIndex - fromIndex); for (int i = fromIndex; i < toIndex; i++) { result.add(a[i]); } return result; } public static Set toSet(final int[] a) { return toSet(a, 0, len(a)); } public static Set toSet(final int[] a, final int fromIndex, final int toIndex) { N.checkFromToIndex(fromIndex, toIndex, len(a)); if (fromIndex == toIndex) { return new HashSet<>(); } final Set result = new HashSet<>(toIndex - fromIndex); for (int i = fromIndex; i < toIndex; i++) { result.add(a[i]); } return result; } public static Set toSet(final long[] a) { return toSet(a, 0, len(a)); } public static Set toSet(final long[] a, final int fromIndex, final int toIndex) { N.checkFromToIndex(fromIndex, toIndex, len(a)); if (fromIndex == toIndex) { return new HashSet<>(); } final Set result = new HashSet<>(toIndex - fromIndex); for (int i = fromIndex; i < toIndex; i++) { result.add(a[i]); } return result; } public static Set toSet(final float[] a) { return toSet(a, 0, len(a)); } public static Set toSet(final float[] a, final int fromIndex, final int toIndex) { N.checkFromToIndex(fromIndex, toIndex, len(a)); if (fromIndex == toIndex) { return new HashSet<>(); } final Set result = new HashSet<>(toIndex - fromIndex); for (int i = fromIndex; i < toIndex; i++) { result.add(a[i]); } return result; } public static Set toSet(final double[] a) { return toSet(a, 0, len(a)); } public static Set toSet(final double[] a, final int fromIndex, final int toIndex) { N.checkFromToIndex(fromIndex, toIndex, len(a)); if (fromIndex == toIndex) { return new HashSet<>(); } final Set result = new HashSet<>(toIndex - fromIndex); for (int i = fromIndex; i < toIndex; i++) { result.add(a[i]); } return result; } public static Set toSet(final T[] a) { if (N.isNullOrEmpty(a)) { return new HashSet<>(); } return N.asSet(a); } public static Set toSet(final T[] a, final int fromIndex, final int toIndex) { N.checkFromToIndex(fromIndex, toIndex, len(a)); if (fromIndex == toIndex) { return new HashSet<>(); } final Set result = new HashSet<>(N.initHashCapacity(toIndex - fromIndex)); for (int i = fromIndex; i < toIndex; i++) { result.add(a[i]); } return result; } public static > C toCollection(final boolean[] a, final IntFunction supplier) { return toCollection(a, 0, len(a), supplier); } public static > C toCollection(final boolean[] a, final int fromIndex, final int toIndex, final IntFunction supplier) { N.checkFromToIndex(fromIndex, toIndex, len(a)); if (fromIndex == toIndex) { return supplier.apply(0); } final C result = supplier.apply(toIndex - fromIndex); for (int i = fromIndex; i < toIndex; i++) { result.add(a[i]); } return result; } public static > C toCollection(final char[] a, final IntFunction supplier) { return toCollection(a, 0, len(a), supplier); } public static > C toCollection(final char[] a, final int fromIndex, final int toIndex, final IntFunction supplier) { N.checkFromToIndex(fromIndex, toIndex, len(a)); if (fromIndex == toIndex) { return supplier.apply(0); } final C result = supplier.apply(toIndex - fromIndex); for (int i = fromIndex; i < toIndex; i++) { result.add(a[i]); } return result; } public static > C toCollection(final byte[] a, final IntFunction supplier) { return toCollection(a, 0, len(a), supplier); } public static > C toCollection(final byte[] a, final int fromIndex, final int toIndex, final IntFunction supplier) { N.checkFromToIndex(fromIndex, toIndex, len(a)); if (fromIndex == toIndex) { return supplier.apply(0); } final C result = supplier.apply(toIndex - fromIndex); for (int i = fromIndex; i < toIndex; i++) { result.add(a[i]); } return result; } public static > C toCollection(final short[] a, final IntFunction supplier) { return toCollection(a, 0, len(a), supplier); } public static > C toCollection(final short[] a, final int fromIndex, final int toIndex, final IntFunction supplier) { N.checkFromToIndex(fromIndex, toIndex, len(a)); if (fromIndex == toIndex) { return supplier.apply(0); } final C result = supplier.apply(toIndex - fromIndex); for (int i = fromIndex; i < toIndex; i++) { result.add(a[i]); } return result; } public static > C toCollection(final int[] a, final IntFunction supplier) { return toCollection(a, 0, len(a), supplier); } public static > C toCollection(final int[] a, final int fromIndex, final int toIndex, final IntFunction supplier) { N.checkFromToIndex(fromIndex, toIndex, len(a)); if (fromIndex == toIndex) { return supplier.apply(0); } final C result = supplier.apply(toIndex - fromIndex); for (int i = fromIndex; i < toIndex; i++) { result.add(a[i]); } return result; } public static > C toCollection(final long[] a, final IntFunction supplier) { return toCollection(a, 0, len(a), supplier); } public static > C toCollection(final long[] a, final int fromIndex, final int toIndex, final IntFunction supplier) { N.checkFromToIndex(fromIndex, toIndex, len(a)); if (fromIndex == toIndex) { return supplier.apply(0); } final C result = supplier.apply(toIndex - fromIndex); for (int i = fromIndex; i < toIndex; i++) { result.add(a[i]); } return result; } public static > C toCollection(final float[] a, final IntFunction supplier) { return toCollection(a, 0, len(a), supplier); } public static > C toCollection(final float[] a, final int fromIndex, final int toIndex, final IntFunction supplier) { N.checkFromToIndex(fromIndex, toIndex, len(a)); if (fromIndex == toIndex) { return supplier.apply(0); } final C result = supplier.apply(toIndex - fromIndex); for (int i = fromIndex; i < toIndex; i++) { result.add(a[i]); } return result; } public static > C toCollection(final double[] a, final IntFunction supplier) { return toCollection(a, 0, len(a), supplier); } public static > C toCollection(final double[] a, final int fromIndex, final int toIndex, final IntFunction supplier) { N.checkFromToIndex(fromIndex, toIndex, len(a)); if (fromIndex == toIndex) { return supplier.apply(0); } final C result = supplier.apply(toIndex - fromIndex); for (int i = fromIndex; i < toIndex; i++) { result.add(a[i]); } return result; } public static > C toCollection(final T[] a, final IntFunction supplier) { if (N.isNullOrEmpty(a)) { return supplier.apply(0); } return toCollection(a, 0, a.length, supplier); } public static > C toCollection(final T[] a, final int fromIndex, final int toIndex, final IntFunction supplier) { N.checkFromToIndex(fromIndex, toIndex, len(a)); if (fromIndex == toIndex) { return supplier.apply(0); } else if (fromIndex == 0 && toIndex == a.length && a.length >= MIN_SIZE_FOR_COPY_ALL) { final C result = supplier.apply(a.length); result.addAll(Arrays.asList(a)); return result; } else { final C result = supplier.apply(toIndex - fromIndex); for (int i = fromIndex; i < toIndex; i++) { result.add(a[i]); } return result; } } /** * The input array is returned. * * @param a * @return */ @SafeVarargs public static T[] asArray(final T... a) { return a; } @SuppressWarnings("unchecked") static > T newMap(final T m, final Object... a) { if (isNullOrEmpty(a)) { return m; } if (a.length == 1) { if (a[0] instanceof Map) { m.putAll((Map) a[0]); } else if (N.isEntity(a[0].getClass())) { Maps.entity2Map((Map) m, a[0]); } else { throw new IllegalArgumentException( "The parameters must be the pairs of property name and value, or Map, or an entity class with getter/setter methods."); } } else { if (0 != (a.length % 2)) { throw new IllegalArgumentException( "The parameters must be the pairs of property name and value, or Map, or an entity class with getter/setter methods."); } for (int i = 0; i < a.length; i++) { m.put((K) a[i], (V) a[++i]); } } return m; } public static Map asMap(final k k1, final v v1) { final Map map = new HashMap<>(); map.put(k1, v1); return map; } public static Map asMap(final k k1, final v v1, final k k2, final v v2) { final Map map = new HashMap<>(); map.put(k1, v1); map.put(k2, v2); return map; } public static Map asMap(final k k1, final v v1, final k k2, final v v2, final k k3, final v v3) { final Map map = new HashMap<>(); map.put(k1, v1); map.put(k2, v2); map.put(k3, v3); return map; } public static Map asMap(final k k1, final v v1, final k k2, final v v2, final k k3, final v v3, final k k4, final v v4) { final Map map = new HashMap<>(); map.put(k1, v1); map.put(k2, v2); map.put(k3, v3); map.put(k4, v4); return map; } public static Map asMap(final k k1, final v v1, final k k2, final v v2, final k k3, final v v3, final k k4, final v v4, final k k5, final v v5) { final Map map = new HashMap<>(); map.put(k1, v1); map.put(k2, v2); map.put(k3, v3); map.put(k4, v4); map.put(k5, v5); return map; } public static Map asMap(final k k1, final v v1, final k k2, final v v2, final k k3, final v v3, final k k4, final v v4, final k k5, final v v5, final k k6, final v v6) { final Map map = new HashMap<>(); map.put(k1, v1); map.put(k2, v2); map.put(k3, v3); map.put(k4, v4); map.put(k5, v5); map.put(k6, v6); return map; } public static Map asMap(final k k1, final v v1, final k k2, final v v2, final k k3, final v v3, final k k4, final v v4, final k k5, final v v5, final k k6, final v v6, final k k7, final v v7) { final Map map = new HashMap<>(); map.put(k1, v1); map.put(k2, v2); map.put(k3, v3); map.put(k4, v4); map.put(k5, v5); map.put(k6, v6); map.put(k7, v7); return map; } @SafeVarargs @NullSafe public static Map asMap(final Object... a) { if (N.isNullOrEmpty(a)) { return new HashMap<>(); } return newMap(new HashMap(N.initHashCapacity(a.length / 2)), a); } /** * * @param a * pairs of property name and value or a Java Entity Object what * allows access to properties using getter and setter methods. * @return */ @SafeVarargs public static Map asProps(final Object... a) { if (N.isNullOrEmpty(a)) { return new LinkedHashMap<>(); } return newMap(new LinkedHashMap(N.initHashCapacity(a.length / 2)), a); } public static LinkedHashMap asLinkedHashMap(final k k1, final v v1) { final LinkedHashMap map = new LinkedHashMap<>(); map.put(k1, v1); return map; } public static LinkedHashMap asLinkedHashMap(final k k1, final v v1, final k k2, final v v2) { final LinkedHashMap map = new LinkedHashMap<>(); map.put(k1, v1); map.put(k2, v2); return map; } public static LinkedHashMap asLinkedHashMap(final k k1, final v v1, final k k2, final v v2, final k k3, final v v3) { final LinkedHashMap map = new LinkedHashMap<>(); map.put(k1, v1); map.put(k2, v2); map.put(k3, v3); return map; } public static LinkedHashMap asLinkedHashMap(final k k1, final v v1, final k k2, final v v2, final k k3, final v v3, final k k4, final v v4) { final LinkedHashMap map = new LinkedHashMap<>(); map.put(k1, v1); map.put(k2, v2); map.put(k3, v3); map.put(k4, v4); return map; } public static LinkedHashMap asLinkedHashMap(final k k1, final v v1, final k k2, final v v2, final k k3, final v v3, final k k4, final v v4, final k k5, final v v5) { final LinkedHashMap map = new LinkedHashMap<>(); map.put(k1, v1); map.put(k2, v2); map.put(k3, v3); map.put(k4, v4); map.put(k5, v5); return map; } public static LinkedHashMap asLinkedHashMap(final k k1, final v v1, final k k2, final v v2, final k k3, final v v3, final k k4, final v v4, final k k5, final v v5, final k k6, final v v6) { final LinkedHashMap map = new LinkedHashMap<>(); map.put(k1, v1); map.put(k2, v2); map.put(k3, v3); map.put(k4, v4); map.put(k5, v5); map.put(k6, v6); return map; } public static LinkedHashMap asLinkedHashMap(final k k1, final v v1, final k k2, final v v2, final k k3, final v v3, final k k4, final v v4, final k k5, final v v5, final k k6, final v v6, final k k7, final v v7) { final LinkedHashMap map = new LinkedHashMap<>(); map.put(k1, v1); map.put(k2, v2); map.put(k3, v3); map.put(k4, v4); map.put(k5, v5); map.put(k6, v6); map.put(k7, v7); return map; } @SafeVarargs public static LinkedHashMap asLinkedHashMap(final Object... a) { if (N.isNullOrEmpty(a)) { return new LinkedHashMap<>(); } return newMap(new LinkedHashMap(N.initHashCapacity(a.length / 2)), a); } public static List asList(final T e) { final List list = new ArrayList<>(1); list.add(e); return list; } public static List asList(final T e1, final T e2) { final List list = new ArrayList<>(2); list.add(e1); list.add(e2); return list; } public static List asList(final T e1, final T e2, final T e3) { final List list = new ArrayList<>(3); list.add(e1); list.add(e2); list.add(e3); return list; } public static List asList(final T e1, final T e2, final T e3, final T e4) { final List list = new ArrayList<>(4); list.add(e1); list.add(e2); list.add(e3); list.add(e4); return list; } public static List asList(final T e1, final T e2, final T e3, final T e4, final T e5) { final List list = new ArrayList<>(5); list.add(e1); list.add(e2); list.add(e3); list.add(e4); list.add(e5); return list; } public static List asList(final T e1, final T e2, final T e3, final T e4, final T e5, final T e6) { final List list = new ArrayList<>(6); list.add(e1); list.add(e2); list.add(e3); list.add(e4); list.add(e5); list.add(e6); return list; } public static List asList(final T e1, final T e2, final T e3, final T e4, final T e5, final T e6, final T e7) { final List list = new ArrayList<>(7); list.add(e1); list.add(e2); list.add(e3); list.add(e4); list.add(e5); list.add(e6); list.add(e7); return list; } public static List asList(final T e1, final T e2, final T e3, final T e4, final T e5, final T e6, final T e7, final T e8) { final List list = new ArrayList<>(8); list.add(e1); list.add(e2); list.add(e3); list.add(e4); list.add(e5); list.add(e6); list.add(e7); list.add(e8); return list; } public static List asList(final T e1, final T e2, final T e3, final T e4, final T e5, final T e6, final T e7, final T e8, final T e9) { final List list = new ArrayList<>(9); list.add(e1); list.add(e2); list.add(e3); list.add(e4); list.add(e5); list.add(e6); list.add(e7); list.add(e8); list.add(e9); return list; } /** * @param a * @return */ @SafeVarargs @NullSafe public static List asList(final T... a) { if (N.isNullOrEmpty(a)) { return new ArrayList<>(); } final List list = new ArrayList<>(a.length); if (a.length < MIN_SIZE_FOR_COPY_ALL) { for (T e : a) { list.add(e); } } else { list.addAll(Arrays.asList(a)); } return list; } public static LinkedList asLinkedList(final T e) { final LinkedList list = new LinkedList<>(); list.add(e); return list; } public static LinkedList asLinkedList(final T e1, final T e2) { final LinkedList list = new LinkedList<>(); list.add(e1); list.add(e2); return list; } public static LinkedList asLinkedList(final T e1, final T e2, final T e3) { final LinkedList list = new LinkedList<>(); list.add(e1); list.add(e2); list.add(e3); return list; } public static LinkedList asLinkedList(final T e1, final T e2, final T e3, final T e4) { final LinkedList list = new LinkedList<>(); list.add(e1); list.add(e2); list.add(e3); list.add(e4); return list; } public static LinkedList asLinkedList(final T e1, final T e2, final T e3, final T e4, final T e5) { final LinkedList list = new LinkedList<>(); list.add(e1); list.add(e2); list.add(e3); list.add(e4); list.add(e5); return list; } public static LinkedList asLinkedList(final T e1, final T e2, final T e3, final T e4, final T e5, final T e6) { final LinkedList list = new LinkedList<>(); list.add(e1); list.add(e2); list.add(e3); list.add(e4); list.add(e5); list.add(e6); return list; } public static LinkedList asLinkedList(final T e1, final T e2, final T e3, final T e4, final T e5, final T e6, final T e7) { final LinkedList list = new LinkedList<>(); list.add(e1); list.add(e2); list.add(e3); list.add(e4); list.add(e5); list.add(e6); list.add(e7); return list; } @SafeVarargs @NullSafe public static LinkedList asLinkedList(final T... a) { if (N.isNullOrEmpty(a)) { return new LinkedList<>(); } final LinkedList list = new LinkedList<>(); for (T e : a) { list.add(e); } return list; } public static Set asSet(final T e) { final Set set = new HashSet<>(1); set.add(e); return set; } public static Set asSet(final T e1, final T e2) { final Set set = new HashSet<>(2); set.add(e1); set.add(e2); return set; } public static Set asSet(final T e1, final T e2, final T e3) { final Set set = new HashSet<>(3); set.add(e1); set.add(e2); set.add(e3); return set; } public static Set asSet(final T e1, final T e2, final T e3, final T e4) { final Set set = new HashSet<>(4); set.add(e1); set.add(e2); set.add(e3); set.add(e4); return set; } public static Set asSet(final T e1, final T e2, final T e3, final T e4, final T e5) { final Set set = new HashSet<>(5); set.add(e1); set.add(e2); set.add(e3); set.add(e4); set.add(e5); return set; } public static Set asSet(final T e1, final T e2, final T e3, final T e4, final T e5, final T e6) { final Set set = new HashSet<>(6); set.add(e1); set.add(e2); set.add(e3); set.add(e4); set.add(e5); set.add(e6); return set; } public static Set asSet(final T e1, final T e2, final T e3, final T e4, final T e5, final T e6, final T e7) { final Set set = new HashSet<>(7); set.add(e1); set.add(e2); set.add(e3); set.add(e4); set.add(e5); set.add(e6); set.add(e7); return set; } public static Set asSet(final T e1, final T e2, final T e3, final T e4, final T e5, final T e6, final T e7, final T e8) { final Set set = new HashSet<>(8); set.add(e1); set.add(e2); set.add(e3); set.add(e4); set.add(e5); set.add(e6); set.add(e7); set.add(e8); return set; } public static Set asSet(final T e1, final T e2, final T e3, final T e4, final T e5, final T e6, final T e7, final T e8, final T e9) { final Set set = new HashSet<>(9); set.add(e1); set.add(e2); set.add(e3); set.add(e4); set.add(e5); set.add(e6); set.add(e7); set.add(e8); set.add(e9); return set; } @SafeVarargs @NullSafe public static Set asSet(final T... a) { if (N.isNullOrEmpty(a)) { return new HashSet<>(); } final Set set = new HashSet<>(N.initHashCapacity(a.length)); for (T e : a) { set.add(e); } return set; } public static LinkedHashSet asLinkedLinkedHashSet(final T e) { final LinkedHashSet set = new LinkedHashSet<>(1); set.add(e); return set; } public static LinkedHashSet asLinkedLinkedHashSet(final T e1, final T e2) { final LinkedHashSet set = new LinkedHashSet<>(2); set.add(e1); set.add(e2); return set; } public static LinkedHashSet asLinkedLinkedHashSet(final T e1, final T e2, final T e3) { final LinkedHashSet set = new LinkedHashSet<>(3); set.add(e1); set.add(e2); set.add(e3); return set; } public static LinkedHashSet asLinkedLinkedHashSet(final T e1, final T e2, final T e3, final T e4) { final LinkedHashSet set = new LinkedHashSet<>(4); set.add(e1); set.add(e2); set.add(e3); set.add(e4); return set; } public static LinkedHashSet asLinkedLinkedHashSet(final T e1, final T e2, final T e3, final T e4, final T e5) { final LinkedHashSet set = new LinkedHashSet<>(5); set.add(e1); set.add(e2); set.add(e3); set.add(e4); set.add(e5); return set; } public static LinkedHashSet asLinkedLinkedHashSet(final T e1, final T e2, final T e3, final T e4, final T e5, final T e6) { final LinkedHashSet set = new LinkedHashSet<>(6); set.add(e1); set.add(e2); set.add(e3); set.add(e4); set.add(e5); set.add(e6); return set; } public static LinkedHashSet asLinkedLinkedHashSet(final T e1, final T e2, final T e3, final T e4, final T e5, final T e6, final T e7) { final LinkedHashSet set = new LinkedHashSet<>(7); set.add(e1); set.add(e2); set.add(e3); set.add(e4); set.add(e5); set.add(e6); set.add(e7); return set; } @SafeVarargs @NullSafe public static LinkedHashSet asLinkedHashSet(final T... a) { if (N.isNullOrEmpty(a)) { return new LinkedHashSet<>(); } final LinkedHashSet set = new LinkedHashSet<>(N.initHashCapacity(a.length)); for (T e : a) { set.add(e); } return set; } @SafeVarargs @NullSafe public static SortedSet asSortedSet(final T... a) { if (N.isNullOrEmpty(a)) { return new TreeSet<>(); } final SortedSet set = new TreeSet<>(); for (T e : a) { set.add(e); } return set; } @SafeVarargs public static NavigableSet asNavigableSet(final T... a) { if (N.isNullOrEmpty(a)) { return new TreeSet<>(); } final NavigableSet set = new TreeSet<>(); for (T e : a) { set.add(e); } return set; } @SafeVarargs public static Queue asQueue(final T... a) { return asArrayDeque(a); } @SafeVarargs public static ArrayBlockingQueue asArrayBlockingQueue(final T... a) { if (N.isNullOrEmpty(a)) { return new ArrayBlockingQueue<>(0); } final ArrayBlockingQueue queue = new ArrayBlockingQueue<>(a.length); for (T e : a) { queue.add(e); } return queue; } @SafeVarargs public static LinkedBlockingQueue asLinkedBlockingQueue(final T... a) { if (N.isNullOrEmpty(a)) { return new LinkedBlockingQueue<>(); } final LinkedBlockingQueue queue = new LinkedBlockingQueue<>(a.length); for (T e : a) { queue.add(e); } return queue; } @SafeVarargs public static ConcurrentLinkedQueue asConcurrentLinkedQueue(final T... a) { if (N.isNullOrEmpty(a)) { return new ConcurrentLinkedQueue<>(); } final ConcurrentLinkedQueue queue = new ConcurrentLinkedQueue<>(); for (T e : a) { queue.add(e); } return queue; } @SafeVarargs public static DelayQueue asDelayQueue(final T... a) { if (N.isNullOrEmpty(a)) { return new DelayQueue<>(); } final DelayQueue queue = new DelayQueue<>(); for (T e : a) { queue.add(e); } return queue; } @SafeVarargs public static PriorityQueue asPriorityQueue(final T... a) { if (N.isNullOrEmpty(a)) { return new PriorityQueue<>(); } final PriorityQueue queue = new PriorityQueue<>(a.length); for (T e : a) { queue.add(e); } return queue; } @SafeVarargs public static Deque asDeque(final T... a) { return asArrayDeque(a); } @SafeVarargs public static ArrayDeque asArrayDeque(final T... a) { if (N.isNullOrEmpty(a)) { return new ArrayDeque<>(); } final ArrayDeque arrayDeque = new ArrayDeque<>(a.length); for (T e : a) { arrayDeque.add(e); } return arrayDeque; } @SafeVarargs public static LinkedBlockingDeque asLinkedBlockingDeque(final T... a) { if (N.isNullOrEmpty(a)) { return new LinkedBlockingDeque<>(); } final LinkedBlockingDeque deque = new LinkedBlockingDeque<>(a.length); for (T e : a) { deque.add(e); } return deque; } @SafeVarargs public static ConcurrentLinkedDeque asConcurrentLinkedDeque(final T... a) { if (N.isNullOrEmpty(a)) { return new ConcurrentLinkedDeque<>(); } final ConcurrentLinkedDeque deque = new ConcurrentLinkedDeque<>(); for (T e : a) { deque.add(e); } return deque; } @SafeVarargs public static Multiset asMultiset(final T... a) { return Multiset.of(a); } /** * Wrap the specified value with a singleton list. * * @param o * @return * @see java.util.Collections#singletonList(Object) */ public static List asSingletonList(final T o) { return Collections.singletonList(o); } /** * Wrap the specified value with a singleton set. * * @param o * @return * @see java.util.Collections#singleton(Object) */ public static Set asSingletonSet(final T o) { return Collections.singleton(o); } /** * Wrap the specified key/value with a singleton map. * * @param key * @param value * @return * @see java.util.Collections#singletonMap(Object, Object) */ public static Map asSingletonMap(final K key, final V value) { return Collections.singletonMap(key, value); } /** * Try to convert the specified {@code sourceObject} to the specified * {@code cls}. Default value of {@code cls} is returned if * {@code sourceObject} is null. An instance of {@code cls} is returned if * convert successfully * * @param targetClass * @param obj * @return * @throws ClassCastException */ @SuppressWarnings("unchecked") public static T as(final Class targetClass, final Object obj) { // if (obj == null) { // return defaultValueOf(targetClass); // } // // final Class srcPropClass = obj.getClass(); // // if (targetClass.isAssignableFrom(srcPropClass)) { // return (T) obj; // } // // final Type targetPropType = targetClass.isEnum() // ? getType(getCanonicalClassName(targetClass) + "(" + Integer.class.isAssignableFrom(srcPropClass) + ")") : N.getType(targetClass); // final Type srcPropType = getType(srcPropClass); // // if (targetPropType.isBoolean() && srcPropType.isNumber()) { // return (T) ((Boolean) (((Number) obj).longValue() > 0)); // } // // if (targetPropType.isEntity() && srcPropType.isMap()) { // return map2Entity(targetClass, (Map) obj); // } else if (targetPropType.isMap() && srcPropType.isEntity()) { // try { // return (T) entity2Map((Map) N.newInstance(targetClass), obj); // } catch (Exception e) { // // ignore. // } // } else if (targetPropType.isEntity() && srcPropType.isEntity()) { // return copy(targetClass, obj); // } // // return (T) targetPropType.valueOf(srcPropType.stringOf(obj)); final Type type = typeOf(targetClass); return as(type, obj); } @SuppressWarnings("unchecked") public static T as(final Type targetType, final Object obj) { if (obj == null) { return targetType.defaultValue(); } final Class srcPropClass = obj.getClass(); if (targetType.clazz().isAssignableFrom(srcPropClass)) { return (T) obj; } final Type srcPropType = typeOf(srcPropClass); if (targetType.isBoolean() && srcPropType.isNumber()) { return (T) ((Boolean) (((Number) obj).longValue() > 0)); } if (targetType.isEntity() && srcPropType.isMap()) { return Maps.map2Entity(targetType.clazz(), (Map) obj); } else if (targetType.isMap() && srcPropType.isEntity()) { try { return (T) Maps.entity2Map((Map) N.newInstance(targetType.clazz()), obj); } catch (Exception e) { // ignore. } } else if (targetType.isEntity() && srcPropType.isEntity()) { return copy(targetType.clazz(), obj); } else if (targetType.isNumber() && srcPropType.isNumber() && CLASS_TYPE_ENUM.containsKey(targetType.clazz())) { switch (CLASS_TYPE_ENUM.get(targetType.clazz())) { case 3: case 13: return (T) (Byte) ((Number) obj).byteValue(); case 4: case 14: return (T) (Short) ((Number) obj).shortValue(); case 5: case 15: return (T) (Integer) ((Number) obj).intValue(); case 6: case 16: return (T) (Long) ((Number) obj).longValue(); case 7: case 17: return (T) (Float) ((Number) obj).floatValue(); case 8: case 18: return (T) (Double) ((Number) obj).doubleValue(); } } return targetType.valueOf(srcPropType.stringOf(obj)); } /** * Returns a Boolean with a value represented by the specified * string. The Boolean returned represents a true value if the * string argument is not null and is equal, ignoring case, to * the string {@code "true"}. * * @param str * a string. * @return the Boolean value represented by the string. */ public static boolean asBoolean(final String str) { return isNullOrEmpty(str) ? false : Boolean.valueOf(str); } public static boolean asBoolean(final Boolean b) { return b == null ? false : b.booleanValue(); } public static char asChar(final String str) { return isNullOrEmpty(str) ? CHAR_0 : ((str.length() == 1) ? str.charAt(0) : (char) Integer.parseInt(str)); } public static char asChar(final Character c) { return c == null ? CHAR_0 : c.charValue(); } /** * Returns the value by calling {@code Byte.valueOf(String)} if {@code str} * is not {@code null}, otherwise, the default value 0 for {@code byte} is * returned. * * @param str * @return * @throws NumberFormatException If the string does not * contain a parsable {@code byte}. */ public static byte asByte(final String str) { if (N.isNullOrEmpty(str)) { return 0; } if (str.length() < 5) { Integer result = stringIntCache.get(str); if (result != null) { if (result.intValue() < Byte.MIN_VALUE || result.intValue() > Byte.MAX_VALUE) { throw new NumberFormatException("Value out of range. Value:\"" + str + "\" Radix: 10"); } return result.byteValue(); } } return Byte.parseByte(str); } public static byte asByte(final Number num) { return num == null ? 0 : num.byteValue(); } /** * Returns the value by calling {@code Short.valueOf(String)} if {@code str} * is not {@code null}, otherwise, the default value 0 for {@code short} is * returned. * * @param str * @return * @throws NumberFormatException If the string does not * contain a parsable {@code short}. */ public static short asShort(final String str) { if (N.isNullOrEmpty(str)) { return 0; } if (str.length() < 5) { Integer result = stringIntCache.get(str); if (result != null) { return result.shortValue(); } } return Short.parseShort(str); } public static short asShort(final Number num) { return num == null ? 0 : num.shortValue(); } /** * Returns the value by calling {@code Integer.valueOf(String)} if * {@code str} is not {@code null}, otherwise, the default value 0 for * {@code int} is returned. * * @param str * @return * @throws NumberFormatException If the string does not * contain a parsable {@code int}. */ public static int asInt(final String str) { if (N.isNullOrEmpty(str)) { return 0; } if (str.length() < 5) { Integer result = stringIntCache.get(str); if (result != null) { return result.intValue(); } } return Integer.decode(str); } public static int asInt(final Number num) { return num == null ? 0 : num.intValue(); } /** * Returns the value by calling {@code Long.valueOf(String)} if {@code str} * is not {@code null}, otherwise, the default value 0 for {@code long} is * returned. * * @param str * @return * @throws NumberFormatException If the string does not * contain a parsable {@code long}. */ public static long asLong(final String str) { if (N.isNullOrEmpty(str)) { return 0; } if (str.length() < 5) { Integer result = stringIntCache.get(str); if (result != null) { return result.intValue(); } } return Long.decode(str); } public static long asLong(final Number num) { return num == null ? 0L : num.longValue(); } /** * Returns the value by calling {@code Float.valueOf(String)} if {@code str} * is not {@code null}, otherwise, the default value 0f for {@code float} is * returned. * * @param str * @return * @throws NumberFormatException If the string does not * contain a parsable {@code float}. */ public static float asFloat(final String str) { if (isNullOrEmpty(str)) { return 0f; } return Float.parseFloat(str); } public static float asFloat(final Number num) { return num == null ? 0f : num.floatValue(); } /** * Returns the value by calling {@code Double.valueOf(String)} if {@code str} * is not {@code null}, otherwise, the default value 0d for {@code double} is * returned. * * @param str * @return * @throws NumberFormatException If the string does not * contain a parsable {@code double}. */ public static double asDouble(final String str) { return isNullOrEmpty(str) ? 0d : Double.parseDouble(str); } public static double asDouble(final Number num) { return num == null ? 0d : num.doubleValue(); } /** * @param src * @return */ public static String base64Encode(final byte[] src) { return Base64.getEncoder().encodeToString(src); } /** * @param src * @return */ public static byte[] base64Decode(final String src) { return Base64.getDecoder().decode(src); } /** * @param src * @return */ public static String base64UrlEncode(final byte[] src) { return Base64.getUrlEncoder().encodeToString(src); } /** * @param src * @return */ public static byte[] base64UrlDecode(final String src) { return Base64.getUrlDecoder().decode(src); } /** * @param src * @return */ public static String base64MimeEncode(final byte[] src) { return Base64.getMimeEncoder().encodeToString(src); } /** * @param src * @return */ public static byte[] base64MimeDecode(final String src) { return Base64.getMimeDecoder().decode(src); } public static String urlEncode(final Object parameters) { return URLEncodedUtil.encode(parameters); } public static String urlEncode(final Object parameters, final Charset charset) { return URLEncodedUtil.encode(parameters, charset); } public static Map urlDecode(final String urlQuery) { return URLEncodedUtil.decode(urlQuery); } public static Map urlDecode(final String urlQuery, final Charset charset) { return URLEncodedUtil.decode(urlQuery, charset); } public static T urlDecode(final Class targetClass, final String urlQuery) { return URLEncodedUtil.decode(targetClass, urlQuery); } public static T urlDecode(final Class targetClass, final String urlQuery, final Charset charset) { return URLEncodedUtil.decode(targetClass, urlQuery, charset); } /** * Returns the UUID without '-'. * * @see UUID#randomUUID(). */ public static String guid() { return uuid().replace("-", ""); } /** * Returns an UUID * * @see UUID#randomUUID(). * @return */ public static String uuid() { return UUID.randomUUID().toString(); } public static boolean isEntity(final Class cls) { Boolean b = entityClassPool.get(cls); if (b == null) { b = typeOf(cls) instanceof EntityType; entityClassPool.put(cls, b); } return b; } public static boolean isDirtyMarker(final Class cls) { Boolean b = dirtyMarkerClassPool.get(cls); if (b == null) { b = DirtyMarker.class.isAssignableFrom(cls); dirtyMarkerClassPool.put(cls, b); } return b; } static boolean isDirtyMarkerEntity(final Class cls) { Boolean b = dirtyMarkerEntityClassPool.get(cls); if (b == null) { b = isDirtyMarker(cls) && N.isEntity(cls); dirtyMarkerEntityClassPool.put(cls, b); } return b; } private static final Set> notKryoCompatible = new HashSet<>(); @SuppressWarnings("unchecked") public static T clone(final T entity) { return (T) clone(entity.getClass(), entity); } /** * Deeply copy by: entity -> serialize -> String/bytes -> deserialize -> new * entity. * * @param targetClass * a Java Object what allows access to properties using getter * and setter methods. * @param entity * a Java Object what allows access to properties using getter * and setter methods. * @return */ @SuppressWarnings("unchecked") public static T clone(final Class targetClass, final Object entity) { final Class srcCls = entity.getClass(); Object copy = null; if (Utils.kryoParser != null && targetClass.equals(entity.getClass()) && !notKryoCompatible.contains(srcCls)) { try { copy = Utils.kryoParser.clone(entity); } catch (Exception e) { notKryoCompatible.add(srcCls); // ignore. } } if (copy == null) { String xml = Utils.abacusXMLParser.serialize(entity, Utils.xscForClone); copy = Utils.abacusXMLParser.deserialize(targetClass, xml); setDirtyMarker(entity, copy); } return (T) copy; } /** * Returns a new created instance of the same class and set with same * properties retrieved by 'getXXX' method in the specified {@code entity}. * * @param entity * a Java Object what allows access to properties using getter * and setter methods. * @return */ @SuppressWarnings("unchecked") public static T copy(final T entity) { return copy((Class) entity.getClass(), entity); } public static T copy(final T entity, final Collection selectPropNames) { return copy((Class) entity.getClass(), entity, selectPropNames); } public static T copy(final Class targetClass, final Object entity) { return copy(targetClass, entity, null); } /** * Returns a new created instance of the specified {@code cls} and set with * same properties retrieved by 'getXXX' method in the specified * {@code entity}. * * @param targetClass * a Java Object what allows access to properties using getter * and setter methods. * @param entity * a Java Object what allows access to properties using getter * and setter methods. * @param selectPropNames * @return */ @SuppressWarnings({ "unchecked" }) public static T copy(final Class targetClass, final Object entity, final Collection selectPropNames) { final Class srcCls = entity.getClass(); T copy = null; if (selectPropNames == null && Utils.kryoParser != null && targetClass.equals(srcCls) && !notKryoCompatible.contains(srcCls)) { try { copy = (T) Utils.kryoParser.copy(entity); } catch (Exception e) { notKryoCompatible.add(srcCls); // ignore } } if (copy != null) { return copy; } copy = N.newInstance(targetClass); merge(entity, copy, selectPropNames); setDirtyMarker(entity, copy); return copy; } /** * * @param targetClass * @param entity * @param ignoreUnknownProperty * @param ignorePropNames * @return */ @SuppressWarnings({ "unchecked" }) public static T copy(final Class targetClass, final Object entity, final boolean ignoreUnknownProperty, final Set ignorePropNames) { final Class srcCls = entity.getClass(); T copy = null; if (ignorePropNames == null && Utils.kryoParser != null && targetClass.equals(srcCls) && !notKryoCompatible.contains(srcCls)) { try { copy = (T) Utils.kryoParser.copy(entity); } catch (Exception e) { notKryoCompatible.add(srcCls); // ignore } } if (copy != null) { return copy; } copy = N.newInstance(targetClass); merge(entity, copy, ignoreUnknownProperty, ignorePropNames); setDirtyMarker(entity, copy); return copy; } public static void merge(final Object sourceEntity, final Object targetEntity) { merge(sourceEntity, targetEntity, null); } /** * Set all the signed properties(including all primitive type properties) in * the specified {@code sourceEntity} to the specified {@code targetEntity}. * * @param sourceEntity * a Java Object what allows access to properties using getter * and setter methods. * @param targetEntity * a Java Object what allows access to properties using getter * and setter methods. * @param selectPropNames */ @SuppressWarnings("deprecation") public static void merge(final Object sourceEntity, final Object targetEntity, final Collection selectPropNames) { final Class srcCls = sourceEntity.getClass(); final boolean ignoreUnknownProperty = selectPropNames == null; if (selectPropNames == null) { if (sourceEntity instanceof DirtyMarker) { Set signedPropNames = ((DirtyMarker) sourceEntity).signedPropNames(); if (signedPropNames.size() == 0) { // logger.warn("no property is signed in the specified source entity: " // + toString(entity)); } else { Method srcPropGetMethod = null; try { for (String propName : signedPropNames) { srcPropGetMethod = ClassUtil.getPropGetMethod(srcCls, propName); ClassUtil.setPropValue(targetEntity, propName, srcPropGetMethod.invoke(sourceEntity), ignoreUnknownProperty); } } catch (IllegalAccessException | InvocationTargetException e) { throw N.toRuntimeException(e); } } } else { final Map srcGetterMethodList = ClassUtil.checkPropGetMethodList(srcCls); try { for (Map.Entry entry : srcGetterMethodList.entrySet()) { ClassUtil.setPropValue(targetEntity, entry.getKey(), entry.getValue().invoke(sourceEntity), ignoreUnknownProperty); } } catch (IllegalAccessException | InvocationTargetException e) { throw N.toRuntimeException(e); } } } else { Method srcPropGetMethod = null; try { for (String propName : selectPropNames) { srcPropGetMethod = ClassUtil.getPropGetMethod(srcCls, propName); ClassUtil.setPropValue(targetEntity, propName, srcPropGetMethod.invoke(sourceEntity), ignoreUnknownProperty); } } catch (IllegalAccessException | InvocationTargetException e) { throw N.toRuntimeException(e); } } } /** * * @param sourceEntity * @param targetEntity * @param ignoreUnknownProperty * @param ignorePropNames */ @SuppressWarnings("deprecation") public static void merge(final Object sourceEntity, final Object targetEntity, final boolean ignoreUnknownProperty, final Set ignorePropNames) { final Class srcCls = sourceEntity.getClass(); if (sourceEntity instanceof DirtyMarker) { Set signedPropNames = ((DirtyMarker) sourceEntity).signedPropNames(); if (signedPropNames.size() == 0) { // logger.warn("no property is signed in the specified source entity: " // + toString(entity)); } else { try { Method srcPropGetMethod = null; for (String propName : signedPropNames) { if (ignorePropNames == null || ignorePropNames.contains(propName) == false) { srcPropGetMethod = ClassUtil.getPropGetMethod(srcCls, propName); ClassUtil.setPropValue(targetEntity, propName, srcPropGetMethod.invoke(sourceEntity), ignoreUnknownProperty); } } } catch (IllegalAccessException | InvocationTargetException e) { throw N.toRuntimeException(e); } } } else { Map srcGetterMethodList = ClassUtil.checkPropGetMethodList(srcCls); try { for (Map.Entry entry : srcGetterMethodList.entrySet()) { if (ignorePropNames == null || ignorePropNames.contains(entry.getKey()) == false) { ClassUtil.setPropValue(targetEntity, entry.getKey(), entry.getValue().invoke(sourceEntity), ignoreUnknownProperty); } } } catch (IllegalAccessException | InvocationTargetException e) { throw N.toRuntimeException(e); } } } @SuppressWarnings("deprecation") private static void setDirtyMarker(final Object source, final Object target) { if (source instanceof DirtyMarker && target instanceof DirtyMarker) { DirtyMarker dirtyMarkerSource = (DirtyMarker) source; DirtyMarker dirtyMarkerTarget = (DirtyMarker) target; dirtyMarkerTarget.signedPropNames().clear(); dirtyMarkerTarget.signedPropNames().addAll(dirtyMarkerSource.signedPropNames()); dirtyMarkerTarget.dirtyPropNames().clear(); dirtyMarkerTarget.dirtyPropNames().addAll(dirtyMarkerSource.dirtyPropNames()); EntityUtil.setVersion(dirtyMarkerTarget, dirtyMarkerSource.version()); } } @SuppressWarnings("deprecation") @SafeVarargs public static void erase(final Object entity, final String... propNames) { if (entity == null || N.isNullOrEmpty(propNames) || (entity instanceof DirtyMarker && ((DirtyMarker) entity).signedPropNames().size() == 0)) { return; } for (String propName : propNames) { ClassUtil.setPropValue(entity, propName, null); } if (entity instanceof DirtyMarker) { final DirtyMarker dirtyMarkerEntity = (DirtyMarker) entity; for (String propName : propNames) { dirtyMarkerEntity.signedPropNames().remove(propName); dirtyMarkerEntity.dirtyPropNames().remove(propName); } } } @SuppressWarnings("deprecation") public static void erase(final Object entity, final Collection propNames) { if (entity == null || N.isNullOrEmpty(propNames) || (entity instanceof DirtyMarker && ((DirtyMarker) entity).signedPropNames().size() == 0)) { return; } for (String propName : propNames) { ClassUtil.setPropValue(entity, propName, null); } if (entity instanceof DirtyMarker) { final DirtyMarker dirtyMarkerEntity = (DirtyMarker) entity; dirtyMarkerEntity.signedPropNames().removeAll(propNames); dirtyMarkerEntity.dirtyPropNames().removeAll(propNames); } } @SuppressWarnings("deprecation") public static void eraseAll(final Object entity) { if (entity == null) { return; } if (entity instanceof DirtyMarker) { final DirtyMarker dirtyMarkerEntity = (DirtyMarker) entity; final Set signedPropNames = dirtyMarkerEntity.signedPropNames(); if (signedPropNames.size() == 0) { // logger.warn("No property is signed in the specified source entity: " + toString(entity)); return; } for (String propName : signedPropNames) { ClassUtil.setPropValue(entity, propName, null); } dirtyMarkerEntity.signedPropNames().clear(); dirtyMarkerEntity.dirtyPropNames().clear(); } else { Class cls = entity.getClass(); Map setterMethodList = ClassUtil.getPropSetMethodList(cls); if (setterMethodList.size() == 0) { throw new IllegalArgumentException("No property getter/setter method found in the specified entity: " + ClassUtil.getCanonicalClassName(cls)); } for (Method propSetMethod : setterMethodList.values()) { ClassUtil.setPropValue(entity, propSetMethod, null); } } } public static int compare(final boolean a, final boolean b) { return (a == b) ? 0 : (a ? 1 : -1); } public static int compare(final byte a, final byte b) { return (a < b) ? -1 : ((a == b) ? 0 : 1); } public static int compare(final short a, final short b) { return (a < b) ? -1 : ((a == b) ? 0 : 1); } public static int compare(final int a, final int b) { return (a < b) ? -1 : ((a == b) ? 0 : 1); } public static int compare(final long a, final long b) { return (a < b) ? -1 : ((a == b) ? 0 : 1); } public static int compare(final float a, final float b) { return Float.compare(a, b); } public static int compare(final double a, final double b) { return Double.compare(a, b); } public static > int compare(final T a, final T b) { return a == null ? (b == null ? 0 : -1) : (b == null ? 1 : a.compareTo(b)); } /** * Returns 0 if the arguments are identical and {@code c.compare(a, b)} * otherwise. Consequently, if both arguments are {@code null} 0 is * returned. * *

* Note that if one of the arguments is {@code null}, a * {@code NullPointerException} may or may not be thrown depending on what * ordering policy, if any, the {@link Comparator Comparator} chooses to * have for {@code null} values. * * @param * the type of the objects being compared * @param a * an object * @param b * an object to be compared with {@code a} * @param cmp * the {@code Comparator} to compare the first two arguments * @return 0 if the arguments are identical and {@code c.compare(a, b)} * otherwise. * @see Comparable * @see Comparator */ public static int compare(final T a, final T b, final Comparator cmp) { return a == null ? (b == null ? 0 : -1) : (b == null ? 1 : (cmp == null ? NATURAL_ORDER : cmp).compare(a, b)); } /** * Continue to compare the pairs of values (a1, b1), (a2, b2) until they're not equal. * 0 is returned if all of the pairs of values are equal. * * @param a1 * @param b1 * @param a2 * @param b2 * @return */ public static , T2 extends Comparable> int compare(T1 a1, T1 b1, T2 a2, T2 b2) { int res = N.compare(a1, b1); return res == 0 ? N.compare(a2, b2) : res; } /** * Continue to compare the pairs of values (a1, b1), (a2, b2), (a3, b3) until they're not equal. * 0 is returned if all of the pairs of values are equal. * * @param a1 * @param b1 * @param a2 * @param b2 * @param a3 * @param b3 * @return */ public static , T2 extends Comparable, T3 extends Comparable> int compare(T1 a1, T1 b1, T2 a2, T2 b2, T3 a3, T3 b3) { int res = 0; if ((res = N.compare(a1, b1)) != 0) { return res; } else if ((res = N.compare(a2, b2)) != 0) { return res; } return N.compare(a3, b3); } /** * Continue to compare the pairs of values (a1, b1), (a2, b2), (a3, b3), (a4, b4) until they're not equal. * 0 is returned if all of the pairs of values are equal. * * @param a1 * @param b1 * @param a2 * @param b2 * @param a3 * @param b3 * @param a4 * @param b4 * @return */ public static , T2 extends Comparable, T3 extends Comparable, T4 extends Comparable> int compare(T1 a1, T1 b1, T2 a2, T2 b2, T3 a3, T3 b3, T4 a4, T4 b4) { int res = 0; if ((res = N.compare(a1, b1)) != 0) { return res; } else if ((res = N.compare(a2, b2)) != 0) { return res; } else if ((res = N.compare(a3, b3)) != 0) { return res; } return N.compare(a4, b4); } /** * Continue to compare the pairs of values (a1, b1), (a2, b2), (a3, b3), (a4, b4), (a5, b5) until they're not equal. * 0 is returned if all of the pairs of values are equal. * * @param a1 * @param b1 * @param a2 * @param b2 * @param a3 * @param b3 * @param a4 * @param b4 * @param a5 * @param b5 * @return */ public static , T2 extends Comparable, T3 extends Comparable, T4 extends Comparable, T5 extends Comparable> int compare( T1 a1, T1 b1, T2 a2, T2 b2, T3 a3, T3 b3, T4 a4, T4 b4, T5 a5, T5 b5) { int res = 0; if ((res = N.compare(a1, b1)) != 0) { return res; } else if ((res = N.compare(a2, b2)) != 0) { return res; } else if ((res = N.compare(a3, b3)) != 0) { return res; } else if ((res = N.compare(a4, b4)) != 0) { return res; } return N.compare(a5, b5); } /** * Continue to compare the pairs of values (a1, b1), (a2, b2), (a3, b3), (a4, b4), (a5, b5), (a6, b6) until they're not equal. * 0 is returned if all of the pairs of values are equal. * * @param a1 * @param b1 * @param a2 * @param b2 * @param a3 * @param b3 * @param a4 * @param b4 * @param a5 * @param b5 * @param a6 * @param b6 * @return */ public static , T2 extends Comparable, T3 extends Comparable, T4 extends Comparable, T5 extends Comparable, T6 extends Comparable> int compare( T1 a1, T1 b1, T2 a2, T2 b2, T3 a3, T3 b3, T4 a4, T4 b4, T5 a5, T5 b5, T6 a6, T6 b6) { int res = 0; if ((res = N.compare(a1, b1)) != 0) { return res; } else if ((res = N.compare(a2, b2)) != 0) { return res; } else if ((res = N.compare(a3, b3)) != 0) { return res; } else if ((res = N.compare(a4, b4)) != 0) { return res; } else if ((res = N.compare(a5, b5)) != 0) { return res; } return N.compare(a6, b6); } /** * Continue to compare the pairs of values (a1, b1), (a2, b2), (a3, b3), (a4, b4), (a5, b5), (a6, b6), (a7, b7) until they're not equal. * 0 is returned if all of the pairs of values are equal. * * @param a1 * @param b1 * @param a2 * @param b2 * @param a3 * @param b3 * @param a4 * @param b4 * @param a5 * @param b5 * @param a6 * @param b6 * @param a7 * @param b7 * @return */ public static , T2 extends Comparable, T3 extends Comparable, T4 extends Comparable, T5 extends Comparable, T6 extends Comparable, T7 extends Comparable> int compare( T1 a1, T1 b1, T2 a2, T2 b2, T3 a3, T3 b3, T4 a4, T4 b4, T5 a5, T5 b5, T6 a6, T6 b6, T7 a7, T7 b7) { int res = 0; if ((res = N.compare(a1, b1)) != 0) { return res; } else if ((res = N.compare(a2, b2)) != 0) { return res; } else if ((res = N.compare(a3, b3)) != 0) { return res; } else if ((res = N.compare(a4, b4)) != 0) { return res; } else if ((res = N.compare(a5, b5)) != 0) { return res; } else if ((res = N.compare(a6, b6)) != 0) { return res; } return N.compare(a7, b7); } public static int compare(final boolean[] a, final boolean[] b) { if (N.isNullOrEmpty(a)) { return N.isNullOrEmpty(b) ? 0 : -1; } else if (N.isNullOrEmpty(b)) { return 1; } for (int i = 0, minLen = min(a.length, b.length); i < minLen; i++) { if (a[i] != b[i]) { return a[i] ? 1 : -1; } } return a.length - b.length; } public static int compare(final char[] a, final char[] b) { if (N.isNullOrEmpty(a)) { return N.isNullOrEmpty(b) ? 0 : -1; } else if (N.isNullOrEmpty(b)) { return 1; } for (int i = 0, minLen = min(a.length, b.length); i < minLen; i++) { if (a[i] != b[i]) { return a[i] > b[i] ? 1 : -1; } } return a.length - b.length; } public static int compare(final byte[] a, final byte[] b) { if (N.isNullOrEmpty(a)) { return N.isNullOrEmpty(b) ? 0 : -1; } else if (N.isNullOrEmpty(b)) { return 1; } for (int i = 0, minLen = min(a.length, b.length); i < minLen; i++) { if (a[i] != b[i]) { return a[i] > b[i] ? 1 : -1; } } return a.length - b.length; } public static int compare(final short[] a, final short[] b) { if (N.isNullOrEmpty(a)) { return N.isNullOrEmpty(b) ? 0 : -1; } else if (N.isNullOrEmpty(b)) { return 1; } for (int i = 0, minLen = min(a.length, b.length); i < minLen; i++) { if (a[i] != b[i]) { return a[i] > b[i] ? 1 : -1; } } return a.length - b.length; } public static int compare(final int[] a, final int[] b) { if (N.isNullOrEmpty(a)) { return N.isNullOrEmpty(b) ? 0 : -1; } else if (N.isNullOrEmpty(b)) { return 1; } for (int i = 0, minLen = min(a.length, b.length); i < minLen; i++) { if (a[i] != b[i]) { return a[i] > b[i] ? 1 : -1; } } return a.length - b.length; } public static int compare(final long[] a, final long[] b) { if (N.isNullOrEmpty(a)) { return N.isNullOrEmpty(b) ? 0 : -1; } else if (N.isNullOrEmpty(b)) { return 1; } for (int i = 0, minLen = min(a.length, b.length); i < minLen; i++) { if (a[i] != b[i]) { return a[i] > b[i] ? 1 : -1; } } return a.length - b.length; } public static int compare(final float[] a, final float[] b) { if (N.isNullOrEmpty(a)) { return N.isNullOrEmpty(b) ? 0 : -1; } else if (N.isNullOrEmpty(b)) { return 1; } int value = 0; for (int i = 0, minLen = min(a.length, b.length); i < minLen; i++) { if ((value = Float.compare(a[i], b[i])) != 0) { return value; } } return a.length - b.length; } public static int compare(final double[] a, final double[] b) { if (N.isNullOrEmpty(a)) { return N.isNullOrEmpty(b) ? 0 : -1; } else if (N.isNullOrEmpty(b)) { return 1; } int value = 0; for (int i = 0, minLen = min(a.length, b.length); i < minLen; i++) { if ((value = Double.compare(a[i], b[i])) != 0) { return value; } } return a.length - b.length; } public static > int compare(final T[] a, final T[] b) { final Comparator cmp = NULL_MIN_COMPARATOR; return compare(a, b, cmp); } public static int compare(final T[] a, final T[] b, Comparator cmp) { if (N.isNullOrEmpty(a)) { return N.isNullOrEmpty(b) ? 0 : -1; } else if (N.isNullOrEmpty(b)) { return 1; } cmp = cmp == null ? NULL_MIN_COMPARATOR : cmp; int value = 0; for (int i = 0, minLen = min(a.length, b.length); i < minLen; i++) { if ((value = cmp.compare(a[i], b[i])) != 0) { return value; } } return a.length - b.length; } public static > int compare(final Collection a, final Collection b) { final Comparator cmp = NULL_MIN_COMPARATOR; return compare(a, b, cmp); } public static int compare(final Collection a, final Collection b, Comparator cmp) { if (N.isNullOrEmpty(a)) { return N.isNullOrEmpty(b) ? 0 : -1; } else if (N.isNullOrEmpty(b)) { return 1; } cmp = cmp == null ? NULL_MIN_COMPARATOR : cmp; final Iterator iterA = a.iterator(); final Iterator iterB = b.iterator(); int value = 0; for (int i = 0, minLen = min(a.size(), b.size()); i < minLen; i++) { if ((value = cmp.compare(iterA.next(), iterB.next())) != 0) { return value; } } return a.size() - b.size(); } public static int compareIgnoreCase(final String a, final String b) { return a == null ? (b == null ? 0 : -1) : (b == null ? 1 : a.compareToIgnoreCase(b)); } /** * Returns an empty {@code List} that is immutable. * * @return * @see Collections#emptyList() */ public static List emptyList() { return EMPTY_LIST; } /** * Returns an empty {@code Set} that is immutable. * * @return * @see Collections#emptySet() */ public static Set emptySet() { return EMPTY_SET; } /** * Returns an empty {@code SortedSet} that is immutable. * * @return * @see Collections#emptySortedSet() */ public static SortedSet emptySortedSet() { return EMPTY_SORTED_SET; } /** * Returns an empty {@code emptyNavigableSet} that is immutable. * * @return * @see Collections#emptyNavigableSet() */ public static NavigableSet emptyNavigableSet() { return EMPTY_NAVIGABLE_SET; } /** * Returns an empty {@code Map} that is immutable. * * @return * @see Collections#emptyMap() */ public static Map emptyMap() { return EMPTY_MAP; } /** * Returns an empty {@code SortedMap} that is immutable. * * @return * @see Collections#emptySortedMap() */ public static SortedMap emptySortedMap() { return EMPTY_SORTED_MAP; } /** * Returns an empty {@code NavigableMap} that is immutable. * * @return * @see Collections#emptyNavigableMap() */ public static NavigableMap emptyNavigableMap() { return EMPTY_NAVIGABLE_MAP; } /** * Returns an empty {@code Iterator} that is immutable. * * @return * @see Collections#emptyIterator() */ public static Iterator emptyIterator() { return EMPTY_ITERATOR; } /** * Returns an empty {@code ListIterator} that is immutable. * * @return * @see Collections#emptyListIterator() */ public static ListIterator emptyListIterator() { return EMPTY_LIST_ITERATOR; } public static boolean anyNull(final T a, final T b) { return a == null || b == null; } public static boolean anyNull(final T a, final T b, final T c) { return a == null || b == null || c == null; } @SafeVarargs public static boolean anyNull(final T... a) { if (N.isNullOrEmpty(a)) { return false; } for (T e : a) { if (e == null) { return true; } } return false; } public static boolean anyNull(final Collection c) { if (N.isNullOrEmpty(c)) { return false; } for (T e : c) { if (e == null) { return true; } } return false; } public static boolean allNull(final T a, final T b) { return a == null && b == null; } public static boolean allNull(final T a, final T b, final T c) { return a == null && b == null && c == null; } @SafeVarargs public static boolean allNull(final T... a) { if (N.isNullOrEmpty(a)) { return true; } for (T e : a) { if (e != null) { return false; } } return true; } public static boolean allNull(final Collection c) { if (N.isNullOrEmpty(c)) { return true; } for (T e : c) { if (e != null) { return false; } } return true; } public static Nullable first(final Collection c) { if (N.isNullOrEmpty(c)) { return Nullable.empty(); } if (c instanceof List && c instanceof RandomAccess) { return Nullable.of(((List) c).get(0)); } else { return Nullable.of(c.iterator().next()); } } public static Nullable last(final Collection c) { if (N.isNullOrEmpty(c)) { return Nullable.empty(); } if (c instanceof List) { final List list = (List) c; if (c instanceof RandomAccess) { return Nullable.of(list.get(c.size() - 1)); } else { return Nullable.of(list.listIterator(list.size()).previous()); } } else if (c instanceof Deque) { return Nullable.of(((Deque) c).descendingIterator().next()); } else { return Iterators.last(c.iterator()); } } public static Optional firstNonNull(final T a, final T b) { return a != null ? Optional.of(a) : (b != null ? Optional.of(b) : Optional. empty()); } public static Optional firstNonNull(final T a, final T b, final T c) { return a != null ? Optional.of(a) : (b != null ? Optional.of(b) : (c != null ? Optional.of(c) : Optional. empty())); } @SafeVarargs public static Optional firstNonNull(final T... a) { if (N.isNullOrEmpty(a)) { return Optional.empty(); } for (T e : a) { if (e != null) { return Optional.of(e); } } return Optional.empty(); } public static Optional firstNonNull(final Collection c) { if (N.isNullOrEmpty(c)) { return Optional.empty(); } for (T e : c) { if (e != null) { return Optional.of(e); } } return Optional.empty(); } public static Optional lastNonNull(final T a, final T b) { return b != null ? Optional.of(b) : (a != null ? Optional.of(a) : Optional. empty()); } public static Optional lastNonNull(final T a, final T b, final T c) { return c != null ? Optional.of(c) : (b != null ? Optional.of(b) : (a != null ? Optional.of(a) : Optional. empty())); } @SafeVarargs public static Optional lastNonNull(final T... a) { if (N.isNullOrEmpty(a)) { return Optional.empty(); } for (int i = a.length - 1; i >= 0; i--) { if (a[i] != null) { return Optional.of(a[i]); } } return Optional.empty(); } public static Optional lastNonNull(final Collection c) { if (N.isNullOrEmpty(c)) { return Optional.empty(); } if (c instanceof List) { final List list = (List) c; if (c instanceof RandomAccess) { for (int i = c.size() - 1; i >= 0; i--) { if (list.get(i) != null) { return Optional.of(list.get(i)); } } } else { final ListIterator iter = list.listIterator(list.size()); T pre = null; while (iter.hasPrevious()) { if ((pre = iter.previous()) != null) { return Optional.of(pre); } } } } else if (c instanceof Deque) { final Iterator iter = ((Deque) c).descendingIterator(); T next = null; while (iter.hasNext()) { if ((next = iter.next()) != null) { return Optional.of(next); } } } else { // @SuppressWarnings("unchecked") // final T[] a = (T[]) c.toArray(); // return lastNonNull(a); Iterators.lastNonNull(c.iterator()); } return Optional.empty(); } public static Optional> firstEntry(final Map map) { if (map == null || map.isEmpty()) { return Optional.empty(); } return Optional.of(map.entrySet().iterator().next()); } public static Optional> lastEntry(final Map map) { if (map == null || map.isEmpty()) { return Optional.empty(); } return Iterators.lastNonNull(map.entrySet().iterator()); } /** * Returns the length/size of the specified {@code Array/Collection/Map/CharSequence}, or {@code 0} if it's empty or {@code null}. * * @param s * @return */ public static int len(final CharSequence s) { return s == null ? 0 : s.length(); } /** * Returns the length/size of the specified {@code Array/Collection/Map/CharSequence}, or {@code 0} if it's empty or {@code null}. * * @param a * @return */ public static int len(final boolean[] a) { return a == null ? 0 : a.length; } /** * Returns the length/size of the specified {@code Array/Collection/Map/CharSequence}, or {@code 0} if it's empty or {@code null}. * * @param a * @return */ public static int len(final char[] a) { return a == null ? 0 : a.length; } /** * Returns the length/size of the specified {@code Array/Collection/Map/CharSequence}, or {@code 0} if it's empty or {@code null}. * * @param a * @return */ public static int len(final byte[] a) { return a == null ? 0 : a.length; } /** * Returns the length/size of the specified {@code Array/Collection/Map/CharSequence}, or {@code 0} if it's empty or {@code null}. * * @param a * @return */ public static int len(final short[] a) { return a == null ? 0 : a.length; } /** * Returns the length/size of the specified {@code Array/Collection/Map/CharSequence}, or {@code 0} if it's empty or {@code null}. * * @param a * @return */ public static int len(final int[] a) { return a == null ? 0 : a.length; } /** * Returns the length/size of the specified {@code Array/Collection/Map/CharSequence}, or {@code 0} if it's empty or {@code null}. * * @param a * @return */ public static int len(final long[] a) { return a == null ? 0 : a.length; } /** * Returns the length/size of the specified {@code Array/Collection/Map/CharSequence}, or {@code 0} if it's empty or {@code null}. * * @param a * @return */ public static int len(final float[] a) { return a == null ? 0 : a.length; } /** * Returns the length/size of the specified {@code Array/Collection/Map/CharSequence}, or {@code 0} if it's empty or {@code null}. * * @param a * @return */ public static int len(final double[] a) { return a == null ? 0 : a.length; } /** * Returns the length/size of the specified {@code Array/Collection/Map/CharSequence}, or {@code 0} if it's empty or {@code null}. * * @param a * @return */ public static int len(final Object[] a) { return a == null ? 0 : a.length; } /** * Returns the length/size of the specified {@code Array/Collection/Map/CharSequence}, or {@code 0} if it's empty or {@code null}. * * @param c * @return */ public static int len(final Collection c) { return c == null ? 0 : c.size(); } /** * Returns the length/size of the specified {@code Array/Collection/Map/CharSequence}, or {@code 0} if it's empty or {@code null}. * * @param m * @return */ public static int len(final Map m) { return m == null ? 0 : m.size(); } /** * Returns an immutable empty list if the specified List is null, otherwise itself is returned. * * @param list * @return */ public static List nullToEmpty(final List list) { return list == null ? N. emptyList() : list; } /** * Returns an immutable empty set if the specified Set is null, otherwise itself is returned. * * @param set * @return */ public static Set nullToEmpty(final Set set) { return set == null ? N. emptySet() : set; } /** * Returns an immutable empty SortedSet if the specified SortedSet is null, otherwise itself is returned. * * @param set * @return */ public static SortedSet nullToEmpty(final SortedSet set) { return set == null ? N. emptySortedSet() : set; } /** * Returns an immutable empty NavigableSet if the specified NavigableSet is null, otherwise itself is returned. * * @param set * @return */ public static NavigableSet nullToEmpty(final NavigableSet set) { return set == null ? N. emptyNavigableSet() : set; } /** * Returns an immutable empty map if the specified Map is null, otherwise itself is returned. * * @param map * @return */ public static Map nullToEmpty(final Map map) { return map == null ? N. emptyMap() : map; } /** * Returns an immutable empty SortedMap if the specified SortedMap is null, otherwise itself is returned. * * @param map * @return */ public static SortedMap nullToEmpty(final SortedMap map) { return map == null ? N. emptySortedMap() : map; } /** * Returns an immutable empty NavigableMap if the specified NavigableMap is null, otherwise itself is returned. * * @param map * @return */ public static NavigableMap nullToEmpty(final NavigableMap map) { return map == null ? N. emptyNavigableMap() : map; } /** * Returns an immutable empty Iterator if the specified Iterator is null, otherwise itself is returned. * * @param iter * @return */ public static Iterator nullToEmpty(final Iterator iter) { return iter == null ? N. emptyIterator() : iter; } /** * Returns an immutable empty ListIterator if the specified ListIterator is null, otherwise itself is returned. * * @param iter * @return */ public static ListIterator nullToEmpty(final ListIterator iter) { return iter == null ? N. emptyListIterator() : iter; } public static String nullToEmpty(final String str) { return str == null ? EMPTY_STRING : str; } public static boolean[] nullToEmpty(final boolean[] a) { return a == null ? EMPTY_BOOLEAN_ARRAY : a; } public static char[] nullToEmpty(final char[] a) { return a == null ? EMPTY_CHAR_ARRAY : a; } public static byte[] nullToEmpty(final byte[] a) { return a == null ? EMPTY_BYTE_ARRAY : a; } public static short[] nullToEmpty(final short[] a) { return a == null ? EMPTY_SHORT_ARRAY : a; } public static int[] nullToEmpty(final int[] a) { return a == null ? EMPTY_INT_ARRAY : a; } public static long[] nullToEmpty(final long[] a) { return a == null ? EMPTY_LONG_ARRAY : a; } public static float[] nullToEmpty(final float[] a) { return a == null ? EMPTY_FLOAT_ARRAY : a; } public static double[] nullToEmpty(final double[] a) { return a == null ? EMPTY_DOUBLE_ARRAY : a; } public static String[] nullToEmpty(final String[] a) { return a == null ? EMPTY_STRING_ARRAY : a; } /** * * @param a * @return * @deprecated replaced by {@link N#nullToEmpty(Class, Object[])} */ @Deprecated public static Object[] nullToEmpty(final Object[] a) { return a == null ? EMPTY_OBJECT_ARRAY : a; } public static T[] nullToEmpty(final Class arrayType, final T[] a) { return a == null ? (T[]) N.newArray(arrayType.getComponentType(), 0) : a; } public static boolean isNullOrEmpty(final CharSequence s) { return (s == null) || (s.length() == 0); } public static boolean isNullOrEmpty(final boolean[] a) { return (a == null) || (a.length == 0); } public static boolean isNullOrEmpty(final char[] a) { return (a == null) || (a.length == 0); } public static boolean isNullOrEmpty(final byte[] a) { return (a == null) || (a.length == 0); } public static boolean isNullOrEmpty(final short[] a) { return (a == null) || (a.length == 0); } public static boolean isNullOrEmpty(final int[] a) { return (a == null) || (a.length == 0); } public static boolean isNullOrEmpty(final long[] a) { return (a == null) || (a.length == 0); } public static boolean isNullOrEmpty(final float[] a) { return (a == null) || (a.length == 0); } public static boolean isNullOrEmpty(final double[] a) { return (a == null) || (a.length == 0); } public static boolean isNullOrEmpty(final Object[] a) { return (a == null) || (a.length == 0); } public static boolean isNullOrEmpty(final Collection c) { return (c == null) || (c.isEmpty()); } public static boolean isNullOrEmpty(final Map m) { return (m == null) || (m.isEmpty()); } @SuppressWarnings("rawtypes") public static boolean isNullOrEmpty(final PrimitiveList list) { return (list == null) || (list.isEmpty()); } public static boolean isNullOrEmpty(final Multiset s) { return (s == null) || (s.isEmpty()); } public static boolean isNullOrEmpty(final LongMultiset s) { return (s == null) || (s.isEmpty()); } public static boolean isNullOrEmpty(final Multimap m) { return (m == null) || (m.isEmpty()); } public static boolean isNullOrEmpty(final DataSet rs) { return (rs == null) || (rs.isEmpty()); } public static boolean isNullOrEmpty(final EntityId entityId) { return (entityId == null) || (entityId.isEmpty()); } // DON'T change 'OrEmptyOrBlank' to 'OrBlank' because of the occurring order in the auto-completed context menu. public static boolean isNullOrEmptyOrBlank(final CharSequence s) { if (N.isNullOrEmpty(s)) { return true; } for (int i = 0, len = s.length(); i < len; i++) { if (Character.isWhitespace(s.charAt(i)) == false) { return false; } } return true; } public static boolean notNullOrEmpty(final CharSequence s) { return (s != null) && (s.length() > 0); } public static boolean notNullOrEmpty(final boolean[] a) { return (a != null) && (a.length > 0); } public static boolean notNullOrEmpty(final char[] a) { return (a != null) && (a.length > 0); } public static boolean notNullOrEmpty(final byte[] a) { return (a != null) && (a.length > 0); } public static boolean notNullOrEmpty(final short[] a) { return (a != null) && (a.length > 0); } public static boolean notNullOrEmpty(final int[] a) { return (a != null) && (a.length > 0); } public static boolean notNullOrEmpty(final long[] a) { return (a != null) && (a.length > 0); } public static boolean notNullOrEmpty(final float[] a) { return (a != null) && (a.length > 0); } public static boolean notNullOrEmpty(final double[] a) { return (a != null) && (a.length > 0); } public static boolean notNullOrEmpty(final Object[] a) { return (a != null) && (a.length > 0); } public static boolean notNullOrEmpty(final Collection c) { return (c != null) && (c.size() > 0); } public static boolean notNullOrEmpty(final Map m) { return (m != null) && (m.size() > 0); } @SuppressWarnings("rawtypes") public static boolean notNullOrEmpty(final PrimitiveList list) { return (list != null) && (list.size() > 0); } public static boolean notNullOrEmpty(final Multiset s) { return (s != null) && (s.size() > 0); } public static boolean notNullOrEmpty(final LongMultiset s) { return (s != null) && (s.size() > 0); } public static boolean notNullOrEmpty(final Multimap m) { return (m != null) && (m.size() > 0); } public static boolean notNullOrEmpty(final DataSet rs) { return (rs != null) && (rs.size() > 0); } public static boolean notNullOrEmpty(final EntityId entityId) { return (entityId != null) && (!entityId.isEmpty()); } // DON'T change 'OrEmptyOrBlank' to 'OrBlank' because of the occurring order in the auto-completed context menu. public static boolean notNullOrEmptyOrBlank(final CharSequence s) { return !N.isNullOrEmptyOrBlank(s); } private static boolean isNullErrorMsg(final String msg) { // shortest message: "it is null" return msg.length() > 9 && msg.indexOf(WD._SPACE) > 0; } /** *
* Copied from JDK 9 through: StreamSupport at: https://github.com/streamsupport/streamsupport. *
* * Checks if the {@code index} is within the bounds of the range from * {@code 0} (inclusive) to {@code length} (exclusive). * *

The {@code index} is defined to be out-of-bounds if any of the * following inequalities is true: *

    *
  • {@code index < 0}
  • *
  • {@code index >= length}
  • *
  • {@code length < 0}, which is implied from the former inequalities
  • *
* * @param index the index * @param length the upper-bound (exclusive) of the range * @return {@code index} if it is within bounds of the range * @throws IndexOutOfBoundsException if the {@code index} is out-of-bounds * @since 9 */ public static void checkIndex(final int index, final int length) { if (index < 0 || index >= length) { throw new IndexOutOfBoundsException(String.format("Index %d out-of-bounds for length %d", index, length)); } } /** *
* Copied from JDK 9 through: StreamSupport at: https://github.com/streamsupport/streamsupport. *
* * Checks if the sub-range from {@code fromIndex} (inclusive) to * {@code toIndex} (exclusive) is within the bounds of range from {@code 0} * (inclusive) to {@code length} (exclusive). * *

The sub-range is defined to be out-of-bounds if any of the following * inequalities is true: *

    *
  • {@code fromIndex < 0}
  • *
  • {@code fromIndex > toIndex}
  • *
  • {@code toIndex > length}
  • *
  • {@code length < 0}, which is implied from the former inequalities
  • *
* * @param fromIndex the lower-bound (inclusive) of the sub-range * @param toIndex the upper-bound (exclusive) of the sub-range * @param length the upper-bound (exclusive) the range * @return {@code fromIndex} if the sub-range is within bounds of the range * @throws IndexOutOfBoundsException if the sub-range is out-of-bounds * @since 9 */ public static void checkFromToIndex(final int fromIndex, final int toIndex, final int length) { if (fromIndex < 0 || fromIndex > toIndex || toIndex > length) { throw new IndexOutOfBoundsException(String.format("Range [%d, %d) out-of-bounds for length %d", fromIndex, toIndex, length)); } } /** *
* Copied from JDK 9 through: StreamSupport at: https://github.com/streamsupport/streamsupport. *
* * Checks if the sub-range from {@code fromIndex} (inclusive) to * {@code fromIndex + size} (exclusive) is within the bounds of range from * {@code 0} (inclusive) to {@code length} (exclusive). * *

The sub-range is defined to be out-of-bounds if any of the following * inequalities is true: *

    *
  • {@code fromIndex < 0}
  • *
  • {@code size < 0}
  • *
  • {@code fromIndex + size > length}, taking into account integer overflow
  • *
  • {@code length < 0}, which is implied from the former inequalities
  • *
* * @param fromIndex the lower-bound (inclusive) of the sub-interval * @param size the size of the sub-range * @param length the upper-bound (exclusive) of the range * @return {@code fromIndex} if the sub-range is within bounds of the range * @throws IndexOutOfBoundsException if the sub-range is out-of-bounds * @since 9 */ public static void checkFromIndexSize(final int fromIndex, final int size, final int length) { if ((length | fromIndex | size) < 0 || size > length - fromIndex) { throw new IndexOutOfBoundsException(String.format("Range [%d, %See {@link #checkArgument(boolean, String, Object...)} for details. */ public static void checkArgument(boolean b, String errorMessageTemplate, boolean p) { if (!b) { throw new IllegalArgumentException(format(errorMessageTemplate, p)); } } /** * Ensures the truth of an expression involving one or more parameters to the calling method. * *

See {@link #checkArgument(boolean, String, Object...)} for details. */ public static void checkArgument(boolean b, String errorMessageTemplate, boolean p1, boolean p2) { if (!b) { throw new IllegalArgumentException(format(errorMessageTemplate, p1, p2)); } } /** * Ensures the truth of an expression involving one or more parameters to the calling method. * *

See {@link #checkArgument(boolean, String, Object...)} for details. */ public static void checkArgument(boolean b, String errorMessageTemplate, boolean p1, boolean p2, boolean p3) { if (!b) { throw new IllegalArgumentException(format(errorMessageTemplate, p1, p2, p3)); } } /** * Ensures the truth of an expression involving one or more parameters to the calling method. * *

See {@link #checkArgument(boolean, String, Object...)} for details. */ public static void checkArgument(boolean b, String errorMessageTemplate, char p) { if (!b) { throw new IllegalArgumentException(format(errorMessageTemplate, p)); } } /** * Ensures the truth of an expression involving one or more parameters to the calling method. * *

See {@link #checkArgument(boolean, String, Object...)} for details. */ public static void checkArgument(boolean b, String errorMessageTemplate, byte p) { if (!b) { throw new IllegalArgumentException(format(errorMessageTemplate, p)); } } /** * Ensures the truth of an expression involving one or more parameters to the calling method. * *

See {@link #checkArgument(boolean, String, Object...)} for details. */ public static void checkArgument(boolean b, String errorMessageTemplate, short p) { if (!b) { throw new IllegalArgumentException(format(errorMessageTemplate, p)); } } /** * Ensures the truth of an expression involving one or more parameters to the calling method. * *

See {@link #checkArgument(boolean, String, Object...)} for details. */ public static void checkArgument(boolean b, String errorMessageTemplate, int p) { if (!b) { throw new IllegalArgumentException(format(errorMessageTemplate, p)); } } /** * Ensures the truth of an expression involving one or more parameters to the calling method. * *

See {@link #checkArgument(boolean, String, Object...)} for details. */ public static void checkArgument(boolean b, String errorMessageTemplate, int p1, int p2) { if (!b) { throw new IllegalArgumentException(format(errorMessageTemplate, p1, p2)); } } /** * Ensures the truth of an expression involving one or more parameters to the calling method. * *

See {@link #checkArgument(boolean, String, Object...)} for details. */ public static void checkArgument(boolean b, String errorMessageTemplate, int p1, int p2, int p3) { if (!b) { throw new IllegalArgumentException(format(errorMessageTemplate, p1, p2, p3)); } } /** * Ensures the truth of an expression involving one or more parameters to the calling method. * *

See {@link #checkArgument(boolean, String, Object...)} for details. */ public static void checkArgument(boolean b, String errorMessageTemplate, long p) { if (!b) { throw new IllegalArgumentException(format(errorMessageTemplate, p)); } } /** * Ensures the truth of an expression involving one or more parameters to the calling method. * *

See {@link #checkArgument(boolean, String, Object...)} for details. */ public static void checkArgument(boolean b, String errorMessageTemplate, long p1, long p2) { if (!b) { throw new IllegalArgumentException(format(errorMessageTemplate, p1, p2)); } } /** * Ensures the truth of an expression involving one or more parameters to the calling method. * *

See {@link #checkArgument(boolean, String, Object...)} for details. */ public static void checkArgument(boolean b, String errorMessageTemplate, long p1, long p2, long p3) { if (!b) { throw new IllegalArgumentException(format(errorMessageTemplate, p1, p2, p3)); } } /** * Ensures the truth of an expression involving one or more parameters to the calling method. * *

See {@link #checkArgument(boolean, String, Object...)} for details. */ public static void checkArgument(boolean b, String errorMessageTemplate, float p) { if (!b) { throw new IllegalArgumentException(format(errorMessageTemplate, p)); } } /** * Ensures the truth of an expression involving one or more parameters to the calling method. * *

See {@link #checkArgument(boolean, String, Object...)} for details. */ public static void checkArgument(boolean b, String errorMessageTemplate, float p1, float p2) { if (!b) { throw new IllegalArgumentException(format(errorMessageTemplate, p1, p2)); } } /** * Ensures the truth of an expression involving one or more parameters to the calling method. * *

See {@link #checkArgument(boolean, String, Object...)} for details. */ public static void checkArgument(boolean b, String errorMessageTemplate, float p1, float p2, float p3) { if (!b) { throw new IllegalArgumentException(format(errorMessageTemplate, p1, p2, p3)); } } /** * Ensures the truth of an expression involving one or more parameters to the calling method. * *

See {@link #checkArgument(boolean, String, Object...)} for details. */ public static void checkArgument(boolean b, String errorMessageTemplate, double p) { if (!b) { throw new IllegalArgumentException(format(errorMessageTemplate, p)); } } /** * Ensures the truth of an expression involving one or more parameters to the calling method. * *

See {@link #checkArgument(boolean, String, Object...)} for details. */ public static void checkArgument(boolean b, String errorMessageTemplate, double p1, double p2) { if (!b) { throw new IllegalArgumentException(format(errorMessageTemplate, p1, p2)); } } /** * Ensures the truth of an expression involving one or more parameters to the calling method. * *

See {@link #checkArgument(boolean, String, Object...)} for details. */ public static void checkArgument(boolean b, String errorMessageTemplate, double p1, double p2, double p3) { if (!b) { throw new IllegalArgumentException(format(errorMessageTemplate, p1, p2, p3)); } } /** * Ensures the truth of an expression involving one or more parameters to the calling method. * *

See {@link #checkArgument(boolean, String, Object...)} for details. */ public static void checkArgument(boolean b, String errorMessageTemplate, Object p) { if (!b) { throw new IllegalArgumentException(format(errorMessageTemplate, p)); } } /** * Ensures the truth of an expression involving one or more parameters to the calling method. * *

See {@link #checkArgument(boolean, String, Object...)} for details. */ public static void checkArgument(boolean b, String errorMessageTemplate, Object p1, Object p2) { if (!b) { throw new IllegalArgumentException(format(errorMessageTemplate, p1, p2)); } } /** * Ensures the truth of an expression involving one or more parameters to the calling method. * *

See {@link #checkArgument(boolean, String, Object...)} for details. */ public static void checkArgument(boolean b, String errorMessageTemplate, Object p1, Object p2, Object p3) { if (!b) { throw new IllegalArgumentException(format(errorMessageTemplate, p1, p2, p3)); } } public static void checkArgument(boolean b, Try.Supplier errorMessageSupplier) throws E { if (!b) { throw new IllegalArgumentException(errorMessageSupplier.get()); } } /** * * @param obj * @return * @throws IllegalArgumentException if {@code obj} is {@code null} */ public static T checkArgNotNull(final T obj) { if (obj == null) { throw new IllegalArgumentException(); } return obj; } /** * * @param obj * @param errorMessage * @return * @throws IllegalArgumentException if {@code obj} is {@code null} */ public static T checkArgNotNull(final T obj, final String errorMessage) { if (obj == null) { if (isNullErrorMsg(errorMessage)) { throw new IllegalArgumentException(errorMessage); } else { throw new IllegalArgumentException("'" + errorMessage + "' can not be null"); } } return obj; } /** * Checks if the specified {@code arg} is {@code null} or empty, and throws {@code IllegalArgumentException} if it is. * * @param arg * @param argNameOrErrorMsg * @throws IllegalArgumentException if the specified {@code arg} is {@code null} or empty. */ public static T checkArgNotNullOrEmpty(final T arg, final String argNameOrErrorMsg) { if (N.isNullOrEmpty(arg)) { if (argNameOrErrorMsg.indexOf(' ') == N.INDEX_NOT_FOUND) { throw new IllegalArgumentException("'" + argNameOrErrorMsg + "' can not be null or empty"); } else { throw new IllegalArgumentException(argNameOrErrorMsg); } } return arg; } /** * Checks if the specified {@code arg} is {@code null} or empty, and throws {@code IllegalArgumentException} if it is. * * @param arg * @param argNameOrErrorMsg * @throws IllegalArgumentException if the specified {@code arg} is {@code null} or empty. */ public static boolean[] checkArgNotNullOrEmpty(final boolean[] arg, final String argNameOrErrorMsg) { if (N.isNullOrEmpty(arg)) { if (argNameOrErrorMsg.indexOf(' ') == N.INDEX_NOT_FOUND) { throw new IllegalArgumentException("'" + argNameOrErrorMsg + "' can not be null or empty"); } else { throw new IllegalArgumentException(argNameOrErrorMsg); } } return arg; } /** * Checks if the specified {@code arg} is {@code null} or empty, and throws {@code IllegalArgumentException} if it is. * * @param arg * @param argNameOrErrorMsg * @throws IllegalArgumentException if the specified {@code arg} is {@code null} or empty. */ public static char[] checkArgNotNullOrEmpty(final char[] arg, final String argNameOrErrorMsg) { if (N.isNullOrEmpty(arg)) { if (argNameOrErrorMsg.indexOf(' ') == N.INDEX_NOT_FOUND) { throw new IllegalArgumentException("'" + argNameOrErrorMsg + "' can not be null or empty"); } else { throw new IllegalArgumentException(argNameOrErrorMsg); } } return arg; } /** * Checks if the specified {@code arg} is {@code null} or empty, and throws {@code IllegalArgumentException} if it is. * * @param arg * @param argNameOrErrorMsg * @throws IllegalArgumentException if the specified {@code arg} is {@code null} or empty. */ public static byte[] checkArgNotNullOrEmpty(final byte[] arg, final String argNameOrErrorMsg) { if (N.isNullOrEmpty(arg)) { if (argNameOrErrorMsg.indexOf(' ') == N.INDEX_NOT_FOUND) { throw new IllegalArgumentException("'" + argNameOrErrorMsg + "' can not be null or empty"); } else { throw new IllegalArgumentException(argNameOrErrorMsg); } } return arg; } /** * Checks if the specified {@code arg} is {@code null} or empty, and throws {@code IllegalArgumentException} if it is. * * @param arg * @param argNameOrErrorMsg * @throws IllegalArgumentException if the specified {@code arg} is {@code null} or empty. */ public static short[] checkArgNotNullOrEmpty(final short[] arg, final String argNameOrErrorMsg) { if (N.isNullOrEmpty(arg)) { if (argNameOrErrorMsg.indexOf(' ') == N.INDEX_NOT_FOUND) { throw new IllegalArgumentException("'" + argNameOrErrorMsg + "' can not be null or empty"); } else { throw new IllegalArgumentException(argNameOrErrorMsg); } } return arg; } /** * Checks if the specified {@code arg} is {@code null} or empty, and throws {@code IllegalArgumentException} if it is. * * @param arg * @param argNameOrErrorMsg * @throws IllegalArgumentException if the specified {@code arg} is {@code null} or empty. */ public static int[] checkArgNotNullOrEmpty(final int[] arg, final String argNameOrErrorMsg) { if (N.isNullOrEmpty(arg)) { if (argNameOrErrorMsg.indexOf(' ') == N.INDEX_NOT_FOUND) { throw new IllegalArgumentException("'" + argNameOrErrorMsg + "' can not be null or empty"); } else { throw new IllegalArgumentException(argNameOrErrorMsg); } } return arg; } /** * Checks if the specified {@code arg} is {@code null} or empty, and throws {@code IllegalArgumentException} if it is. * * @param arg * @param argNameOrErrorMsg * @throws IllegalArgumentException if the specified {@code arg} is {@code null} or empty. */ public static long[] checkArgNotNullOrEmpty(final long[] arg, final String argNameOrErrorMsg) { if (N.isNullOrEmpty(arg)) { if (argNameOrErrorMsg.indexOf(' ') == N.INDEX_NOT_FOUND) { throw new IllegalArgumentException("'" + argNameOrErrorMsg + "' can not be null or empty"); } else { throw new IllegalArgumentException(argNameOrErrorMsg); } } return arg; } /** * Checks if the specified {@code arg} is {@code null} or empty, and throws {@code IllegalArgumentException} if it is. * * @param arg * @param argNameOrErrorMsg * @throws IllegalArgumentException if the specified {@code arg} is {@code null} or empty. */ public static float[] checkArgNotNullOrEmpty(final float[] arg, final String argNameOrErrorMsg) { if (N.isNullOrEmpty(arg)) { if (argNameOrErrorMsg.indexOf(' ') == N.INDEX_NOT_FOUND) { throw new IllegalArgumentException("'" + argNameOrErrorMsg + "' can not be null or empty"); } else { throw new IllegalArgumentException(argNameOrErrorMsg); } } return arg; } /** * Checks if the specified {@code arg} is {@code null} or empty, and throws {@code IllegalArgumentException} if it is. * * @param arg * @param argNameOrErrorMsg * @throws IllegalArgumentException if the specified {@code arg} is {@code null} or empty. */ public static double[] checkArgNotNullOrEmpty(final double[] arg, final String argNameOrErrorMsg) { if (N.isNullOrEmpty(arg)) { if (argNameOrErrorMsg.indexOf(' ') == N.INDEX_NOT_FOUND) { throw new IllegalArgumentException("'" + argNameOrErrorMsg + "' can not be null or empty"); } else { throw new IllegalArgumentException(argNameOrErrorMsg); } } return arg; } /** * Checks if the specified {@code arg} is {@code null} or empty, and throws {@code IllegalArgumentException} if it is. * * @param arg * @param argNameOrErrorMsg * @throws IllegalArgumentException if the specified {@code arg} is {@code null} or empty. */ public static T[] checkArgNotNullOrEmpty(final T[] arg, final String argNameOrErrorMsg) { if (N.isNullOrEmpty(arg)) { if (argNameOrErrorMsg.indexOf(' ') == N.INDEX_NOT_FOUND) { throw new IllegalArgumentException("'" + argNameOrErrorMsg + "' can not be null or empty"); } else { throw new IllegalArgumentException(argNameOrErrorMsg); } } return arg; } /** * Checks if the specified {@code arg} is {@code null} or empty, and throws {@code IllegalArgumentException} if it is. * * @param arg * @param argNameOrErrorMsg * @throws IllegalArgumentException if the specified {@code arg} is {@code null} or empty. */ public static > T checkArgNotNullOrEmpty(final T arg, final String argNameOrErrorMsg) { if (N.isNullOrEmpty(arg)) { if (argNameOrErrorMsg.indexOf(' ') == N.INDEX_NOT_FOUND) { throw new IllegalArgumentException("'" + argNameOrErrorMsg + "' can not be null or empty"); } else { throw new IllegalArgumentException(argNameOrErrorMsg); } } return arg; } /** * Checks if the specified {@code arg} is {@code null} or empty, and throws {@code IllegalArgumentException} if it is. * * @param arg * @param argNameOrErrorMsg * @throws IllegalArgumentException if the specified {@code arg} is {@code null} or empty. */ public static > T checkArgNotNullOrEmpty(final T arg, final String argNameOrErrorMsg) { if (N.isNullOrEmpty(arg)) { if (argNameOrErrorMsg.indexOf(' ') == N.INDEX_NOT_FOUND) { throw new IllegalArgumentException("'" + argNameOrErrorMsg + "' can not be null or empty"); } else { throw new IllegalArgumentException(argNameOrErrorMsg); } } return arg; } /** * Check if the specified parameter is null or empty or blank * * @param arg * @param msg name of parameter or error message * @return the input parameter * @throws IllegalArgumentException if the specified parameter is null or empty. */ // DON'T change 'OrEmptyOrBlank' to 'OrBlank' because of the occurring order in the auto-completed context menu. public static T checkArgNotNullOrEmptyOrBlank(final T arg, final String msg) { if (N.isNullOrEmptyOrBlank(arg)) { if (isNullErrorMsg(msg)) { throw new IllegalArgumentException(msg); } else { throw new IllegalArgumentException("'" + msg + "' can not be null or empty or blank"); } } return arg; } /** * Checks if the specified {@code arg} is not negative, and throws {@code IllegalArgumentException} if it is. * * @param arg * @param argNameOrErrorMsg * @throws IllegalArgumentException if the specified {@code arg} is negative. */ public static int checkArgNotNegative(final int arg, final String argNameOrErrorMsg) { if (arg < 0) { if (argNameOrErrorMsg.indexOf(' ') == N.INDEX_NOT_FOUND) { throw new IllegalArgumentException("'" + argNameOrErrorMsg + "' can not be negative: " + arg); } else { throw new IllegalArgumentException(argNameOrErrorMsg); } } return arg; } /** * Checks if the specified {@code arg} is not negative, and throws {@code IllegalArgumentException} if it is. * * @param arg * @param argNameOrErrorMsg * @throws IllegalArgumentException if the specified {@code arg} is negative. */ public static long checkArgNotNegative(final long arg, final String argNameOrErrorMsg) { if (arg < 0) { if (argNameOrErrorMsg.indexOf(' ') == N.INDEX_NOT_FOUND) { throw new IllegalArgumentException("'" + argNameOrErrorMsg + "' can not be negative: " + arg); } else { throw new IllegalArgumentException(argNameOrErrorMsg); } } return arg; } /** * Checks if the specified {@code arg} is not negative, and throws {@code IllegalArgumentException} if it is. * * @param arg * @param argNameOrErrorMsg * @throws IllegalArgumentException if the specified {@code arg} is negative. */ public static double checkArgNotNegative(final double arg, final String argNameOrErrorMsg) { if (arg < 0) { if (argNameOrErrorMsg.indexOf(' ') == N.INDEX_NOT_FOUND) { throw new IllegalArgumentException("'" + argNameOrErrorMsg + "' can not be negative: " + arg); } else { throw new IllegalArgumentException(argNameOrErrorMsg); } } return arg; } /** * Checks if the specified {@code arg} is positive, and throws {@code IllegalArgumentException} if it is not. * * @param arg * @param argNameOrErrorMsg * @throws IllegalArgumentException if the specified {@code arg} is negative. */ public static int checkArgPositive(final int arg, final String argNameOrErrorMsg) { if (arg <= 0) { if (argNameOrErrorMsg.indexOf(' ') == N.INDEX_NOT_FOUND) { throw new IllegalArgumentException("'" + argNameOrErrorMsg + "' can not be zero or negative: " + arg); } else { throw new IllegalArgumentException(argNameOrErrorMsg); } } return arg; } /** * Checks if the specified {@code arg} is positive, and throws {@code IllegalArgumentException} if it is not. * * @param arg * @param argNameOrErrorMsg * @throws IllegalArgumentException if the specified {@code arg} is negative. */ public static long checkArgPositive(final long arg, final String argNameOrErrorMsg) { if (arg <= 0) { if (argNameOrErrorMsg.indexOf(' ') == N.INDEX_NOT_FOUND) { throw new IllegalArgumentException("'" + argNameOrErrorMsg + "' can not be zero or negative: " + arg); } else { throw new IllegalArgumentException(argNameOrErrorMsg); } } return arg; } /** * Checks if the specified {@code arg} is positive, and throws {@code IllegalArgumentException} if it is not. * * @param arg * @param argNameOrErrorMsg * @throws IllegalArgumentException if the specified {@code arg} is negative. */ public static double checkArgPositive(final double arg, final String argNameOrErrorMsg) { if (arg <= 0) { if (argNameOrErrorMsg.indexOf(' ') == N.INDEX_NOT_FOUND) { throw new IllegalArgumentException("'" + argNameOrErrorMsg + "' can not be zero or negative: " + arg); } else { throw new IllegalArgumentException(argNameOrErrorMsg); } } return arg; } /** * Ensures the truth of an expression involving the state of the calling instance, but not * involving any parameters to the calling method. * * @param expression a boolean expression * @throws IllegalStateException if {@code expression} is false */ public static void checkState(boolean expression) { if (!expression) { throw new IllegalStateException(); } } /** * Ensures the truth of an expression involving the state of the calling instance, but not * involving any parameters to the calling method. * * @param expression a boolean expression * @param errorMessage the exception message to use if the check fails; will be converted to a * string using {@link String#valueOf(Object)} * @throws IllegalStateException if {@code expression} is false */ public static void checkState(boolean expression, String errorMessage) { if (!expression) { throw new IllegalStateException(errorMessage); } } /** * Ensures the truth of an expression involving the state of the calling instance, but not * involving any parameters to the calling method. * *

See {@link #checkState(boolean, String, Object...)} for details. */ public static void checkState(boolean b, String errorMessageTemplate, int p) { if (!b) { throw new IllegalStateException(format(errorMessageTemplate, p)); } } /** * Ensures the truth of an expression involving the state of the calling instance, but not * involving any parameters to the calling method. * *

See {@link #checkState(boolean, String, Object...)} for details. */ public static void checkState(boolean b, String errorMessageTemplate, int p1, int p2) { if (!b) { throw new IllegalStateException(format(errorMessageTemplate, p1, p2)); } } /** * Ensures the truth of an expression involving the state of the calling instance, but not * involving any parameters to the calling method. * *

See {@link #checkState(boolean, String, Object...)} for details. */ public static void checkState(boolean b, String errorMessageTemplate, int p1, int p2, int p3) { if (!b) { throw new IllegalStateException(format(errorMessageTemplate, p1, p2, p3)); } } /** * Ensures the truth of an expression involving the state of the calling instance, but not * involving any parameters to the calling method. * *

See {@link #checkState(boolean, String, Object...)} for details. */ public static void checkState(boolean b, String errorMessageTemplate, double p) { if (!b) { throw new IllegalStateException(format(errorMessageTemplate, p)); } } /** * Ensures the truth of an expression involving the state of the calling instance, but not * involving any parameters to the calling method. * *

See {@link #checkState(boolean, String, Object...)} for details. */ public static void checkState(boolean b, String errorMessageTemplate, double p1, double p2) { if (!b) { throw new IllegalStateException(format(errorMessageTemplate, p1, p2)); } } /** * Ensures the truth of an expression involving the state of the calling instance, but not * involving any parameters to the calling method. * *

See {@link #checkState(boolean, String, Object...)} for details. */ public static void checkState(boolean b, String errorMessageTemplate, double p1, double p2, double p3) { if (!b) { throw new IllegalStateException(format(errorMessageTemplate, p1, p2, p3)); } } /** * Ensures the truth of an expression involving the state of the calling instance, but not * involving any parameters to the calling method. * *

See {@link #checkState(boolean, String, Object...)} for details. */ public static void checkState(boolean b, String errorMessageTemplate, Object p) { if (!b) { throw new IllegalStateException(format(errorMessageTemplate, p)); } } /** * Ensures the truth of an expression involving the state of the calling instance, but not * involving any parameters to the calling method. * *

See {@link #checkState(boolean, String, Object...)} for details. */ public static void checkState(boolean b, String errorMessageTemplate, Object p1, Object p2) { if (!b) { throw new IllegalStateException(format(errorMessageTemplate, p1, p2)); } } /** * Ensures the truth of an expression involving the state of the calling instance, but not * involving any parameters to the calling method. * *

See {@link #checkState(boolean, String, Object...)} for details. */ public static void checkState(boolean b, String errorMessageTemplate, Object p1, Object p2, Object p3) { if (!b) { throw new IllegalStateException(format(errorMessageTemplate, p1, p2, p3)); } } public static void checkState(boolean b, Try.Supplier errorMessageSupplier) throws E { if (!b) { throw new IllegalStateException(errorMessageSupplier.get()); } } static String format(String template, Object arg) { template = String.valueOf(template); // null -> "null" // start substituting the arguments into the '%s' placeholders final StringBuilder sb = ObjectFactory.createStringBuilder(template.length() + 16); String placeholder = "{}"; int placeholderStart = template.indexOf(placeholder); if (placeholderStart < 0) { placeholder = "%s"; placeholderStart = template.indexOf(placeholder); } if (placeholderStart >= 0) { sb.append(template, 0, placeholderStart); sb.append(N.toString(arg)); sb.append(template, placeholderStart + 2, template.length()); } else { sb.append(" ["); sb.append(N.toString(arg)); sb.append(']'); } final String result = sb.toString(); ObjectFactory.recycle(sb); return result; } static String format(String template, Object arg1, Object arg2) { template = String.valueOf(template); // null -> "null" // start substituting the arguments into the '%s' placeholders final StringBuilder sb = ObjectFactory.createStringBuilder(template.length() + 32); String placeholder = "{}"; int placeholderStart = template.indexOf(placeholder); if (placeholderStart < 0) { placeholder = "%s"; placeholderStart = template.indexOf(placeholder); } int templateStart = 0; int cnt = 0; if (placeholderStart >= 0) { cnt++; sb.append(template, templateStart, placeholderStart); sb.append(N.toString(arg1)); templateStart = placeholderStart + 2; placeholderStart = template.indexOf(placeholder, templateStart); if (placeholderStart >= 0) { cnt++; sb.append(template, templateStart, placeholderStart); sb.append(N.toString(arg2)); templateStart = placeholderStart + 2; } sb.append(template, templateStart, template.length()); } if (cnt == 0) { sb.append(" ["); sb.append(N.toString(arg1)); sb.append(", "); sb.append(N.toString(arg2)); sb.append(']'); } else if (cnt == 1) { sb.append(" ["); sb.append(N.toString(arg2)); sb.append(']'); } final String result = sb.toString(); ObjectFactory.recycle(sb); return result; } static String format(String template, Object arg1, Object arg2, Object arg3) { template = String.valueOf(template); // null -> "null" // start substituting the arguments into the '%s' placeholders final StringBuilder sb = ObjectFactory.createStringBuilder(template.length() + 48); String placeholder = "{}"; int placeholderStart = template.indexOf(placeholder); if (placeholderStart < 0) { placeholder = "%s"; placeholderStart = template.indexOf(placeholder); } int templateStart = 0; int cnt = 0; if (placeholderStart >= 0) { cnt++; sb.append(template, templateStart, placeholderStart); sb.append(N.toString(arg1)); templateStart = placeholderStart + 2; placeholderStart = template.indexOf(placeholder, templateStart); if (placeholderStart >= 0) { cnt++; sb.append(template, templateStart, placeholderStart); sb.append(N.toString(arg2)); templateStart = placeholderStart + 2; placeholderStart = template.indexOf(placeholder, templateStart); if (placeholderStart >= 0) { cnt++; sb.append(template, templateStart, placeholderStart); sb.append(N.toString(arg3)); templateStart = placeholderStart + 2; } } sb.append(template, templateStart, template.length()); } if (cnt == 0) { sb.append(" ["); sb.append(N.toString(arg1)); sb.append(", "); sb.append(N.toString(arg2)); sb.append(", "); sb.append(N.toString(arg3)); sb.append(']'); } else if (cnt == 1) { sb.append(" ["); sb.append(N.toString(arg2)); sb.append(", "); sb.append(N.toString(arg3)); sb.append(']'); } else if (cnt == 2) { sb.append(" ["); sb.append(N.toString(arg3)); sb.append(']'); } final String result = sb.toString(); ObjectFactory.recycle(sb); return result; } /** * Substitutes each {@code %s} in {@code template} with an argument. These are matched by * position: the first {@code %s} gets {@code args[0]}, etc. If there are more arguments than * placeholders, the unmatched arguments will be appended to the end of the formatted message in * square braces. * * @param template a non-null string containing 0 or more {@code %s} placeholders. * @param args the arguments to be substituted into the message template. Arguments are converted * to strings using {@link String#valueOf(Object)}. Arguments can be null. */ // Note that this is somewhat-improperly used from Verify.java as well. static String format(String template, Object... args) { template = String.valueOf(template); // null -> "null" if (N.isNullOrEmpty(args)) { return template; } // start substituting the arguments into the '%s' placeholders final StringBuilder sb = ObjectFactory.createStringBuilder(template.length() + 16 * args.length); int templateStart = 0; int i = 0; String placeholder = "{}"; int placeholderStart = template.indexOf(placeholder); if (placeholderStart < 0) { placeholder = "%s"; placeholderStart = template.indexOf(placeholder); } while (placeholderStart >= 0 && i < args.length) { sb.append(template, templateStart, placeholderStart); sb.append(N.toString(args[i++])); templateStart = placeholderStart + 2; placeholderStart = template.indexOf(placeholder, templateStart); } sb.append(template, templateStart, template.length()); // if we run out of placeholders, append the extra args in square braces if (i < args.length) { sb.append(" ["); sb.append(N.toString(args[i++])); while (i < args.length) { sb.append(", "); sb.append(N.toString(args[i++])); } sb.append(']'); } final String result = sb.toString(); ObjectFactory.recycle(sb); return result; } /** * Method equals. * * @param a * @param b * @return boolean */ public static boolean equals(final boolean a, final boolean b) { return a == b; } /** * Method equals. * * @param a * @param b * @return boolean */ public static boolean equals(final char a, final char b) { return a == b; } /** * Method equals. * * @param a * @param b * @return boolean */ public static boolean equals(final byte a, final byte b) { return a == b; } /** * Method equals. * * @param a * @param b * @return boolean */ public static boolean equals(final short a, final short b) { return a == b; } /** * Method equals. * * @param a * @param b * @return boolean */ public static boolean equals(final int a, final int b) { return a == b; } /** * Method equals. * * @param a * @param b * @return boolean */ public static boolean equals(final long a, final long b) { return a == b; } /** * Method equals. * * @param a * @param b * @return boolean */ public static boolean equals(final float a, final float b) { return Float.compare(a, b) == 0; } /** * Method equals. * * @param a * @param b * @return boolean */ public static boolean equals(final double a, final double b) { return Double.compare(a, b) == 0; } /** * * @param a * @param b * @return */ public static boolean equals(final String a, final String b) { return (a == null) ? b == null : (b == null ? false : a.length() == b.length() && a.equals(b)); } /** * @param a * @param b * @return */ public static boolean equalsIgnoreCase(final String a, final String b) { return (a == null) ? b == null : (b == null ? false : a.equalsIgnoreCase(b)); } /** * compare {@code a} and {@code b} by * {@link Arrays#equals(Object[], Object[])} if both of them are array. * * @param a * @param b * @return boolean */ public static boolean equals(final Object a, final Object b) { if ((a == null) ? b == null : (b == null ? false : a.equals(b))) { return true; } if ((a != null) && (b != null)) { final Type typeA = typeOf(a.getClass()); if (typeA.isPrimitiveArray()) { final Type typeB = typeOf(b.getClass()); return typeA.clazz().equals(typeB.clazz()) && typeA.equals(a, b); } else if (typeA.isObjectArray()) { final Type typeB = typeOf(b.getClass()); return typeB.isObjectArray() && typeA.equals(a, b); } } return false; } /** * compare {@code a} and {@code b} by * {@link Arrays#equals(Object[], Object[])} if both of them are array. * * @param a * @param b * @return boolean */ public static boolean deepEquals(final Object a, final Object b) { if ((a == null) ? b == null : (b == null ? false : a.equals(b))) { return true; } if ((a != null) && (b != null) && a.getClass().isArray() && a.getClass().equals(b.getClass())) { return typeOf(a.getClass()).deepEquals(a, b); } return false; } /** * @see Arrays#equals(boolean[], boolean[]) * * @param a * @param b * @return boolean */ public static boolean equals(final boolean[] a, final boolean[] b) { return a == b || (a != null && b != null && a.length == b.length && equals(a, 0, b, 0, a.length)); } /** * * @param a * @param fromIndexA * @param b * @param fromIndexB * @param len * @return */ public static boolean equals(final boolean[] a, final int fromIndexA, final boolean[] b, final int fromIndexB, final int len) { if (len < 0) { throw new IllegalArgumentException("'len' can not be negative"); } N.checkFromIndexSize(fromIndexA, len, len(a)); N.checkFromIndexSize(fromIndexB, len, len(b)); if ((fromIndexA == fromIndexB && a == b) || len == 0) { return true; } for (int i = fromIndexA, j = fromIndexB, k = 0; k < len; i++, j++, k++) { if (a[i] != b[j]) { return false; } } return true; } /** * @see Arrays#equals(char[], char[]) * * @param a * @param b * @return boolean */ public static boolean equals(final char[] a, final char[] b) { return a == b || (a != null && b != null && a.length == b.length && equals(a, 0, b, 0, a.length)); } /** * * @param a * @param fromIndexA * @param b * @param fromIndexB * @param len * @return */ public static boolean equals(final char[] a, final int fromIndexA, final char[] b, final int fromIndexB, final int len) { if (len < 0) { throw new IllegalArgumentException("'len' can not be negative"); } N.checkFromIndexSize(fromIndexA, len, len(a)); N.checkFromIndexSize(fromIndexB, len, len(b)); if ((fromIndexA == fromIndexB && a == b) || len == 0) { return true; } for (int i = fromIndexA, j = fromIndexB, k = 0; k < len; i++, j++, k++) { if (a[i] != b[j]) { return false; } } return true; } /** * @see Arrays#equals(byte[], byte[]) * * @param a * @param b * @return boolean */ public static boolean equals(final byte[] a, final byte[] b) { return a == b || (a != null && b != null && a.length == b.length && equals(a, 0, b, 0, a.length)); } /** * * @param a * @param fromIndexA * @param b * @param fromIndexB * @param len * @return */ public static boolean equals(final byte[] a, final int fromIndexA, final byte[] b, final int fromIndexB, final int len) { if (len < 0) { throw new IllegalArgumentException("'len' can not be negative"); } N.checkFromIndexSize(fromIndexA, len, len(a)); N.checkFromIndexSize(fromIndexB, len, len(b)); if ((fromIndexA == fromIndexB && a == b) || len == 0) { return true; } for (int i = fromIndexA, j = fromIndexB, k = 0; k < len; i++, j++, k++) { if (a[i] != b[j]) { return false; } } return true; } /** * @see Arrays#equals(short[], short[]) * * @param a * @param b * @return boolean */ public static boolean equals(final short[] a, final short[] b) { return a == b || (a != null && b != null && a.length == b.length && equals(a, 0, b, 0, a.length)); } /** * * @param a * @param fromIndexA * @param b * @param fromIndexB * @param len * @return */ public static boolean equals(final short[] a, final int fromIndexA, final short[] b, final int fromIndexB, final int len) { if (len < 0) { throw new IllegalArgumentException("'len' can not be negative"); } N.checkFromIndexSize(fromIndexA, len, len(a)); N.checkFromIndexSize(fromIndexB, len, len(b)); if ((fromIndexA == fromIndexB && a == b) || len == 0) { return true; } for (int i = fromIndexA, j = fromIndexB, k = 0; k < len; i++, j++, k++) { if (a[i] != b[j]) { return false; } } return true; } /** * @see Arrays#equals(int[], int[]) * * @param a * @param b * @return boolean */ public static boolean equals(final int[] a, final int[] b) { return a == b || (a != null && b != null && a.length == b.length && equals(a, 0, b, 0, a.length)); } /** * * @param a * @param fromIndexA * @param b * @param fromIndexB * @param len * @return */ public static boolean equals(final int[] a, final int fromIndexA, final int[] b, final int fromIndexB, final int len) { if (len < 0) { throw new IllegalArgumentException("'len' can not be negative"); } N.checkFromIndexSize(fromIndexA, len, len(a)); N.checkFromIndexSize(fromIndexB, len, len(b)); if ((fromIndexA == fromIndexB && a == b) || len == 0) { return true; } for (int i = fromIndexA, j = fromIndexB, k = 0; k < len; i++, j++, k++) { if (a[i] != b[j]) { return false; } } return true; } /** * @see Arrays#equals(long[], long[]) * * @param a * @param b * @return boolean */ public static boolean equals(final long[] a, final long[] b) { return a == b || (a != null && b != null && a.length == b.length && equals(a, 0, b, 0, a.length)); } /** * * @param a * @param fromIndexA * @param b * @param fromIndexB * @param len * @return */ public static boolean equals(final long[] a, final int fromIndexA, final long[] b, final int fromIndexB, final int len) { if (len < 0) { throw new IllegalArgumentException("'len' can not be negative"); } N.checkFromIndexSize(fromIndexA, len, len(a)); N.checkFromIndexSize(fromIndexB, len, len(b)); if ((fromIndexA == fromIndexB && a == b) || len == 0) { return true; } for (int i = fromIndexA, j = fromIndexB, k = 0; k < len; i++, j++, k++) { if (a[i] != b[j]) { return false; } } return true; } /** * @see Arrays#equals(float[], float[]) * * @param a * @param b * @return boolean */ public static boolean equals(final float[] a, final float[] b) { return a == b || (a != null && b != null && a.length == b.length && equals(a, 0, b, 0, a.length)); } /** * * @param a * @param fromIndexA * @param b * @param fromIndexB * @param len * @return */ public static boolean equals(final float[] a, final int fromIndexA, final float[] b, final int fromIndexB, final int len) { if (len < 0) { throw new IllegalArgumentException("'len' can not be negative"); } N.checkFromIndexSize(fromIndexA, len, len(a)); N.checkFromIndexSize(fromIndexB, len, len(b)); if ((fromIndexA == fromIndexB && a == b) || len == 0) { return true; } for (int i = fromIndexA, j = fromIndexB, k = 0; k < len; i++, j++, k++) { if (Float.compare(a[i], b[j]) != 0) { return false; } } return true; } /** * @see Arrays#equals(double[], double[]) * * @param a * @param b * @return boolean */ public static boolean equals(final double[] a, final double[] b) { return a == b || (a != null && b != null && a.length == b.length && equals(a, 0, b, 0, a.length)); } /** * * @param a * @param fromIndexA * @param b * @param fromIndexB * @param len * @return */ public static boolean equals(final double[] a, final int fromIndexA, final double[] b, final int fromIndexB, final int len) { if (len < 0) { throw new IllegalArgumentException("'len' can not be negative"); } N.checkFromIndexSize(fromIndexA, len, len(a)); N.checkFromIndexSize(fromIndexB, len, len(b)); if ((fromIndexA == fromIndexB && a == b) || len == 0) { return true; } for (int i = fromIndexA, j = fromIndexB, k = 0; k < len; i++, j++, k++) { if (Double.compare(a[i], b[j]) != 0) { return false; } } return true; } /** * @see Arrays#equals(Object[], Object[]) * * @param a * @param b * @return boolean */ public static boolean equals(final Object[] a, final Object[] b) { return a == b || (a != null && b != null && a.length == b.length && equals(a, 0, b, 0, a.length)); } /** * * @param a * @param fromIndexA * @param b * @param fromIndexB * @param len * @return */ public static boolean equals(final Object[] a, final int fromIndexA, final Object[] b, final int fromIndexB, final int len) { if (len < 0) { throw new IllegalArgumentException("'len' can not be negative"); } N.checkFromIndexSize(fromIndexA, len, len(a)); N.checkFromIndexSize(fromIndexB, len, len(b)); if ((fromIndexA == fromIndexB && a == b) || len == 0) { return true; } else if (a.getClass().equals(b.getClass()) == false) { return false; } for (int i = fromIndexA, j = fromIndexB, k = 0; k < len; i++, j++, k++) { if (N.equals(a[i], b[j]) == false) { return false; } } return true; } /** * @see Arrays#deepEquals(Object[], Object[]) * @param a * @param b * @return */ public static boolean deepEquals(final Object[] a, final Object[] b) { return a == b || (a != null && b != null && a.length == b.length && deepEquals(a, 0, b, 0, a.length)); } public static boolean deepEquals(final Object[] a, final int fromIndexA, final Object[] b, final int fromIndexB, final int len) { if (len < 0) { throw new IllegalArgumentException("'len' can not be negative"); } N.checkFromIndexSize(fromIndexA, len, len(a)); N.checkFromIndexSize(fromIndexB, len, len(b)); if ((fromIndexA == fromIndexB && a == b) || len == 0) { return true; } else if (a.getClass().equals(b.getClass()) == false) { return false; } for (int i = fromIndexA, j = fromIndexB, k = 0; k < len; i++, j++, k++) { if (N.deepEquals(a[i], b[j]) == false) { return false; } } return true; } public static boolean equalsIgnoreCase(final String[] a, final String[] b) { return (a == null || b == null) ? a == b : (a.length == b.length && equalsIgnoreCase(a, 0, b, 0, a.length)); } /** * * @param a * @param fromIndexA * @param b * @param fromIndexB * @param len * @return */ public static boolean equalsIgnoreCase(final String[] a, final int fromIndexA, final String[] b, final int fromIndexB, final int len) { if (len < 0) { throw new IllegalArgumentException("'len' can not be negative"); } N.checkFromIndexSize(fromIndexA, len, len(a)); N.checkFromIndexSize(fromIndexB, len, len(b)); if ((fromIndexA == fromIndexB && a == b) || len == 0) { return true; } else if (a.getClass().equals(b.getClass()) == false) { return false; } for (int i = fromIndexA, j = fromIndexB, k = 0; k < len; i++, j++, k++) { if (((a[i] == null || b[j] == null) ? a == b : a[i].equalsIgnoreCase(b[j])) == false) { return false; } } return true; } /** * Method hashCode. * * @param value * @return int */ public static int hashCode(final boolean value) { return value ? 1231 : 1237; } /** * Method hashCode. * * @param value * @return int */ public static int hashCode(final char value) { return value; } /** * Method hashCode. * * @param value * @return int */ public static int hashCode(final byte value) { return value; } /** * Method hashCode. * * @param value * @return int */ public static int hashCode(final short value) { return value; } /** * Method hashCode. * * @param vaue * @return int */ public static int hashCode(final int value) { return value; } /** * Method hashCode. * * @param value * @return int */ public static int hashCode(final long value) { return (int) (value ^ (value >>> 32)); } /** * Method hashCode. * * @param value * @return int */ public static int hashCode(final float value) { return Float.floatToIntBits(value); } /** * Method hashCode. * * @param value * @return int */ public static int hashCode(final double value) { long bits = Double.doubleToLongBits(value); return (int) (bits ^ (bits >>> 32)); } /** * Method hashCode. * * @param obj * @return int */ public static int hashCode(final Object obj) { if (obj == null) { return 0; } if (obj.getClass().isArray()) { return typeOf(obj.getClass()).hashCode(obj); } return obj.hashCode(); } /** * Method deepHashCode. * * @param obj * @return int */ public static int deepHashCode(final Object obj) { if (obj == null) { return 0; } if (obj.getClass().isArray()) { return typeOf(obj.getClass()).deepHashCode(obj); } return obj.hashCode(); } /** * @see Arrays#hashCode(boolean[]) * @param a * @return */ public static int hashCode(final boolean[] a) { return a == null ? 0 : hashCode(a, 0, a.length); } public static int hashCode(final boolean[] a, final int fromIndex, final int toIndex) { if (a == null) { return 0; } int result = 1; for (int i = fromIndex; i < toIndex; i++) { result = 31 * result + (a[i] ? 1231 : 1237); } return result; } /** * @see Arrays#hashCode(char[]) * @param a * @return */ public static int hashCode(final char[] a) { return a == null ? 0 : hashCode(a, 0, a.length); } public static int hashCode(final char[] a, final int fromIndex, final int toIndex) { if (a == null) { return 0; } int result = 1; for (int i = fromIndex; i < toIndex; i++) { result = 31 * result + a[i]; } return result; } /** * @see Arrays#hashCode(byte[]) * @param a * @return */ public static int hashCode(final byte[] a) { return a == null ? 0 : hashCode(a, 0, a.length); } public static int hashCode(final byte[] a, final int fromIndex, final int toIndex) { if (a == null) { return 0; } int result = 1; for (int i = fromIndex; i < toIndex; i++) { result = 31 * result + a[i]; } return result; } /** * @see Arrays#hashCode(short[]) * @param a * @return */ public static int hashCode(final short[] a) { return a == null ? 0 : hashCode(a, 0, a.length); } public static int hashCode(final short[] a, final int fromIndex, final int toIndex) { if (a == null) { return 0; } int result = 1; for (int i = fromIndex; i < toIndex; i++) { result = 31 * result + a[i]; } return result; } /** * @see Arrays#hashCode(int[]) * @param a * @return */ public static int hashCode(final int[] a) { return a == null ? 0 : hashCode(a, 0, a.length); } public static int hashCode(final int[] a, final int fromIndex, final int toIndex) { if (a == null) { return 0; } int result = 1; for (int i = fromIndex; i < toIndex; i++) { result = 31 * result + a[i]; } return result; } /** * @see Arrays#hashCode(long[]) * @param a * @return */ public static int hashCode(final long[] a) { return a == null ? 0 : hashCode(a, 0, a.length); } public static int hashCode(final long[] a, final int fromIndex, final int toIndex) { if (a == null) { return 0; } int result = 1; for (int i = fromIndex; i < toIndex; i++) { result = 31 * result + (int) (a[i] ^ (a[i] >>> 32)); } return result; } /** * @see Arrays#hashCode(float[]) * @param a * @return */ public static int hashCode(final float[] a) { return a == null ? 0 : hashCode(a, 0, a.length); } public static int hashCode(final float[] a, final int fromIndex, final int toIndex) { if (a == null) { return 0; } int result = 1; for (int i = fromIndex; i < toIndex; i++) { result = 31 * result + Float.floatToIntBits(a[i]); } return result; } /** * @see Arrays#hashCode(double[]) * @param a * @return */ public static int hashCode(final double[] a) { return a == null ? 0 : hashCode(a, 0, a.length); } public static int hashCode(final double[] a, final int fromIndex, final int toIndex) { if (a == null) { return 0; } int result = 1; for (int i = fromIndex; i < toIndex; i++) { long bits = Double.doubleToLongBits(a[i]); result = 31 * result + (int) (bits ^ (bits >>> 32)); } return result; } /** * @see Arrays#hashCode(Object[]) * @param a * @return */ public static int hashCode(final Object[] a) { return a == null ? 0 : hashCode(a, 0, a.length); } public static int hashCode(final Object[] a, final int fromIndex, final int toIndex) { if (a == null) { return 0; } int result = 1; for (int i = fromIndex; i < toIndex; i++) { result = 31 * result + (a[i] == null ? 0 : a[i].hashCode()); } return result; } /** * @see Arrays#deepHashCode(Object[]) * @param a * @return */ public static int deepHashCode(final Object[] a) { return a == null ? 0 : deepHashCode(a, 0, a.length); } public static int deepHashCode(final Object[] a, final int fromIndex, final int toIndex) { if (a == null) { return 0; } int result = 1; for (int i = fromIndex; i < toIndex; i++) { result = 31 * result + (a[i] == null ? 0 : deepHashCode(a[i])); } return result; } /** * Method toString. * * @param value * @return int */ public static String toString(final boolean value) { return stringOf(value); } /** * Method toString. * * @param value * @return int */ public static String toString(final char value) { return stringOf(value); } /** * Method toString. * * @param value * @return int */ public static String toString(final byte value) { return stringOf(value); } /** * Method toString. * * @param value * @return int */ public static String toString(final short value) { return stringOf(value); } /** * Method toString. * * @param vaue * @return int */ public static String toString(final int value) { return stringOf(value); } /** * Method toString. * * @param value * @return int */ public static String toString(final long value) { return stringOf(value); } /** * Method toString. * * @param value * @return int */ public static String toString(final float value) { return stringOf(value); } /** * Method toString. * * @param value * @return int */ public static String toString(final double value) { return stringOf(value); } /** * Method toString. * * @param obj * @return int */ public static String toString(final Object obj) { if (obj == null) { return NULL_STRING; } else if (obj instanceof CharSequence) { return obj.toString(); } if (obj.getClass().isArray()) { return typeOf(obj.getClass()).toString(obj); } else if (obj instanceof Iterator) { final Iterator iter = (Iterator) obj; final Joiner joiner = Joiner.with(", ", "[", "]").reuseStringBuilder(true); while (iter.hasNext()) { joiner.append(N.toString(iter.next())); } return joiner.toString(); } final Integer typeIdx = CLASS_TYPE_ENUM.get(obj.getClass()); if (typeIdx == null) { return obj.toString(); } switch (typeIdx.intValue()) { case 21: return toString(((Boolean) obj).booleanValue()); case 22: return toString(((Character) obj).charValue()); case 23: return toString(((Byte) obj).byteValue()); case 24: return toString(((Short) obj).shortValue()); case 25: return toString(((Integer) obj).intValue()); case 26: return toString(((Long) obj).longValue()); case 27: return toString(((Float) obj).floatValue()); case 28: return toString(((Double) obj).doubleValue()); default: return obj.toString(); } } /** * Method deepToString. * * @param obj * @return int */ public static String deepToString(final Object obj) { if (obj == null) { return NULL_STRING; } if (obj.getClass().isArray()) { return typeOf(obj.getClass()).deepToString(obj); } return obj.toString(); } /** * @see Arrays#toString(boolean[]) * @param a * @return */ public static String toString(final boolean[] a) { if (a == null) { return N.NULL_STRING; } if (a.length == 0) { return "[]"; } return toString(a, 0, a.length); } public static String toString(final boolean[] a, final int from, final int to) { final StringBuilder sb = ObjectFactory.createStringBuilder(); try { toString(sb, a, from, to); return sb.toString(); } finally { ObjectFactory.recycle(sb); } } static void toString(final StringBuilder sb, final boolean[] a) { if (a == null) { sb.append(NULL_STRING); } else if (a.length == 0) { sb.append("[]"); } else { toString(sb, a, 0, a.length); } } static void toString(final StringBuilder sb, final boolean[] a, final int from, final int to) { sb.append(WD._BRACKET_L); for (int i = from; i < to; i++) { if (i > from) { sb.append(WD.COMMA_SPACE); } sb.append(a[i]); } sb.append(WD._BRACKET_R); } /** * @see Arrays#toString(char[]) * @param a * @return */ public static String toString(final char[] a) { if (a == null) { return N.NULL_STRING; } else if (a.length == 0) { return "[]"; } return toString(a, 0, a.length); } public static String toString(final char[] a, final int from, final int to) { final StringBuilder sb = ObjectFactory.createStringBuilder(); try { toString(sb, a, from, to); return sb.toString(); } finally { ObjectFactory.recycle(sb); } } static void toString(final StringBuilder sb, final char[] a) { if (a == null) { sb.append(NULL_STRING); } else if (a.length == 0) { sb.append("[]"); } else { toString(sb, a, 0, a.length); } } static void toString(final StringBuilder sb, final char[] a, final int from, final int to) { sb.append(WD._BRACKET_L); for (int i = from; i < to; i++) { if (i > from) { sb.append(WD.COMMA_SPACE); } sb.append(a[i]); } sb.append(WD._BRACKET_R); } /** * @see Arrays#toString(byte[]) * @param a * @return */ public static String toString(final byte[] a) { if (a == null) { return N.NULL_STRING; } else if (a.length == 0) { return "[]"; } return toString(a, 0, a.length); } public static String toString(final byte[] a, final int from, final int to) { final StringBuilder sb = ObjectFactory.createStringBuilder(); try { toString(sb, a, from, to); return sb.toString(); } finally { ObjectFactory.recycle(sb); } } static void toString(final StringBuilder sb, final byte[] a) { if (a == null) { sb.append(NULL_STRING); } else if (a.length == 0) { sb.append("[]"); } else { toString(sb, a, 0, a.length); } } static void toString(final StringBuilder sb, final byte[] a, final int from, final int to) { sb.append(WD._BRACKET_L); for (int i = from; i < to; i++) { if (i > from) { sb.append(WD.COMMA_SPACE); } sb.append(a[i]); } sb.append(WD._BRACKET_R); } /** * @see Arrays#toString(short[]) * @param a * @return */ public static String toString(final short[] a) { if (a == null) { return N.NULL_STRING; } else if (a.length == 0) { return "[]"; } return toString(a, 0, a.length); } public static String toString(final short[] a, final int from, final int to) { final StringBuilder sb = ObjectFactory.createStringBuilder(); try { toString(sb, a, from, to); return sb.toString(); } finally { ObjectFactory.recycle(sb); } } static void toString(final StringBuilder sb, final short[] a) { if (a == null) { sb.append(NULL_STRING); } else if (a.length == 0) { sb.append("[]"); } else { toString(sb, a, 0, a.length); } } static void toString(final StringBuilder sb, final short[] a, final int from, final int to) { sb.append(WD._BRACKET_L); for (int i = from; i < to; i++) { if (i > from) { sb.append(WD.COMMA_SPACE); } sb.append(a[i]); } sb.append(WD._BRACKET_R); } /** * @see Arrays#toString(int[]) * @param a * @return */ public static String toString(final int[] a) { if (a == null) { return N.NULL_STRING; } else if (a.length == 0) { return "[]"; } return toString(a, 0, a.length); } public static String toString(final int[] a, final int from, final int to) { final StringBuilder sb = ObjectFactory.createStringBuilder(); try { toString(sb, a, from, to); return sb.toString(); } finally { ObjectFactory.recycle(sb); } } static void toString(final StringBuilder sb, final int[] a) { if (a == null) { sb.append(NULL_STRING); } else if (a.length == 0) { sb.append("[]"); } else { toString(sb, a, 0, a.length); } } static void toString(final StringBuilder sb, final int[] a, final int from, final int to) { sb.append(WD._BRACKET_L); for (int i = from; i < to; i++) { if (i > from) { sb.append(WD.COMMA_SPACE); } sb.append(a[i]); } sb.append(WD._BRACKET_R); } /** * @see Arrays#toString(long[]) * @param a * @return */ public static String toString(final long[] a) { if (a == null) { return N.NULL_STRING; } else if (a.length == 0) { return "[]"; } return toString(a, 0, a.length); } public static String toString(final long[] a, final int from, final int to) { final StringBuilder sb = ObjectFactory.createStringBuilder(); try { toString(sb, a, from, to); return sb.toString(); } finally { ObjectFactory.recycle(sb); } } static void toString(final StringBuilder sb, final long[] a) { if (a == null) { sb.append(NULL_STRING); } else if (a.length == 0) { sb.append("[]"); } else { toString(sb, a, 0, a.length); } } static void toString(final StringBuilder sb, final long[] a, final int from, final int to) { sb.append(WD._BRACKET_L); for (int i = from; i < to; i++) { if (i > from) { sb.append(WD.COMMA_SPACE); } sb.append(a[i]); } sb.append(WD._BRACKET_R); } /** * @see Arrays#toString(float[]) * @param a * @return */ public static String toString(final float[] a) { if (a == null) { return N.NULL_STRING; } else if (a.length == 0) { return "[]"; } return toString(a, 0, a.length); } public static String toString(final float[] a, final int from, final int to) { final StringBuilder sb = ObjectFactory.createStringBuilder(); try { toString(sb, a, from, to); return sb.toString(); } finally { ObjectFactory.recycle(sb); } } static void toString(final StringBuilder sb, final float[] a) { if (a == null) { sb.append(NULL_STRING); } else if (a.length == 0) { sb.append("[]"); } else { toString(sb, a, 0, a.length); } } static void toString(final StringBuilder sb, final float[] a, final int from, final int to) { sb.append(WD._BRACKET_L); for (int i = from; i < to; i++) { if (i > from) { sb.append(WD.COMMA_SPACE); } sb.append(a[i]); } sb.append(WD._BRACKET_R); } /** * @see Arrays#toString(double[]) * @param a * @return */ public static String toString(final double[] a) { if (a == null) { return N.NULL_STRING; } else if (a.length == 0) { return "[]"; } return toString(a, 0, a.length); } public static String toString(final double[] a, final int from, final int to) { final StringBuilder sb = ObjectFactory.createStringBuilder(); try { toString(sb, a, from, to); return sb.toString(); } finally { ObjectFactory.recycle(sb); } } static void toString(final StringBuilder sb, final double[] a) { if (a == null) { sb.append(NULL_STRING); } else if (a.length == 0) { sb.append("[]"); } else { toString(sb, a, 0, a.length); } } static void toString(final StringBuilder sb, final double[] a, final int from, final int to) { sb.append(WD._BRACKET_L); for (int i = from; i < to; i++) { if (i > from) { sb.append(WD.COMMA_SPACE); } sb.append(a[i]); } sb.append(WD._BRACKET_R); } /** * @see Arrays#toString(Object[]) * @param a * @return */ public static String toString(final Object[] a) { if (a == null) { return N.NULL_STRING; } else if (a.length == 0) { return "[]"; } return toString(a, 0, a.length); } public static String toString(final Object[] a, final int from, final int to) { final StringBuilder sb = ObjectFactory.createStringBuilder(); try { toString(sb, a, from, to); return sb.toString(); } finally { ObjectFactory.recycle(sb); } } static void toString(final StringBuilder sb, final Object[] a) { if (a == null) { sb.append(NULL_STRING); } else if (a.length == 0) { sb.append("[]"); } else { toString(sb, a, 0, a.length); } } static void toString(final StringBuilder sb, final Object[] a, final int from, final int to) { sb.append(WD._BRACKET_L); for (int i = from; i < to; i++) { if (i > from) { sb.append(WD.COMMA_SPACE); } sb.append(toString(a[i])); } sb.append(WD._BRACKET_R); } public static String toString(final Object a, final String defaultIfNull) { return a == null ? defaultIfNull : toString(a); } /** * @see Arrays#deepToString(Object[]) * @param a * @return */ public static String deepToString(final Object[] a) { if (a == null) { return N.NULL_STRING; } else if (a.length == 0) { return "[]"; } return deepToString(a, 0, a.length); } public static String deepToString(final Object[] a, final int from, final int to) { final StringBuilder sb = ObjectFactory.createStringBuilder(); final Set set = ObjectFactory.createSet(); try { deepToString(sb, a, from, to, set); return sb.toString(); } finally { ObjectFactory.recycle(set); ObjectFactory.recycle(sb); } } static void deepToString(final StringBuilder sb, final Object[] a, final Set processedElements) { deepToString(sb, a, 0, a.length, processedElements); } static void deepToString(final StringBuilder sb, final Object[] a, final int from, final int to, final Set processedElements) { processedElements.add(a); sb.append(WD._BRACKET_L); Object element = null; Class eClass = null; for (int i = from; i < to; i++) { element = a[i]; if (i > from) { sb.append(WD.COMMA_SPACE); } if (element == null) { sb.append(N.NULL_CHAR_ARRAY); continue; } eClass = element.getClass(); if (eClass.isArray()) { Integer enumInt = CLASS_TYPE_ENUM.get(eClass); int num = enumInt == null ? 0 : enumInt.intValue(); switch (num) { case 11: toString(sb, (boolean[]) element); break; case 12: toString(sb, (char[]) element); break; case 13: toString(sb, (byte[]) element); break; case 14: toString(sb, (short[]) element); break; case 15: toString(sb, (int[]) element); break; case 16: toString(sb, (long[]) element); break; case 17: toString(sb, (float[]) element); break; case 18: toString(sb, (double[]) element); break; default: if (processedElements.contains(element)) { sb.append("[...]"); } else { deepToString(sb, (Object[]) element, processedElements); } } } else { // element is non-null and not an array sb.append(element.toString()); } } sb.append(WD._BRACKET_R); processedElements.remove(a); } public static String deepToString(final Object[] a, final String defaultIfNull) { return a == null ? defaultIfNull : deepToString(a); } /** *

* Reverses the order of the given array. *

* * @param a */ public static void reverse(final boolean[] a) { if (N.isNullOrEmpty(a)) { return; } reverse(a, 0, a.length); } /** *

* Reverses the order of the given array in the given range. *

* * @param a * @param fromIndex * @param toIndex */ public static void reverse(final boolean[] a, int fromIndex, int toIndex) { checkFromToIndex(fromIndex, toIndex, len(a)); if (N.isNullOrEmpty(a) || a.length == 1) { return; } boolean tmp = false; for (int i = fromIndex, j = toIndex - 1; i < j; i++, j--) { tmp = a[i]; a[i] = a[j]; a[j] = tmp; } } /** *

* Reverses the order of the given array. *

* * @param a */ public static void reverse(final char[] a) { if (N.isNullOrEmpty(a)) { return; } reverse(a, 0, a.length); } /** *

* Reverses the order of the given array in the given range. *

* * @param a * @param fromIndex * @param toIndex */ public static void reverse(final char[] a, int fromIndex, int toIndex) { checkFromToIndex(fromIndex, toIndex, len(a)); if (N.isNullOrEmpty(a) || a.length == 1) { return; } char tmp = 0; for (int i = fromIndex, j = toIndex - 1; i < j; i++, j--) { tmp = a[i]; a[i] = a[j]; a[j] = tmp; } } /** *

* Reverses the order of the given array. *

* * @param a */ public static void reverse(final byte[] a) { if (N.isNullOrEmpty(a)) { return; } reverse(a, 0, a.length); } /** *

* Reverses the order of the given array in the given range. *

* * @param a * @param fromIndex * @param toIndex */ public static void reverse(final byte[] a, int fromIndex, int toIndex) { checkFromToIndex(fromIndex, toIndex, len(a)); if (N.isNullOrEmpty(a) || a.length == 1) { return; } byte tmp = 0; for (int i = fromIndex, j = toIndex - 1; i < j; i++, j--) { tmp = a[i]; a[i] = a[j]; a[j] = tmp; } } /** *

* Reverses the order of the given array. *

* * @param a */ public static void reverse(final short[] a) { if (N.isNullOrEmpty(a)) { return; } reverse(a, 0, a.length); } /** *

* Reverses the order of the given array in the given range. *

* * @param a * @param fromIndex * @param toIndex */ public static void reverse(final short[] a, int fromIndex, int toIndex) { checkFromToIndex(fromIndex, toIndex, len(a)); if (N.isNullOrEmpty(a) || a.length == 1) { return; } short tmp = 0; for (int i = fromIndex, j = toIndex - 1; i < j; i++, j--) { tmp = a[i]; a[i] = a[j]; a[j] = tmp; } } /** *

* Reverses the order of the given array. *

* * @param a */ public static void reverse(final int[] a) { if (N.isNullOrEmpty(a)) { return; } reverse(a, 0, a.length); } /** *

* Reverses the order of the given array in the given range. *

* * @param a * @param fromIndex * @param toIndex */ public static void reverse(final int[] a, int fromIndex, int toIndex) { checkFromToIndex(fromIndex, toIndex, len(a)); if (N.isNullOrEmpty(a) || a.length == 1) { return; } int tmp = 0; for (int i = fromIndex, j = toIndex - 1; i < j; i++, j--) { tmp = a[i]; a[i] = a[j]; a[j] = tmp; } } /** *

* Reverses the order of the given array. *

* * @param a */ public static void reverse(final long[] a) { if (N.isNullOrEmpty(a)) { return; } reverse(a, 0, a.length); } /** *

* Reverses the order of the given array in the given range. *

* * @param a * @param fromIndex * @param toIndex */ public static void reverse(final long[] a, int fromIndex, int toIndex) { checkFromToIndex(fromIndex, toIndex, len(a)); if (N.isNullOrEmpty(a) || a.length == 1) { return; } long tmp = 0L; for (int i = fromIndex, j = toIndex - 1; i < j; i++, j--) { tmp = a[i]; a[i] = a[j]; a[j] = tmp; } } /** *

* Reverses the order of the given array. *

* * @param a */ public static void reverse(final float[] a) { if (N.isNullOrEmpty(a)) { return; } reverse(a, 0, a.length); } /** *

* Reverses the order of the given array in the given range. *

* * @param a * @param fromIndex * @param toIndex */ public static void reverse(final float[] a, int fromIndex, int toIndex) { checkFromToIndex(fromIndex, toIndex, len(a)); if (N.isNullOrEmpty(a) || a.length == 1) { return; } float tmp = 0f; for (int i = fromIndex, j = toIndex - 1; i < j; i++, j--) { tmp = a[i]; a[i] = a[j]; a[j] = tmp; } } /** *

* Reverses the order of the given array. *

* * @param a */ public static void reverse(final double[] a) { if (N.isNullOrEmpty(a)) { return; } reverse(a, 0, a.length); } /** *

* Reverses the order of the given array in the given range. *

* * @param a * @param fromIndex * @param toIndex */ public static void reverse(final double[] a, int fromIndex, int toIndex) { checkFromToIndex(fromIndex, toIndex, len(a)); if (N.isNullOrEmpty(a) || a.length == 1) { return; } double tmp = 0d; for (int i = fromIndex, j = toIndex - 1; i < j; i++, j--) { tmp = a[i]; a[i] = a[j]; a[j] = tmp; } } // Reverse // ----------------------------------------------------------------------- /** *

* Reverses the order of the given array. *

* *

* There is no special handling for multi-dimensional arrays. *

* * @param a */ public static void reverse(final Object[] a) { if (N.isNullOrEmpty(a)) { return; } reverse(a, 0, a.length); } /** *

* Reverses the order of the given array in the given range. *

* * @param a * @param fromIndex * @param toIndex */ public static void reverse(final Object[] a, int fromIndex, int toIndex) { checkFromToIndex(fromIndex, toIndex, len(a)); if (N.isNullOrEmpty(a) || a.length == 1) { return; } Object tmp = null; for (int i = fromIndex, j = toIndex - 1; i < j; i++, j--) { tmp = a[i]; a[i] = a[j]; a[j] = tmp; } } public static void reverse(final List list) { if (N.isNullOrEmpty(list)) { return; } reverse(list, 0, list.size()); } public static void reverse(final List list, int fromIndex, int toIndex) { checkFromToIndex(fromIndex, toIndex, len(list)); if (N.isNullOrEmpty(list) || list.size() == 1) { return; } final List l = (List) list; if (toIndex - fromIndex < REVERSE_THRESHOLD || list instanceof RandomAccess) { for (int i = fromIndex, j = toIndex - 1; i < j; i++, j--) { l.set(i, l.set(j, l.get(i))); } } else { final ListIterator fwd = l.listIterator(fromIndex); final ListIterator rev = l.listIterator(toIndex); for (int i = 0, mid = (toIndex - fromIndex) / 2; i < mid; i++) { Object tmp = fwd.next(); fwd.set(rev.previous()); rev.set(tmp); } } } @SuppressWarnings("rawtypes") public static void reverse(final Collection c) { if (N.isNullOrEmpty(c) || c.size() < 2) { return; } if (c instanceof List) { N.reverse((List) c); } else { final Object[] tmp = c.toArray(); N.reverse(tmp); c.clear(); c.addAll((List) Arrays.asList(tmp)); } } public static void rotate(final boolean[] a, int distance) { if (a == null || a.length <= 1 || distance % a.length == 0) { return; } final int len = a.length; distance = distance % len; if (distance < 0) { distance += len; } if (distance == 0) { return; } for (int i = 0, count = 0; count < len; i++) { boolean tmp = a[i]; int curr = i; int next = curr < distance ? curr - distance + len : curr - distance; while (next != i) { a[curr] = a[next]; curr = next; next = curr < distance ? curr - distance + len : curr - distance; count++; } a[curr] = tmp; count++; } } public static void rotate(final char[] a, int distance) { if (a == null || a.length <= 1 || distance % a.length == 0) { return; } final int len = a.length; distance = distance % len; if (distance < 0) { distance += len; } if (distance == 0) { return; } for (int i = 0, count = 0; count < len; i++) { char tmp = a[i]; int curr = i; int next = curr < distance ? curr - distance + len : curr - distance; while (next != i) { a[curr] = a[next]; curr = next; next = curr < distance ? curr - distance + len : curr - distance; count++; } a[curr] = tmp; count++; } } public static void rotate(final byte[] a, int distance) { if (a == null || a.length <= 1 || distance % a.length == 0) { return; } final int len = a.length; distance = distance % len; if (distance < 0) { distance += len; } if (distance == 0) { return; } for (int i = 0, count = 0; count < len; i++) { byte tmp = a[i]; int curr = i; int next = curr < distance ? curr - distance + len : curr - distance; while (next != i) { a[curr] = a[next]; curr = next; next = curr < distance ? curr - distance + len : curr - distance; count++; } a[curr] = tmp; count++; } } public static void rotate(final short[] a, int distance) { if (a == null || a.length <= 1 || distance % a.length == 0) { return; } final int len = a.length; distance = distance % len; if (distance < 0) { distance += len; } if (distance == 0) { return; } for (int i = 0, count = 0; count < len; i++) { short tmp = a[i]; int curr = i; int next = curr < distance ? curr - distance + len : curr - distance; while (next != i) { a[curr] = a[next]; curr = next; next = curr < distance ? curr - distance + len : curr - distance; count++; } a[curr] = tmp; count++; } } public static void rotate(final int[] a, int distance) { if (a == null || a.length <= 1 || distance % a.length == 0) { return; } final int len = a.length; distance = distance % len; if (distance < 0) { distance += len; } if (distance == 0) { return; } for (int i = 0, count = 0; count < len; i++) { int tmp = a[i]; int curr = i; int next = curr < distance ? curr - distance + len : curr - distance; while (next != i) { a[curr] = a[next]; curr = next; next = curr < distance ? curr - distance + len : curr - distance; count++; } a[curr] = tmp; count++; } } public static void rotate(final long[] a, int distance) { if (a == null || a.length <= 1 || distance % a.length == 0) { return; } final int len = a.length; distance = distance % len; if (distance < 0) { distance += len; } if (distance == 0) { return; } for (int i = 0, count = 0; count < len; i++) { long tmp = a[i]; int curr = i; int next = curr < distance ? curr - distance + len : curr - distance; while (next != i) { a[curr] = a[next]; curr = next; next = curr < distance ? curr - distance + len : curr - distance; count++; } a[curr] = tmp; count++; } } public static void rotate(final float[] a, int distance) { if (a == null || a.length <= 1 || distance % a.length == 0) { return; } final int len = a.length; distance = distance % len; if (distance < 0) { distance += len; } if (distance == 0) { return; } for (int i = 0, count = 0; count < len; i++) { float tmp = a[i]; int curr = i; int next = curr < distance ? curr - distance + len : curr - distance; while (next != i) { a[curr] = a[next]; curr = next; next = curr < distance ? curr - distance + len : curr - distance; count++; } a[curr] = tmp; count++; } } public static void rotate(final double[] a, int distance) { if (a == null || a.length <= 1 || distance % a.length == 0) { return; } final int len = a.length; distance = distance % len; if (distance < 0) { distance += len; } if (distance == 0) { return; } for (int i = 0, count = 0; count < len; i++) { double tmp = a[i]; int curr = i; int next = curr < distance ? curr - distance + len : curr - distance; while (next != i) { a[curr] = a[next]; curr = next; next = curr < distance ? curr - distance + len : curr - distance; count++; } a[curr] = tmp; count++; } } public static void rotate(final Object[] a, int distance) { if (a == null || a.length <= 1 || distance % a.length == 0) { return; } final int len = a.length; distance = distance % len; if (distance < 0) { distance += len; } if (distance == 0) { return; } for (int i = 0, count = 0; count < len; i++) { Object tmp = a[i]; int curr = i; int next = curr < distance ? curr - distance + len : curr - distance; while (next != i) { a[curr] = a[next]; curr = next; next = curr < distance ? curr - distance + len : curr - distance; count++; } a[curr] = tmp; count++; } } /** * * @see java.util.Collections#rotate(List, int) */ public static void rotate(final List list, final int distance) { if (list == null || list.size() <= 1 || distance % list.size() == 0) { return; } Collections.rotate(list, distance); } @SuppressWarnings("rawtypes") public static void rotate(final Collection c, final int distance) { if (N.isNullOrEmpty(c) || c.size() < 2) { return; } if (c instanceof List) { N.rotate((List) c, distance); } else { final Object[] tmp = c.toArray(); N.rotate(tmp, distance); c.clear(); c.addAll((List) Arrays.asList(tmp)); } } public static void shuffle(final boolean[] a) { shuffle(a, RAND); } public static void shuffle(final boolean[] a, final Random rnd) { if (N.isNullOrEmpty(a) || a.length == 1) { return; } for (int i = a.length; i > 1; i--) { swap(a, i - 1, rnd.nextInt(i)); } } public static void shuffle(final char[] a) { shuffle(a, RAND); } public static void shuffle(final char[] a, final Random rnd) { if (N.isNullOrEmpty(a) || a.length == 1) { return; } for (int i = a.length; i > 1; i--) { swap(a, i - 1, rnd.nextInt(i)); } } public static void shuffle(final byte[] a) { shuffle(a, RAND); } public static void shuffle(final byte[] a, final Random rnd) { if (N.isNullOrEmpty(a) || a.length == 1) { return; } for (int i = a.length; i > 1; i--) { swap(a, i - 1, rnd.nextInt(i)); } } public static void shuffle(final short[] a) { shuffle(a, RAND); } public static void shuffle(final short[] a, final Random rnd) { if (N.isNullOrEmpty(a) || a.length == 1) { return; } for (int i = a.length; i > 1; i--) { swap(a, i - 1, rnd.nextInt(i)); } } public static void shuffle(final int[] a) { shuffle(a, RAND); } public static void shuffle(final int[] a, final Random rnd) { if (N.isNullOrEmpty(a) || a.length == 1) { return; } for (int i = a.length; i > 1; i--) { swap(a, i - 1, rnd.nextInt(i)); } } public static void shuffle(final long[] a) { shuffle(a, RAND); } public static void shuffle(final long[] a, final Random rnd) { if (N.isNullOrEmpty(a) || a.length == 1) { return; } for (int i = a.length; i > 1; i--) { swap(a, i - 1, rnd.nextInt(i)); } } public static void shuffle(final float[] a) { shuffle(a, RAND); } public static void shuffle(final float[] a, final Random rnd) { if (N.isNullOrEmpty(a) || a.length == 1) { return; } for (int i = a.length; i > 1; i--) { swap(a, i - 1, rnd.nextInt(i)); } } public static void shuffle(final double[] a) { shuffle(a, RAND); } public static void shuffle(final double[] a, final Random rnd) { if (N.isNullOrEmpty(a) || a.length == 1) { return; } for (int i = a.length; i > 1; i--) { swap(a, i - 1, rnd.nextInt(i)); } } public static void shuffle(final T[] a) { shuffle(a, RAND); } public static void shuffle(final T[] a, final Random rnd) { if (N.isNullOrEmpty(a) || a.length == 1) { return; } for (int i = a.length; i > 1; i--) { swap(a, i - 1, rnd.nextInt(i)); } } public static void shuffle(final List list) { shuffle(list, RAND); } /** * * @see java.util.Collections#shuffle(List, Random) */ public static void shuffle(final List list, final Random rnd) { if (N.isNullOrEmpty(list) || list.size() == 1) { return; } Collections.shuffle(list, rnd); } @SuppressWarnings("rawtypes") public static void shuffle(final Collection c) { if (N.isNullOrEmpty(c) || c.size() < 2) { return; } if (c instanceof List) { N.shuffle((List) c); } else { final Object[] tmp = c.toArray(); N.shuffle(tmp); c.clear(); c.addAll((List) Arrays.asList(tmp)); } } @SuppressWarnings("rawtypes") public static void shuffle(final Collection c, final Random rnd) { if (N.isNullOrEmpty(c) || c.size() < 2) { return; } if (c instanceof List) { N.shuffle((List) c, rnd); } else { final Object[] tmp = c.toArray(); N.shuffle(tmp, rnd); c.clear(); c.addAll((List) Arrays.asList(tmp)); } } public static void swap(final boolean[] a, final int i, final int j) { final boolean tmp = a[i]; a[i] = a[j]; a[j] = tmp; } public static void swap(final char[] a, final int i, final int j) { final char tmp = a[i]; a[i] = a[j]; a[j] = tmp; } public static void swap(final byte[] a, final int i, final int j) { final byte tmp = a[i]; a[i] = a[j]; a[j] = tmp; } public static void swap(final short[] a, final int i, final int j) { final short tmp = a[i]; a[i] = a[j]; a[j] = tmp; } public static void swap(final int[] a, final int i, final int j) { final int tmp = a[i]; a[i] = a[j]; a[j] = tmp; } public static void swap(final long[] a, final int i, final int j) { final long tmp = a[i]; a[i] = a[j]; a[j] = tmp; } public static void swap(final float[] a, final int i, final int j) { final float tmp = a[i]; a[i] = a[j]; a[j] = tmp; } public static void swap(final double[] a, final int i, final int j) { final double tmp = a[i]; a[i] = a[j]; a[j] = tmp; } public static void swap(final Object[] a, final int i, final int j) { final Object tmp = a[i]; a[i] = a[j]; a[j] = tmp; } public static void swap(final List list, final int i, final int j) { Collections.swap(list, i, j); } /** * * @param pair * @throws NullPointerExceptoin if the specified {@code pair} is {@code null}. */ public static void swap(final Pair pair) { pair.set(pair.right, pair.left); } /** * * @param pair * @param predicate * @throws NullPointerExceptoin if the specified {@code pair} or {@code predicate} is {@code null}. * @throws E */ public static void swapIf(final Pair pair, Try.Predicate, E> predicate) throws E { if (predicate.test(pair)) { pair.set(pair.right, pair.left); } } /** * * @param triple * @throws NullPointerExceptoin if the specified {@code pair} is {@code null}. */ public static void swap(final Triple triple) { final T left = triple.left; triple.setLeft(triple.right); triple.setRight(left); } /** * * @param triple * @param predicate * @throws NullPointerExceptoin if the specified {@code triple} or {@code predicate} is {@code null}. * @throws E */ public static void swapIf(final Triple triple, Try.Predicate, E> predicate) throws E { if (predicate.test(triple)) { final T left = triple.left; triple.setLeft(triple.right); triple.setRight(left); } } public static void fill(final boolean[] a, final boolean val) { Arrays.fill(a, val); } public static void fill(final boolean[] a, final int fromIndex, final int toIndex, final boolean val) { Arrays.fill(a, fromIndex, toIndex, val); } public static void fill(final char[] a, final char val) { Arrays.fill(a, val); } public static void fill(final char[] a, final int fromIndex, final int toIndex, final char val) { Arrays.fill(a, fromIndex, toIndex, val); } public static void fill(final byte[] a, final byte val) { Arrays.fill(a, val); } public static void fill(final byte[] a, final int fromIndex, final int toIndex, final byte val) { Arrays.fill(a, fromIndex, toIndex, val); } public static void fill(final short[] a, final short val) { Arrays.fill(a, val); } public static void fill(final short[] a, final int fromIndex, final int toIndex, final short val) { Arrays.fill(a, fromIndex, toIndex, val); } public static void fill(final int[] a, final int val) { Arrays.fill(a, val); } public static void fill(final int[] a, final int fromIndex, final int toIndex, final int val) { Arrays.fill(a, fromIndex, toIndex, val); } public static void fill(final long[] a, final long val) { Arrays.fill(a, val); } public static void fill(final long[] a, final int fromIndex, final int toIndex, final long val) { Arrays.fill(a, fromIndex, toIndex, val); } public static void fill(final float[] a, final float val) { Arrays.fill(a, val); } public static void fill(final float[] a, final int fromIndex, final int toIndex, final float val) { Arrays.fill(a, fromIndex, toIndex, val); } public static void fill(final double[] a, final double val) { Arrays.fill(a, val); } public static void fill(final double[] a, final int fromIndex, final int toIndex, final double val) { Arrays.fill(a, fromIndex, toIndex, val); } public static void fill(final Object[] a, final Object val) { Arrays.fill(a, val); } public static void fill(final Object[] a, final int fromIndex, final int toIndex, final Object val) { Arrays.fill(a, fromIndex, toIndex, val); } public static void fill(final List list, final T val) { fill(list, 0, list.size(), val); } /** * The specified value will be added/inserted into the specified List. * The List will be extended automatically if the size of the List is less than the specified toIndex. * @param list * @param fromIndex * @param toIndex * @param val */ public static void fill(final List list, final int fromIndex, final int toIndex, final T val) { checkFromToIndex(fromIndex, toIndex, Integer.MAX_VALUE); int size = list.size(); if (size < toIndex) { if (fromIndex < size) { for (int i = fromIndex; i < size; i++) { list.set(i, val); } } else { for (int i = size; i < fromIndex; i++) { list.add(null); } } for (int i = 0, len = toIndex - list.size(); i < len; i++) { list.add(val); } } else { if (toIndex - fromIndex < FILL_THRESHOLD || list instanceof RandomAccess) { for (int i = fromIndex; i < toIndex; i++) { list.set(i, val); } } else { final ListIterator itr = list.listIterator(fromIndex); for (int i = fromIndex; i < toIndex; i++) { itr.next(); itr.set(val); } } } } /** * Fill the properties of the entity with random values. * * @param entity an entity object with getter/setter method */ public static void fill(Object entity) { final Class entityClass = entity.getClass(); if (N.isEntity(entityClass) == false) { throw new IllegalArgumentException(entityClass.getCanonicalName() + " is not a valid entity class with property getter/setter method"); } Type type = null; Class parameterClass = null; Object propValue = null; for (Method method : ClassUtil.getPropSetMethodList(entityClass).values()) { parameterClass = method.getParameterTypes()[0]; type = N.typeOf(parameterClass); if (String.class.equals(parameterClass)) { propValue = N.uuid().substring(0, 16); } else if (boolean.class.equals(parameterClass) || Boolean.class.equals(parameterClass)) { propValue = RAND.nextInt() % 2 == 0 ? false : true; } else if (char.class.equals(parameterClass) || Character.class.equals(parameterClass)) { propValue = (char) ('a' + RAND.nextInt() % 26); } else if (int.class.equals(parameterClass) || Integer.class.equals(parameterClass)) { propValue = RAND.nextInt(); } else if (long.class.equals(parameterClass) || Long.class.equals(parameterClass)) { propValue = RAND.nextLong(); } else if (float.class.equals(parameterClass) || Float.class.equals(parameterClass)) { propValue = RAND.nextFloat(); } else if (double.class.equals(parameterClass) || Double.class.equals(parameterClass)) { propValue = RAND.nextDouble(); } else if (byte.class.equals(parameterClass) || Byte.class.equals(parameterClass)) { propValue = Integer.valueOf(RAND.nextInt()).byteValue(); } else if (short.class.equals(parameterClass) || Short.class.equals(parameterClass)) { propValue = Integer.valueOf(RAND.nextInt()).shortValue(); } else if (Number.class.isAssignableFrom(parameterClass)) { propValue = type.valueOf(String.valueOf(RAND.nextInt())); } else if (java.util.Date.class.isAssignableFrom(parameterClass) || Calendar.class.isAssignableFrom(parameterClass)) { propValue = type.valueOf(String.valueOf(DateUtil.currentMillis())); } else if (N.isEntity(parameterClass)) { propValue = fill(parameterClass); } else { propValue = type.defaultValue(); } ClassUtil.setPropValue(entity, method, propValue); } } /** * Fill the properties of the entity with random values. * * @param entityClass entity class with getter/setter methods * @return */ public static T fill(Class entityClass) { if (N.isEntity(entityClass) == false) { throw new IllegalArgumentException(entityClass.getCanonicalName() + " is not a valid entity class with property getter/setter method"); } final T entity = N.newInstance(entityClass); fill(entity); return entity; } /** * Fill the properties of the entity with random values. * * @param entityClass entity class with getter/setter methods * @param len * @return * @deprecated */ @Deprecated public static List fill(Class entityClass, int len) { if (N.isEntity(entityClass) == false) { throw new IllegalArgumentException(entityClass.getCanonicalName() + " is not a valid entity class with property getter/setter method"); } final List resultList = new ArrayList<>(len); for (int i = 0; i < len; i++) { final T entity = N.newInstance(entityClass); fill(entity); resultList.add(entity); } return resultList; } public static List repeat(final T value, final int n) { N.checkArgNotNegative(n, "n"); final List res = new ArrayList<>(n); fill(res, 0, n, value); return res; } /** * Repeats the elements in the specified Collection one by one. * *
     * 
     * Seq.nRepeat(N.asList(1, 2, 3), 2) => [1, 1, 2, 2, 3, 3]
     * 
     * 
* * @param c * @param n * @return */ public static List repeatEach(final Collection c, final int n) { N.checkArgNotNegative(n, "n"); if (n == 0 || isNullOrEmpty(c)) { return new ArrayList(); } final List result = new ArrayList<>(c.size() * n); for (T e : c) { for (int i = 0; i < n; i++) { result.add(e); } } return result; } /** *
     * 
     * Seq.repeat(N.asList(1, 2, 3), 2) => [1, 2, 3, 1, 2, 3]
     * 
     * 
* @param c * @param n * @return */ public static List repeatAll(final Collection c, final int n) { N.checkArgNotNegative(n, "n"); if (n == 0 || isNullOrEmpty(c)) { return new ArrayList(); } final List result = new ArrayList<>(c.size() * n); for (int i = 0; i < n; i++) { result.addAll(c); } return result; } /** * Repeats the elements in the specified Collection one by one till reach the specified size. * *
     * 
     * Seq.nRepeatToSize(N.asList(1, 2, 3), 5) => [1, 1, 2, 2, 3]
     * 
     * 
* * @param c * @param size * @return */ public static List repeatEachToSize(final Collection c, final int size) { N.checkArgNotNegative(size, "size"); checkArgument(size == 0 || notNullOrEmpty(c), "Collection can not be empty or null when size > 0"); if (size == 0 || isNullOrEmpty(c)) { return new ArrayList(); } final int n = size / c.size(); int mod = size % c.size(); final List result = new ArrayList<>(size); for (T e : c) { for (int i = 0, len = mod-- > 0 ? n + 1 : n; i < len; i++) { result.add(e); } if (result.size() == size) { break; } } return result; } /** * *
     * 
     * Seq.repeatToSize(N.asList(1, 2, 3), 5) => [1, 2, 3, 1, 2]
     * 
     * 
* * @param c * @param size * @return */ public static List repeatAllToSize(final Collection c, final int size) { N.checkArgNotNegative(size, "size"); checkArgument(size == 0 || notNullOrEmpty(c), "Collection can not be empty or null when size > 0"); if (size == 0 || isNullOrEmpty(c)) { return new ArrayList(); } final List result = new ArrayList<>(size); while (result.size() < size) { if (c.size() <= size - result.size()) { result.addAll(c); } else { final Iterator iter = c.iterator(); for (int i = 0, len = size - result.size(); i < len; i++) { result.add(iter.next()); } } } return result; } /** * Copies all of the elements from one list into another. After the * operation, the index of each copied element in the destination list * will be identical to its index in the source list. The destination * list must be at least as long as the source list. If it is longer, the * remaining elements in the destination list are unaffected.

* * This method runs in linear time. * @param src The source list. * @param dest The destination list. * @throws IndexOutOfBoundsException if the destination list is too small * to contain the entire source List. * @throws UnsupportedOperationException if the destination list's * list-iterator does not support the set operation. * * @see java.util.Collections#copy(List, List) */ public static void copy(final List src, final List dest) { if (src.size() > dest.size()) { throw new IllegalArgumentException("Source does not fit in dest"); } Collections.copy(dest, src); } public static void copy(final List src, final int srcPos, final List dest, final int destPos, final int length) { if (src.size() < srcPos + length) { throw new IllegalArgumentException("The size of src list less than " + (srcPos + length)); } if (dest.size() < destPos + length) { throw new IllegalArgumentException("The size of dest list less than " + (destPos + length)); } if (src instanceof RandomAccess && dest instanceof RandomAccess) { for (int i = 0; i < length; i++) { dest.set(destPos + i, src.get(srcPos + i)); } } else { final ListIterator srcIterator = src.listIterator(); final ListIterator destIterator = dest.listIterator(); int idx = 0; while (idx < srcPos) { srcIterator.next(); idx++; } idx = 0; while (idx < destPos) { destIterator.next(); idx++; } for (int i = 0; i < length; i++) { destIterator.next(); destIterator.set(srcIterator.next()); } } } public static void copy(final boolean[] src, final int srcPos, final boolean[] dest, final int destPos, final int length) { if (src.length < srcPos + length) { throw new IllegalArgumentException("The size of src array less than " + (srcPos + length)); } if (dest.length < destPos + length) { throw new IllegalArgumentException("The size of dest array less than " + (destPos + length)); } if (length < MIN_SIZE_FOR_COPY_ALL) { // for same array copy. if (destPos > srcPos) { for (int i = length - 1; i >= 0; i--) { dest[destPos + i] = src[srcPos + i]; } } else { for (int i = 0; i < length; i++) { dest[destPos + i] = src[srcPos + i]; } } } else { System.arraycopy(src, srcPos, dest, destPos, length); } } public static void copy(final char[] src, final int srcPos, final char[] dest, final int destPos, final int length) { if (src.length < srcPos + length) { throw new IllegalArgumentException("The size of src array less than " + (srcPos + length)); } if (dest.length < destPos + length) { throw new IllegalArgumentException("The size of dest array less than " + (destPos + length)); } if (length < MIN_SIZE_FOR_COPY_ALL) { // for same array copy. if (destPos > srcPos) { for (int i = length - 1; i >= 0; i--) { dest[destPos + i] = src[srcPos + i]; } } else { for (int i = 0; i < length; i++) { dest[destPos + i] = src[srcPos + i]; } } } else { System.arraycopy(src, srcPos, dest, destPos, length); } } public static void copy(final byte[] src, final int srcPos, final byte[] dest, final int destPos, final int length) { if (src.length < srcPos + length) { throw new IllegalArgumentException("The size of src array less than " + (srcPos + length)); } if (dest.length < destPos + length) { throw new IllegalArgumentException("The size of dest array less than " + (destPos + length)); } if (length < MIN_SIZE_FOR_COPY_ALL) { // for same array copy. if (destPos > srcPos) { for (int i = length - 1; i >= 0; i--) { dest[destPos + i] = src[srcPos + i]; } } else { for (int i = 0; i < length; i++) { dest[destPos + i] = src[srcPos + i]; } } } else { System.arraycopy(src, srcPos, dest, destPos, length); } } public static void copy(final short[] src, final int srcPos, final short[] dest, final int destPos, final int length) { if (src.length < srcPos + length) { throw new IllegalArgumentException("The size of src array less than " + (srcPos + length)); } if (dest.length < destPos + length) { throw new IllegalArgumentException("The size of dest array less than " + (destPos + length)); } if (length < MIN_SIZE_FOR_COPY_ALL) { // for same array copy. if (destPos > srcPos) { for (int i = length - 1; i >= 0; i--) { dest[destPos + i] = src[srcPos + i]; } } else { for (int i = 0; i < length; i++) { dest[destPos + i] = src[srcPos + i]; } } } else { System.arraycopy(src, srcPos, dest, destPos, length); } } public static void copy(final int[] src, final int srcPos, final int[] dest, final int destPos, final int length) { if (src.length < srcPos + length) { throw new IllegalArgumentException("The size of src array less than " + (srcPos + length)); } if (dest.length < destPos + length) { throw new IllegalArgumentException("The size of dest array less than " + (destPos + length)); } if (length < MIN_SIZE_FOR_COPY_ALL) { // for same array copy. if (destPos > srcPos) { for (int i = length - 1; i >= 0; i--) { dest[destPos + i] = src[srcPos + i]; } } else { for (int i = 0; i < length; i++) { dest[destPos + i] = src[srcPos + i]; } } } else { System.arraycopy(src, srcPos, dest, destPos, length); } } public static void copy(final long[] src, final int srcPos, final long[] dest, final int destPos, final int length) { if (src.length < srcPos + length) { throw new IllegalArgumentException("The size of src array less than " + (srcPos + length)); } if (dest.length < destPos + length) { throw new IllegalArgumentException("The size of dest array less than " + (destPos + length)); } if (length < MIN_SIZE_FOR_COPY_ALL) { // for same array copy. if (destPos > srcPos) { for (int i = length - 1; i >= 0; i--) { dest[destPos + i] = src[srcPos + i]; } } else { for (int i = 0; i < length; i++) { dest[destPos + i] = src[srcPos + i]; } } } else { System.arraycopy(src, srcPos, dest, destPos, length); } } public static void copy(final float[] src, final int srcPos, final float[] dest, final int destPos, final int length) { if (src.length < srcPos + length) { throw new IllegalArgumentException("The size of src array less than " + (srcPos + length)); } if (dest.length < destPos + length) { throw new IllegalArgumentException("The size of dest array less than " + (destPos + length)); } if (length < MIN_SIZE_FOR_COPY_ALL) { // for same array copy. if (destPos > srcPos) { for (int i = length - 1; i >= 0; i--) { dest[destPos + i] = src[srcPos + i]; } } else { for (int i = 0; i < length; i++) { dest[destPos + i] = src[srcPos + i]; } } } else { System.arraycopy(src, srcPos, dest, destPos, length); } } public static void copy(final double[] src, final int srcPos, final double[] dest, final int destPos, final int length) { if (src.length < srcPos + length) { throw new IllegalArgumentException("The size of src array less than " + (srcPos + length)); } if (dest.length < destPos + length) { throw new IllegalArgumentException("The size of dest array less than " + (destPos + length)); } if (length < MIN_SIZE_FOR_COPY_ALL) { // for same array copy. if (destPos > srcPos) { for (int i = length - 1; i >= 0; i--) { dest[destPos + i] = src[srcPos + i]; } } else { for (int i = 0; i < length; i++) { dest[destPos + i] = src[srcPos + i]; } } } else { System.arraycopy(src, srcPos, dest, destPos, length); } } public static void copy(final Object[] src, final int srcPos, final Object[] dest, final int destPos, final int length) { if (src.length < srcPos + length) { throw new IllegalArgumentException("The size of src array less than " + (srcPos + length)); } if (dest.length < destPos + length) { throw new IllegalArgumentException("The size of dest array less than " + (destPos + length)); } if (length < MIN_SIZE_FOR_COPY_ALL) { // for same array copy. if (destPos > srcPos) { for (int i = length - 1; i >= 0; i--) { dest[destPos + i] = src[srcPos + i]; } } else { for (int i = 0; i < length; i++) { dest[destPos + i] = src[srcPos + i]; } } } else { System.arraycopy(src, srcPos, dest, destPos, length); } } /** * @see System#arraycopy(Object, int, Object, int, int) is called * * @param src * @param srcPos * @param dest * @param destPos * @param length */ public static void copy(final Object src, final int srcPos, final Object dest, final int destPos, final int length) { if (Array.getLength(src) < srcPos + length) { throw new IllegalArgumentException("The size of src array less than " + (srcPos + length)); } if (Array.getLength(dest) < destPos + length) { throw new IllegalArgumentException("The size of dest array less than " + (destPos + length)); } System.arraycopy(src, srcPos, dest, destPos, length); } /** * @see Arrays#copyOf(boolean[], int) * * @param original * @param newLength * @return */ public static boolean[] copyOf(final boolean[] original, final int newLength) { if (newLength == original.length) { return original.clone(); } final boolean[] copy = new boolean[newLength]; if (N.notNullOrEmpty(original)) { copy(original, 0, copy, 0, Math.min(original.length, newLength)); } return copy; } /** * @see Arrays#copyOf(char[], int) * * @param original * @param newLength * @return */ public static char[] copyOf(final char[] original, final int newLength) { if (newLength == original.length) { return original.clone(); } final char[] copy = new char[newLength]; if (N.notNullOrEmpty(original)) { copy(original, 0, copy, 0, Math.min(original.length, newLength)); } return copy; } /** * @see Arrays#copyOf(byte[], int) * * @param original * @param newLength * @return */ public static byte[] copyOf(final byte[] original, final int newLength) { if (newLength == original.length) { return original.clone(); } final byte[] copy = new byte[newLength]; if (N.notNullOrEmpty(original)) { copy(original, 0, copy, 0, Math.min(original.length, newLength)); } return copy; } /** * @see Arrays#copyOf(short[], int) * * @param original * @param newLength * @return */ public static short[] copyOf(final short[] original, final int newLength) { if (newLength == original.length) { return original.clone(); } final short[] copy = new short[newLength]; if (N.notNullOrEmpty(original)) { copy(original, 0, copy, 0, Math.min(original.length, newLength)); } return copy; } /** * @see Arrays#copyOf(int[], int) * * @param original * @param newLength * @return */ public static int[] copyOf(final int[] original, final int newLength) { if (newLength == original.length) { return original.clone(); } final int[] copy = new int[newLength]; if (N.notNullOrEmpty(original)) { copy(original, 0, copy, 0, Math.min(original.length, newLength)); } return copy; } /** * @see Arrays#copyOf(long[], int) * * @param original * @param newLength * @return */ public static long[] copyOf(final long[] original, final int newLength) { if (newLength == original.length) { return original.clone(); } final long[] copy = new long[newLength]; if (N.notNullOrEmpty(original)) { copy(original, 0, copy, 0, Math.min(original.length, newLength)); } return copy; } /** * @see Arrays#copyOf(float[], int) * * @param original * @param newLength * @return */ public static float[] copyOf(final float[] original, final int newLength) { if (newLength == original.length) { return original.clone(); } final float[] copy = new float[newLength]; if (N.notNullOrEmpty(original)) { copy(original, 0, copy, 0, Math.min(original.length, newLength)); } return copy; } /** * @see Arrays#copyOf(double[], int) * * @param original * @param newLength * @return */ public static double[] copyOf(final double[] original, final int newLength) { if (newLength == original.length) { return original.clone(); } final double[] copy = new double[newLength]; if (N.notNullOrEmpty(original)) { copy(original, 0, copy, 0, Math.min(original.length, newLength)); } return copy; } /** * @see Arrays#copyOf(Object[], int) * * @param original * @param newLength * @return */ public static T[] copyOf(final T[] original, final int newLength) { if (newLength == original.length) { return original.clone(); } return (T[]) copyOf(original, newLength, original.getClass()); } /** * @see Arrays#copyOf(Object[], int, Class) * * @param original * @param newLength * @return */ public static T[] copyOf(final U[] original, final int newLength, final Class newType) { final T[] copy = Object[].class.equals(newType) ? (T[]) new Object[newLength] : (T[]) N.newArray(newType.getComponentType(), newLength); if (N.notNullOrEmpty(original)) { copy(original, 0, copy, 0, Math.min(original.length, newLength)); } return copy; } /** * @see Arrays#copyOfRange(boolean[], int, int) * * @param original * @param from * @param to * @return */ public static boolean[] copyOfRange(final boolean[] original, final int from, final int to) { if (from == 0 && to == original.length) { return original.clone(); } final int newLength = to - from; final boolean[] copy = new boolean[newLength]; copy(original, from, copy, 0, Math.min(original.length - from, newLength)); return copy; } /** * Copy all the elements in original, through to-from, by step. * * @param original * @param from * @param to * @param step * @return * @see N#copyOfRange(int[], int, int, int) */ public static boolean[] copyOfRange(final boolean[] original, int from, final int to, final int step) { N.checkFromToIndex(from < to ? from : (to == -1 ? 0 : to), from < to ? to : from, original.length); if (step == 0) { throw new IllegalArgumentException("The input parameter 'by' can not be zero"); } if (from == to || from < to != step > 0) { return N.EMPTY_BOOLEAN_ARRAY; } if (step == 1) { return copyOfRange(original, from, to); } from = from > to ? N.min(original.length - 1, from) : from; final int len = (to - from) / step + ((to - from) % step == 0 ? 0 : 1); final boolean[] copy = new boolean[len]; for (int i = 0, j = from; i < len; i++, j += step) { copy[i] = original[j]; } return copy; } /** * @see Arrays#copyOfRange(char[], int, int) * * @param original * @param from * @param to * @return */ public static char[] copyOfRange(final char[] original, final int from, final int to) { if (from == 0 && to == original.length) { return original.clone(); } final int newLength = to - from; final char[] copy = new char[newLength]; copy(original, from, copy, 0, Math.min(original.length - from, newLength)); return copy; } /** * Copy all the elements in original, through to-from, by step. * * @param original * @param from * @param to * @param step * @return * @see N#copyOfRange(int[], int, int, int) */ public static char[] copyOfRange(final char[] original, int from, final int to, final int step) { N.checkFromToIndex(from < to ? from : (to == -1 ? 0 : to), from < to ? to : from, original.length); if (step == 0) { throw new IllegalArgumentException("The input parameter 'by' can not be zero"); } if (from == to || from < to != step > 0) { return N.EMPTY_CHAR_ARRAY; } if (step == 1) { return copyOfRange(original, from, to); } from = from > to ? N.min(original.length - 1, from) : from; final int len = (to - from) / step + ((to - from) % step == 0 ? 0 : 1); final char[] copy = new char[len]; for (int i = 0, j = from; i < len; i++, j += step) { copy[i] = original[j]; } return copy; } /** * @see Arrays#copyOfRange(byte[], int, int) * * @param original * @param from * @param to * @return */ public static byte[] copyOfRange(final byte[] original, final int from, final int to) { if (from == 0 && to == original.length) { return original.clone(); } final int newLength = to - from; final byte[] copy = new byte[newLength]; copy(original, from, copy, 0, Math.min(original.length - from, newLength)); return copy; } /** * Copy all the elements in original, through to-from, by step. * * @param original * @param from * @param to * @param step * @return * @see N#copyOfRange(int[], int, int, int) */ public static byte[] copyOfRange(final byte[] original, int from, final int to, final int step) { N.checkFromToIndex(from < to ? from : (to == -1 ? 0 : to), from < to ? to : from, original.length); if (step == 0) { throw new IllegalArgumentException("The input parameter 'by' can not be zero"); } if (from == to || from < to != step > 0) { return N.EMPTY_BYTE_ARRAY; } if (step == 1) { return copyOfRange(original, from, to); } from = from > to ? N.min(original.length - 1, from) : from; final int len = (to - from) / step + ((to - from) % step == 0 ? 0 : 1); final byte[] copy = new byte[len]; for (int i = 0, j = from; i < len; i++, j += step) { copy[i] = original[j]; } return copy; } /** * @see Arrays#copyOfRange(short[], int, int) * * @param original * @param from * @param to * @return */ public static short[] copyOfRange(final short[] original, final int from, final int to) { if (from == 0 && to == original.length) { return original.clone(); } final int newLength = to - from; final short[] copy = new short[newLength]; copy(original, from, copy, 0, Math.min(original.length - from, newLength)); return copy; } /** * Copy all the elements in original, through to-from, by step. * * @param original * @param from * @param to * @param step * @return * @see N#copyOfRange(int[], int, int, int) */ public static short[] copyOfRange(final short[] original, int from, final int to, final int step) { N.checkFromToIndex(from < to ? from : (to == -1 ? 0 : to), from < to ? to : from, original.length); if (step == 0) { throw new IllegalArgumentException("The input parameter 'by' can not be zero"); } if (from == to || from < to != step > 0) { return N.EMPTY_SHORT_ARRAY; } if (step == 1) { return copyOfRange(original, from, to); } from = from > to ? N.min(original.length - 1, from) : from; final int len = (to - from) / step + ((to - from) % step == 0 ? 0 : 1); final short[] copy = new short[len]; for (int i = 0, j = from; i < len; i++, j += step) { copy[i] = original[j]; } return copy; } /** * @see Arrays#copyOfRange(int[], int, int) * * @param original * @param from * @param to * @return */ public static int[] copyOfRange(final int[] original, final int from, final int to) { if (from == 0 && to == original.length) { return original.clone(); } final int newLength = to - from; final int[] copy = new int[newLength]; copy(original, from, copy, 0, Math.min(original.length - from, newLength)); return copy; } /** * Copy all the elements in original, through to-from, by step. * *

     * 
     * int[] a = { 0, 1, 2, 3, 4, 5 };
     * N.copyOfRange(a, 1, 5, 1)); // [1, 2, 3, 4]
     * N.copyOfRange(a, 1, 5, 2); // [1, 3]
     * 
     * N.copyOfRange(a, 5, 1, -1); // [5, 4, 3, 2]
     * N.copyOfRange(a, 5, 1, -2); // [5, 3]
     * N.copyOfRange(a, 5, -1, -1); // [5, 4, 3, 2, 1, 0]
     * N.copyOfRange(a, 6, -1, -1); // [5, 4, 3, 2, 1, 0]
     * 
     * 
* @param original * @param from * @param to * @param step * @return */ public static int[] copyOfRange(final int[] original, int from, final int to, final int step) { N.checkFromToIndex(from < to ? from : (to == -1 ? 0 : to), from < to ? to : from, original.length); if (step == 0) { throw new IllegalArgumentException("The input parameter 'by' can not be zero"); } if (from == to || from < to != step > 0) { return N.EMPTY_INT_ARRAY; } if (step == 1) { return copyOfRange(original, from, to); } from = from > to ? N.min(original.length - 1, from) : from; final int len = (to - from) / step + ((to - from) % step == 0 ? 0 : 1); final int[] copy = new int[len]; for (int i = 0, j = from; i < len; i++, j += step) { copy[i] = original[j]; } return copy; } /** * @see Arrays#copyOfRange(long[], int, int) * * @param original * @param from * @param to * @return */ public static long[] copyOfRange(final long[] original, final int from, final int to) { if (from == 0 && to == original.length) { return original.clone(); } final int newLength = to - from; final long[] copy = new long[newLength]; copy(original, from, copy, 0, Math.min(original.length - from, newLength)); return copy; } /** * Copy all the elements in original, through to-from, by step. * * @param original * @param from * @param to * @param step * @return * @see N#copyOfRange(int[], int, int, int) */ public static long[] copyOfRange(final long[] original, int from, final int to, final int step) { N.checkFromToIndex(from < to ? from : (to == -1 ? 0 : to), from < to ? to : from, original.length); if (step == 0) { throw new IllegalArgumentException("The input parameter 'by' can not be zero"); } if (from == to || from < to != step > 0) { return N.EMPTY_LONG_ARRAY; } if (step == 1) { return copyOfRange(original, from, to); } from = from > to ? N.min(original.length - 1, from) : from; final int len = (to - from) / step + ((to - from) % step == 0 ? 0 : 1); final long[] copy = new long[len]; for (int i = 0, j = from; i < len; i++, j += step) { copy[i] = original[j]; } return copy; } /** * @see Arrays#copyOfRange(float[], int, int) * * @param original * @param from * @param to * @return */ public static float[] copyOfRange(final float[] original, final int from, final int to) { if (from == 0 && to == original.length) { return original.clone(); } final int newLength = to - from; final float[] copy = new float[newLength]; copy(original, from, copy, 0, Math.min(original.length - from, newLength)); return copy; } /** * Copy all the elements in original, through to-from, by step. * * @param original * @param from * @param to * @param step * @return * @see N#copyOfRange(int[], int, int, int) */ public static float[] copyOfRange(final float[] original, int from, final int to, final int step) { N.checkFromToIndex(from < to ? from : (to == -1 ? 0 : to), from < to ? to : from, original.length); if (step == 0) { throw new IllegalArgumentException("The input parameter 'by' can not be zero"); } if (from == to || from < to != step > 0) { return N.EMPTY_FLOAT_ARRAY; } if (step == 1) { return copyOfRange(original, from, to); } from = from > to ? N.min(original.length - 1, from) : from; final int len = (to - from) / step + ((to - from) % step == 0 ? 0 : 1); final float[] copy = new float[len]; for (int i = 0, j = from; i < len; i++, j += step) { copy[i] = original[j]; } return copy; } /** * @see Arrays#copyOfRange(double[], int, int) * * @param original * @param from * @param to * @return */ public static double[] copyOfRange(final double[] original, final int from, final int to) { if (from == 0 && to == original.length) { return original.clone(); } final int newLength = to - from; final double[] copy = new double[newLength]; copy(original, from, copy, 0, Math.min(original.length - from, newLength)); return copy; } /** * Copy all the elements in original, through to-from, by step. * * @param original * @param from * @param to * @param step * @return * @see N#copyOfRange(int[], int, int, int) */ public static double[] copyOfRange(final double[] original, int from, final int to, final int step) { N.checkFromToIndex(from < to ? from : (to == -1 ? 0 : to), from < to ? to : from, original.length); if (step == 0) { throw new IllegalArgumentException("The input parameter 'by' can not be zero"); } if (from == to || from < to != step > 0) { return N.EMPTY_DOUBLE_ARRAY; } if (step == 1) { return copyOfRange(original, from, to); } from = from > to ? N.min(original.length - 1, from) : from; final int len = (to - from) / step + ((to - from) % step == 0 ? 0 : 1); final double[] copy = new double[len]; for (int i = 0, j = from; i < len; i++, j += step) { copy[i] = original[j]; } return copy; } /** * @see Arrays#copyOfRange(T[], int, int) * @param original * @param from * @param to * @return */ public static T[] copyOfRange(final T[] original, final int from, final int to) { if (from == 0 && to == original.length) { return original.clone(); } return copyOfRange(original, from, to, (Class) original.getClass()); } /** * Copy all the elements in original, through to-from, by step. * * @param original * @param from * @param to * @param step * @return */ public static T[] copyOfRange(final T[] original, final int from, final int to, final int step) { return copyOfRange(original, from, to, step, (Class) original.getClass()); } /** * {@link Arrays#copyOfRange(Object[], int, int, Class)} * * @param original * @param from * @param to * @param newType * @return */ public static T[] copyOfRange(final U[] original, final int from, final int to, final Class newType) { final int newLength = to - from; final T[] copy = Object[].class.equals(newType) ? (T[]) new Object[newLength] : (T[]) N.newArray(newType.getComponentType(), newLength); copy(original, from, copy, 0, Math.min(original.length - from, newLength)); return copy; } /** * Copy all the elements in original, through to-from, by step. * * @param original * @param from * @param to * @param step * @return * @see N#copyOfRange(int[], int, int, int) */ public static T[] copyOfRange(final T[] original, int from, final int to, final int step, final Class newType) { N.checkFromToIndex(from < to ? from : (to == -1 ? 0 : to), from < to ? to : from, original.length); if (step == 0) { throw new IllegalArgumentException("The input parameter 'by' can not be zero"); } if (from == to || from < to != step > 0) { return Object[].class.equals(newType) ? (T[]) new Object[0] : (T[]) N.newArray(newType.getComponentType(), 0); } if (step == 1) { return copyOfRange(original, from, to); } from = from > to ? N.min(original.length - 1, from) : from; final int len = (to - from) / step + ((to - from) % step == 0 ? 0 : 1); final T[] copy = Object[].class.equals(newType) ? (T[]) new Object[len] : (T[]) N.newArray(newType.getComponentType(), len); for (int i = 0, j = from; i < len; i++, j += step) { copy[i] = original[j]; } return copy; } /** * @see Arrays#copyOfRange(T[], int, int) * @param c * @param from * @param to * @return */ public static List copyOfRange(final List c, final int from, final int to) { N.checkFromToIndex(from, to, c.size()); final List result = new ArrayList<>(to - from); result.addAll(c.subList(from, to)); return result; } /** * Copy all the elements in original, through to-from, by step. * * @param c * @param from * @param to * @param step * @return */ public static List copyOfRange(final List c, int from, final int to, final int step) { N.checkFromToIndex(from < to ? from : (to == -1 ? 0 : to), from < to ? to : from, c.size()); if (step == 0) { throw new IllegalArgumentException("The input parameter 'by' can not be zero"); } if (from == to || from < to != step > 0) { return new ArrayList<>(); } if (step == 1) { return copyOfRange(c, from, to); } from = from > to ? N.min(c.size() - 1, from) : from; final int len = (to - from) / step + ((to - from) % step == 0 ? 0 : 1); List result = null; if (c instanceof RandomAccess) { result = new ArrayList<>(len); for (int i = 0, j = from; i < len; i++, j += step) { result.add(c.get(j)); } } else { final T[] a = (T[]) c.subList(from, to).toArray(); result = createList(N.copyOfRange(a, 0, a.length, step)); } return result; } /** * Create an array list by initializing its elements data with the specified array a. * The returned list may share the same elements with the specified array a. * That's to say any change on the List/Array will affect the Array/List. * * @param a * @return */ @SafeVarargs private static List createList(final T... a) { if (N.isNullOrEmpty(a)) { return new ArrayList<>(); } if (N.isListElementDataFieldSettable && N.listElementDataField != null && N.listSizeField != null) { final List list = new ArrayList<>(); try { N.listElementDataField.set(list, a); N.listSizeField.set(list, a.length); return list; } catch (Exception e) { // ignore; N.isListElementDataFieldSettable = false; } } return N.asList(a); } /** * * @param str * @param from * @param to * @return */ public static String copyOfRange(final String str, final int from, final int to) { return str.substring(from, to); } /** * * @param str * @param from * @param to * @param step * @return * @see N#copyOfRange(int[], int, int, int) */ @SuppressWarnings("deprecation") public static String copyOfRange(final String str, int from, final int to, final int step) { N.checkFromToIndex(from < to ? from : (to == -1 ? 0 : to), from < to ? to : from, str.length()); if (step == 0) { throw new IllegalArgumentException("The input parameter 'by' can not be zero"); } if (from == to || from < to != step > 0) { return N.EMPTY_STRING; } if (step == 1) { return copyOfRange(str, from, to); } return StringUtil.newString(copyOfRange(StringUtil.getCharsForReadOnly(str), from, to, step), true); } /** * Clone the original array. null is returned if the input array is null. * * @param original * @return */ public static boolean[] clone(final boolean[] original) { if (original == null) { return null; } return original.clone(); } /** * Clone the original array. null is returned if the input array is null. * * @param original * @return */ public static char[] clone(final char[] original) { if (original == null) { return null; } return original.clone(); } /** * Clone the original array. null is returned if the input array is null. * * @param original * @return */ public static byte[] clone(final byte[] original) { if (original == null) { return null; } return original.clone(); } /** * Clone the original array. null is returned if the input array is null. * * @param original * @return */ public static short[] clone(final short[] original) { if (original == null) { return null; } return original.clone(); } /** * Clone the original array. null is returned if the input array is null. * * @param original * @return */ public static int[] clone(final int[] original) { if (original == null) { return null; } return original.clone(); } /** * Clone the original array. null is returned if the input array is null. * * @param original * @return */ public static long[] clone(final long[] original) { if (original == null) { return null; } return original.clone(); } /** * Clone the original array. null is returned if the input array is null. * * @param original * @return */ public static float[] clone(final float[] original) { if (original == null) { return null; } return original.clone(); } /** * Clone the original array. null is returned if the input array is null. * * @param original * @return */ public static double[] clone(final double[] original) { if (original == null) { return null; } return original.clone(); } /** * Clone the original array. null is returned if the input array is null. * * @param original * @return */ public static T[] clone(final T[] original) { if (original == null) { return null; } return original.clone(); } /** * Clone the original array and its sub arrays. null is returned if the input array is null. * * @param original * @return */ public static boolean[][] clone(final boolean[][] original) { if (original == null) { return null; } final boolean[][] cp = original.clone(); for (int i = 0, len = cp.length; i < len; i++) { cp[i] = clone(original[i]); } return cp; } /** * Clone the original array and its sub arrays. null is returned if the input array is null. * * @param original * @return */ public static char[][] clone(final char[][] original) { if (original == null) { return null; } final char[][] cp = original.clone(); for (int i = 0, len = cp.length; i < len; i++) { cp[i] = clone(original[i]); } return cp; } /** * Clone the original array and its sub arrays. null is returned if the input array is null. * * @param original * @return */ public static byte[][] clone(final byte[][] original) { if (original == null) { return null; } final byte[][] cp = original.clone(); for (int i = 0, len = cp.length; i < len; i++) { cp[i] = clone(original[i]); } return cp; } /** * Clone the original array and its sub arrays. null is returned if the input array is null. * * @param original * @return */ public static short[][] clone(final short[][] original) { if (original == null) { return null; } final short[][] cp = original.clone(); for (int i = 0, len = cp.length; i < len; i++) { cp[i] = clone(original[i]); } return cp; } /** * Clone the original array and its sub arrays. null is returned if the input array is null. * * @param original * @return */ public static int[][] clone(final int[][] original) { if (original == null) { return null; } final int[][] cp = original.clone(); for (int i = 0, len = cp.length; i < len; i++) { cp[i] = clone(original[i]); } return cp; } /** * Clone the original array and its sub arrays. null is returned if the input array is null. * * @param original * @return */ public static long[][] clone(final long[][] original) { if (original == null) { return null; } final long[][] cp = original.clone(); for (int i = 0, len = cp.length; i < len; i++) { cp[i] = clone(original[i]); } return cp; } /** * Clone the original array and its sub arrays. null is returned if the input array is null. * * @param original * @return */ public static float[][] clone(final float[][] original) { if (original == null) { return null; } final float[][] cp = original.clone(); for (int i = 0, len = cp.length; i < len; i++) { cp[i] = clone(original[i]); } return cp; } /** * Clone the original array and its sub arrays. null is returned if the input array is null. * * @param original * @return */ public static double[][] clone(final double[][] original) { if (original == null) { return null; } final double[][] cp = original.clone(); for (int i = 0, len = cp.length; i < len; i++) { cp[i] = clone(original[i]); } return cp; } /** * Clone the original array and its sub arrays. null is returned if the input array is null. * * @param original * @return */ public static T[][] clone(final T[][] original) { if (original == null) { return null; } final T[][] cp = original.clone(); for (int i = 0, len = cp.length; i < len; i++) { cp[i] = clone(original[i]); } return cp; } /** * Clone the original array and its sub arrays. null is returned if the input array is null. * * @param original * @return */ public static boolean[][][] clone(final boolean[][][] original) { if (original == null) { return null; } final boolean[][][] cp = original.clone(); for (int i = 0, len = cp.length; i < len; i++) { cp[i] = clone(original[i]); } return cp; } /** * Clone the original array and its sub arrays. null is returned if the input array is null. * * @param original * @return */ public static char[][][] clone(final char[][][] original) { if (original == null) { return null; } final char[][][] cp = original.clone(); for (int i = 0, len = cp.length; i < len; i++) { cp[i] = clone(original[i]); } return cp; } /** * Clone the original array and its sub arrays. null is returned if the input array is null. * * @param original * @return */ public static byte[][][] clone(final byte[][][] original) { if (original == null) { return null; } final byte[][][] cp = original.clone(); for (int i = 0, len = cp.length; i < len; i++) { cp[i] = clone(original[i]); } return cp; } /** * Clone the original array and its sub arrays. null is returned if the input array is null. * * @param original * @return */ public static short[][][] clone(final short[][][] original) { if (original == null) { return null; } final short[][][] cp = original.clone(); for (int i = 0, len = cp.length; i < len; i++) { cp[i] = clone(original[i]); } return cp; } /** * Clone the original array and its sub arrays. null is returned if the input array is null. * * @param original * @return */ public static int[][][] clone(final int[][][] original) { if (original == null) { return null; } final int[][][] cp = original.clone(); for (int i = 0, len = cp.length; i < len; i++) { cp[i] = clone(original[i]); } return cp; } /** * Clone the original array and its sub arrays. null is returned if the input array is null. * * @param original * @return */ public static long[][][] clone(final long[][][] original) { if (original == null) { return null; } final long[][][] cp = original.clone(); for (int i = 0, len = cp.length; i < len; i++) { cp[i] = clone(original[i]); } return cp; } /** * Clone the original array and its sub arrays. null is returned if the input array is null. * * @param original * @return */ public static float[][][] clone(final float[][][] original) { if (original == null) { return null; } final float[][][] cp = original.clone(); for (int i = 0, len = cp.length; i < len; i++) { cp[i] = clone(original[i]); } return cp; } /** * Clone the original array and its sub arrays. null is returned if the input array is null. * * @param original * @return */ public static double[][][] clone(final double[][][] original) { if (original == null) { return null; } final double[][][] cp = original.clone(); for (int i = 0, len = cp.length; i < len; i++) { cp[i] = clone(original[i]); } return cp; } /** * Clone the original array and its sub arrays. null is returned if the input array is null. * * @param original * @return */ public static T[][][] clone(final T[][][] original) { if (original == null) { return null; } final T[][][] cp = original.clone(); for (int i = 0, len = cp.length; i < len; i++) { cp[i] = clone(original[i]); } return cp; } public static void sort(final boolean[] a) { Array.sort(a); } public static void sort(final char[] a) { Array.sort(a); } public static void sort(final char[] a, final int fromIndex, final int toIndex) { Array.sort(a, fromIndex, toIndex); } public static void sort(final byte[] a) { Array.sort(a); } public static void sort(final byte[] a, final int fromIndex, final int toIndex) { Array.sort(a, fromIndex, toIndex); } public static void sort(final short[] a) { Array.sort(a); } public static void sort(final short[] a, final int fromIndex, final int toIndex) { Array.sort(a, fromIndex, toIndex); } public static void sort(final int[] a) { Array.sort(a); } public static void sort(final int[] a, final int fromIndex, final int toIndex) { Array.sort(a, fromIndex, toIndex); } public static void sort(final long[] a) { Array.sort(a); } public static void sort(final long[] a, final int fromIndex, final int toIndex) { Array.sort(a, fromIndex, toIndex); } public static void sort(final float[] a) { Array.sort(a); } public static void sort(final float[] a, final int fromIndex, final int toIndex) { Array.sort(a, fromIndex, toIndex); } public static void sort(final double[] a) { Array.sort(a); } public static void sort(final double[] a, final int fromIndex, final int toIndex) { Array.sort(a, fromIndex, toIndex); } public static void sort(final Object[] a) { Array.sort(a); } public static void sort(final Object[] a, final int fromIndex, final int toIndex) { Array.sort(a, fromIndex, toIndex); } public static void sort(final T[] a, final Comparator cmp) { Array.sort(a, cmp); } public static void sort(final T[] a, final int fromIndex, final int toIndex, final Comparator cmp) { Array.sort(a, fromIndex, toIndex, cmp); } public static > void sort(final List c) { Array.sort(c); } public static > void sort(final List c, final int fromIndex, final int toIndex) { Array.sort(c, fromIndex, toIndex); } public static void sort(final List c, final Comparator cmp) { Array.sort(c, cmp); } public static void sort(final List c, final int fromIndex, final int toIndex, final Comparator cmp) { Array.sort(c, fromIndex, toIndex, cmp); } public static void parallelSort(final char[] a) { Array.parallelSort(a); } public static void parallelSort(final char[] a, final int fromIndex, final int toIndex) { Array.parallelSort(a, fromIndex, toIndex); } public static void parallelSort(final byte[] a) { Array.parallelSort(a); } public static void parallelSort(final byte[] a, final int fromIndex, final int toIndex) { Array.parallelSort(a, fromIndex, toIndex); } public static void parallelSort(final short[] a) { Array.parallelSort(a); } public static void parallelSort(final short[] a, final int fromIndex, final int toIndex) { Array.parallelSort(a, fromIndex, toIndex); } public static void parallelSort(final int[] a) { Array.parallelSort(a); } public static void parallelSort(final int[] a, final int fromIndex, final int toIndex) { Array.parallelSort(a, fromIndex, toIndex); } public static void parallelSort(final long[] a) { Array.parallelSort(a); } public static void parallelSort(final long[] a, final int fromIndex, final int toIndex) { Array.parallelSort(a, fromIndex, toIndex); } public static void parallelSort(final float[] a) { Array.parallelSort(a); } public static void parallelSort(final float[] a, final int fromIndex, final int toIndex) { Array.parallelSort(a, fromIndex, toIndex); } public static void parallelSort(final double[] a) { Array.parallelSort(a); } public static void parallelSort(final double[] a, final int fromIndex, final int toIndex) { Array.parallelSort(a, fromIndex, toIndex); } public static void parallelSort(final Object[] a) { Array.parallelSort(a); } public static void parallelSort(final Object[] a, final int fromIndex, final int toIndex) { Array.parallelSort(a, fromIndex, toIndex); } public static void parallelSort(final T[] a, final Comparator cmp) { Array.parallelSort(a, cmp); } public static void parallelSort(final T[] a, final int fromIndex, final int toIndex, final Comparator cmp) { Array.parallelSort(a, fromIndex, toIndex, cmp); } public static > void parallelSort(final List c) { Array.parallelSort(c); } public static > void parallelSort(final List c, final int fromIndex, final int toIndex) { Array.parallelSort(c, fromIndex, toIndex); } public static void parallelSort(final List c, final Comparator cmp) { Array.parallelSort(c, cmp); } public static void parallelSort(final List c, final int fromIndex, final int toIndex, final Comparator cmp) { Array.parallelSort(c, fromIndex, toIndex, cmp); } public static void reverseSort(final boolean[] a) { Array.reverseSort(a); } public static void reverseSort(final char[] a) { Array.sort(a); reverse(a); } public static void reverseSort(final char[] a, final int fromIndex, final int toIndex) { Array.sort(a, fromIndex, toIndex); reverse(a, fromIndex, toIndex); } public static void reverseSort(final byte[] a) { Array.sort(a); reverse(a); } public static void reverseSort(final byte[] a, final int fromIndex, final int toIndex) { Array.sort(a, fromIndex, toIndex); reverse(a, fromIndex, toIndex); } public static void reverseSort(final short[] a) { Array.sort(a); reverse(a); } public static void reverseSort(final short[] a, final int fromIndex, final int toIndex) { Array.sort(a, fromIndex, toIndex); reverse(a, fromIndex, toIndex); } public static void reverseSort(final int[] a) { Array.sort(a); reverse(a); } public static void reverseSort(final int[] a, final int fromIndex, final int toIndex) { Array.sort(a, fromIndex, toIndex); reverse(a, fromIndex, toIndex); } public static void reverseSort(final long[] a) { Array.sort(a); reverse(a); } public static void reverseSort(final long[] a, final int fromIndex, final int toIndex) { Array.sort(a, fromIndex, toIndex); reverse(a, fromIndex, toIndex); } public static void reverseSort(final float[] a) { Array.sort(a); reverse(a); } public static void reverseSort(final float[] a, final int fromIndex, final int toIndex) { Array.sort(a, fromIndex, toIndex); reverse(a, fromIndex, toIndex); } public static void reverseSort(final double[] a) { Array.sort(a); reverse(a); } public static void reverseSort(final double[] a, final int fromIndex, final int toIndex) { Array.sort(a, fromIndex, toIndex); reverse(a, fromIndex, toIndex); } public static void reverseSort(final Object[] a) { // Array.sort(a); // reverse(a); sort(a, Fn.reversedOrder()); } public static void reverseSort(final Object[] a, final int fromIndex, final int toIndex) { // Array.sort(a, fromIndex, toIndex); // reverse(a, fromIndex, toIndex); sort(a, fromIndex, toIndex, Fn.reversedOrder()); } public static > void reverseSort(final List c) { // Array.sort(c); // reverse(c); sort(c, Fn.reversedOrder()); } public static > void reverseSort(final List c, final int fromIndex, final int toIndex) { // Array.sort(c, fromIndex, toIndex); // reverse(c, fromIndex, toIndex); sort(c, fromIndex, toIndex, Fn.reversedOrder()); } /* public static void bucketSort(final char[] a) { M.bucketSort(a); } public static void bucketSort(final char[] a, final int fromIndex, final int toIndex) { M.bucketSort(a, fromIndex, toIndex); } public static void bucketSort(final byte[] a) { M.bucketSort(a); } public static void bucketSort(final byte[] a, final int fromIndex, final int toIndex) { M.bucketSort(a, fromIndex, toIndex); } public static void bucketSort(final short[] a) { M.bucketSort(a); } public static void bucketSort(final short[] a, final int fromIndex, final int toIndex) { M.bucketSort(a, fromIndex, toIndex); } */ public static void bucketSort(final int[] a) { Array.bucketSort(a); } public static void bucketSort(final int[] a, final int fromIndex, final int toIndex) { Array.bucketSort(a, fromIndex, toIndex); } public static void bucketSort(final long[] a) { Array.bucketSort(a); } public static void bucketSort(final long[] a, final int fromIndex, final int toIndex) { Array.bucketSort(a, fromIndex, toIndex); } public static void bucketSort(final float[] a) { Array.bucketSort(a); } public static void bucketSort(final float[] a, final int fromIndex, final int toIndex) { Array.bucketSort(a, fromIndex, toIndex); } public static void bucketSort(final double[] a) { Array.bucketSort(a); } public static void bucketSort(final double[] a, final int fromIndex, final int toIndex) { Array.bucketSort(a, fromIndex, toIndex); } /** * Note: All the objects with same value will be replaced with first element with the same value. * * @param a */ public static void bucketSort(final Object[] a) { Array.bucketSort(a); } /** * Note: All the objects with same value will be replaced with first element with the same value. * * @param a the elements in the array must implements the Comparable interface. * @param fromIndex * @param toIndex */ public static void bucketSort(final Object[] a, final int fromIndex, final int toIndex) { Array.bucketSort(a, fromIndex, toIndex); } public static void bucketSort(final T[] a, final Comparator cmp) { Array.bucketSort(a, cmp); } /** * Note: All the objects with same value will be replaced with first element with the same value. * * @param a * @param fromIndex * @param toIndex * @param cmp */ public static void bucketSort(final T[] a, final int fromIndex, final int toIndex, final Comparator cmp) { Array.bucketSort(a, fromIndex, toIndex, cmp); } /** * Note: All the objects with same value will be replaced with first element with the same value. * * @param c */ public static > void bucketSort(final List c) { Array.bucketSort(c); } /** * Note: All the objects with same value will be replaced with first element with the same value. * * @param c * @param fromIndex * @param toIndex */ public static > void bucketSort(final List c, final int fromIndex, final int toIndex) { Array.bucketSort(c, fromIndex, toIndex); } /** * Note: All the objects with same value will be replaced with first element with the same value. * * @param c * @param cmp */ public static void bucketSort(final List c, final Comparator cmp) { Array.bucketSort(c, cmp); } /** * Note: All the objects with same value will be replaced with first element with the same value. * * @param c * @param fromIndex * @param toIndex * @param cmp */ public static void bucketSort(final List c, final int fromIndex, final int toIndex, final Comparator cmp) { Array.bucketSort(c, fromIndex, toIndex, cmp); } /** * {@link Arrays#binarySearch(boolean[], boolean)} * * @param a * @param key * @return */ static int binarySearch(final boolean[] a, final boolean key) { return Array.binarySearch(a, key); } /** * {@link Arrays#binarySearch(char[], char)} * * @param a * @param key * @return */ public static int binarySearch(final char[] a, final char key) { return Array.binarySearch(a, key); } /** * {@link Arrays#binarySearch(char[], int, int, char)} * * @param a * @param fromIndex * @param toIndex * @param key * @return */ public static int binarySearch(final char[] a, final int fromIndex, final int toIndex, final char key) { return Array.binarySearch(a, fromIndex, toIndex, key); } /** * {@link Arrays#binarySearch(byte[], byte)} * * @param a * @param key * @return */ public static int binarySearch(final byte[] a, final byte key) { return Array.binarySearch(a, key); } /** * {@link Arrays#binarySearch(byte[], int, int, byte)} * * @param a * @param fromIndex * @param toIndex * @param key * @return */ public static int binarySearch(final byte[] a, final int fromIndex, final int toIndex, final byte key) { return Array.binarySearch(a, fromIndex, toIndex, key); } /** * {@link Arrays#binarySearch(short[], short)} * * @param a * @param key * @return */ public static int binarySearch(final short[] a, final short key) { return Array.binarySearch(a, key); } /** * {@link Arrays#binarySearch(short[], int, int, short)} * * @param a * @param fromIndex * @param toIndex * @param key * @return */ public static int binarySearch(final short[] a, final int fromIndex, final int toIndex, final short key) { return Array.binarySearch(a, fromIndex, toIndex, key); } /** * {@link Arrays#binarySearch(int[], int)} * * @param a * @param key * @return */ public static int binarySearch(final int[] a, final int key) { return Array.binarySearch(a, key); } /** * {@link Arrays#binarySearch(int[], int, int, int)} * * @param a * @param fromIndex * @param toIndex * @param key * @return */ public static int binarySearch(final int[] a, final int fromIndex, final int toIndex, final int key) { return Array.binarySearch(a, fromIndex, toIndex, key); } /** * {@link Arrays#binarySearch(long[], long)} * * @param a * @param key * @return */ public static int binarySearch(final long[] a, final long key) { return Array.binarySearch(a, key); } /** * {@link Arrays#binarySearch(long[], int, int, long)} * * @param a * @param fromIndex * @param toIndex * @param key * @return */ public static int binarySearch(final long[] a, final int fromIndex, final int toIndex, final long key) { return Array.binarySearch(a, fromIndex, toIndex, key); } /** * {@link Arrays#binarySearch(float[], float)} * * @param a * @param key * @return */ public static int binarySearch(final float[] a, final float key) { return Array.binarySearch(a, key); } /** * {@link Arrays#binarySearch(float[], int, int, float)} * * @param a * @param fromIndex * @param toIndex * @param key * @return */ public static int binarySearch(final float[] a, final int fromIndex, final int toIndex, final float key) { return Array.binarySearch(a, fromIndex, toIndex, key); } /** * {@link Arrays#binarySearch(double[], double)} * * @param a * @param key * @return */ public static int binarySearch(final double[] a, final double key) { return Array.binarySearch(a, key); } /** * {@link Arrays#binarySearch(double[], int, int, double)} * * @param a * @param fromIndex * @param toIndex * @param key * @return */ public static int binarySearch(final double[] a, final int fromIndex, final int toIndex, final double key) { return Array.binarySearch(a, fromIndex, toIndex, key); } /** * {@link Arrays#binarySearch(Object[], Object)} * * @param a * @param key * @return */ public static int binarySearch(final Object[] a, final Object key) { return Array.binarySearch(a, key); } /** * {@link Arrays#binarySearch(Object[], int, int, Object)} * * @param a * @param fromIndex * @param toIndex * @param key * @return */ public static int binarySearch(final Object[] a, final int fromIndex, final int toIndex, final Object key) { return Array.binarySearch(a, fromIndex, toIndex, key); } /** * {@link Arrays#binarySearch(Object[], Object, Comparator)} * * @param a * @param key * @param cmp * @return */ public static int binarySearch(final T[] a, final T key, final Comparator cmp) { return Array.binarySearch(a, key, cmp); } /** * {@link Arrays#binarySearch(Object[], int, int, Object, Comparator)} * * @param a * @param fromIndex * @param toIndex * @param key * @param c * @return */ public static int binarySearch(final T[] a, final int fromIndex, final int toIndex, final T key, final Comparator cmp) { return Array.binarySearch(a, fromIndex, toIndex, key, cmp); } /** * {@link Collections#binarySearch(List, Object)} * * @param items * @param key * @return */ public static > int binarySearch(final List c, final T key) { return Array.binarySearch(c, key); } public static > int binarySearch(final List c, final int fromIndex, final int toIndex, final T key) { return Array.binarySearch(c, fromIndex, toIndex, key); } public static int binarySearch(final List c, final T key, final Comparator cmp) { return Array.binarySearch(c, key, cmp); } /** * * @param c * @param key * @param fromIndex * @param toIndex * @param cmp * @return * @see Collections#binarySearch(List, Object, Comparator) */ public static int binarySearch(final List c, final int fromIndex, final int toIndex, final T key, final Comparator cmp) { return Array.binarySearch(c, fromIndex, toIndex, key, cmp); } public static int indexOf(final boolean[] a, final boolean e) { return indexOf(a, 0, e); } /** * * @param a * @param fromIndex * the index from which to start the search. * @param e * @return */ public static int indexOf(final boolean[] a, final int fromIndex, final boolean e) { if (N.isNullOrEmpty(a)) { return N.INDEX_NOT_FOUND; } for (int i = fromIndex, len = a.length; i < len; i++) { if (a[i] == e) { return i; } } return INDEX_NOT_FOUND; } public static int indexOf(final char[] a, final char e) { return indexOf(a, 0, e); } /** * * @param a * @param fromIndex * the index from which to start the search. * @param e * @return */ public static int indexOf(final char[] a, final int fromIndex, final char e) { if (N.isNullOrEmpty(a)) { return N.INDEX_NOT_FOUND; } for (int i = fromIndex, len = a.length; i < len; i++) { if (a[i] == e) { return i; } } return INDEX_NOT_FOUND; } public static int indexOf(final byte[] a, final byte e) { return indexOf(a, 0, e); } /** * * @param a * @param fromIndex * the index from which to start the search. * @param e * @return */ public static int indexOf(final byte[] a, final int fromIndex, final byte e) { if (N.isNullOrEmpty(a)) { return N.INDEX_NOT_FOUND; } for (int i = fromIndex, len = a.length; i < len; i++) { if (a[i] == e) { return i; } } return INDEX_NOT_FOUND; } public static int indexOf(final short[] a, final short e) { return indexOf(a, 0, e); } /** * * @param a * @param fromIndex * the index from which to start the search. * @param e * @return */ public static int indexOf(final short[] a, final int fromIndex, final short e) { if (N.isNullOrEmpty(a)) { return N.INDEX_NOT_FOUND; } for (int i = fromIndex, len = a.length; i < len; i++) { if (a[i] == e) { return i; } } return INDEX_NOT_FOUND; } public static int indexOf(final int[] a, final int e) { return indexOf(a, 0, e); } /** * * @param a * @param fromIndex * the index from which to start the search. * @param e * @return */ public static int indexOf(final int[] a, final int fromIndex, final int e) { if (N.isNullOrEmpty(a)) { return N.INDEX_NOT_FOUND; } for (int i = fromIndex, len = a.length; i < len; i++) { if (a[i] == e) { return i; } } return INDEX_NOT_FOUND; } public static int indexOf(final long[] a, final long e) { return indexOf(a, 0, e); } /** * * @param a * @param fromIndex * the index from which to start the search. * @param e * @return */ public static int indexOf(final long[] a, final int fromIndex, final long e) { if (N.isNullOrEmpty(a)) { return N.INDEX_NOT_FOUND; } for (int i = fromIndex, len = a.length; i < len; i++) { if (a[i] == e) { return i; } } return INDEX_NOT_FOUND; } public static int indexOf(final float[] a, final float e) { return indexOf(a, 0, e); } /** * * @param a * @param fromIndex * the index from which to start the search. * @param e * @return */ public static int indexOf(final float[] a, final int fromIndex, final float e) { if (N.isNullOrEmpty(a)) { return N.INDEX_NOT_FOUND; } for (int i = fromIndex, len = a.length; i < len; i++) { if (Float.compare(a[i], e) == 0) { return i; } } return INDEX_NOT_FOUND; } public static int indexOf(final double[] a, final double e) { return indexOf(a, 0, e); } /** * * @param a * @param fromIndex * the index from which to start the search. * @param e * @return */ public static int indexOf(final double[] a, final int fromIndex, final double e) { if (N.isNullOrEmpty(a)) { return N.INDEX_NOT_FOUND; } for (int i = fromIndex, len = a.length; i < len; i++) { if (Double.compare(a[i], e) == 0) { return i; } } return INDEX_NOT_FOUND; } public static int indexOf(final Object[] a, final Object e) { return indexOf(a, 0, e); } /** * * @param a * @param fromIndex * the index from which to start the search. * @param e * @return */ public static int indexOf(final Object[] a, final int fromIndex, final Object e) { if (N.isNullOrEmpty(a)) { return N.INDEX_NOT_FOUND; } for (int i = fromIndex, len = a.length; i < len; i++) { if (equals(a[i], e)) { return i; } } return INDEX_NOT_FOUND; } public static int indexOf(final List list, final Object e) { return indexOf(list, 0, e); } /** * * @param list * @param fromIndex * the index from which to start the search. * @param e * @return */ public static int indexOf(final List list, final int fromIndex, final Object e) { if (N.isNullOrEmpty(list)) { return N.INDEX_NOT_FOUND; } for (int i = fromIndex, len = list.size(); i < len; i++) { if (equals(list.get(i), e)) { return i; } } return INDEX_NOT_FOUND; } /** * * @see java.util.Collections#indexOfSubList(List, List) * */ public static int indexOfSubList(final List sourceList, final List targetSubList) { if (N.isNullOrEmpty(sourceList) || N.isNullOrEmpty(targetSubList)) { return N.INDEX_NOT_FOUND; } return Collections.indexOfSubList(sourceList, targetSubList); } public static int lastIndexOf(final boolean[] a, final boolean e) { return lastIndexOf(a, a.length - 1, e); } /** * * @param a * @param fromIndex * the start index to traverse backwards from * @param e * @return */ public static int lastIndexOf(final boolean[] a, final int fromIndex, final boolean e) { if (N.isNullOrEmpty(a)) { return N.INDEX_NOT_FOUND; } for (int i = min(fromIndex, a.length - 1); i >= 0; i--) { if (a[i] == e) { return i; } } return INDEX_NOT_FOUND; } public static int lastIndexOf(final char[] a, final char e) { if (N.isNullOrEmpty(a)) { return INDEX_NOT_FOUND; } return lastIndexOf(a, a.length - 1, e); } /** * * @param a * @param fromIndex * the start index to traverse backwards from * @param e * @return */ public static int lastIndexOf(final char[] a, final int fromIndex, final char e) { if (N.isNullOrEmpty(a)) { return N.INDEX_NOT_FOUND; } for (int i = min(fromIndex, a.length - 1); i >= 0; i--) { if (a[i] == e) { return i; } } return INDEX_NOT_FOUND; } public static int lastIndexOf(final byte[] a, final byte e) { if (N.isNullOrEmpty(a)) { return INDEX_NOT_FOUND; } return lastIndexOf(a, a.length - 1, e); } /** * * @param a * @param fromIndex * the start index to traverse backwards from * @param e * @return */ public static int lastIndexOf(final byte[] a, final int fromIndex, final byte e) { if (N.isNullOrEmpty(a)) { return N.INDEX_NOT_FOUND; } for (int i = min(fromIndex, a.length - 1); i >= 0; i--) { if (a[i] == e) { return i; } } return INDEX_NOT_FOUND; } public static int lastIndexOf(final short[] a, final short e) { if (N.isNullOrEmpty(a)) { return INDEX_NOT_FOUND; } return lastIndexOf(a, a.length - 1, e); } /** * * @param a * @param fromIndex * the start index to traverse backwards from * @param e * @return */ public static int lastIndexOf(final short[] a, final int fromIndex, final short e) { if (N.isNullOrEmpty(a)) { return N.INDEX_NOT_FOUND; } for (int i = min(fromIndex, a.length - 1); i >= 0; i--) { if (a[i] == e) { return i; } } return INDEX_NOT_FOUND; } public static int lastIndexOf(final int[] a, final int e) { if (N.isNullOrEmpty(a)) { return INDEX_NOT_FOUND; } return lastIndexOf(a, a.length - 1, e); } /** * * @param a * @param fromIndex * the start index to traverse backwards from * @param e * @return */ public static int lastIndexOf(final int[] a, final int fromIndex, final int e) { if (N.isNullOrEmpty(a)) { return N.INDEX_NOT_FOUND; } for (int i = min(fromIndex, a.length - 1); i >= 0; i--) { if (a[i] == e) { return i; } } return INDEX_NOT_FOUND; } public static int lastIndexOf(final long[] a, final long e) { if (N.isNullOrEmpty(a)) { return INDEX_NOT_FOUND; } return lastIndexOf(a, a.length - 1, e); } /** * * @param a * @param fromIndex * the start index to traverse backwards from * @param e * @return */ public static int lastIndexOf(final long[] a, final int fromIndex, final long e) { if (N.isNullOrEmpty(a)) { return N.INDEX_NOT_FOUND; } for (int i = min(fromIndex, a.length - 1); i >= 0; i--) { if (a[i] == e) { return i; } } return INDEX_NOT_FOUND; } public static int lastIndexOf(final float[] a, final float e) { if (N.isNullOrEmpty(a)) { return INDEX_NOT_FOUND; } return lastIndexOf(a, a.length - 1, e); } /** * * @param a * @param fromIndex * the start index to traverse backwards from * @param e * @return */ public static int lastIndexOf(final float[] a, final int fromIndex, final float e) { if (N.isNullOrEmpty(a)) { return N.INDEX_NOT_FOUND; } for (int i = min(fromIndex, a.length - 1); i >= 0; i--) { if (Float.compare(a[i], e) == 0) { return i; } } return INDEX_NOT_FOUND; } public static int lastIndexOf(final double[] a, final double e) { if (N.isNullOrEmpty(a)) { return INDEX_NOT_FOUND; } return lastIndexOf(a, a.length - 1, e); } /** * * @param a * @param fromIndex * the start index to traverse backwards from * @param e * @return */ public static int lastIndexOf(final double[] a, final int fromIndex, final double e) { if (N.isNullOrEmpty(a)) { return N.INDEX_NOT_FOUND; } for (int i = min(fromIndex, a.length - 1); i >= 0; i--) { if (Double.compare(a[i], e) == 0) { return i; } } return INDEX_NOT_FOUND; } public static int lastIndexOf(final Object[] a, final Object e) { if (N.isNullOrEmpty(a)) { return INDEX_NOT_FOUND; } return lastIndexOf(a, a.length - 1, e); } /** * * @param a * @param fromIndex * the start index to traverse backwards from * @param e * @return */ public static int lastIndexOf(final Object[] a, final int fromIndex, final Object e) { if (N.isNullOrEmpty(a)) { return N.INDEX_NOT_FOUND; } for (int i = min(fromIndex, a.length - 1); i >= 0; i--) { if (equals(a[i], e)) { return i; } } return INDEX_NOT_FOUND; } public static int lastIndexOf(final List list, final Object e) { if (N.isNullOrEmpty(list)) { return INDEX_NOT_FOUND; } return lastIndexOf(list, list.size() - 1, e); } /** * * @param list * @param fromIndex * the start index to traverse backwards from * @param e * @return */ public static int lastIndexOf(final List list, final int fromIndex, final Object e) { if (N.isNullOrEmpty(list)) { return N.INDEX_NOT_FOUND; } for (int i = min(fromIndex, list.size() - 1); i >= 0; i--) { if (equals(list.get(i), e)) { return i; } } return INDEX_NOT_FOUND; } /** * * @see java.util.Collections#lastIndexOfSubList(List, List) */ public static int lastIndexOfSubList(final List sourceList, final List targetSubList) { if (N.isNullOrEmpty(sourceList) || N.isNullOrEmpty(targetSubList)) { return N.INDEX_NOT_FOUND; } return Collections.lastIndexOfSubList(sourceList, targetSubList); } public static int occurrencesOf(final boolean[] a, final boolean objectToFind) { if (N.isNullOrEmpty(a)) { return 0; } int occurrences = 0; for (int i = 0, len = a.length; i < len; i++) { if (a[i] == objectToFind) { occurrences++; } } return occurrences; } public static int occurrencesOf(final char[] a, final char objectToFind) { if (N.isNullOrEmpty(a)) { return 0; } int occurrences = 0; for (int i = 0, len = a.length; i < len; i++) { if (a[i] == objectToFind) { occurrences++; } } return occurrences; } public static int occurrencesOf(final byte[] a, final byte objectToFind) { if (N.isNullOrEmpty(a)) { return 0; } int occurrences = 0; for (int i = 0, len = a.length; i < len; i++) { if (a[i] == objectToFind) { occurrences++; } } return occurrences; } public static int occurrencesOf(final short[] a, final short objectToFind) { if (N.isNullOrEmpty(a)) { return 0; } int occurrences = 0; for (int i = 0, len = a.length; i < len; i++) { if (a[i] == objectToFind) { occurrences++; } } return occurrences; } public static int occurrencesOf(final int[] a, final int objectToFind) { if (N.isNullOrEmpty(a)) { return 0; } int occurrences = 0; for (int i = 0, len = a.length; i < len; i++) { if (a[i] == objectToFind) { occurrences++; } } return occurrences; } public static int occurrencesOf(final long[] a, final long objectToFind) { if (N.isNullOrEmpty(a)) { return 0; } int occurrences = 0; for (int i = 0, len = a.length; i < len; i++) { if (a[i] == objectToFind) { occurrences++; } } return occurrences; } public static int occurrencesOf(final float[] a, final float objectToFind) { if (N.isNullOrEmpty(a)) { return 0; } int occurrences = 0; for (int i = 0, len = a.length; i < len; i++) { if (Float.compare(a[i], objectToFind) == 0) { occurrences++; } } return occurrences; } public static int occurrencesOf(final double[] a, final double objectToFind) { if (N.isNullOrEmpty(a)) { return 0; } int occurrences = 0; for (int i = 0, len = a.length; i < len; i++) { if (Double.compare(a[i], objectToFind) == 0) { occurrences++; } } return occurrences; } public static int occurrencesOf(final Object[] a, final Object objectToFind) { if (N.isNullOrEmpty(a)) { return 0; } int occurrences = 0; if (objectToFind == null) { for (int i = 0, len = a.length; i < len; i++) { if (a[i] == null) { occurrences++; } } } else { for (int i = 0, len = a.length; i < len; i++) { if (objectToFind.equals(a[i])) { occurrences++; } } } return occurrences; } /** * * @param c * @param objectToFind * @return * * @see java.util.Collections#frequency(Collection, Object) */ public static int occurrencesOf(final Collection c, final Object objectToFind) { if (N.isNullOrEmpty(c)) { return 0; } return Collections.frequency(c, objectToFind); } public static boolean contains(final boolean[] a, final boolean objectToFind) { return indexOf(a, objectToFind) != INDEX_NOT_FOUND; } public static boolean contains(final char[] a, final char objectToFind) { return indexOf(a, objectToFind) != INDEX_NOT_FOUND; } public static boolean contains(final byte[] a, final byte objectToFind) { return indexOf(a, objectToFind) != INDEX_NOT_FOUND; } public static boolean contains(final short[] a, final short objectToFind) { return indexOf(a, objectToFind) != INDEX_NOT_FOUND; } public static boolean contains(final int[] a, final int objectToFind) { return indexOf(a, objectToFind) != INDEX_NOT_FOUND; } public static boolean contains(final long[] a, final long objectToFind) { return indexOf(a, objectToFind) != INDEX_NOT_FOUND; } public static boolean contains(final float[] a, final float objectToFind) { return indexOf(a, objectToFind) != INDEX_NOT_FOUND; } public static boolean contains(final double[] a, final double objectToFind) { return indexOf(a, objectToFind) != INDEX_NOT_FOUND; } public static boolean contains(final Object[] a, final Object objectToFind) { return indexOf(a, objectToFind) != INDEX_NOT_FOUND; } public static boolean contains(final Collection c, final Object e) { if (N.isNullOrEmpty(c)) { return false; } return c.contains(e); } public static void forEach(final int startInclusive, final int endExclusive, Try.IntConsumer action) throws E { forEach(startInclusive, endExclusive, 1, action); } public static void forEach(final int startInclusive, final int endExclusive, final int step, Try.IntConsumer action) throws E { N.checkArgument(step != 0, "The input parameter 'step' can not be zero"); if (endExclusive == startInclusive || endExclusive > startInclusive != step > 0) { return; } long len = (endExclusive * 1L - startInclusive) / step + ((endExclusive * 1L - startInclusive) % step == 0 ? 0 : 1); int start = startInclusive; while (len-- > 0) { action.accept(start); start += step; } } public static void forEach(final int startInclusive, final int endExclusive, final T a, Try.ObjIntConsumer action) throws E { forEach(startInclusive, endExclusive, 1, a, action); } public static void forEach(final int startInclusive, final int endExclusive, final int step, final T a, Try.ObjIntConsumer action) throws E { N.checkArgument(step != 0, "The input parameter 'step' can not be zero"); if (endExclusive == startInclusive || endExclusive > startInclusive != step > 0) { return; } long len = (endExclusive * 1L - startInclusive) / step + ((endExclusive * 1L - startInclusive) % step == 0 ? 0 : 1); int start = startInclusive; while (len-- > 0) { action.accept(a, start); start += step; } } public static void forEach(final T[] a, final Try.Consumer action) throws E { N.checkArgNotNull(action); if (N.isNullOrEmpty(a)) { return; } for (T e : a) { action.accept(e); } } public static void forEach(final T[] a, final int fromIndex, final int toIndex, final Try.Consumer action) throws E { N.checkFromToIndex(fromIndex < toIndex ? fromIndex : (toIndex == -1 ? 0 : toIndex), fromIndex < toIndex ? toIndex : fromIndex, len(a)); N.checkArgNotNull(action); if (N.isNullOrEmpty(a)) { return; } if (fromIndex <= toIndex) { for (int i = fromIndex; i < toIndex; i++) { action.accept(a[i]); } } else { for (int i = min(a.length - 1, toIndex); i > toIndex; i--) { action.accept(a[i]); } } } public static void forEach(final T[] a, final Try.IndexedConsumer action) throws E { N.checkArgNotNull(action); if (N.isNullOrEmpty(a)) { return; } forEach(a, 0, a.length, action); } public static void forEach(final T[] a, final int fromIndex, final int toIndex, final Try.IndexedConsumer action) throws E { N.checkFromToIndex(fromIndex < toIndex ? fromIndex : (toIndex == -1 ? 0 : toIndex), fromIndex < toIndex ? toIndex : fromIndex, len(a)); N.checkArgNotNull(action); if (N.isNullOrEmpty(a)) { return; } if (fromIndex <= toIndex) { for (int i = fromIndex; i < toIndex; i++) { action.accept(i, a[i]); } } else { for (int i = min(a.length - 1, toIndex); i > toIndex; i--) { action.accept(i, a[i]); } } } public static , E extends Exception> void forEach(final C c, final Try.Consumer action) throws E { N.checkArgNotNull(action); if (N.isNullOrEmpty(c)) { return; } for (T e : c) { action.accept(e); } } /** * Mostly it's designed for one-step operation to complete the operation in one step. * java.util.stream.Stream is preferred for multiple phases operation. * * Note: This is NOT a replacement of traditional for loop statement. * The traditional for loop is still recommended in regular programming. * * @param c * @param fromIndex * @param toIndex * @param action */ public static , E extends Exception> void forEach(final C c, int fromIndex, final int toIndex, final Try.Consumer action) throws E { N.checkFromToIndex(fromIndex < toIndex ? fromIndex : (toIndex == -1 ? 0 : toIndex), fromIndex < toIndex ? toIndex : fromIndex, len(c)); N.checkArgNotNull(action); if (N.isNullOrEmpty(c) && fromIndex == 0 && toIndex == 0) { return; } fromIndex = N.min(c.size() - 1, fromIndex); if (c instanceof List && c instanceof RandomAccess) { final List list = (List) c; if (fromIndex <= toIndex) { for (int i = fromIndex; i < toIndex; i++) { action.accept(list.get(i)); } } else { for (int i = fromIndex; i > toIndex; i--) { action.accept(list.get(i)); } } } else { final Iterator iter = c.iterator(); int idx = 0; if (fromIndex <= toIndex) { while (idx < fromIndex && iter.hasNext()) { iter.next(); idx++; } while (iter.hasNext()) { action.accept(iter.next()); if (++idx >= toIndex) { break; } } } else { while (idx <= toIndex && iter.hasNext()) { iter.next(); idx++; } final T[] a = (T[]) new Object[fromIndex - toIndex]; while (iter.hasNext()) { a[idx - 1 - toIndex] = iter.next(); if (idx++ >= fromIndex) { break; } } for (int i = a.length - 1; i >= 0; i--) { action.accept(a[i]); } } } } public static , E extends Exception> void forEach(final C c, final Try.IndexedConsumer action) throws E { N.checkArgNotNull(action); if (N.isNullOrEmpty(c)) { return; } int idx = 0; for (T e : c) { action.accept(idx++, e); } } /** * Mostly it's designed for one-step operation to complete the operation in one step. * java.util.stream.Stream is preferred for multiple phases operation. * * Note: This is NOT a replacement of traditional for loop statement. * The traditional for loop is still recommended in regular programming. * * @param c * @param fromIndex * @param toIndex * @param action */ public static , E extends Exception> void forEach(final C c, int fromIndex, final int toIndex, final Try.IndexedConsumer action) throws E { N.checkFromToIndex(fromIndex < toIndex ? fromIndex : (toIndex == -1 ? 0 : toIndex), fromIndex < toIndex ? toIndex : fromIndex, len(c)); N.checkArgNotNull(action); if (N.isNullOrEmpty(c) && fromIndex == 0 && toIndex == 0) { return; } fromIndex = N.min(c.size() - 1, fromIndex); if (c instanceof List && c instanceof RandomAccess) { final List list = (List) c; if (fromIndex <= toIndex) { for (int i = fromIndex; i < toIndex; i++) { action.accept(i, list.get(i)); } } else { for (int i = fromIndex; i > toIndex; i--) { action.accept(i, list.get(i)); } } } else { final Iterator iter = c.iterator(); int idx = 0; if (fromIndex < toIndex) { while (idx < fromIndex && iter.hasNext()) { iter.next(); idx++; } while (iter.hasNext()) { action.accept(idx, iter.next()); if (++idx >= toIndex) { break; } } } else { while (idx <= toIndex && iter.hasNext()) { iter.next(); idx++; } final T[] a = (T[]) new Object[fromIndex - toIndex]; while (iter.hasNext()) { a[idx - 1 - toIndex] = iter.next(); if (idx++ >= fromIndex) { break; } } for (int i = a.length - 1; i >= 0; i--) { action.accept(i + toIndex + 1, a[i]); } } } } public static void forEach(final T[] a, final Try.Function, E> flatMapper, final Try.BiConsumer action) throws E, E2 { N.checkArgNotNull(flatMapper); N.checkArgNotNull(action); if (N.isNullOrEmpty(a)) { return; } for (T e : a) { final Collection c2 = flatMapper.apply(e); if (N.notNullOrEmpty(c2)) { for (U u : c2) { action.accept(e, u); } } } } public static void forEach(final Collection c, final Try.Function, E> flatMapper, final Try.BiConsumer action) throws E, E2 { N.checkArgNotNull(flatMapper); N.checkArgNotNull(action); if (N.isNullOrEmpty(c)) { return; } for (T e : c) { final Collection c2 = flatMapper.apply(e); if (N.notNullOrEmpty(c2)) { for (U u : c2) { action.accept(e, u); } } } } public static void forEach(final T[] a, final Try.Function, E> flatMapper, final Try.Function, E2> flatMapper2, final Try.TriConsumer action) throws E, E2, E3 { N.checkArgNotNull(flatMapper); N.checkArgNotNull(flatMapper2); N.checkArgNotNull(action); if (N.isNullOrEmpty(a)) { return; } for (T e : a) { final Collection c2 = flatMapper.apply(e); if (N.notNullOrEmpty(c2)) { for (T2 t2 : c2) { final Collection c3 = flatMapper2.apply(t2); if (N.notNullOrEmpty(c3)) { for (T3 t3 : c3) { action.accept(e, t2, t3); } } } } } } public static void forEach(final Collection c, final Try.Function, E> flatMapper, final Try.Function, E2> flatMapper2, final Try.TriConsumer action) throws E, E2, E3 { N.checkArgNotNull(flatMapper); N.checkArgNotNull(flatMapper2); N.checkArgNotNull(action); if (N.isNullOrEmpty(c)) { return; } for (T e : c) { final Collection c2 = flatMapper.apply(e); if (N.notNullOrEmpty(c2)) { for (T2 t2 : c2) { final Collection c3 = flatMapper2.apply(t2); if (N.notNullOrEmpty(c3)) { for (T3 t3 : c3) { action.accept(e, t2, t3); } } } } } } public static void forEach(final A[] a, final B[] b, final Try.BiConsumer action) throws E { N.checkArgNotNull(action); if (N.isNullOrEmpty(a) || N.isNullOrEmpty(b)) { return; } for (int i = 0, minLen = N.min(a.length, b.length); i < minLen; i++) { action.accept(a[i], b[i]); } } public static void forEach(final Collection a, final Collection b, final Try.BiConsumer action) throws E { N.checkArgNotNull(action); if (N.isNullOrEmpty(a) || N.isNullOrEmpty(b)) { return; } final Iterator iterA = a.iterator(); final Iterator iterB = b.iterator(); for (int i = 0, minLen = N.min(a.size(), b.size()); i < minLen; i++) { action.accept(iterA.next(), iterB.next()); } } public static void forEach(final A[] a, final B[] b, final C[] c, final Try.TriConsumer action) throws E { N.checkArgNotNull(action); if (N.isNullOrEmpty(a) || N.isNullOrEmpty(b) || N.isNullOrEmpty(c)) { return; } for (int i = 0, minLen = N.min(a.length, b.length, c.length); i < minLen; i++) { action.accept(a[i], b[i], c[i]); } } public static void forEach(final Collection a, final Collection b, final Collection c, final Try.TriConsumer action) throws E { N.checkArgNotNull(action); if (N.isNullOrEmpty(a) || N.isNullOrEmpty(b) || N.isNullOrEmpty(c)) { return; } final Iterator iterA = a.iterator(); final Iterator iterB = b.iterator(); final Iterator iterC = c.iterator(); for (int i = 0, minLen = N.min(a.size(), b.size(), c.size()); i < minLen; i++) { action.accept(iterA.next(), iterB.next(), iterC.next()); } } public static void forEach(final A[] a, final B[] b, final A valueForNoneA, final B valueForNoneB, final Try.BiConsumer action) throws E { N.checkArgNotNull(action); final int lenA = len(a); final int lenB = len(b); for (int i = 0, maxLen = N.max(lenA, lenB); i < maxLen; i++) { action.accept(i < lenA ? a[i] : valueForNoneA, i < lenB ? b[i] : valueForNoneB); } } public static void forEach(final Collection a, final Collection b, final A valueForNoneA, final B valueForNoneB, final Try.BiConsumer action) throws E { N.checkArgNotNull(action); final Iterator iterA = a == null ? ObjIterator. empty() : a.iterator(); final Iterator iterB = b == null ? ObjIterator. empty() : b.iterator(); final int lenA = len(a); final int lenB = len(b); for (int i = 0, maxLen = N.max(lenA, lenB); i < maxLen; i++) { action.accept(i < lenA ? iterA.next() : valueForNoneA, i < lenB ? iterB.next() : valueForNoneB); } } public static void forEach(final A[] a, final B[] b, final C[] c, final A valueForNoneA, final B valueForNoneB, final C valueForNoneC, final Try.TriConsumer action) throws E { N.checkArgNotNull(action); final int lenA = len(a); final int lenB = len(b); final int lenC = len(c); for (int i = 0, maxLen = N.max(lenA, lenB, lenC); i < maxLen; i++) { action.accept(i < lenA ? a[i] : valueForNoneA, i < lenB ? b[i] : valueForNoneB, i < lenC ? c[i] : valueForNoneC); } } public static void forEach(final Collection a, final Collection b, final Collection c, final A valueForNoneA, final B valueForNoneB, final C valueForNoneC, final Try.TriConsumer action) throws E { N.checkArgNotNull(action); final Iterator iterA = a == null ? ObjIterator. empty() : a.iterator(); final Iterator iterB = b == null ? ObjIterator. empty() : b.iterator(); final Iterator iterC = c == null ? ObjIterator. empty() : c.iterator(); final int lenA = len(a); final int lenB = len(b); final int lenC = len(c); for (int i = 0, maxLen = N.max(lenA, lenB, lenC); i < maxLen; i++) { action.accept(i < lenA ? iterA.next() : valueForNoneA, i < lenB ? iterB.next() : valueForNoneB, i < lenC ? iterC.next() : valueForNoneC); } } public static void forEachNonNull(final T[] a, final Try.Consumer action) throws E { N.checkArgNotNull(action); if (N.isNullOrEmpty(a)) { return; } for (T e : a) { if (e != null) { action.accept(e); } } } public static void forEachNonNull(final Collection c, final Try.Consumer action) throws E { N.checkArgNotNull(action); if (N.isNullOrEmpty(c)) { return; } for (T e : c) { if (e != null) { action.accept(e); } } } public static void forEachNonNull(final T[] a, final Try.Function, E> flatMapper, final Try.BiConsumer action) throws E, E2 { N.checkArgNotNull(flatMapper); N.checkArgNotNull(action); if (N.isNullOrEmpty(a)) { return; } for (T e : a) { if (e != null) { final Collection c2 = flatMapper.apply(e); if (N.notNullOrEmpty(c2)) { for (U u : c2) { if (u != null) { action.accept(e, u); } } } } } } public static void forEachNonNull(final Collection c, final Try.Function, E> flatMapper, final Try.BiConsumer action) throws E, E2 { N.checkArgNotNull(flatMapper); N.checkArgNotNull(action); if (N.isNullOrEmpty(c)) { return; } for (T e : c) { if (e != null) { final Collection c2 = flatMapper.apply(e); if (N.notNullOrEmpty(c2)) { for (U u : c2) { if (u != null) { action.accept(e, u); } } } } } } public static void forEachNonNull(final T[] a, final Try.Function, E> flatMapper, final Try.Function, E2> flatMapper2, final Try.TriConsumer action) throws E, E2, E3 { N.checkArgNotNull(flatMapper); N.checkArgNotNull(flatMapper2); N.checkArgNotNull(action); if (N.isNullOrEmpty(a)) { return; } for (T e : a) { if (e != null) { final Collection c2 = flatMapper.apply(e); if (N.notNullOrEmpty(c2)) { for (T2 t2 : c2) { if (t2 != null) { final Collection c3 = flatMapper2.apply(t2); if (N.notNullOrEmpty(c3)) { for (T3 t3 : c3) { if (t3 != null) { action.accept(e, t2, t3); } } } } } } } } } public static void forEachNonNull(final Collection c, final Try.Function, E> flatMapper, final Try.Function, E2> flatMapper2, final Try.TriConsumer action) throws E, E2, E3 { N.checkArgNotNull(flatMapper); N.checkArgNotNull(flatMapper2); N.checkArgNotNull(action); if (N.isNullOrEmpty(c)) { return; } for (T e : c) { if (e != null) { final Collection c2 = flatMapper.apply(e); if (N.notNullOrEmpty(c2)) { for (T2 t2 : c2) { if (t2 != null) { final Collection c3 = flatMapper2.apply(t2); if (N.notNullOrEmpty(c3)) { for (T3 t3 : c3) { if (t3 != null) { action.accept(e, t2, t3); } } } } } } } } } public static BooleanList filter(final boolean[] a, final Try.BooleanPredicate filter) throws E { N.checkArgNotNull(filter); if (N.isNullOrEmpty(a)) { return new BooleanList(); } return filter(a, 0, a.length, filter); } public static BooleanList filter(final boolean[] a, final Try.BooleanPredicate filter, final int max) throws E { N.checkArgNotNull(filter); if (N.isNullOrEmpty(a)) { return new BooleanList(); } return filter(a, 0, a.length, filter, max); } public static BooleanList filter(final boolean[] a, final int fromIndex, final int toIndex, final Try.BooleanPredicate filter) throws E { return filter(a, fromIndex, toIndex, filter, Integer.MAX_VALUE); } /** * * Mostly it's designed for one-step operation to complete the operation in one step. * java.util.stream.Stream is preferred for multiple phases operation. * * @param a * @param fromIndex * @param toIndex * @param filter * @param max maximum return result. * @return */ public static BooleanList filter(final boolean[] a, final int fromIndex, final int toIndex, final Try.BooleanPredicate filter, final int max) throws E { checkFromToIndex(fromIndex, toIndex, len(a)); N.checkArgNotNull(filter); if (N.isNullOrEmpty(a)) { return new BooleanList(); } final BooleanList result = new BooleanList(min(9, max, (toIndex - fromIndex))); for (int i = fromIndex, cnt = 0; i < toIndex && cnt < max; i++) { if (filter.test(a[i])) { result.add(a[i]); cnt++; } } return result; } public static CharList filter(final char[] a, final Try.CharPredicate filter) throws E { N.checkArgNotNull(filter); if (N.isNullOrEmpty(a)) { return new CharList(); } return filter(a, 0, a.length, filter); } public static CharList filter(final char[] a, final Try.CharPredicate filter, final int max) throws E { N.checkArgNotNull(filter); if (N.isNullOrEmpty(a)) { return new CharList(); } return filter(a, 0, a.length, filter, max); } public static CharList filter(final char[] a, final int fromIndex, final int toIndex, final Try.CharPredicate filter) throws E { return filter(a, fromIndex, toIndex, filter, Integer.MAX_VALUE); } /** * * Mostly it's designed for one-step operation to complete the operation in one step. * java.util.stream.Stream is preferred for multiple phases operation. * * @param a * @param fromIndex * @param toIndex * @param filter * @param max maximum return result. * @return */ public static CharList filter(final char[] a, final int fromIndex, final int toIndex, final Try.CharPredicate filter, final int max) throws E { checkFromToIndex(fromIndex, toIndex, len(a)); N.checkArgNotNull(filter); if (N.isNullOrEmpty(a)) { return new CharList(); } final CharList result = new CharList(min(9, max, (toIndex - fromIndex))); for (int i = fromIndex, cnt = 0; i < toIndex && cnt < max; i++) { if (filter.test(a[i])) { result.add(a[i]); cnt++; } } return result; } public static ByteList filter(final byte[] a, final Try.BytePredicate filter) throws E { N.checkArgNotNull(filter); if (N.isNullOrEmpty(a)) { return new ByteList(); } return filter(a, 0, a.length, filter); } public static ByteList filter(final byte[] a, final Try.BytePredicate filter, final int max) throws E { N.checkArgNotNull(filter); if (N.isNullOrEmpty(a)) { return new ByteList(); } return filter(a, 0, a.length, filter, max); } public static ByteList filter(final byte[] a, final int fromIndex, final int toIndex, final Try.BytePredicate filter) throws E { return filter(a, fromIndex, toIndex, filter, Integer.MAX_VALUE); } /** * * Mostly it's designed for one-step operation to complete the operation in one step. * java.util.stream.Stream is preferred for multiple phases operation. * * @param a * @param fromIndex * @param toIndex * @param filter * @param max maximum return result. * @return */ public static ByteList filter(final byte[] a, final int fromIndex, final int toIndex, final Try.BytePredicate filter, final int max) throws E { checkFromToIndex(fromIndex, toIndex, len(a)); N.checkArgNotNull(filter); if (N.isNullOrEmpty(a)) { return new ByteList(); } final ByteList result = new ByteList(min(9, max, (toIndex - fromIndex))); for (int i = fromIndex, cnt = 0; i < toIndex && cnt < max; i++) { if (filter.test(a[i])) { result.add(a[i]); cnt++; } } return result; } public static ShortList filter(final short[] a, final Try.ShortPredicate filter) throws E { N.checkArgNotNull(filter); if (N.isNullOrEmpty(a)) { return new ShortList(); } return filter(a, 0, a.length, filter); } public static ShortList filter(final short[] a, final Try.ShortPredicate filter, final int max) throws E { N.checkArgNotNull(filter); if (N.isNullOrEmpty(a)) { return new ShortList(); } return filter(a, 0, a.length, filter, max); } public static ShortList filter(final short[] a, final int fromIndex, final int toIndex, final Try.ShortPredicate filter) throws E { return filter(a, fromIndex, toIndex, filter, Integer.MAX_VALUE); } /** * * Mostly it's designed for one-step operation to complete the operation in one step. * java.util.stream.Stream is preferred for multiple phases operation. * * @param a * @param fromIndex * @param toIndex * @param filter * @param max maximum return result. * @return */ public static ShortList filter(final short[] a, final int fromIndex, final int toIndex, final Try.ShortPredicate filter, final int max) throws E { checkFromToIndex(fromIndex, toIndex, len(a)); N.checkArgNotNull(filter); if (N.isNullOrEmpty(a)) { return new ShortList(); } final ShortList result = new ShortList(min(9, max, (toIndex - fromIndex))); for (int i = fromIndex, cnt = 0; i < toIndex && cnt < max; i++) { if (filter.test(a[i])) { result.add(a[i]); cnt++; } } return result; } public static IntList filter(final int[] a, final Try.IntPredicate filter) throws E { N.checkArgNotNull(filter); if (N.isNullOrEmpty(a)) { return new IntList(); } return filter(a, 0, a.length, filter); } public static IntList filter(final int[] a, final Try.IntPredicate filter, final int max) throws E { N.checkArgNotNull(filter); if (N.isNullOrEmpty(a)) { return new IntList(); } return filter(a, 0, a.length, filter, max); } public static IntList filter(final int[] a, final int fromIndex, final int toIndex, final Try.IntPredicate filter) throws E { return filter(a, fromIndex, toIndex, filter, Integer.MAX_VALUE); } /** * * Mostly it's designed for one-step operation to complete the operation in one step. * java.util.stream.Stream is preferred for multiple phases operation. * * @param a * @param fromIndex * @param toIndex * @param filter * @param max maximum return result. * @return */ public static IntList filter(final int[] a, final int fromIndex, final int toIndex, final Try.IntPredicate filter, final int max) throws E { checkFromToIndex(fromIndex, toIndex, len(a)); N.checkArgNotNull(filter); if (N.isNullOrEmpty(a)) { return new IntList(); } final IntList result = new IntList(min(9, max, (toIndex - fromIndex))); for (int i = fromIndex, cnt = 0; i < toIndex && cnt < max; i++) { if (filter.test(a[i])) { result.add(a[i]); cnt++; } } return result; } public static LongList filter(final long[] a, final Try.LongPredicate filter) throws E { N.checkArgNotNull(filter); if (N.isNullOrEmpty(a)) { return new LongList(); } return filter(a, 0, a.length, filter); } public static LongList filter(final long[] a, final Try.LongPredicate filter, final int max) throws E { N.checkArgNotNull(filter); if (N.isNullOrEmpty(a)) { return new LongList(); } return filter(a, 0, a.length, filter, max); } public static LongList filter(final long[] a, final int fromIndex, final int toIndex, final Try.LongPredicate filter) throws E { return filter(a, fromIndex, toIndex, filter, Integer.MAX_VALUE); } /** * * Mostly it's designed for one-step operation to complete the operation in one step. * java.util.stream.Stream is preferred for multiple phases operation. * * @param a * @param fromIndex * @param toIndex * @param filter * @param max maximum return result. * @return */ public static LongList filter(final long[] a, final int fromIndex, final int toIndex, final Try.LongPredicate filter, final int max) throws E { checkFromToIndex(fromIndex, toIndex, len(a)); N.checkArgNotNull(filter); if (N.isNullOrEmpty(a)) { return new LongList(); } final LongList result = new LongList(min(9, max, (toIndex - fromIndex))); for (int i = fromIndex, cnt = 0; i < toIndex && cnt < max; i++) { if (filter.test(a[i])) { result.add(a[i]); cnt++; } } return result; } public static FloatList filter(final float[] a, final Try.FloatPredicate filter) throws E { N.checkArgNotNull(filter); if (N.isNullOrEmpty(a)) { return new FloatList(); } return filter(a, 0, a.length, filter); } public static FloatList filter(final float[] a, final Try.FloatPredicate filter, final int max) throws E { N.checkArgNotNull(filter); if (N.isNullOrEmpty(a)) { return new FloatList(); } return filter(a, 0, a.length, filter, max); } public static FloatList filter(final float[] a, final int fromIndex, final int toIndex, final Try.FloatPredicate filter) throws E { return filter(a, fromIndex, toIndex, filter, Integer.MAX_VALUE); } /** * * Mostly it's designed for one-step operation to complete the operation in one step. * java.util.stream.Stream is preferred for multiple phases operation. * * @param a * @param fromIndex * @param toIndex * @param filter * @param max maximum return result. * @return */ public static FloatList filter(final float[] a, final int fromIndex, final int toIndex, final Try.FloatPredicate filter, final int max) throws E { checkFromToIndex(fromIndex, toIndex, len(a)); N.checkArgNotNull(filter); if (N.isNullOrEmpty(a)) { return new FloatList(); } final FloatList result = new FloatList(min(9, max, (toIndex - fromIndex))); for (int i = fromIndex, cnt = 0; i < toIndex && cnt < max; i++) { if (filter.test(a[i])) { result.add(a[i]); cnt++; } } return result; } public static DoubleList filter(final double[] a, final Try.DoublePredicate filter) throws E { N.checkArgNotNull(filter); if (N.isNullOrEmpty(a)) { return new DoubleList(); } return filter(a, 0, a.length, filter); } public static DoubleList filter(final double[] a, final Try.DoublePredicate filter, final int max) throws E { N.checkArgNotNull(filter); if (N.isNullOrEmpty(a)) { return new DoubleList(); } return filter(a, 0, a.length, filter, max); } public static DoubleList filter(final double[] a, final int fromIndex, final int toIndex, final Try.DoublePredicate filter) throws E { return filter(a, fromIndex, toIndex, filter, Integer.MAX_VALUE); } /** * * Mostly it's designed for one-step operation to complete the operation in one step. * java.util.stream.Stream is preferred for multiple phases operation. * * @param a * @param fromIndex * @param toIndex * @param filter * @param max maximum return result. * @return */ public static DoubleList filter(final double[] a, final int fromIndex, final int toIndex, final Try.DoublePredicate filter, final int max) throws E { checkFromToIndex(fromIndex, toIndex, len(a)); N.checkArgNotNull(filter); if (N.isNullOrEmpty(a)) { return new DoubleList(); } final DoubleList result = new DoubleList(min(9, max, (toIndex - fromIndex))); for (int i = fromIndex, cnt = 0; i < toIndex && cnt < max; i++) { if (filter.test(a[i])) { result.add(a[i]); cnt++; } } return result; } public static List filter(final T[] a, final Try.Predicate filter) throws E { N.checkArgNotNull(filter); if (N.isNullOrEmpty(a)) { return new ArrayList<>(); } return filter(a, filter, Integer.MAX_VALUE); } public static List filter(final T[] a, final Try.Predicate filter, final int max) throws E { N.checkArgNotNull(filter); if (N.isNullOrEmpty(a)) { return new ArrayList<>(); } return filter(a, 0, a.length, filter, max); } public static List filter(final T[] a, final int fromIndex, final int toIndex, final Try.Predicate filter) throws E { return filter(a, fromIndex, toIndex, filter, Integer.MAX_VALUE); } /** * Mostly it's designed for one-step operation to complete the operation in one step. * java.util.stream.Stream is preferred for multiple phases operation. * * @param a * @param fromIndex * @param toIndex * @param filter * @param max * @return */ public static List filter(final T[] a, final int fromIndex, final int toIndex, final Try.Predicate filter, final int max) throws E { checkFromToIndex(fromIndex, toIndex, len(a)); N.checkArgNotNull(filter); if (N.isNullOrEmpty(a)) { return new ArrayList<>(); } final List result = new ArrayList<>(min(9, max, (toIndex - fromIndex))); for (int i = fromIndex, cnt = 0; i < toIndex && cnt < max; i++) { if (filter.test(a[i])) { result.add(a[i]); cnt++; } } return result; } public static List filter(final Collection c, final Try.Predicate filter) throws E { N.checkArgNotNull(filter); if (N.isNullOrEmpty(c)) { return new ArrayList<>(); } return filter(c, filter, Integer.MAX_VALUE); } public static List filter(final Collection c, final Try.Predicate filter, final int max) throws E { N.checkArgNotNull(filter); if (N.isNullOrEmpty(c)) { return new ArrayList<>(); } return filter(c, 0, c.size(), filter, max); } public static List filter(final Collection c, final int fromIndex, final int toIndex, final Try.Predicate filter) throws E { return filter(c, fromIndex, toIndex, filter, Integer.MAX_VALUE); } public static List filter(final Collection c, final int fromIndex, final int toIndex, final Try.Predicate filter, final int max) throws E { checkFromToIndex(fromIndex, toIndex, len(c)); N.checkArgNotNull(filter); if (N.isNullOrEmpty(c) && fromIndex == 0 && toIndex == 0) { return new ArrayList<>(); } final List result = new ArrayList<>(min(9, max, (toIndex - fromIndex))); if (c instanceof List && c instanceof RandomAccess) { final List list = (List) c; T e = null; for (int i = fromIndex, cnt = 0; i < toIndex && cnt < max; i++) { e = list.get(i); if (filter.test(e)) { result.add(e); cnt++; } } } else { int idx = 0; int cnt = 0; for (T e : c) { if (cnt >= max) { break; } if (idx++ < fromIndex) { continue; } if (filter.test(e)) { result.add(e); cnt++; } if (idx >= toIndex) { break; } } } return result; } public static , E extends Exception> R filter(final T[] a, final Try.Predicate filter, final IntFunction supplier) throws E { N.checkArgNotNull(filter); if (N.isNullOrEmpty(a)) { return supplier.apply(0); } return filter(a, filter, Integer.MAX_VALUE, supplier); } public static , E extends Exception> R filter(final T[] a, final Try.Predicate filter, final int max, final IntFunction supplier) throws E { N.checkArgNotNull(filter); if (N.isNullOrEmpty(a)) { return supplier.apply(0); } return filter(a, 0, a.length, filter, max, supplier); } public static , E extends Exception> R filter(final T[] a, final int fromIndex, final int toIndex, final Try.Predicate filter, final IntFunction supplier) throws E { return filter(a, fromIndex, toIndex, filter, Integer.MAX_VALUE, supplier); } /** * Mostly it's designed for one-step operation to complete the operation in one step. * java.util.stream.Stream is preferred for multiple phases operation. * * @param a * @param fromIndex * @param toIndex * @param filter * @param max * @param supplier * @return */ public static , E extends Exception> R filter(final T[] a, final int fromIndex, final int toIndex, final Try.Predicate filter, final int max, final IntFunction supplier) throws E { checkFromToIndex(fromIndex, toIndex, len(a)); N.checkArgNotNull(filter); if (N.isNullOrEmpty(a)) { return supplier.apply(0); } final R result = supplier.apply(N.min(9, max, (toIndex - fromIndex))); for (int i = fromIndex, cnt = 0; i < toIndex && cnt < max; i++) { if (filter.test(a[i])) { result.add(a[i]); cnt++; } } return result; } public static , E extends Exception> R filter(final Collection c, final Try.Predicate filter, final IntFunction supplier) throws E { N.checkArgNotNull(filter); if (N.isNullOrEmpty(c)) { return supplier.apply(0); } return filter(c, filter, Integer.MAX_VALUE, supplier); } public static , E extends Exception> R filter(final Collection c, final Try.Predicate filter, final int max, final IntFunction supplier) throws E { N.checkArgNotNull(filter); if (N.isNullOrEmpty(c)) { return supplier.apply(0); } return filter(c, 0, c.size(), filter, max, supplier); } public static , E extends Exception> R filter(final Collection c, final int fromIndex, final int toIndex, final Try.Predicate filter, final IntFunction supplier) throws E { return filter(c, fromIndex, toIndex, filter, Integer.MAX_VALUE, supplier); } public static , E extends Exception> R filter(final Collection c, final int fromIndex, final int toIndex, final Try.Predicate filter, final int max, final IntFunction supplier) throws E { checkFromToIndex(fromIndex, toIndex, len(c)); N.checkArgNotNull(filter); if (N.isNullOrEmpty(c) && fromIndex == 0 && toIndex == 0) { return supplier.apply(0); } final R result = supplier.apply(N.min(9, max, (toIndex - fromIndex))); if ((N.isNullOrEmpty(c) && fromIndex == 0 && toIndex == 0) || (fromIndex == toIndex && fromIndex < c.size())) { return result; } if (c instanceof List && c instanceof RandomAccess) { final List list = (List) c; T e = null; for (int i = fromIndex, cnt = 0; i < toIndex && cnt < max; i++) { e = list.get(i); if (filter.test(e)) { result.add(e); cnt++; } } } else { int idx = 0; int cnt = 0; for (T e : c) { if (cnt >= max) { break; } if (idx++ < fromIndex) { continue; } if (filter.test(e)) { result.add(e); cnt++; } if (idx >= toIndex) { break; } } } return result; } public static BooleanList mapToBoolean(final T[] a, final Try.ToBooleanFunction func) throws E { N.checkArgNotNull(func); if (N.isNullOrEmpty(a)) { return new BooleanList(); } return mapToBoolean(a, 0, a.length, func); } /** * Mostly it's designed for one-step operation to complete the operation in one step. * java.util.stream.Stream is preferred for multiple phases operation. * * @param a * @param fromIndex * @param toIndex * @param func * @return */ public static BooleanList mapToBoolean(final T[] a, final int fromIndex, final int toIndex, final Try.ToBooleanFunction func) throws E { checkFromToIndex(fromIndex, toIndex, len(a)); N.checkArgNotNull(func); if (N.isNullOrEmpty(a)) { return new BooleanList(); } final BooleanList result = new BooleanList(toIndex - fromIndex); for (int i = fromIndex; i < toIndex; i++) { result.add(func.applyAsBoolean(a[i])); } return result; } public static BooleanList mapToBoolean(final Collection c, final Try.ToBooleanFunction func) throws E { N.checkArgNotNull(func); if (N.isNullOrEmpty(c)) { return new BooleanList(); } return mapToBoolean(c, 0, c.size(), func); } /** * Mostly it's designed for one-step operation to complete the operation in one step. * java.util.stream.Stream is preferred for multiple phases operation. * * @param a * @param fromIndex * @param toIndex * @param func * @return */ public static BooleanList mapToBoolean(final Collection c, final int fromIndex, final int toIndex, final Try.ToBooleanFunction func) throws E { checkFromToIndex(fromIndex, toIndex, len(c)); N.checkArgNotNull(func); if (N.isNullOrEmpty(c) && fromIndex == 0 && toIndex == 0) { return new BooleanList(); } final BooleanList result = new BooleanList(toIndex - fromIndex); if (c instanceof List && c instanceof RandomAccess) { final List list = (List) c; for (int i = fromIndex; i < toIndex; i++) { result.add(func.applyAsBoolean(list.get(i))); } } else { int idx = 0; for (T e : c) { if (idx++ < fromIndex) { continue; } result.add(func.applyAsBoolean(e)); if (idx >= toIndex) { break; } } } return result; } public static CharList mapToChar(final T[] a, final Try.ToCharFunction func) throws E { N.checkArgNotNull(func); if (N.isNullOrEmpty(a)) { return new CharList(); } return mapToChar(a, 0, a.length, func); } /** * Mostly it's designed for one-step operation to complete the operation in one step. * java.util.stream.Stream is preferred for multiple phases operation. * * @param a * @param fromIndex * @param toIndex * @param func * @return */ public static CharList mapToChar(final T[] a, final int fromIndex, final int toIndex, final Try.ToCharFunction func) throws E { checkFromToIndex(fromIndex, toIndex, len(a)); N.checkArgNotNull(func); if (N.isNullOrEmpty(a)) { return new CharList(); } final CharList result = new CharList(toIndex - fromIndex); for (int i = fromIndex; i < toIndex; i++) { result.add(func.applyAsChar(a[i])); } return result; } public static CharList mapToChar(final Collection c, final Try.ToCharFunction func) throws E { N.checkArgNotNull(func); if (N.isNullOrEmpty(c)) { return new CharList(); } return mapToChar(c, 0, c.size(), func); } /** * Mostly it's designed for one-step operation to complete the operation in one step. * java.util.stream.Stream is preferred for multiple phases operation. * * @param a * @param fromIndex * @param toIndex * @param func * @return */ public static CharList mapToChar(final Collection c, final int fromIndex, final int toIndex, final Try.ToCharFunction func) throws E { checkFromToIndex(fromIndex, toIndex, len(c)); N.checkArgNotNull(func); if (N.isNullOrEmpty(c) && fromIndex == 0 && toIndex == 0) { return new CharList(); } final CharList result = new CharList(toIndex - fromIndex); if (c instanceof List && c instanceof RandomAccess) { final List list = (List) c; for (int i = fromIndex; i < toIndex; i++) { result.add(func.applyAsChar(list.get(i))); } } else { int idx = 0; for (T e : c) { if (idx++ < fromIndex) { continue; } result.add(func.applyAsChar(e)); if (idx >= toIndex) { break; } } } return result; } public static ByteList mapToByte(final T[] a, final Try.ToByteFunction func) throws E { N.checkArgNotNull(func); if (N.isNullOrEmpty(a)) { return new ByteList(); } return mapToByte(a, 0, a.length, func); } /** * Mostly it's designed for one-step operation to complete the operation in one step. * java.util.stream.Stream is preferred for multiple phases operation. * * @param a * @param fromIndex * @param toIndex * @param func * @return */ public static ByteList mapToByte(final T[] a, final int fromIndex, final int toIndex, final Try.ToByteFunction func) throws E { checkFromToIndex(fromIndex, toIndex, len(a)); N.checkArgNotNull(func); if (N.isNullOrEmpty(a)) { return new ByteList(); } final ByteList result = new ByteList(toIndex - fromIndex); for (int i = fromIndex; i < toIndex; i++) { result.add(func.applyAsByte(a[i])); } return result; } public static ByteList mapToByte(final Collection c, final Try.ToByteFunction func) throws E { N.checkArgNotNull(func); if (N.isNullOrEmpty(c)) { return new ByteList(); } return mapToByte(c, 0, c.size(), func); } /** * Mostly it's designed for one-step operation to complete the operation in one step. * java.util.stream.Stream is preferred for multiple phases operation. * * @param a * @param fromIndex * @param toIndex * @param func * @return */ public static ByteList mapToByte(final Collection c, final int fromIndex, final int toIndex, final Try.ToByteFunction func) throws E { checkFromToIndex(fromIndex, toIndex, len(c)); N.checkArgNotNull(func); if (N.isNullOrEmpty(c) && fromIndex == 0 && toIndex == 0) { return new ByteList(); } final ByteList result = new ByteList(toIndex - fromIndex); if (c instanceof List && c instanceof RandomAccess) { final List list = (List) c; for (int i = fromIndex; i < toIndex; i++) { result.add(func.applyAsByte(list.get(i))); } } else { int idx = 0; for (T e : c) { if (idx++ < fromIndex) { continue; } result.add(func.applyAsByte(e)); if (idx >= toIndex) { break; } } } return result; } public static ShortList mapToShort(final T[] a, final Try.ToShortFunction func) throws E { N.checkArgNotNull(func); if (N.isNullOrEmpty(a)) { return new ShortList(); } return mapToShort(a, 0, a.length, func); } /** * Mostly it's designed for one-step operation to complete the operation in one step. * java.util.stream.Stream is preferred for multiple phases operation. * * @param a * @param fromIndex * @param toIndex * @param func * @return */ public static ShortList mapToShort(final T[] a, final int fromIndex, final int toIndex, final Try.ToShortFunction func) throws E { checkFromToIndex(fromIndex, toIndex, len(a)); N.checkArgNotNull(func); if (N.isNullOrEmpty(a)) { return new ShortList(); } final ShortList result = new ShortList(toIndex - fromIndex); for (int i = fromIndex; i < toIndex; i++) { result.add(func.applyAsShort(a[i])); } return result; } public static ShortList mapToShort(final Collection c, final Try.ToShortFunction func) throws E { N.checkArgNotNull(func); if (N.isNullOrEmpty(c)) { return new ShortList(); } return mapToShort(c, 0, c.size(), func); } /** * Mostly it's designed for one-step operation to complete the operation in one step. * java.util.stream.Stream is preferred for multiple phases operation. * * @param a * @param fromIndex * @param toIndex * @param func * @return */ public static ShortList mapToShort(final Collection c, final int fromIndex, final int toIndex, final Try.ToShortFunction func) throws E { checkFromToIndex(fromIndex, toIndex, len(c)); N.checkArgNotNull(func); if (N.isNullOrEmpty(c) && fromIndex == 0 && toIndex == 0) { return new ShortList(); } final ShortList result = new ShortList(toIndex - fromIndex); if (c instanceof List && c instanceof RandomAccess) { final List list = (List) c; for (int i = fromIndex; i < toIndex; i++) { result.add(func.applyAsShort(list.get(i))); } } else { int idx = 0; for (T e : c) { if (idx++ < fromIndex) { continue; } result.add(func.applyAsShort(e)); if (idx >= toIndex) { break; } } } return result; } public static IntList mapToInt(final T[] a, final Try.ToIntFunction func) throws E { N.checkArgNotNull(func); if (N.isNullOrEmpty(a)) { return new IntList(); } return mapToInt(a, 0, a.length, func); } /** * Mostly it's designed for one-step operation to complete the operation in one step. * java.util.stream.Stream is preferred for multiple phases operation. * * @param a * @param fromIndex * @param toIndex * @param func * @return */ public static IntList mapToInt(final T[] a, final int fromIndex, final int toIndex, final Try.ToIntFunction func) throws E { checkFromToIndex(fromIndex, toIndex, len(a)); N.checkArgNotNull(func); if (N.isNullOrEmpty(a)) { return new IntList(); } final IntList result = new IntList(toIndex - fromIndex); for (int i = fromIndex; i < toIndex; i++) { result.add(func.applyAsInt(a[i])); } return result; } public static IntList mapToInt(final Collection c, final Try.ToIntFunction func) throws E { N.checkArgNotNull(func); if (N.isNullOrEmpty(c)) { return new IntList(); } return mapToInt(c, 0, c.size(), func); } /** * Mostly it's designed for one-step operation to complete the operation in one step. * java.util.stream.Stream is preferred for multiple phases operation. * * @param a * @param fromIndex * @param toIndex * @param func * @return */ public static IntList mapToInt(final Collection c, final int fromIndex, final int toIndex, final Try.ToIntFunction func) throws E { checkFromToIndex(fromIndex, toIndex, len(c)); N.checkArgNotNull(func); if (N.isNullOrEmpty(c) && fromIndex == 0 && toIndex == 0) { return new IntList(); } final IntList result = new IntList(toIndex - fromIndex); if (c instanceof List && c instanceof RandomAccess) { final List list = (List) c; for (int i = fromIndex; i < toIndex; i++) { result.add(func.applyAsInt(list.get(i))); } } else { int idx = 0; for (T e : c) { if (idx++ < fromIndex) { continue; } result.add(func.applyAsInt(e)); if (idx >= toIndex) { break; } } } return result; } public static LongList mapToLong(final T[] a, final Try.ToLongFunction func) throws E { N.checkArgNotNull(func); if (N.isNullOrEmpty(a)) { return new LongList(); } return mapToLong(a, 0, a.length, func); } /** * Mostly it's designed for one-step operation to complete the operation in one step. * java.util.stream.Stream is preferred for multiple phases operation. * * @param a * @param fromIndex * @param toIndex * @param func * @return */ public static LongList mapToLong(final T[] a, final int fromIndex, final int toIndex, final Try.ToLongFunction func) throws E { checkFromToIndex(fromIndex, toIndex, len(a)); N.checkArgNotNull(func); if (N.isNullOrEmpty(a)) { return new LongList(); } final LongList result = new LongList(toIndex - fromIndex); for (int i = fromIndex; i < toIndex; i++) { result.add(func.applyAsLong(a[i])); } return result; } public static LongList mapToLong(final Collection c, final Try.ToLongFunction func) throws E { N.checkArgNotNull(func); if (N.isNullOrEmpty(c)) { return new LongList(); } return mapToLong(c, 0, c.size(), func); } /** * Mostly it's designed for one-step operation to complete the operation in one step. * java.util.stream.Stream is preferred for multiple phases operation. * * @param a * @param fromIndex * @param toIndex * @param func * @return */ public static LongList mapToLong(final Collection c, final int fromIndex, final int toIndex, final Try.ToLongFunction func) throws E { checkFromToIndex(fromIndex, toIndex, len(c)); N.checkArgNotNull(func); if (N.isNullOrEmpty(c) && fromIndex == 0 && toIndex == 0) { return new LongList(); } final LongList result = new LongList(toIndex - fromIndex); if (c instanceof List && c instanceof RandomAccess) { final List list = (List) c; for (int i = fromIndex; i < toIndex; i++) { result.add(func.applyAsLong(list.get(i))); } } else { int idx = 0; for (T e : c) { if (idx++ < fromIndex) { continue; } result.add(func.applyAsLong(e)); if (idx >= toIndex) { break; } } } return result; } public static FloatList mapToFloat(final T[] a, final Try.ToFloatFunction func) throws E { N.checkArgNotNull(func); if (N.isNullOrEmpty(a)) { return new FloatList(); } return mapToFloat(a, 0, a.length, func); } /** * Mostly it's designed for one-step operation to complete the operation in one step. * java.util.stream.Stream is preferred for multiple phases operation. * * @param a * @param fromIndex * @param toIndex * @param func * @return */ public static FloatList mapToFloat(final T[] a, final int fromIndex, final int toIndex, final Try.ToFloatFunction func) throws E { checkFromToIndex(fromIndex, toIndex, len(a)); N.checkArgNotNull(func); if (N.isNullOrEmpty(a)) { return new FloatList(); } final FloatList result = new FloatList(toIndex - fromIndex); for (int i = fromIndex; i < toIndex; i++) { result.add(func.applyAsFloat(a[i])); } return result; } public static FloatList mapToFloat(final Collection c, final Try.ToFloatFunction func) throws E { N.checkArgNotNull(func); if (N.isNullOrEmpty(c)) { return new FloatList(); } return mapToFloat(c, 0, c.size(), func); } /** * Mostly it's designed for one-step operation to complete the operation in one step. * java.util.stream.Stream is preferred for multiple phases operation. * * @param a * @param fromIndex * @param toIndex * @param func * @return */ public static FloatList mapToFloat(final Collection c, final int fromIndex, final int toIndex, final Try.ToFloatFunction func) throws E { checkFromToIndex(fromIndex, toIndex, len(c)); N.checkArgNotNull(func); if (N.isNullOrEmpty(c) && fromIndex == 0 && toIndex == 0) { return new FloatList(); } final FloatList result = new FloatList(toIndex - fromIndex); if (c instanceof List && c instanceof RandomAccess) { final List list = (List) c; for (int i = fromIndex; i < toIndex; i++) { result.add(func.applyAsFloat(list.get(i))); } } else { int idx = 0; for (T e : c) { if (idx++ < fromIndex) { continue; } result.add(func.applyAsFloat(e)); if (idx >= toIndex) { break; } } } return result; } public static DoubleList mapToDouble(final T[] a, final Try.ToDoubleFunction func) throws E { N.checkArgNotNull(func); if (N.isNullOrEmpty(a)) { return new DoubleList(); } return mapToDouble(a, 0, a.length, func); } /** * Mostly it's designed for one-step operation to complete the operation in one step. * java.util.stream.Stream is preferred for multiple phases operation. * * @param a * @param fromIndex * @param toIndex * @param func * @return */ public static DoubleList mapToDouble(final T[] a, final int fromIndex, final int toIndex, final Try.ToDoubleFunction func) throws E { checkFromToIndex(fromIndex, toIndex, len(a)); N.checkArgNotNull(func); if (N.isNullOrEmpty(a)) { return new DoubleList(); } final DoubleList result = new DoubleList(toIndex - fromIndex); for (int i = fromIndex; i < toIndex; i++) { result.add(func.applyAsDouble(a[i])); } return result; } public static DoubleList mapToDouble(final Collection c, final Try.ToDoubleFunction func) throws E { N.checkArgNotNull(func); if (N.isNullOrEmpty(c)) { return new DoubleList(); } return mapToDouble(c, 0, c.size(), func); } /** * Mostly it's designed for one-step operation to complete the operation in one step. * java.util.stream.Stream is preferred for multiple phases operation. * * @param a * @param fromIndex * @param toIndex * @param func * @return */ public static DoubleList mapToDouble(final Collection c, final int fromIndex, final int toIndex, final Try.ToDoubleFunction func) throws E { checkFromToIndex(fromIndex, toIndex, len(c)); N.checkArgNotNull(func); if (N.isNullOrEmpty(c) && fromIndex == 0 && toIndex == 0) { return new DoubleList(); } final DoubleList result = new DoubleList(toIndex - fromIndex); if (c instanceof List && c instanceof RandomAccess) { final List list = (List) c; for (int i = fromIndex; i < toIndex; i++) { result.add(func.applyAsDouble(list.get(i))); } } else { int idx = 0; for (T e : c) { if (idx++ < fromIndex) { continue; } result.add(func.applyAsDouble(e)); if (idx >= toIndex) { break; } } } return result; } public static List map(final T[] a, final Try.Function func) throws E { N.checkArgNotNull(func); if (N.isNullOrEmpty(a)) { return new ArrayList<>(); } return map(a, 0, a.length, func); } /** * Mostly it's designed for one-step operation to complete the operation in one step. * java.util.stream.Stream is preferred for multiple phases operation. * * @param a * @param fromIndex * @param toIndex * @param func * @return */ public static List map(final T[] a, final int fromIndex, final int toIndex, final Try.Function func) throws E { checkFromToIndex(fromIndex, toIndex, len(a)); N.checkArgNotNull(func); if (N.isNullOrEmpty(a)) { return new ArrayList<>(); } final List result = new ArrayList<>(toIndex - fromIndex); for (int i = fromIndex; i < toIndex; i++) { result.add(func.apply(a[i])); } return result; } public static List map(final Collection c, final Try.Function func) throws E { N.checkArgNotNull(func); if (N.isNullOrEmpty(c)) { return new ArrayList<>(); } return map(c, 0, c.size(), func); } /** * Mostly it's designed for one-step operation to complete the operation in one step. * java.util.stream.Stream is preferred for multiple phases operation. * * @param a * @param fromIndex * @param toIndex * @param func * @return */ public static List map(final Collection c, final int fromIndex, final int toIndex, final Try.Function func) throws E { checkFromToIndex(fromIndex, toIndex, len(c)); N.checkArgNotNull(func); if (N.isNullOrEmpty(c) && fromIndex == 0 && toIndex == 0) { return new ArrayList<>(); } final List result = new ArrayList<>(toIndex - fromIndex); if (c instanceof List && c instanceof RandomAccess) { final List list = (List) c; for (int i = fromIndex; i < toIndex; i++) { result.add(func.apply(list.get(i))); } } else { int idx = 0; for (T e : c) { if (idx++ < fromIndex) { continue; } result.add(func.apply(e)); if (idx >= toIndex) { break; } } } return result; } public static , E extends Exception> C map(final T[] a, final Try.Function func, final IntFunction supplier) throws E { N.checkArgNotNull(func); if (N.isNullOrEmpty(a)) { return supplier.apply(0); } return map(a, 0, a.length, func, supplier); } /** * Mostly it's designed for one-step operation to complete the operation in one step. * java.util.stream.Stream is preferred for multiple phases operation. * * @param a * @param fromIndex * @param toIndex * @param func * @param max * @param supplier * @return */ public static , E extends Exception> C map(final T[] a, final int fromIndex, final int toIndex, final Try.Function func, final IntFunction supplier) throws E { checkFromToIndex(fromIndex, toIndex, len(a)); N.checkArgNotNull(func); if (N.isNullOrEmpty(a)) { return supplier.apply(0); } final C result = supplier.apply(toIndex - fromIndex); for (int i = fromIndex; i < toIndex; i++) { result.add(func.apply(a[i])); } return result; } public static , E extends Exception> C map(final Collection c, final Try.Function func, final IntFunction supplier) throws E { N.checkArgNotNull(func); if (N.isNullOrEmpty(c)) { return supplier.apply(0); } return map(c, 0, c.size(), func, supplier); } /** * Mostly it's designed for one-step operation to complete the operation in one step. * java.util.stream.Stream is preferred for multiple phases operation. * * @param a * @param fromIndex * @param toIndex * @param func * @param max * @param supplier * @return */ public static , E extends Exception> C map(final Collection c, final int fromIndex, final int toIndex, final Try.Function func, final IntFunction supplier) throws E { checkFromToIndex(fromIndex, toIndex, len(c)); N.checkArgNotNull(func); if (N.isNullOrEmpty(c) && fromIndex == 0 && toIndex == 0) { return supplier.apply(0); } final C result = supplier.apply(toIndex - fromIndex); if (c instanceof List && c instanceof RandomAccess) { final List list = (List) c; for (int i = fromIndex; i < toIndex; i++) { result.add(func.apply(list.get(i))); } } else { int idx = 0; for (T e : c) { if (idx++ < fromIndex) { continue; } result.add(func.apply(e)); if (idx >= toIndex) { break; } } } return result; } public static List flatMap(final T[] a, final Try.Function, E> func) throws E { N.checkArgNotNull(func); if (N.isNullOrEmpty(a)) { return new ArrayList<>(); } return flatMap(a, 0, a.length, func); } /** * Mostly it's designed for one-step operation to complete the operation in one step. * java.util.stream.Stream is preferred for multiple phases operation. * * @param a * @param fromIndex * @param toIndex * @param func * @return */ public static List flatMap(final T[] a, final int fromIndex, final int toIndex, final Try.Function, E> func) throws E { checkFromToIndex(fromIndex, toIndex, len(a)); N.checkArgNotNull(func); if (N.isNullOrEmpty(a)) { return new ArrayList<>(); } final List result = new ArrayList<>(toIndex - fromIndex); Collection mr = null; for (int i = fromIndex; i < toIndex; i++) { if (N.notNullOrEmpty(mr = func.apply(a[i]))) { result.addAll(mr); } } return result; } public static List flatMap(final Collection c, final Try.Function, E> func) throws E { N.checkArgNotNull(func); if (N.isNullOrEmpty(c)) { return new ArrayList<>(); } return flatMap(c, 0, c.size(), func); } /** * Mostly it's designed for one-step operation to complete the operation in one step. * java.util.stream.Stream is preferred for multiple phases operation. * * @param a * @param fromIndex * @param toIndex * @param func * @return */ public static List flatMap(final Collection c, final int fromIndex, final int toIndex, final Try.Function, E> func) throws E { checkFromToIndex(fromIndex, toIndex, len(c)); N.checkArgNotNull(func); if (N.isNullOrEmpty(c) && fromIndex == 0 && toIndex == 0) { return new ArrayList<>(); } final List result = new ArrayList<>(toIndex - fromIndex); Collection mr = null; if (c instanceof List && c instanceof RandomAccess) { final List list = (List) c; for (int i = fromIndex; i < toIndex; i++) { if (N.notNullOrEmpty(mr = func.apply(list.get(i)))) { result.addAll(mr); } } } else { int idx = 0; for (T e : c) { if (idx++ < fromIndex) { continue; } if (N.notNullOrEmpty(mr = func.apply(e))) { result.addAll(mr); } if (idx >= toIndex) { break; } } } return result; } public static , E extends Exception> C flatMap(final T[] a, final Try.Function, E> func, final IntFunction supplier) throws E { N.checkArgNotNull(func); if (N.isNullOrEmpty(a)) { return supplier.apply(0); } return flatMap(a, 0, a.length, func, supplier); } /** * Mostly it's designed for one-step operation to complete the operation in one step. * java.util.stream.Stream is preferred for multiple phases operation. * * @param a * @param fromIndex * @param toIndex * @param func * @param mr x * @param supplier * @return */ public static , E extends Exception> C flatMap(final T[] a, final int fromIndex, final int toIndex, final Try.Function, E> func, final IntFunction supplier) throws E { checkFromToIndex(fromIndex, toIndex, len(a)); N.checkArgNotNull(func); if (N.isNullOrEmpty(a)) { return supplier.apply(0); } final C result = supplier.apply(toIndex - fromIndex); Collection mr = null; for (int i = fromIndex; i < toIndex; i++) { if (N.notNullOrEmpty(mr = func.apply(a[i]))) { result.addAll(mr); } } return result; } public static , E extends Exception> C flatMap(final Collection c, final Try.Function, E> func, final IntFunction supplier) throws E { N.checkArgNotNull(func); if (N.isNullOrEmpty(c)) { return supplier.apply(0); } return flatMap(c, 0, c.size(), func, supplier); } /** * Mostly it's designed for one-step operation to complete the operation in one step. * java.util.stream.Stream is preferred for multiple phases operation. * * @param a * @param fromIndex * @param toIndex * @param func * @param mr x * @param supplier * @return */ public static , E extends Exception> C flatMap(final Collection c, final int fromIndex, final int toIndex, final Try.Function, E> func, final IntFunction supplier) throws E { checkFromToIndex(fromIndex, toIndex, len(c)); N.checkArgNotNull(func); if (N.isNullOrEmpty(c) && fromIndex == 0 && toIndex == 0) { return supplier.apply(0); } final C result = supplier.apply(toIndex - fromIndex); Collection mr = null; if (c instanceof List && c instanceof RandomAccess) { final List list = (List) c; for (int i = fromIndex; i < toIndex; i++) { if (N.notNullOrEmpty(mr = func.apply(list.get(i)))) { result.addAll(mr); } } } else { int idx = 0; for (T e : c) { if (idx++ < fromIndex) { continue; } if (N.notNullOrEmpty(mr = func.apply(e))) { result.addAll(mr); } if (idx >= toIndex) { break; } } } return result; } public static , E extends Exception, E2 extends Exception> List flatMap(final T[] a, final Try.Function, E> func, final Try.Function, E2> func2) throws E, E2 { return flatMap(a, func, func2, Fn.Factory. ofList()); } /** * Mostly it's designed for one-step operation to complete the operation in one step. * java.util.stream.Stream is preferred for multiple phases operation. * * @param a * @param func * @param func2 * @param supplier * @return * @throws E * @throws E2 */ public static , E extends Exception, E2 extends Exception> C flatMap(final T[] a, final Try.Function, E> func, final Try.Function, E2> func2, final IntFunction supplier) throws E, E2 { N.checkArgNotNull(func); N.checkArgNotNull(func2); if (N.isNullOrEmpty(a)) { return supplier.apply(0); } final C result = supplier.apply(a.length); for (T e : a) { final Collection c1 = func.apply(e); if (N.notNullOrEmpty(c1)) { for (T2 e2 : c1) { final Collection c2 = func2.apply(e2); if (N.notNullOrEmpty(c2)) { result.addAll(c2); } } } } return result; } public static , E extends Exception, E2 extends Exception> List flatMap(final Collection c, final Try.Function, E> func, final Try.Function, E2> func2) throws E, E2 { return flatMap(c, func, func2, Fn.Factory. ofList()); } /** * Mostly it's designed for one-step operation to complete the operation in one step. * java.util.stream.Stream is preferred for multiple phases operation. * * @param a * @param func * @param func2 * @param supplier * @return * @throws E * @throws E2 */ public static , E extends Exception, E2 extends Exception> C flatMap(final Collection c, final Try.Function, E> func, final Try.Function, E2> func2, final IntFunction supplier) throws E, E2 { N.checkArgNotNull(func); N.checkArgNotNull(func2); if (N.isNullOrEmpty(c)) { return supplier.apply(0); } final C result = supplier.apply(c.size()); for (T e : c) { final Collection c1 = func.apply(e); if (N.notNullOrEmpty(c1)) { for (T2 e2 : c1) { final Collection c2 = func2.apply(e2); if (N.notNullOrEmpty(c2)) { result.addAll(c2); } } } } return result; } public static List flattMap(final T[] a, final Try.Function func) throws E { N.checkArgNotNull(func); if (N.isNullOrEmpty(a)) { return new ArrayList<>(); } return flattMap(a, 0, a.length, func); } /** * Mostly it's designed for one-step operation to complete the operation in one step. * java.util.stream.Stream is preferred for multiple phases operation. * * @param a * @param fromIndex * @param toIndex * @param func * @return */ public static List flattMap(final T[] a, final int fromIndex, final int toIndex, final Try.Function func) throws E { checkFromToIndex(fromIndex, toIndex, len(a)); N.checkArgNotNull(func); if (N.isNullOrEmpty(a)) { return new ArrayList<>(); } final List result = new ArrayList<>(toIndex - fromIndex); R[] mr = null; for (int i = fromIndex; i < toIndex; i++) { if (N.notNullOrEmpty(mr = func.apply(a[i]))) { result.addAll(Arrays.asList(mr)); } } return result; } public static List flattMap(final Collection c, final Try.Function func) throws E { N.checkArgNotNull(func); if (N.isNullOrEmpty(c)) { return new ArrayList<>(); } return flattMap(c, 0, c.size(), func); } /** * Mostly it's designed for one-step operation to complete the operation in one step. * java.util.stream.Stream is preferred for multiple phases operation. * * @param a * @param fromIndex * @param toIndex * @param func * @return */ public static List flattMap(final Collection c, final int fromIndex, final int toIndex, final Try.Function func) throws E { checkFromToIndex(fromIndex, toIndex, len(c)); N.checkArgNotNull(func); if (N.isNullOrEmpty(c) && fromIndex == 0 && toIndex == 0) { return new ArrayList<>(); } final List result = new ArrayList<>(toIndex - fromIndex); R[] mr = null; if (c instanceof List && c instanceof RandomAccess) { final List list = (List) c; for (int i = fromIndex; i < toIndex; i++) { if (N.notNullOrEmpty(mr = func.apply(list.get(i)))) { result.addAll(Arrays.asList(mr)); } } } else { int idx = 0; for (T e : c) { if (idx++ < fromIndex) { continue; } if (N.notNullOrEmpty(mr = func.apply(e))) { result.addAll(Arrays.asList(mr)); } if (idx >= toIndex) { break; } } } return result; } public static , E extends Exception> C flattMap(final T[] a, final Try.Function func, final IntFunction supplier) throws E { N.checkArgNotNull(func); if (N.isNullOrEmpty(a)) { return supplier.apply(0); } return flattMap(a, 0, a.length, func, supplier); } /** * Mostly it's designed for one-step operation to complete the operation in one step. * java.util.stream.Stream is preferred for multiple phases operation. * * @param a * @param fromIndex * @param toIndex * @param func * @param mr x * @param supplier * @return */ public static , E extends Exception> C flattMap(final T[] a, final int fromIndex, final int toIndex, final Try.Function func, final IntFunction supplier) throws E { checkFromToIndex(fromIndex, toIndex, len(a)); N.checkArgNotNull(func); if (N.isNullOrEmpty(a)) { return supplier.apply(0); } final C result = supplier.apply(toIndex - fromIndex); R[] mr = null; for (int i = fromIndex; i < toIndex; i++) { if (N.notNullOrEmpty(mr = func.apply(a[i]))) { result.addAll(Arrays.asList(mr)); } } return result; } public static , E extends Exception> C flattMap(final Collection c, final Try.Function func, final IntFunction supplier) throws E { N.checkArgNotNull(func); if (N.isNullOrEmpty(c)) { return supplier.apply(0); } return flattMap(c, 0, c.size(), func, supplier); } /** * Mostly it's designed for one-step operation to complete the operation in one step. * java.util.stream.Stream is preferred for multiple phases operation. * * @param a * @param fromIndex * @param toIndex * @param func * @param mr x * @param supplier * @return */ public static , E extends Exception> C flattMap(final Collection c, final int fromIndex, final int toIndex, final Try.Function func, final IntFunction supplier) throws E { checkFromToIndex(fromIndex, toIndex, len(c)); N.checkArgNotNull(func); if (N.isNullOrEmpty(c) && fromIndex == 0 && toIndex == 0) { return supplier.apply(0); } final C result = supplier.apply(toIndex - fromIndex); R[] mr = null; if (c instanceof List && c instanceof RandomAccess) { final List list = (List) c; for (int i = fromIndex; i < toIndex; i++) { if (N.notNullOrEmpty(mr = func.apply(list.get(i)))) { result.addAll(Arrays.asList(mr)); } } } else { int idx = 0; for (T e : c) { if (idx++ < fromIndex) { continue; } if (N.notNullOrEmpty(mr = func.apply(e))) { result.addAll(Arrays.asList(mr)); } if (idx >= toIndex) { break; } } } return result; } /** * * @param a * @return */ public static int sumInt(final T[] a) { return N.sumInt(a, Fn.numToInt()); } /** * * @param a * @param fromIndex * @param toIndex * @return */ public static int sumInt(final T[] a, final int fromIndex, final int toIndex) { return N.sumInt(a, fromIndex, toIndex, Fn.numToInt()); } public static int sumInt(final T[] a, final Try.ToIntFunction func) throws E { if (N.isNullOrEmpty(a)) { return 0; } return sumInt(a, 0, a.length, func); } public static int sumInt(final T[] a, final int fromIndex, final int toIndex, final Try.ToIntFunction func) throws E { checkFromToIndex(fromIndex, toIndex, len(a)); if (fromIndex == toIndex) { return 0; } int result = 0; for (int i = fromIndex; i < toIndex; i++) { result += func.applyAsInt(a[i]); } return result; } /** * * @param c * @return */ public static int sumInt(final Collection c) { return N.sumInt(c, Fn.numToInt()); } /** * * @param c * @param fromIndex * @param toIndex * @return */ public static int sumInt(final Collection c, final int fromIndex, final int toIndex) { return N.sumInt(c, fromIndex, toIndex, Fn.numToInt()); } public static int sumInt(final Collection c, final Try.ToIntFunction func) throws E { if (N.isNullOrEmpty(c)) { return 0; } int result = 0; for (T e : c) { result += func.applyAsInt(e); } return result; } public static int sumInt(final Collection c, final int fromIndex, final int toIndex, final Try.ToIntFunction func) throws E { checkFromToIndex(fromIndex, toIndex, len(c)); if (fromIndex == toIndex) { return 0; } int result = 0; if (c instanceof List && c instanceof RandomAccess) { final List list = (List) c; for (int i = fromIndex; i < toIndex; i++) { result += func.applyAsInt(list.get(i)); } } else { int idx = 0; for (T e : c) { if (idx++ < fromIndex) { continue; } result += func.applyAsInt(e); if (idx >= toIndex) { break; } } } return result; } /** * * @param a * @return */ public static long sumLong(final T[] a) { return N.sumLong(a, Fn.numToLong()); } /** * * @param a * @param fromIndex * @param toIndex * @return */ public static long sumLong(final T[] a, final int fromIndex, final int toIndex) { return N.sumLong(a, fromIndex, toIndex, Fn.numToLong()); } public static long sumLong(final T[] a, final Try.ToLongFunction func) throws E { if (N.isNullOrEmpty(a)) { return 0L; } return sumLong(a, 0, a.length, func); } public static long sumLong(final T[] a, final int fromIndex, final int toIndex, final Try.ToLongFunction func) throws E { checkFromToIndex(fromIndex, toIndex, len(a)); if (fromIndex == toIndex) { return 0L; } long result = 0; for (int i = fromIndex; i < toIndex; i++) { result += func.applyAsLong(a[i]); } return result; } /** * * @param c * @return */ public static long sumLong(final Collection c) { return N.sumLong(c, Fn.numToLong()); } /** * * @param c * @param fromIndex * @param toIndex * @return */ public static long sumLong(final Collection c, final int fromIndex, final int toIndex) { return N.sumLong(c, fromIndex, toIndex, Fn.numToLong()); } public static long sumLong(final Collection c, final Try.ToLongFunction func) throws E { if (N.isNullOrEmpty(c)) { return 0L; } long result = 0; for (T e : c) { result += func.applyAsLong(e); } return result; } public static long sumLong(final Collection c, final int fromIndex, final int toIndex, final Try.ToLongFunction func) throws E { checkFromToIndex(fromIndex, toIndex, len(c)); if (fromIndex == toIndex) { return 0L; } long result = 0; if (c instanceof List && c instanceof RandomAccess) { final List list = (List) c; for (int i = fromIndex; i < toIndex; i++) { result += func.applyAsLong(list.get(i)); } } else { int idx = 0; for (T e : c) { if (idx++ < fromIndex) { continue; } result += func.applyAsLong(e); if (idx >= toIndex) { break; } } } return result; } /** * * @param a * @return */ public static double sumDouble(final T[] a) { return N.sumDouble(a, Fn.numToDouble()); } /** * * @param a * @param fromIndex * @param toIndex * @return */ public static double sumDouble(final T[] a, final int fromIndex, final int toIndex) { return N.sumDouble(a, fromIndex, toIndex, Fn.numToDouble()); } public static double sumDouble(final T[] a, final Try.ToDoubleFunction func) throws E { if (N.isNullOrEmpty(a)) { return 0D; } return sumDouble(a, 0, a.length, func); } public static double sumDouble(final T[] a, final int fromIndex, final int toIndex, final Try.ToDoubleFunction func) throws E { checkFromToIndex(fromIndex, toIndex, len(a)); if (fromIndex == toIndex) { return 0D; } // double result = 0; // // for (int i = fromIndex; i < toIndex; i++) { // result += func.applyAsDouble(a[i]); // } // // return result; return Stream.of(a, fromIndex, toIndex).mapToDouble(toDoubleFunction(func)).sum(); } /** * * @param c * @return */ public static double sumDouble(final Collection c) { return N.sumDouble(c, Fn.numToDouble()); } /** * * @param c * @param fromIndex * @param toIndex * @return */ public static double sumDouble(final Collection c, final int fromIndex, final int toIndex) { return N.sumDouble(c, fromIndex, toIndex, Fn.numToDouble()); } public static double sumDouble(final Collection c, final Try.ToDoubleFunction func) throws E { if (N.isNullOrEmpty(c)) { return 0D; } // double result = 0; // // for (T e : c) { // result += func.applyAsDouble(e); // } // // return result; return Stream.of(c).mapToDouble(toDoubleFunction(func)).sum(); } public static double sumDouble(final Collection c, final int fromIndex, final int toIndex, final Try.ToDoubleFunction func) throws E { checkFromToIndex(fromIndex, toIndex, len(c)); if (fromIndex == toIndex) { return 0D; } // double result = 0; // // if (c instanceof List && c instanceof RandomAccess) { // final List list = (List) c; // // for (int i = fromIndex; i < toIndex; i++) { // result += func.applyAsDouble(list.get(i)); // } // } else { // int idx = 0; // // for (T e : c) { // if (idx++ < fromIndex) { // continue; // } // // result += func.applyAsDouble(e); // // if (idx >= toIndex) { // break; // } // } // } // // return result; return Stream.of(c, fromIndex, toIndex).mapToDouble(toDoubleFunction(func)).sum(); } /** * * @param a * @return */ public static OptionalDouble averageInt(final T[] a) { return N.averageInt(a, Fn.numToInt()); } /** * * @param a * @param fromIndex * @param toIndex * @return */ public static OptionalDouble averageInt(final T[] a, final int fromIndex, final int toIndex) { return N.averageInt(a, fromIndex, toIndex, Fn.numToInt()); } public static OptionalDouble averageInt(final T[] a, final Try.ToIntFunction func) throws E { if (N.isNullOrEmpty(a)) { return OptionalDouble.empty(); } return averageInt(a, 0, a.length, func); } public static OptionalDouble averageInt(final T[] a, final int fromIndex, final int toIndex, final Try.ToIntFunction func) throws E { checkFromToIndex(fromIndex, toIndex, len(a)); if (fromIndex == toIndex) { return OptionalDouble.empty(); } long sum = 0; for (int i = fromIndex; i < toIndex; i++) { sum += func.applyAsInt(a[i]); } return OptionalDouble.of(((double) sum) / (toIndex - fromIndex)); } /** * * @param c * @return */ public static OptionalDouble averageInt(final Collection c) { return N.averageInt(c, Fn.numToInt()); } /** * * @param c * @param fromIndex * @param toIndex * @return */ public static OptionalDouble averageInt(final Collection c, final int fromIndex, final int toIndex) { return N.averageInt(c, fromIndex, toIndex, Fn.numToInt()); } public static OptionalDouble averageInt(final Collection c, final Try.ToIntFunction func) throws E { if (N.isNullOrEmpty(c)) { return OptionalDouble.empty(); } long sum = 0; for (T e : c) { sum += func.applyAsInt(e); } return OptionalDouble.of(((double) sum) / c.size()); } public static OptionalDouble averageInt(final Collection c, final int fromIndex, final int toIndex, final Try.ToIntFunction func) throws E { checkFromToIndex(fromIndex, toIndex, len(c)); if (fromIndex == toIndex) { return OptionalDouble.empty(); } long sum = 0; if (c instanceof List && c instanceof RandomAccess) { final List list = (List) c; for (int i = fromIndex; i < toIndex; i++) { sum += func.applyAsInt(list.get(i)); } } else { int idx = 0; for (T e : c) { if (idx++ < fromIndex) { continue; } sum += func.applyAsInt(e); if (idx >= toIndex) { break; } } } return OptionalDouble.of(((double) sum) / (toIndex - fromIndex)); } /** * * @param a * @return */ public static OptionalDouble averageLong(final T[] a) { return N.averageLong(a, Fn.numToLong()); } /** * * @param a * @param fromIndex * @param toIndex * @return */ public static OptionalDouble averageLong(final T[] a, final int fromIndex, final int toIndex) { return N.averageLong(a, fromIndex, toIndex, Fn.numToLong()); } public static OptionalDouble averageLong(final T[] a, final Try.ToLongFunction func) throws E { if (N.isNullOrEmpty(a)) { return OptionalDouble.empty(); } return averageLong(a, 0, a.length, func); } public static OptionalDouble averageLong(final T[] a, final int fromIndex, final int toIndex, final Try.ToLongFunction func) throws E { checkFromToIndex(fromIndex, toIndex, len(a)); if (fromIndex == toIndex) { return OptionalDouble.empty(); } return OptionalDouble.of(((double) sumLong(a, fromIndex, toIndex, func)) / (toIndex - fromIndex)); } /** * * @param c * @return */ public static OptionalDouble averageLong(final Collection c) { return N.averageLong(c, Fn.numToLong()); } /** * * @param c * @param fromIndex * @param toIndex * @return */ public static OptionalDouble averageLong(final Collection c, final int fromIndex, final int toIndex) { return N.averageLong(c, fromIndex, toIndex, Fn.numToLong()); } public static OptionalDouble averageLong(final Collection c, final Try.ToLongFunction func) throws E { if (N.isNullOrEmpty(c)) { return OptionalDouble.empty(); } return OptionalDouble.of(((double) sumLong(c, func)) / c.size()); } public static OptionalDouble averageLong(final Collection c, final int fromIndex, final int toIndex, final Try.ToLongFunction func) throws E { checkFromToIndex(fromIndex, toIndex, len(c)); if (fromIndex == toIndex) { return OptionalDouble.empty(); } return OptionalDouble.of(((double) sumLong(c, fromIndex, toIndex, func)) / (toIndex - fromIndex)); } /** * * @param a * @return */ public static OptionalDouble averageDouble(final T[] a) { return N.averageDouble(a, Fn.numToDouble()); } /** * * @param a * @param fromIndex * @param toIndex * @return */ public static OptionalDouble averageDouble(final T[] a, final int fromIndex, final int toIndex) { return N.averageDouble(a, fromIndex, toIndex, Fn.numToDouble()); } public static OptionalDouble averageDouble(final T[] a, final Try.ToDoubleFunction func) throws E { if (N.isNullOrEmpty(a)) { return OptionalDouble.empty(); } return averageDouble(a, 0, a.length, func); } public static OptionalDouble averageDouble(final T[] a, final int fromIndex, final int toIndex, final Try.ToDoubleFunction func) throws E { checkFromToIndex(fromIndex, toIndex, len(a)); if (fromIndex == toIndex) { return OptionalDouble.empty(); } // return OptionalDouble.of(sumDouble(a, fromIndex, toIndex, func) / (toIndex - fromIndex)); return Stream.of(a, fromIndex, toIndex).mapToDouble(toDoubleFunction(func)).average(); } /** * * @param c * @return */ public static OptionalDouble averageDouble(final Collection c) { return N.averageDouble(c, Fn.numToDouble()); } /** * * @param c * @param fromIndex * @param toIndex * @return */ public static OptionalDouble averageDouble(final Collection c, final int fromIndex, final int toIndex) { return N.averageDouble(c, fromIndex, toIndex, Fn.numToDouble()); } public static OptionalDouble averageDouble(final Collection c, final Try.ToDoubleFunction func) throws E { if (N.isNullOrEmpty(c)) { return OptionalDouble.empty(); } // return OptionalDouble.of(sumDouble(c, func) / c.size()); return Stream.of(c).mapToDouble(toDoubleFunction(func)).average(); } public static OptionalDouble averageDouble(final Collection c, final int fromIndex, final int toIndex, final Try.ToDoubleFunction func) throws E { checkFromToIndex(fromIndex, toIndex, len(c)); if (fromIndex == toIndex) { return OptionalDouble.empty(); } // return OptionalDouble.of(sumDouble(c, fromIndex, toIndex, func) / (toIndex - fromIndex)); return Stream.of(c, fromIndex, toIndex).mapToDouble(toDoubleFunction(func)).average(); } private static ToDoubleFunction toDoubleFunction(final Try.ToDoubleFunction func) { return func instanceof ToDoubleFunction ? (ToDoubleFunction) func : new ToDoubleFunction() { @Override public double applyAsDouble(T t) { try { return func.applyAsDouble(t); } catch (Exception e) { throw N.toRuntimeException(e); } } }; } /** * * Mostly it's designed for one-step operation to complete the operation in one step. * java.util.stream.Stream is preferred for multiple phases operation. * * @param a * @param filter * @return */ public static int count(final boolean[] a, final Try.BooleanPredicate filter) throws E { N.checkArgNotNull(filter); if (N.isNullOrEmpty(a)) { return 0; } return count(a, 0, a.length, filter); } /** * * Mostly it's designed for one-step operation to complete the operation in one step. * java.util.stream.Stream is preferred for multiple phases operation. * * @param a * @param fromIndex * @param toIndex * @param filter * @return */ public static int count(final boolean[] a, final int fromIndex, final int toIndex, final Try.BooleanPredicate filter) throws E { checkFromToIndex(fromIndex, toIndex, len(a)); N.checkArgNotNull(filter); if (N.isNullOrEmpty(a)) { return 0; } int count = 0; for (int i = fromIndex; i < toIndex; i++) { if (filter.test(a[i])) { count++; } } return count; } /** * * Mostly it's designed for one-step operation to complete the operation in one step. * java.util.stream.Stream is preferred for multiple phases operation. * * @param a * @param filter * @return */ public static int count(final char[] a, final Try.CharPredicate filter) throws E { N.checkArgNotNull(filter); if (N.isNullOrEmpty(a)) { return 0; } return count(a, 0, a.length, filter); } /** * * Mostly it's designed for one-step operation to complete the operation in one step. * java.util.stream.Stream is preferred for multiple phases operation. * * @param a * @param fromIndex * @param toIndex * @param filter * @return */ public static int count(final char[] a, final int fromIndex, final int toIndex, final Try.CharPredicate filter) throws E { checkFromToIndex(fromIndex, toIndex, len(a)); N.checkArgNotNull(filter); if (N.isNullOrEmpty(a)) { return 0; } int count = 0; for (int i = fromIndex; i < toIndex; i++) { if (filter.test(a[i])) { count++; } } return count; } /** * * Mostly it's designed for one-step operation to complete the operation in one step. * java.util.stream.Stream is preferred for multiple phases operation. * * @param a * @param filter * @return */ public static int count(final byte[] a, final Try.BytePredicate filter) throws E { N.checkArgNotNull(filter); if (N.isNullOrEmpty(a)) { return 0; } return count(a, 0, a.length, filter); } /** * * Mostly it's designed for one-step operation to complete the operation in one step. * java.util.stream.Stream is preferred for multiple phases operation. * * @param a * @param fromIndex * @param toIndex * @param filter * @return */ public static int count(final byte[] a, final int fromIndex, final int toIndex, final Try.BytePredicate filter) throws E { checkFromToIndex(fromIndex, toIndex, len(a)); N.checkArgNotNull(filter); if (N.isNullOrEmpty(a)) { return 0; } int count = 0; for (int i = fromIndex; i < toIndex; i++) { if (filter.test(a[i])) { count++; } } return count; } /** * * Mostly it's designed for one-step operation to complete the operation in one step. * java.util.stream.Stream is preferred for multiple phases operation. * * @param a * @param filter * @return */ public static int count(final short[] a, final Try.ShortPredicate filter) throws E { N.checkArgNotNull(filter); if (N.isNullOrEmpty(a)) { return 0; } return count(a, 0, a.length, filter); } /** * * Mostly it's designed for one-step operation to complete the operation in one step. * java.util.stream.Stream is preferred for multiple phases operation. * * @param a * @param fromIndex * @param toIndex * @param filter * @return */ public static int count(final short[] a, final int fromIndex, final int toIndex, final Try.ShortPredicate filter) throws E { checkFromToIndex(fromIndex, toIndex, len(a)); N.checkArgNotNull(filter); if (N.isNullOrEmpty(a)) { return 0; } int count = 0; for (int i = fromIndex; i < toIndex; i++) { if (filter.test(a[i])) { count++; } } return count; } /** * * Mostly it's designed for one-step operation to complete the operation in one step. * java.util.stream.Stream is preferred for multiple phases operation. * * @param a * @param filter * @return */ public static int count(final int[] a, final Try.IntPredicate filter) throws E { N.checkArgNotNull(filter); if (N.isNullOrEmpty(a)) { return 0; } return count(a, 0, a.length, filter); } /** * * Mostly it's designed for one-step operation to complete the operation in one step. * java.util.stream.Stream is preferred for multiple phases operation. * * @param a * @param fromIndex * @param toIndex * @param filter * @return */ public static int count(final int[] a, final int fromIndex, final int toIndex, final Try.IntPredicate filter) throws E { checkFromToIndex(fromIndex, toIndex, len(a)); N.checkArgNotNull(filter); if (N.isNullOrEmpty(a)) { return 0; } int count = 0; for (int i = fromIndex; i < toIndex; i++) { if (filter.test(a[i])) { count++; } } return count; } /** * * Mostly it's designed for one-step operation to complete the operation in one step. * java.util.stream.Stream is preferred for multiple phases operation. * * @param a * @param filter * @return */ public static int count(final long[] a, final Try.LongPredicate filter) throws E { N.checkArgNotNull(filter); if (N.isNullOrEmpty(a)) { return 0; } return count(a, 0, a.length, filter); } /** * * Mostly it's designed for one-step operation to complete the operation in one step. * java.util.stream.Stream is preferred for multiple phases operation. * * @param a * @param fromIndex * @param toIndex * @param filter * @return */ public static int count(final long[] a, final int fromIndex, final int toIndex, final Try.LongPredicate filter) throws E { checkFromToIndex(fromIndex, toIndex, len(a)); N.checkArgNotNull(filter); if (N.isNullOrEmpty(a)) { return 0; } int count = 0; for (int i = fromIndex; i < toIndex; i++) { if (filter.test(a[i])) { count++; } } return count; } /** * * Mostly it's designed for one-step operation to complete the operation in one step. * java.util.stream.Stream is preferred for multiple phases operation. * * @param a * @param filter * @return */ public static int count(final float[] a, final Try.FloatPredicate filter) throws E { N.checkArgNotNull(filter); if (N.isNullOrEmpty(a)) { return 0; } return count(a, 0, a.length, filter); } /** * * Mostly it's designed for one-step operation to complete the operation in one step. * java.util.stream.Stream is preferred for multiple phases operation. * * @param a * @param fromIndex * @param toIndex * @param filter * @return */ public static int count(final float[] a, final int fromIndex, final int toIndex, final Try.FloatPredicate filter) throws E { checkFromToIndex(fromIndex, toIndex, len(a)); N.checkArgNotNull(filter); if (N.isNullOrEmpty(a)) { return 0; } int count = 0; for (int i = fromIndex; i < toIndex; i++) { if (filter.test(a[i])) { count++; } } return count; } /** * * Mostly it's designed for one-step operation to complete the operation in one step. * java.util.stream.Stream is preferred for multiple phases operation. * * @param a * @param filter * @return */ public static int count(final double[] a, final Try.DoublePredicate filter) throws E { N.checkArgNotNull(filter); if (N.isNullOrEmpty(a)) { return 0; } return count(a, 0, a.length, filter); } /** * * Mostly it's designed for one-step operation to complete the operation in one step. * java.util.stream.Stream is preferred for multiple phases operation. * * @param a * @param fromIndex * @param toIndex * @param filter * @return */ public static int count(final double[] a, final int fromIndex, final int toIndex, final Try.DoublePredicate filter) throws E { checkFromToIndex(fromIndex, toIndex, len(a)); N.checkArgNotNull(filter); if (N.isNullOrEmpty(a)) { return 0; } int count = 0; for (int i = fromIndex; i < toIndex; i++) { if (filter.test(a[i])) { count++; } } return count; } /** * * Mostly it's designed for one-step operation to complete the operation in one step. * java.util.stream.Stream is preferred for multiple phases operation. * * @param a * @param filter * @return */ public static int count(final T[] a, final Try.Predicate filter) throws E { N.checkArgNotNull(filter); if (N.isNullOrEmpty(a)) { return 0; } return count(a, 0, a.length, filter); } /** * * Mostly it's designed for one-step operation to complete the operation in one step. * java.util.stream.Stream is preferred for multiple phases operation. * * @param a * @param fromIndex * @param toIndex * @param filter * @return */ public static int count(final T[] a, final int fromIndex, final int toIndex, final Try.Predicate filter) throws E { checkFromToIndex(fromIndex, toIndex, len(a)); N.checkArgNotNull(filter); if (N.isNullOrEmpty(a)) { return 0; } int count = 0; for (int i = fromIndex; i < toIndex; i++) { if (filter.test(a[i])) { count++; } } return count; } /** * * Mostly it's designed for one-step operation to complete the operation in one step. * java.util.stream.Stream is preferred for multiple phases operation. * * @param c * @param filter * @return */ public static int count(final Collection c, final Try.Predicate filter) throws E { N.checkArgNotNull(filter); if (N.isNullOrEmpty(c)) { return 0; } return count(c, 0, c.size(), filter); } /** * * Mostly it's designed for one-step operation to complete the operation in one step. * java.util.stream.Stream is preferred for multiple phases operation. * * @param c * @param fromIndex * @param toIndex * @param filter * @return */ public static int count(final Collection c, final int fromIndex, final int toIndex, final Try.Predicate filter) throws E { checkFromToIndex(fromIndex, toIndex, len(c)); N.checkArgNotNull(filter); if ((N.isNullOrEmpty(c) && fromIndex == 0 && toIndex == 0) || (fromIndex == toIndex && fromIndex < c.size())) { return 0; } int count = 0; if (c instanceof List && c instanceof RandomAccess) { final List list = (List) c; for (int i = fromIndex; i < toIndex; i++) { if (filter.test(list.get(i))) { count++; } } } else { int idx = 0; for (T e : c) { if (idx++ < fromIndex) { continue; } if (filter.test(e)) { count++; } if (idx >= toIndex) { break; } } } return count; } public static short[] top(final short[] a, final int n) { return top(a, n, null); } public static short[] top(final short[] a, final int n, final Comparator cmp) { return top(a, 0, len(a), n, cmp); } public static short[] top(final short[] a, final int fromIndex, final int toIndex, final int n) { return top(a, fromIndex, toIndex, n, null); } public static short[] top(final short[] a, final int fromIndex, final int toIndex, final int n, final Comparator cmp) { N.checkArgNotNegative(n, "n"); if (n == 0) { return N.EMPTY_SHORT_ARRAY; } else if (n >= toIndex - fromIndex) { return N.copyOfRange(a, fromIndex, toIndex); } final Comparator comparator = cmp == null ? Comparators.NATURAL_ORDER : cmp; final Queue heap = new PriorityQueue<>(n, comparator); for (int i = fromIndex; i < toIndex; i++) { if (heap.size() >= n) { if (comparator.compare(heap.peek(), a[i]) < 0) { heap.poll(); heap.add(a[i]); } } else { heap.offer(a[i]); } } final Iterator iter = heap.iterator(); final short[] res = new short[n]; int idx = 0; while (iter.hasNext()) { res[idx++] = iter.next(); } return res; } public static int[] top(final int[] a, final int n) { return top(a, n, null); } public static int[] top(final int[] a, final int n, final Comparator cmp) { return top(a, 0, len(a), n, cmp); } public static int[] top(final int[] a, final int fromIndex, final int toIndex, final int n) { return top(a, fromIndex, toIndex, n, null); } public static int[] top(final int[] a, final int fromIndex, final int toIndex, final int n, final Comparator cmp) { N.checkArgNotNegative(n, "n"); if (n == 0) { return N.EMPTY_INT_ARRAY; } else if (n >= toIndex - fromIndex) { return N.copyOfRange(a, fromIndex, toIndex); } final Comparator comparator = cmp == null ? Comparators.NATURAL_ORDER : cmp; final Queue heap = new PriorityQueue<>(n, comparator); for (int i = fromIndex; i < toIndex; i++) { if (heap.size() >= n) { if (comparator.compare(heap.peek(), a[i]) < 0) { heap.poll(); heap.add(a[i]); } } else { heap.offer(a[i]); } } final Iterator iter = heap.iterator(); final int[] res = new int[n]; int idx = 0; while (iter.hasNext()) { res[idx++] = iter.next(); } return res; } public static long[] top(final long[] a, final int n) { return top(a, n, null); } public static long[] top(final long[] a, final int n, final Comparator cmp) { return top(a, 0, len(a), n, cmp); } public static long[] top(final long[] a, final int fromIndex, final int toIndex, final int n) { return top(a, fromIndex, toIndex, n, null); } public static long[] top(final long[] a, final int fromIndex, final int toIndex, final int n, final Comparator cmp) { N.checkArgNotNegative(n, "n"); if (n == 0) { return N.EMPTY_LONG_ARRAY; } else if (n >= toIndex - fromIndex) { return N.copyOfRange(a, fromIndex, toIndex); } final Comparator comparator = cmp == null ? Comparators.NATURAL_ORDER : cmp; final Queue heap = new PriorityQueue<>(n, comparator); for (int i = fromIndex; i < toIndex; i++) { if (heap.size() >= n) { if (comparator.compare(heap.peek(), a[i]) < 0) { heap.poll(); heap.add(a[i]); } } else { heap.offer(a[i]); } } final Iterator iter = heap.iterator(); final long[] res = new long[n]; int idx = 0; while (iter.hasNext()) { res[idx++] = iter.next(); } return res; } public static float[] top(final float[] a, final int n) { return top(a, n, null); } public static float[] top(final float[] a, final int n, final Comparator cmp) { return top(a, 0, len(a), n, cmp); } public static float[] top(final float[] a, final int fromIndex, final int toIndex, final int n) { return top(a, fromIndex, toIndex, n, null); } public static float[] top(final float[] a, final int fromIndex, final int toIndex, final int n, final Comparator cmp) { N.checkArgNotNegative(n, "n"); if (n == 0) { return N.EMPTY_FLOAT_ARRAY; } else if (n >= toIndex - fromIndex) { return N.copyOfRange(a, fromIndex, toIndex); } final Comparator comparator = cmp == null ? Comparators.NATURAL_ORDER : cmp; final Queue heap = new PriorityQueue<>(n, comparator); for (int i = fromIndex; i < toIndex; i++) { if (heap.size() >= n) { if (comparator.compare(heap.peek(), a[i]) < 0) { heap.poll(); heap.add(a[i]); } } else { heap.offer(a[i]); } } final Iterator iter = heap.iterator(); final float[] res = new float[n]; int idx = 0; while (iter.hasNext()) { res[idx++] = iter.next(); } return res; } public static double[] top(final double[] a, final int n) { return top(a, n, null); } public static double[] top(final double[] a, final int n, final Comparator cmp) { return top(a, 0, len(a), n, cmp); } public static double[] top(final double[] a, final int fromIndex, final int toIndex, final int n) { return top(a, fromIndex, toIndex, n, null); } public static double[] top(final double[] a, final int fromIndex, final int toIndex, final int n, final Comparator cmp) { N.checkArgNotNegative(n, "n"); if (n == 0) { return N.EMPTY_DOUBLE_ARRAY; } else if (n >= toIndex - fromIndex) { return N.copyOfRange(a, fromIndex, toIndex); } final Comparator comparator = cmp == null ? Comparators.NATURAL_ORDER : cmp; final Queue heap = new PriorityQueue<>(n, comparator); for (int i = fromIndex; i < toIndex; i++) { if (heap.size() >= n) { if (comparator.compare(heap.peek(), a[i]) < 0) { heap.poll(); heap.add(a[i]); } } else { heap.offer(a[i]); } } final Iterator iter = heap.iterator(); final double[] res = new double[n]; int idx = 0; while (iter.hasNext()) { res[idx++] = iter.next(); } return res; } public static > List top(final T[] a, final int n) { return top(a, n, N.NATURAL_ORDER); } public static List top(final T[] a, final int n, final Comparator cmp) { return top(a, 0, len(a), n, cmp); } public static > List top(final T[] a, final int fromIndex, final int toIndex, final int n) { return top(a, fromIndex, toIndex, n, N.NATURAL_ORDER); } public static List top(final T[] a, final int fromIndex, final int toIndex, final int n, final Comparator cmp) { N.checkArgNotNegative(n, "n"); if (n == 0) { return new ArrayList<>(); } else if (n >= toIndex - fromIndex) { return N.toList(a, fromIndex, toIndex); } final Comparator comparator = cmp == null ? Comparators.NATURAL_ORDER : cmp; final Queue heap = new PriorityQueue<>(n, comparator); for (int i = fromIndex; i < toIndex; i++) { if (heap.size() >= n) { if (comparator.compare(heap.peek(), a[i]) < 0) { heap.poll(); heap.add(a[i]); } } else { heap.offer(a[i]); } } return createList((T[]) heap.toArray(N.EMPTY_OBJECT_ARRAY)); } public static > List top(final Collection c, final int n) { return top(c, n, null); } public static List top(final Collection c, final int n, final Comparator cmp) { return top(c, 0, len(c), n, cmp); } public static > List top(final Collection c, final int fromIndex, final int toIndex, final int n) { return top(c, fromIndex, toIndex, n, null); } public static List top(final Collection c, final int fromIndex, final int toIndex, final int n, final Comparator cmp) { N.checkArgNotNegative(n, "n"); if (n == 0) { return new ArrayList<>(); } else if (n >= toIndex - fromIndex) { if (fromIndex == 0 && toIndex == c.size()) { return new ArrayList<>(c); } else { final List res = new ArrayList<>(toIndex - fromIndex); final Iterator iter = c.iterator(); T e = null; for (int i = 0; i < toIndex && iter.hasNext(); i++) { e = iter.next(); if (i < fromIndex) { continue; } res.add(e); } return res; } } final Comparator comparator = cmp == null ? Comparators.NATURAL_ORDER : cmp; final Queue heap = new PriorityQueue<>(n, comparator); if (c instanceof List && c instanceof RandomAccess) { final List list = (List) c; T e = null; for (int i = fromIndex; i < toIndex; i++) { e = list.get(i); if (heap.size() >= n) { if (comparator.compare(heap.peek(), e) < 0) { heap.poll(); heap.add(e); } } else { heap.offer(e); } } } else { final Iterator iter = c.iterator(); T e = null; for (int i = 0; i < toIndex && iter.hasNext(); i++) { e = iter.next(); if (i < fromIndex) { continue; } if (heap.size() >= n) { if (comparator.compare(heap.peek(), e) < 0) { heap.poll(); heap.add(e); } } else { heap.offer(e); } } } return createList((T[]) heap.toArray(N.EMPTY_OBJECT_ARRAY)); } /** * The present order is kept in the result list. * * @param a * @param n * @return */ public static > List topp(final T[] a, final int n) { return topp(a, n, N.NATURAL_ORDER); } /** * The present order is kept in the result list. * * @param a * @param n * @param cmp * @return */ public static List topp(final T[] a, final int n, final Comparator cmp) { return topp(a, 0, len(a), n, cmp); } /** * The present order is kept in the result list. * * @param a * @param fromIndex * @param toIndex * @param n * @return */ public static > List topp(final T[] a, final int fromIndex, final int toIndex, final int n) { return topp(a, fromIndex, toIndex, n, N.NATURAL_ORDER); } /** * The present order is kept in the result list. * * @param a * @param fromIndex * @param toIndex * @param n * @param cmp * @return */ @SuppressWarnings("rawtypes") public static List topp(final T[] a, final int fromIndex, final int toIndex, final int n, final Comparator cmp) { N.checkArgNotNegative(n, "n"); if (n == 0) { return new ArrayList<>(); } else if (n >= toIndex - fromIndex) { return N.toList(a, fromIndex, toIndex); } final Comparator> comparator = cmp == null ? (Comparator) new Comparator>() { @Override public int compare(final Indexed o1, final Indexed o2) { return N.compare(o1.value(), o2.value()); } } : new Comparator>() { @Override public int compare(final Indexed o1, final Indexed o2) { return cmp.compare(o1.value(), o2.value()); } }; final Queue> heap = new PriorityQueue<>(n, comparator); Indexed indexed = null; for (int i = fromIndex; i < toIndex; i++) { indexed = Indexed.of(a[i], i); if (heap.size() >= n) { if (comparator.compare(heap.peek(), indexed) < 0) { heap.poll(); heap.add(indexed); } } else { heap.offer(indexed); } } final Indexed[] arrayOfIndexed = heap.toArray(new Indexed[heap.size()]); N.sort(arrayOfIndexed, new Comparator>() { @Override public int compare(final Indexed o1, final Indexed o2) { return o1.index() - o2.index(); } }); final List res = new ArrayList<>(arrayOfIndexed.length); for (int i = 0, len = arrayOfIndexed.length; i < len; i++) { res.add(arrayOfIndexed[i].value()); } return res; } /** * The present order is kept in the result list. * * @param c * @param n * @return */ public static > List topp(final Collection c, final int n) { return topp(c, n, null); } /** * The present order is kept in the result list. * * @param c * @param n * @param cmp * @return */ public static List topp(final Collection c, final int n, final Comparator cmp) { return topp(c, 0, len(c), n, cmp); } /** * The present order is kept in the result list. * * @param c * @param fromIndex * @param toIndex * @param n * @return */ public static > List topp(final Collection c, final int fromIndex, final int toIndex, final int n) { return topp(c, fromIndex, toIndex, n, null); } /** * The present order is kept in the result list. * * @param c * @param fromIndex * @param toIndex * @param n * @param cmp * @return */ @SuppressWarnings("rawtypes") public static List topp(final Collection c, final int fromIndex, final int toIndex, final int n, final Comparator cmp) { N.checkArgNotNegative(n, "n"); if (n == 0) { return new ArrayList<>(); } else if (n >= toIndex - fromIndex) { if (fromIndex == 0 && toIndex == c.size()) { return new ArrayList<>(c); } else { final List res = new ArrayList<>(toIndex - fromIndex); final Iterator iter = c.iterator(); T e = null; for (int i = 0; i < toIndex && iter.hasNext(); i++) { e = iter.next(); if (i < fromIndex) { continue; } res.add(e); } return res; } } final Comparator> comparator = cmp == null ? (Comparator) new Comparator>() { @Override public int compare(final Indexed o1, final Indexed o2) { return N.compare(o1.value(), o2.value()); } } : new Comparator>() { @Override public int compare(final Indexed o1, final Indexed o2) { return cmp.compare(o1.value(), o2.value()); } }; final Queue> heap = new PriorityQueue<>(n, comparator); if (c instanceof List && c instanceof RandomAccess) { final List list = (List) c; Indexed indexed = null; T e = null; for (int i = fromIndex; i < toIndex; i++) { e = list.get(i); indexed = Indexed.of(e, i); if (heap.size() >= n) { if (comparator.compare(heap.peek(), indexed) < 0) { heap.poll(); heap.add(indexed); } } else { heap.offer(indexed); } } } else { final Iterator iter = c.iterator(); Indexed indexed = null; T e = null; for (int i = 0; i < toIndex && iter.hasNext(); i++) { e = iter.next(); if (i < fromIndex) { continue; } indexed = Indexed.of(e, i); if (heap.size() >= n) { if (comparator.compare(heap.peek(), indexed) < 0) { heap.poll(); heap.add(indexed); } } else { heap.offer(indexed); } } } final Indexed[] arrayOfIndexed = heap.toArray(new Indexed[heap.size()]); N.sort(arrayOfIndexed, new Comparator>() { @Override public int compare(final Indexed o1, final Indexed o2) { return o1.index() - o2.index(); } }); final List res = new ArrayList<>(arrayOfIndexed.length); for (int i = 0, len = arrayOfIndexed.length; i < len; i++) { res.add(arrayOfIndexed[i].value()); } return res; } /** * Mostly it's designed for one-step operation to complete the operation in one step. * java.util.stream.Stream is preferred for multiple phases operation. * * @param a * @return */ public static boolean[] distinct(final boolean[] a) { return distinct(a, 0, len(a)); } /** * Mostly it's designed for one-step operation to complete the operation in one step. * java.util.stream.Stream is preferred for multiple phases operation. * * @param a * @param fromIndex * @param toIndex * @return */ public static boolean[] distinct(final boolean[] a, final int fromIndex, final int toIndex) { return N.removeDuplicates(a, fromIndex, toIndex, false); } /** * Mostly it's designed for one-step operation to complete the operation in one step. * java.util.stream.Stream is preferred for multiple phases operation. * * @param a * @return */ public static char[] distinct(final char[] a) { return distinct(a, 0, len(a)); } /** * Mostly it's designed for one-step operation to complete the operation in one step. * java.util.stream.Stream is preferred for multiple phases operation. * * @param a * @param fromIndex * @param toIndex * @return */ public static char[] distinct(final char[] a, final int fromIndex, final int toIndex) { return N.removeDuplicates(a, fromIndex, toIndex, false); } /** * Mostly it's designed for one-step operation to complete the operation in one step. * java.util.stream.Stream is preferred for multiple phases operation. * * @param a * @return */ public static byte[] distinct(final byte[] a) { return distinct(a, 0, len(a)); } /** * Mostly it's designed for one-step operation to complete the operation in one step. * java.util.stream.Stream is preferred for multiple phases operation. * * @param a * @param fromIndex * @param toIndex * @return */ public static byte[] distinct(final byte[] a, final int fromIndex, final int toIndex) { return N.removeDuplicates(a, fromIndex, toIndex, false); } /** * Mostly it's designed for one-step operation to complete the operation in one step. * java.util.stream.Stream is preferred for multiple phases operation. * * @param a * @return */ public static short[] distinct(final short[] a) { return distinct(a, 0, len(a)); } /** * Mostly it's designed for one-step operation to complete the operation in one step. * java.util.stream.Stream is preferred for multiple phases operation. * * @param a * @param fromIndex * @param toIndex * @return */ public static short[] distinct(final short[] a, final int fromIndex, final int toIndex) { return N.removeDuplicates(a, fromIndex, toIndex, false); } /** * Mostly it's designed for one-step operation to complete the operation in one step. * java.util.stream.Stream is preferred for multiple phases operation. * * @param a * @return */ public static int[] distinct(final int[] a) { return distinct(a, 0, len(a)); } /** * Mostly it's designed for one-step operation to complete the operation in one step. * java.util.stream.Stream is preferred for multiple phases operation. * * @param a * @param fromIndex * @param toIndex * @return */ public static int[] distinct(final int[] a, final int fromIndex, final int toIndex) { return N.removeDuplicates(a, fromIndex, toIndex, false); } /** * Mostly it's designed for one-step operation to complete the operation in one step. * java.util.stream.Stream is preferred for multiple phases operation. * * @param a * @return */ public static long[] distinct(final long[] a) { return distinct(a, 0, len(a)); } /** * Mostly it's designed for one-step operation to complete the operation in one step. * java.util.stream.Stream is preferred for multiple phases operation. * * @param a * @param fromIndex * @param toIndex * @return */ public static long[] distinct(final long[] a, final int fromIndex, final int toIndex) { return N.removeDuplicates(a, fromIndex, toIndex, false); } /** * Mostly it's designed for one-step operation to complete the operation in one step. * java.util.stream.Stream is preferred for multiple phases operation. * * @param a * @return */ public static float[] distinct(final float[] a) { return distinct(a, 0, len(a)); } /** * Mostly it's designed for one-step operation to complete the operation in one step. * java.util.stream.Stream is preferred for multiple phases operation. * * @param a * @param fromIndex * @param toIndex * @return */ public static float[] distinct(final float[] a, final int fromIndex, final int toIndex) { return N.removeDuplicates(a, fromIndex, toIndex, false); } /** * Mostly it's designed for one-step operation to complete the operation in one step. * java.util.stream.Stream is preferred for multiple phases operation. * * @param a * @return */ public static double[] distinct(final double[] a) { return distinct(a, 0, len(a)); } /** * Mostly it's designed for one-step operation to complete the operation in one step. * java.util.stream.Stream is preferred for multiple phases operation. * * @param a * @param fromIndex * @param toIndex * @return */ public static double[] distinct(final double[] a, final int fromIndex, final int toIndex) { return N.removeDuplicates(a, fromIndex, toIndex, false); } /** * Mostly it's designed for one-step operation to complete the operation in one step. * java.util.stream.Stream is preferred for multiple phases operation. * * @param a * @return */ public static List distinct(final T[] a) { if (N.isNullOrEmpty(a)) { return new ArrayList<>(); } return distinct(a, 0, a.length); } /** * Mostly it's designed for one-step operation to complete the operation in one step. * java.util.stream.Stream is preferred for multiple phases operation. * * @param a * @param fromIndex * @param toIndex * @return */ public static List distinct(final T[] a, final int fromIndex, final int toIndex) { checkFromToIndex(fromIndex, toIndex, len(a)); if (N.isNullOrEmpty(a)) { return new ArrayList<>(); } final List result = new ArrayList<>(); final Set set = new HashSet<>(); for (int i = fromIndex; i < toIndex; i++) { if (set.add(hashKey(a[i]))) { result.add(a[i]); } } return result; } /** * Mostly it's designed for one-step operation to complete the operation in one step. * java.util.stream.Stream is preferred for multiple phases operation. * * @param c * @return */ public static List distinct(final Collection c) { if (N.isNullOrEmpty(c)) { return new ArrayList<>(); } return distinct(c, 0, c.size()); } /** * Mostly it's designed for one-step operation to complete the operation in one step. * java.util.stream.Stream is preferred for multiple phases operation. * * @param c * @param fromIndex * @param toIndex * @return */ public static List distinct(final Collection c, final int fromIndex, final int toIndex) { checkFromToIndex(fromIndex, toIndex, len(c)); if (N.isNullOrEmpty(c) && fromIndex == 0 && toIndex == 0) { return new ArrayList<>(); } final List result = new ArrayList<>(); final Set set = new HashSet<>(); T e = null; if (c instanceof List && c instanceof RandomAccess) { final List list = (List) c; for (int i = fromIndex; i < toIndex; i++) { e = list.get(i); if (set.add(hashKey(e))) { result.add(e); } } } else { final Iterator it = c.iterator(); for (int i = 0; i < toIndex && it.hasNext(); i++) { e = it.next(); if (i < fromIndex) { continue; } if (set.add(hashKey(e))) { result.add(e); } } } return result; } /** * Distinct by the value mapped from keyExtractor. * * Mostly it's designed for one-step operation to complete the operation in one step. * java.util.stream.Stream is preferred for multiple phases operation. * * @param a * @param keyExtractor don't change value of the input parameter. * @return */ public static List distinctBy(final T[] a, final Try.Function keyExtractor) throws E { if (N.isNullOrEmpty(a)) { return new ArrayList<>(); } return distinctBy(a, 0, a.length, keyExtractor); } /** * Distinct by the value mapped from keyExtractor. * * Mostly it's designed for one-step operation to complete the operation in one step. * java.util.stream.Stream is preferred for multiple phases operation. * * @param a * @param fromIndex * @param toIndex * @param keyExtractor don't change value of the input parameter. * @return */ public static List distinctBy(final T[] a, final int fromIndex, final int toIndex, final Try.Function keyExtractor) throws E { checkFromToIndex(fromIndex, toIndex, len(a)); if (N.isNullOrEmpty(a)) { return new ArrayList<>(); } final List result = new ArrayList<>(); final Set set = new HashSet<>(); for (int i = fromIndex; i < toIndex; i++) { if (set.add(hashKey(keyExtractor.apply(a[i])))) { result.add(a[i]); } } return result; } /** * Distinct by the value mapped from keyExtractor. * * Mostly it's designed for one-step operation to complete the operation in one step. * java.util.stream.Stream is preferred for multiple phases operation. * * @param c * @param keyExtractor don't change value of the input parameter. * @return */ public static List distinctBy(final Collection c, final Try.Function keyExtractor) throws E { if (N.isNullOrEmpty(c)) { return new ArrayList<>(); } return distinctBy(c, 0, c.size(), keyExtractor); } /** * Distinct by the value mapped from keyExtractor. * * Mostly it's designed for one-step operation to complete the operation in one step. * java.util.stream.Stream is preferred for multiple phases operation. * * @param c * @param fromIndex * @param toIndex * @param keyExtractor don't change value of the input parameter. * @return */ public static List distinctBy(final Collection c, final int fromIndex, final int toIndex, final Try.Function keyExtractor) throws E { checkFromToIndex(fromIndex, toIndex, len(c)); if (N.isNullOrEmpty(c) && fromIndex == 0 && toIndex == 0) { return new ArrayList<>(); } final List result = new ArrayList<>(); final Set set = new HashSet<>(); T e = null; if (c instanceof List && c instanceof RandomAccess) { final List list = (List) c; for (int i = fromIndex; i < toIndex; i++) { e = list.get(i); if (set.add(hashKey(keyExtractor.apply(e)))) { result.add(e); } } } else { final Iterator it = c.iterator(); for (int i = 0; i < toIndex && it.hasNext(); i++) { e = it.next(); if (i < fromIndex) { continue; } if (set.add(hashKey(keyExtractor.apply(e)))) { result.add(e); } } } return result; } private static Object hashKey(Object obj) { return obj == null || obj.getClass().isArray() == false ? obj : Wrapper.of(obj); } /** * Returns consecutive sub arrays of an array, each of the same size (the final list may be smaller), * or an empty List if the specified array is null or empty. * * @param a * @param size * @return */ public static List split(final boolean[] a, final int size) { if (size < 1) { throw new IllegalArgumentException("The parameter 'size' can not be zero or less than zero"); } if (N.isNullOrEmpty(a)) { return new ArrayList<>(); } final int len = a.length; final List res = new ArrayList<>(len % size == 0 ? len / size : (len / size) + 1); for (int from = 0, toIndex = a.length; from < toIndex; from += size) { res.add(copyOfRange(a, from, from <= toIndex - size ? from + size : toIndex)); } return res; } /** * Returns consecutive sub arrays of an array, each of the same size (the final list may be smaller), * or an empty List if the specified array is null or empty. * * @param a * @param fromIndex * @param toIndex * @param size * @return */ public static List split(final boolean[] a, final int fromIndex, final int toIndex, final int size) { checkFromToIndex(fromIndex, toIndex, len(a)); if (size < 1) { throw new IllegalArgumentException("The parameter 'size' can not be zero or less than zero"); } if (N.isNullOrEmpty(a)) { return new ArrayList<>(); } final int len = toIndex - fromIndex; final List res = new ArrayList<>(len % size == 0 ? len / size : (len / size) + 1); for (int from = fromIndex; from < toIndex; from += size) { res.add(copyOfRange(a, from, from <= toIndex - size ? from + size : toIndex)); } return res; } /** * Returns consecutive sub arrays of an array, each of the same size (the final list may be smaller), * or an empty List if the specified array is null or empty. * * @param a * @param size * @return */ public static List split(final char[] a, final int size) { if (size < 1) { throw new IllegalArgumentException("The parameter 'size' can not be zero or less than zero"); } if (N.isNullOrEmpty(a)) { return new ArrayList<>(); } final int len = a.length; final List res = new ArrayList<>(len % size == 0 ? len / size : (len / size) + 1); for (int from = 0, toIndex = a.length; from < toIndex; from += size) { res.add(copyOfRange(a, from, from <= toIndex - size ? from + size : toIndex)); } return res; } /** * Returns consecutive sub arrays of an array, each of the same size (the final list may be smaller), * or an empty List if the specified array is null or empty. * * @param a * @param fromIndex * @param toIndex * @param size * @return */ public static List split(final char[] a, final int fromIndex, final int toIndex, final int size) { checkFromToIndex(fromIndex, toIndex, len(a)); if (size < 1) { throw new IllegalArgumentException("The parameter 'size' can not be zero or less than zero"); } if (N.isNullOrEmpty(a)) { return new ArrayList<>(); } final int len = toIndex - fromIndex; final List res = new ArrayList<>(len % size == 0 ? len / size : (len / size) + 1); for (int from = fromIndex; from < toIndex; from += size) { res.add(copyOfRange(a, from, from <= toIndex - size ? from + size : toIndex)); } return res; } /** * Returns consecutive sub arrays of an array, each of the same size (the final list may be smaller), * or an empty List if the specified array is null or empty. * * @param a * @param size * @return */ public static List split(final byte[] a, final int size) { if (size < 1) { throw new IllegalArgumentException("The parameter 'size' can not be zero or less than zero"); } if (N.isNullOrEmpty(a)) { return new ArrayList<>(); } final int len = a.length; final List res = new ArrayList<>(len % size == 0 ? len / size : (len / size) + 1); for (int from = 0, toIndex = a.length; from < toIndex; from += size) { res.add(copyOfRange(a, from, from <= toIndex - size ? from + size : toIndex)); } return res; } /** * Returns consecutive sub arrays of an array, each of the same size (the final list may be smaller), * or an empty List if the specified array is null or empty. * * @param a * @param fromIndex * @param toIndex * @param size * @return */ public static List split(final byte[] a, final int fromIndex, final int toIndex, final int size) { checkFromToIndex(fromIndex, toIndex, len(a)); if (size < 1) { throw new IllegalArgumentException("The parameter 'size' can not be zero or less than zero"); } if (N.isNullOrEmpty(a)) { return new ArrayList<>(); } final int len = toIndex - fromIndex; final List res = new ArrayList<>(len % size == 0 ? len / size : (len / size) + 1); for (int from = fromIndex; from < toIndex; from += size) { res.add(copyOfRange(a, from, from <= toIndex - size ? from + size : toIndex)); } return res; } /** * Returns consecutive sub arrays of an array, each of the same size (the final list may be smaller), * or an empty List if the specified array is null or empty. * * @param a * @param size * @return */ public static List split(final short[] a, final int size) { if (size < 1) { throw new IllegalArgumentException("The parameter 'size' can not be zero or less than zero"); } if (N.isNullOrEmpty(a)) { return new ArrayList<>(); } final int len = a.length; final List res = new ArrayList<>(len % size == 0 ? len / size : (len / size) + 1); for (int from = 0, toIndex = a.length; from < toIndex; from += size) { res.add(copyOfRange(a, from, from <= toIndex - size ? from + size : toIndex)); } return res; } /** * Returns consecutive sub arrays of an array, each of the same size (the final list may be smaller), * or an empty List if the specified array is null or empty. * * @param a * @param fromIndex * @param toIndex * @param size * @return */ public static List split(final short[] a, final int fromIndex, final int toIndex, final int size) { checkFromToIndex(fromIndex, toIndex, len(a)); if (size < 1) { throw new IllegalArgumentException("The parameter 'size' can not be zero or less than zero"); } if (N.isNullOrEmpty(a)) { return new ArrayList<>(); } final int len = toIndex - fromIndex; final List res = new ArrayList<>(len % size == 0 ? len / size : (len / size) + 1); for (int from = fromIndex; from < toIndex; from += size) { res.add(copyOfRange(a, from, from <= toIndex - size ? from + size : toIndex)); } return res; } /** * Returns consecutive sub arrays of an array, each of the same size (the final list may be smaller), * or an empty List if the specified array is null or empty. * * @param a * @param size * @return */ public static List split(final int[] a, final int size) { if (size < 1) { throw new IllegalArgumentException("The parameter 'size' can not be zero or less than zero"); } if (N.isNullOrEmpty(a)) { return new ArrayList<>(); } final int len = a.length; final List res = new ArrayList<>(len % size == 0 ? len / size : (len / size) + 1); for (int from = 0, toIndex = a.length; from < toIndex; from += size) { res.add(copyOfRange(a, from, from <= toIndex - size ? from + size : toIndex)); } return res; } /** * Returns consecutive sub arrays of an array, each of the same size (the final list may be smaller), * or an empty List if the specified array is null or empty. * * @param a * @param fromIndex * @param toIndex * @param size * @return */ public static List split(final int[] a, final int fromIndex, final int toIndex, final int size) { checkFromToIndex(fromIndex, toIndex, len(a)); if (size < 1) { throw new IllegalArgumentException("The parameter 'size' can not be zero or less than zero"); } if (N.isNullOrEmpty(a)) { return new ArrayList<>(); } final int len = toIndex - fromIndex; final List res = new ArrayList<>(len % size == 0 ? len / size : (len / size) + 1); for (int from = fromIndex; from < toIndex; from += size) { res.add(copyOfRange(a, from, from <= toIndex - size ? from + size : toIndex)); } return res; } /** * Returns consecutive sub arrays of an array, each of the same size (the final list may be smaller), * or an empty List if the specified array is null or empty. * * @param a * @param size * @return */ public static List split(final long[] a, final int size) { if (size < 1) { throw new IllegalArgumentException("The parameter 'size' can not be zero or less than zero"); } if (N.isNullOrEmpty(a)) { return new ArrayList<>(); } final int len = a.length; final List res = new ArrayList<>(len % size == 0 ? len / size : (len / size) + 1); for (int from = 0, toIndex = a.length; from < toIndex; from += size) { res.add(copyOfRange(a, from, from <= toIndex - size ? from + size : toIndex)); } return res; } /** * Returns consecutive sub arrays of an array, each of the same size (the final list may be smaller), * or an empty List if the specified array is null or empty. * * @param a * @param fromIndex * @param toIndex * @param size * @return */ public static List split(final long[] a, final int fromIndex, final int toIndex, final int size) { checkFromToIndex(fromIndex, toIndex, len(a)); if (size < 1) { throw new IllegalArgumentException("The parameter 'size' can not be zero or less than zero"); } if (N.isNullOrEmpty(a)) { return new ArrayList<>(); } final int len = toIndex - fromIndex; final List res = new ArrayList<>(len % size == 0 ? len / size : (len / size) + 1); for (int from = fromIndex; from < toIndex; from += size) { res.add(copyOfRange(a, from, from <= toIndex - size ? from + size : toIndex)); } return res; } /** * Returns consecutive sub arrays of an array, each of the same size (the final list may be smaller), * or an empty List if the specified array is null or empty. * * @param a * @param size * @return */ public static List split(final float[] a, final int size) { if (size < 1) { throw new IllegalArgumentException("The parameter 'size' can not be zero or less than zero"); } if (N.isNullOrEmpty(a)) { return new ArrayList<>(); } final int len = a.length; final List res = new ArrayList<>(len % size == 0 ? len / size : (len / size) + 1); for (int from = 0, toIndex = a.length; from < toIndex; from += size) { res.add(copyOfRange(a, from, from <= toIndex - size ? from + size : toIndex)); } return res; } /** * Returns consecutive sub arrays of an array, each of the same size (the final list may be smaller), * or an empty List if the specified array is null or empty. * * @param a * @param fromIndex * @param toIndex * @param size * @return */ public static List split(final float[] a, final int fromIndex, final int toIndex, final int size) { checkFromToIndex(fromIndex, toIndex, len(a)); if (size < 1) { throw new IllegalArgumentException("The parameter 'size' can not be zero or less than zero"); } if (N.isNullOrEmpty(a)) { return new ArrayList<>(); } final int len = toIndex - fromIndex; final List res = new ArrayList<>(len % size == 0 ? len / size : (len / size) + 1); for (int from = fromIndex; from < toIndex; from += size) { res.add(copyOfRange(a, from, from <= toIndex - size ? from + size : toIndex)); } return res; } /** * Returns consecutive sub arrays of an array, each of the same size (the final list may be smaller), * or an empty List if the specified array is null or empty. * * @param a * @param size * @return */ public static List split(final double[] a, final int size) { if (size < 1) { throw new IllegalArgumentException("The parameter 'size' can not be zero or less than zero"); } if (N.isNullOrEmpty(a)) { return new ArrayList<>(); } final int len = a.length; final List res = new ArrayList<>(len % size == 0 ? len / size : (len / size) + 1); for (int from = 0, toIndex = a.length; from < toIndex; from += size) { res.add(copyOfRange(a, from, from <= toIndex - size ? from + size : toIndex)); } return res; } /** * Returns consecutive sub arrays of an array, each of the same size (the final list may be smaller), * or an empty List if the specified array is null or empty. * * @param a * @param fromIndex * @param toIndex * @param size * @return */ public static List split(final double[] a, final int fromIndex, final int toIndex, final int size) { checkFromToIndex(fromIndex, toIndex, len(a)); if (size < 1) { throw new IllegalArgumentException("The parameter 'size' can not be zero or less than zero"); } if (N.isNullOrEmpty(a)) { return new ArrayList<>(); } final int len = toIndex - fromIndex; final List res = new ArrayList<>(len % size == 0 ? len / size : (len / size) + 1); for (int from = fromIndex; from < toIndex; from += size) { res.add(copyOfRange(a, from, from <= toIndex - size ? from + size : toIndex)); } return res; } /** * Returns consecutive sub arrays of an array, each of the same size (the final list may be smaller), * or an empty List if the specified array is null or empty. * * @param a * @param size * @return */ public static List split(final T[] a, final int size) { if (size < 1) { throw new IllegalArgumentException("The parameter 'size' can not be zero or less than zero"); } if (N.isNullOrEmpty(a)) { return new ArrayList<>(); } final int len = a.length; final List res = new ArrayList<>(len % size == 0 ? len / size : (len / size) + 1); for (int from = 0, toIndex = a.length; from < toIndex; from += size) { res.add(copyOfRange(a, from, from <= toIndex - size ? from + size : toIndex)); } return res; } /** * Returns consecutive sub arrays of an array, each of the same size (the final list may be smaller), * or an empty List if the specified array is null or empty. * * @param a * @param fromIndex * @param toIndex * @param size * @return */ public static List split(final T[] a, final int fromIndex, final int toIndex, final int size) { checkFromToIndex(fromIndex, toIndex, len(a)); if (size < 1) { throw new IllegalArgumentException("The parameter 'size' can not be zero or less than zero"); } if (N.isNullOrEmpty(a)) { return new ArrayList<>(); } final int len = toIndex - fromIndex; final List res = new ArrayList<>(len % size == 0 ? len / size : (len / size) + 1); for (int from = fromIndex; from < toIndex; from += size) { res.add(copyOfRange(a, from, from <= toIndex - size ? from + size : toIndex)); } return res; } /** * Returns consecutive sub lists of a collection, each of the same size (the final list may be smaller). * or an empty List if the specified collection is null or empty. The order of elements in the original collection is kept * * @param c * @param size * @return */ public static List> split(final Collection c, final int size) { if (size < 1) { throw new IllegalArgumentException("The parameter 'size' can not be zero or less than zero"); } if (N.isNullOrEmpty(c)) { return new ArrayList<>(); } return split(c, 0, c.size(), size); } /** * Returns consecutive sub lists of a collection, each of the same size (the final list may be smaller). * or an empty List if the specified collection is null or empty. The order of elements in the original collection is kept * * @param c * @param fromIndex * @param toIndex * @param size * @return */ public static List> split(final Collection c, final int fromIndex, final int toIndex, final int size) { checkFromToIndex(fromIndex, toIndex, len(c)); if (size < 1) { throw new IllegalArgumentException("The parameter 'size' can not be zero or less than zero"); } if (N.isNullOrEmpty(c)) { return new ArrayList<>(); } final int len = toIndex - fromIndex; final List> res = new ArrayList<>(len % size == 0 ? len / size : (len / size) + 1); if (c instanceof List) { final List list = (List) c; for (int i = fromIndex; i < toIndex; i += size) { res.add(new ArrayList<>(list.subList(i, i <= toIndex - size ? i + size : toIndex))); } } else { final Iterator iter = c.iterator(); for (int i = 0; i < toIndex; i += size) { if (i < fromIndex) { iter.next(); i++; continue; } final List subList = new ArrayList<>(N.min(size, toIndex - i)); for (int j = i, to = i <= toIndex - size ? i + size : toIndex; j < to; j++) { subList.add(iter.next()); } res.add(subList); } } return res; } /** * Returns consecutive substring of the specified string, each of the same length (the final list may be smaller), * or an empty array if the specified string is null or empty. * * @param str * @param size * @return */ public static List split(final CharSequence str, final int size) { if (size < 1) { throw new IllegalArgumentException("The parameter 'size' can not be zero or less than zero"); } if (N.isNullOrEmpty(str)) { return new ArrayList<>(); } return split(str, 0, str.length(), size); } public static List split(final CharSequence str, final int fromIndex, final int toIndex, final int size) { N.checkFromToIndex(fromIndex, toIndex, len(str)); if (size < 1) { throw new IllegalArgumentException("The parameter 'size' can not be zero or less than zero"); } if (N.isNullOrEmpty(str)) { return new ArrayList<>(); } final int len = toIndex - fromIndex; final List res = new ArrayList<>(len % size == 0 ? len / size : (len / size) + 1); for (int from = fromIndex; from < toIndex; from += size) { res.add(str.subSequence(from, from <= toIndex - size ? from + size : toIndex).toString()); } return res; } /** * * @param a * @param b * @return * @see IntList#intersection(IntList) */ public static boolean[] intersection(final boolean[] a, final boolean[] b) { if (N.isNullOrEmpty(a) || N.isNullOrEmpty(b)) { return N.isNullOrEmpty(a) ? a : N.EMPTY_BOOLEAN_ARRAY; } return BooleanList.of(a).intersection(BooleanList.of(b)).trimToSize().array(); } /** * * @param a * @param b * @return * @see IntList#intersection(IntList) */ public static char[] intersection(final char[] a, final char[] b) { if (N.isNullOrEmpty(a) || N.isNullOrEmpty(b)) { return N.EMPTY_CHAR_ARRAY; } return CharList.of(a).intersection(CharList.of(b)).trimToSize().array(); } /** * * @param a * @param b * @return * @see IntList#intersection(IntList) */ public static byte[] intersection(final byte[] a, final byte[] b) { if (N.isNullOrEmpty(a) || N.isNullOrEmpty(b)) { return N.EMPTY_BYTE_ARRAY; } return ByteList.of(a).intersection(ByteList.of(b)).trimToSize().array(); } /** * * @param a * @param b * @return * @see IntList#intersection(IntList) */ public static short[] intersection(final short[] a, final short[] b) { if (N.isNullOrEmpty(a) || N.isNullOrEmpty(b)) { return N.EMPTY_SHORT_ARRAY; } return ShortList.of(a).intersection(ShortList.of(b)).trimToSize().array(); } /** * Returns a new array with all the elements in b removed by occurrences. * *
     * int[] a = {0, 1, 2, 2, 3};
     * int[] b = {2, 5, 1};
     * int[] c = retainAll(a, b); // The elements c in a will b: [1, 2, 2].
     * 
     * int[] a = {0, 1, 2, 2, 3};
     * int[] b = {2, 5, 1};
     * int[] c = intersection(a, b); // The elements c in a will b: [1, 2].
     * 
* * @param a * @param b * @return * @see IntList#intersection(IntList) */ public static int[] intersection(final int[] a, final int[] b) { if (N.isNullOrEmpty(a) || N.isNullOrEmpty(b)) { return N.EMPTY_INT_ARRAY; } return IntList.of(a).intersection(IntList.of(b)).trimToSize().array(); } /** * * @param a * @param b * @return * @see IntList#intersection(IntList) */ public static long[] intersection(final long[] a, final long[] b) { if (N.isNullOrEmpty(a) || N.isNullOrEmpty(b)) { return N.EMPTY_LONG_ARRAY; } return LongList.of(a).intersection(LongList.of(b)).trimToSize().array(); } /** * * @param a * @param b * @return * @see IntList#intersection(IntList) */ public static float[] intersection(final float[] a, final float[] b) { if (N.isNullOrEmpty(a) || N.isNullOrEmpty(b)) { return N.EMPTY_FLOAT_ARRAY; } return FloatList.of(a).intersection(FloatList.of(b)).trimToSize().array(); } /** * * @param a * @param b * @return * @see IntList#intersection(IntList) */ public static double[] intersection(final double[] a, final double[] b) { if (N.isNullOrEmpty(a) || N.isNullOrEmpty(b)) { return N.EMPTY_DOUBLE_ARRAY; } return DoubleList.of(a).intersection(DoubleList.of(b)).trimToSize().array(); } /** * * @param a * @param b * @return * @see IntList#intersection(IntList) */ public static List intersection(final T[] a, final Object[] b) { if (N.isNullOrEmpty(a) || N.isNullOrEmpty(b)) { return new ArrayList<>(); } final Multiset bOccurrences = Multiset.of(b); final List result = new ArrayList<>(N.min(9, a.length, b.length)); for (T e : a) { if (bOccurrences.getAndRemove(e) > 0) { result.add(e); } } return result; } /** * * @param a * @param b * @return * @see IntList#intersection(IntList) */ public static List intersection(final Collection a, final Collection b) { if (N.isNullOrEmpty(a) || N.isNullOrEmpty(b)) { return new ArrayList<>(); } final Multiset bOccurrences = Multiset.from(b); final List result = new ArrayList<>(N.min(9, a.size(), b.size())); for (T e : a) { if (bOccurrences.getAndRemove(e) > 0) { result.add(e); } } return result; } public static List intersection(final Collection> c) { if (N.isNullOrEmpty(c)) { return new ArrayList<>(); } else if (c.size() == 1) { return newArrayList(c.iterator().next()); } for (Collection e : c) { if (N.isNullOrEmpty(e)) { return new ArrayList<>(); } } final Iterator> iter = c.iterator(); List result = N.intersection(iter.next(), iter.next()); while (iter.hasNext()) { result = N.intersection(result, iter.next()); if (result.size() == 0) { break; } } return result; } /** * * @param a * @param b * @return * @see IntList#difference(IntList) */ public static boolean[] difference(final boolean[] a, final boolean[] b) { if (N.isNullOrEmpty(a)) { return N.EMPTY_BOOLEAN_ARRAY; } else if (N.isNullOrEmpty(b)) { return a.clone(); } return BooleanList.of(a).difference(BooleanList.of(b)).trimToSize().array(); } /** * * @param a * @param b * @return * @see IntList#difference(IntList) */ public static char[] difference(final char[] a, final char[] b) { if (N.isNullOrEmpty(a)) { return N.EMPTY_CHAR_ARRAY; } else if (N.isNullOrEmpty(b)) { return a.clone(); } return CharList.of(a).difference(CharList.of(b)).trimToSize().array(); } /** * * @param a * @param b * @return * @see IntList#difference(IntList) */ public static byte[] difference(final byte[] a, final byte[] b) { if (N.isNullOrEmpty(a)) { return N.EMPTY_BYTE_ARRAY; } else if (N.isNullOrEmpty(b)) { return a.clone(); } return ByteList.of(a).difference(ByteList.of(b)).trimToSize().array(); } /** * * @param a * @param b * @return * @see IntList#difference(IntList) */ public static short[] difference(final short[] a, final short[] b) { if (N.isNullOrEmpty(a)) { return N.EMPTY_SHORT_ARRAY; } else if (N.isNullOrEmpty(b)) { return a.clone(); } return ShortList.of(a).difference(ShortList.of(b)).trimToSize().array(); } /** * Returns a new array with all the elements in b removed by occurrences. * *
     * int[] a = {0, 1, 2, 2, 3};
     * int[] b = {2, 5, 1};
     * int[] c = removeAll(a, b); // The elements c in a will b: [0, 3].
     * 
     * int[] a = {0, 1, 2, 2, 3};
     * int[] b = {2, 5, 1};
     * int[] c = difference(a, b); // The elements c in a will b: [0, 2, 3].
     * 
* * @param a * @param b * @return * @see IntList#difference(IntList) */ public static int[] difference(final int[] a, final int[] b) { if (N.isNullOrEmpty(a)) { return N.EMPTY_INT_ARRAY; } else if (N.isNullOrEmpty(b)) { return a.clone(); } return IntList.of(a).difference(IntList.of(b)).trimToSize().array(); } /** * * @param a * @param b * @return * @see IntList#difference(IntList) */ public static long[] difference(final long[] a, final long[] b) { if (N.isNullOrEmpty(a)) { return N.EMPTY_LONG_ARRAY; } else if (N.isNullOrEmpty(b)) { return a.clone(); } return LongList.of(a).difference(LongList.of(b)).trimToSize().array(); } /** * * @param a * @param b * @return * @see IntList#difference(IntList) */ public static float[] difference(final float[] a, final float[] b) { if (N.isNullOrEmpty(a)) { return N.EMPTY_FLOAT_ARRAY; } else if (N.isNullOrEmpty(b)) { return a.clone(); } return FloatList.of(a).difference(FloatList.of(b)).trimToSize().array(); } /** * * @param a * @param b * @return * @see IntList#difference(IntList) */ public static double[] difference(final double[] a, final double[] b) { if (N.isNullOrEmpty(a)) { return N.EMPTY_DOUBLE_ARRAY; } else if (N.isNullOrEmpty(b)) { return a.clone(); } return DoubleList.of(a).difference(DoubleList.of(b)).trimToSize().array(); } /** * * @param a * @param b * @return * @see IntList#difference(IntList) */ public static List difference(final T[] a, final Object[] b) { if (N.isNullOrEmpty(a)) { return new ArrayList<>(); } else if (N.isNullOrEmpty(b)) { return N.asList(a); } final Multiset bOccurrences = Multiset.of(b); final List result = new ArrayList<>(N.min(a.length, N.max(9, a.length - b.length))); for (T e : a) { if (bOccurrences.getAndRemove(e) < 1) { result.add(e); } } return result; } /** * * @param a * @param b * @return * @see IntList#difference(IntList) */ public static List difference(final Collection a, final Collection b) { if (N.isNullOrEmpty(a)) { return new ArrayList<>(); } else if (N.isNullOrEmpty(b)) { return new ArrayList<>(a); } final Multiset bOccurrences = Multiset.from(b); final List result = new ArrayList<>(N.min(a.size(), N.max(9, a.size() - b.size()))); for (T e : a) { if (bOccurrences.getAndRemove(e) < 1) { result.add(e); } } return result; } /** * * @param a * @param b * @return * @see IntList#symmetricDifference(IntList) */ public static boolean[] symmetricDifference(final boolean[] a, final boolean[] b) { if (N.isNullOrEmpty(a)) { return N.isNullOrEmpty(b) ? N.EMPTY_BOOLEAN_ARRAY : b.clone(); } else if (N.isNullOrEmpty(b)) { return a.clone(); } return BooleanList.of(a).symmetricDifference(BooleanList.of(b)).trimToSize().array(); } /** * * @param a * @param b * @return * @see IntList#symmetricDifference(IntList) */ public static char[] symmetricDifference(final char[] a, final char[] b) { if (N.isNullOrEmpty(a)) { return N.isNullOrEmpty(b) ? N.EMPTY_CHAR_ARRAY : b.clone(); } else if (N.isNullOrEmpty(b)) { return a.clone(); } return CharList.of(a).symmetricDifference(CharList.of(b)).trimToSize().array(); } /** * * @param a * @param b * @return * @see IntList#symmetricDifference(IntList) */ public static byte[] symmetricDifference(final byte[] a, final byte[] b) { if (N.isNullOrEmpty(a)) { return N.isNullOrEmpty(b) ? N.EMPTY_BYTE_ARRAY : b.clone(); } else if (N.isNullOrEmpty(b)) { return a.clone(); } return ByteList.of(a).symmetricDifference(ByteList.of(b)).trimToSize().array(); } /** * * @param a * @param b * @return * @see IntList#symmetricDifference(IntList) */ public static short[] symmetricDifference(final short[] a, final short[] b) { if (N.isNullOrEmpty(a)) { return N.isNullOrEmpty(b) ? N.EMPTY_SHORT_ARRAY : b.clone(); } else if (N.isNullOrEmpty(b)) { return a.clone(); } return ShortList.of(a).symmetricDifference(ShortList.of(b)).trimToSize().array(); } /** *
     * int[] a = {0, 1, 2, 2, 3};
     * int[] b = {2, 5, 1};
     * int[] c = symmetricDifference(a, b); // The elements c in a will b: [0, 2, 3, 5].
     * 
* * @param a * @param b * @return * @see IntList#symmetricDifference(IntList) * @see N#difference(int[], int[]) */ public static int[] symmetricDifference(final int[] a, final int[] b) { if (N.isNullOrEmpty(a)) { return N.isNullOrEmpty(b) ? N.EMPTY_INT_ARRAY : b.clone(); } else if (N.isNullOrEmpty(b)) { return a.clone(); } return IntList.of(a).symmetricDifference(IntList.of(b)).trimToSize().array(); } /** * * @param a * @param b * @return * @see IntList#symmetricDifference(IntList) */ public static long[] symmetricDifference(final long[] a, final long[] b) { if (N.isNullOrEmpty(a)) { return N.isNullOrEmpty(b) ? N.EMPTY_LONG_ARRAY : b.clone(); } else if (N.isNullOrEmpty(b)) { return a.clone(); } return LongList.of(a).symmetricDifference(LongList.of(b)).trimToSize().array(); } /** * * @param a * @param b * @return * @see IntList#symmetricDifference(IntList) */ public static float[] symmetricDifference(final float[] a, final float[] b) { if (N.isNullOrEmpty(a)) { return N.isNullOrEmpty(b) ? N.EMPTY_FLOAT_ARRAY : b.clone(); } else if (N.isNullOrEmpty(b)) { return a.clone(); } return FloatList.of(a).symmetricDifference(FloatList.of(b)).trimToSize().array(); } /** * * @param a * @param b * @return * @see IntList#symmetricDifference(IntList) */ public static double[] symmetricDifference(final double[] a, final double[] b) { if (N.isNullOrEmpty(a)) { return N.isNullOrEmpty(b) ? N.EMPTY_DOUBLE_ARRAY : b.clone(); } else if (N.isNullOrEmpty(b)) { return a.clone(); } return DoubleList.of(a).symmetricDifference(DoubleList.of(b)).trimToSize().array(); } /** * * @param a * @param b * @return * @see IntList#symmetricDifference(IntList) */ public static List symmetricDifference(final T[] a, final T[] b) { if (N.isNullOrEmpty(a)) { return N.asList(b); } else if (N.isNullOrEmpty(b)) { return N.asList(a); } final Multiset bOccurrences = Multiset.of(b); final List result = new ArrayList<>(N.max(9, Math.abs(a.length - b.length))); for (T e : a) { if (bOccurrences.getAndRemove(e) < 1) { result.add(e); } } for (T e : b) { if (bOccurrences.getAndRemove(e) > 0) { result.add(e); } if (bOccurrences.isEmpty()) { break; } } return result; } /** * * @param a * @param b * @return * @see IntList#symmetricDifference(IntList) */ public static List symmetricDifference(final Collection a, final Collection b) { if (N.isNullOrEmpty(a)) { return N.isNullOrEmpty(b) ? new ArrayList() : new ArrayList<>(b); } else if (N.isNullOrEmpty(b)) { return N.isNullOrEmpty(a) ? new ArrayList() : new ArrayList<>(a); } // final List result = difference(a, b); // // result.addAll(difference(b, a)); // // return result; final Multiset bOccurrences = Multiset.from(b); final List result = new ArrayList<>(N.max(9, Math.abs(a.size() - b.size()))); for (T e : a) { if (bOccurrences.getAndRemove(e) < 1) { result.add(e); } } for (T e : b) { if (bOccurrences.getAndRemove(e) > 0) { result.add(e); } if (bOccurrences.isEmpty()) { break; } } return result; } /** * * @param a * @param b * @return */ public static boolean[] concat(final boolean[] a, final boolean[] b) { if (N.isNullOrEmpty(a)) { return N.isNullOrEmpty(b) ? N.EMPTY_BOOLEAN_ARRAY : b.clone(); } else if (N.isNullOrEmpty(b)) { return N.isNullOrEmpty(a) ? N.EMPTY_BOOLEAN_ARRAY : a.clone(); } final boolean[] c = new boolean[a.length + b.length]; copy(a, 0, c, 0, a.length); copy(b, 0, c, a.length, b.length); return c; } /** * * @param aa * @return */ @SafeVarargs public static boolean[] concat(final boolean[]... aa) { if (N.isNullOrEmpty(aa)) { return N.EMPTY_BOOLEAN_ARRAY; } else if (aa.length == 1) { return N.isNullOrEmpty(aa[0]) ? N.EMPTY_BOOLEAN_ARRAY : aa[0].clone(); } int len = 0; for (boolean[] a : aa) { if (N.isNullOrEmpty(a)) { continue; } len += a.length; } final boolean[] c = new boolean[len]; int fromIndex = 0; for (boolean[] a : aa) { if (N.isNullOrEmpty(a)) { continue; } System.arraycopy(a, 0, c, fromIndex, a.length); fromIndex += a.length; } return c; } /** * * @param a * @param b * @return */ public static char[] concat(final char[] a, final char[] b) { if (N.isNullOrEmpty(a)) { return N.isNullOrEmpty(b) ? N.EMPTY_CHAR_ARRAY : b.clone(); } else if (N.isNullOrEmpty(b)) { return N.isNullOrEmpty(a) ? N.EMPTY_CHAR_ARRAY : a.clone(); } final char[] c = new char[a.length + b.length]; copy(a, 0, c, 0, a.length); copy(b, 0, c, a.length, b.length); return c; } /** * * @param aa * @return */ @SafeVarargs public static char[] concat(final char[]... aa) { if (N.isNullOrEmpty(aa)) { return N.EMPTY_CHAR_ARRAY; } else if (aa.length == 1) { return N.isNullOrEmpty(aa[0]) ? N.EMPTY_CHAR_ARRAY : aa[0].clone(); } int len = 0; for (char[] a : aa) { if (N.isNullOrEmpty(a)) { continue; } len += a.length; } final char[] c = new char[len]; int fromIndex = 0; for (char[] a : aa) { if (N.isNullOrEmpty(a)) { continue; } System.arraycopy(a, 0, c, fromIndex, a.length); fromIndex += a.length; } return c; } /** * * @param a * @param b * @return */ public static byte[] concat(final byte[] a, final byte[] b) { if (N.isNullOrEmpty(a)) { return N.isNullOrEmpty(b) ? N.EMPTY_BYTE_ARRAY : b.clone(); } else if (N.isNullOrEmpty(b)) { return N.isNullOrEmpty(a) ? N.EMPTY_BYTE_ARRAY : a.clone(); } final byte[] c = new byte[a.length + b.length]; copy(a, 0, c, 0, a.length); copy(b, 0, c, a.length, b.length); return c; } /** * * @param aa * @return */ @SafeVarargs public static byte[] concat(final byte[]... aa) { if (N.isNullOrEmpty(aa)) { return N.EMPTY_BYTE_ARRAY; } else if (aa.length == 1) { return N.isNullOrEmpty(aa[0]) ? N.EMPTY_BYTE_ARRAY : aa[0].clone(); } int len = 0; for (byte[] a : aa) { if (N.isNullOrEmpty(a)) { continue; } len += a.length; } final byte[] c = new byte[len]; int fromIndex = 0; for (byte[] a : aa) { if (N.isNullOrEmpty(a)) { continue; } System.arraycopy(a, 0, c, fromIndex, a.length); fromIndex += a.length; } return c; } /** * * @param a * @param b * @return */ public static short[] concat(final short[] a, final short[] b) { if (N.isNullOrEmpty(a)) { return N.isNullOrEmpty(b) ? N.EMPTY_SHORT_ARRAY : b.clone(); } else if (N.isNullOrEmpty(b)) { return N.isNullOrEmpty(a) ? N.EMPTY_SHORT_ARRAY : a.clone(); } final short[] c = new short[a.length + b.length]; copy(a, 0, c, 0, a.length); copy(b, 0, c, a.length, b.length); return c; } /** * * @param aa * @return */ @SafeVarargs public static short[] concat(final short[]... aa) { if (N.isNullOrEmpty(aa)) { return N.EMPTY_SHORT_ARRAY; } else if (aa.length == 1) { return N.isNullOrEmpty(aa[0]) ? N.EMPTY_SHORT_ARRAY : aa[0].clone(); } int len = 0; for (short[] a : aa) { if (N.isNullOrEmpty(a)) { continue; } len += a.length; } final short[] c = new short[len]; int fromIndex = 0; for (short[] a : aa) { if (N.isNullOrEmpty(a)) { continue; } System.arraycopy(a, 0, c, fromIndex, a.length); fromIndex += a.length; } return c; } /** * * @param a * @param b * @return */ public static int[] concat(final int[] a, final int[] b) { if (N.isNullOrEmpty(a)) { return N.isNullOrEmpty(b) ? N.EMPTY_INT_ARRAY : b.clone(); } else if (N.isNullOrEmpty(b)) { return N.isNullOrEmpty(a) ? N.EMPTY_INT_ARRAY : a.clone(); } final int[] c = new int[a.length + b.length]; copy(a, 0, c, 0, a.length); copy(b, 0, c, a.length, b.length); return c; } /** * * @param aa * @return */ @SafeVarargs public static int[] concat(final int[]... aa) { if (N.isNullOrEmpty(aa)) { return N.EMPTY_INT_ARRAY; } else if (aa.length == 1) { return N.isNullOrEmpty(aa[0]) ? N.EMPTY_INT_ARRAY : aa[0].clone(); } int len = 0; for (int[] a : aa) { if (N.isNullOrEmpty(a)) { continue; } len += a.length; } final int[] c = new int[len]; int fromIndex = 0; for (int[] a : aa) { if (N.isNullOrEmpty(a)) { continue; } System.arraycopy(a, 0, c, fromIndex, a.length); fromIndex += a.length; } return c; } /** * * @param a * @param b * @return */ public static long[] concat(final long[] a, final long[] b) { if (N.isNullOrEmpty(a)) { return N.isNullOrEmpty(b) ? N.EMPTY_LONG_ARRAY : b.clone(); } else if (N.isNullOrEmpty(b)) { return N.isNullOrEmpty(a) ? N.EMPTY_LONG_ARRAY : a.clone(); } final long[] c = new long[a.length + b.length]; copy(a, 0, c, 0, a.length); copy(b, 0, c, a.length, b.length); return c; } /** * * @param aa * @return */ @SafeVarargs public static long[] concat(final long[]... aa) { if (N.isNullOrEmpty(aa)) { return N.EMPTY_LONG_ARRAY; } else if (aa.length == 1) { return N.isNullOrEmpty(aa[0]) ? N.EMPTY_LONG_ARRAY : aa[0].clone(); } int len = 0; for (long[] a : aa) { if (N.isNullOrEmpty(a)) { continue; } len += a.length; } final long[] c = new long[len]; int fromIndex = 0; for (long[] a : aa) { if (N.isNullOrEmpty(a)) { continue; } System.arraycopy(a, 0, c, fromIndex, a.length); fromIndex += a.length; } return c; } /** * * @param a * @param b * @return */ public static float[] concat(final float[] a, final float[] b) { if (N.isNullOrEmpty(a)) { return N.isNullOrEmpty(b) ? N.EMPTY_FLOAT_ARRAY : b.clone(); } else if (N.isNullOrEmpty(b)) { return N.isNullOrEmpty(a) ? N.EMPTY_FLOAT_ARRAY : a.clone(); } final float[] c = new float[a.length + b.length]; copy(a, 0, c, 0, a.length); copy(b, 0, c, a.length, b.length); return c; } /** * * @param aa * @return */ @SafeVarargs public static float[] concat(final float[]... aa) { if (N.isNullOrEmpty(aa)) { return N.EMPTY_FLOAT_ARRAY; } else if (aa.length == 1) { return N.isNullOrEmpty(aa[0]) ? N.EMPTY_FLOAT_ARRAY : aa[0].clone(); } int len = 0; for (float[] a : aa) { if (N.isNullOrEmpty(a)) { continue; } len += a.length; } final float[] c = new float[len]; int fromIndex = 0; for (float[] a : aa) { if (N.isNullOrEmpty(a)) { continue; } System.arraycopy(a, 0, c, fromIndex, a.length); fromIndex += a.length; } return c; } /** * * @param a * @param b * @return */ public static double[] concat(final double[] a, final double[] b) { if (N.isNullOrEmpty(a)) { return N.isNullOrEmpty(b) ? N.EMPTY_DOUBLE_ARRAY : b.clone(); } else if (N.isNullOrEmpty(b)) { return N.isNullOrEmpty(a) ? N.EMPTY_DOUBLE_ARRAY : a.clone(); } final double[] c = new double[a.length + b.length]; copy(a, 0, c, 0, a.length); copy(b, 0, c, a.length, b.length); return c; } /** * * @param aa * @return */ @SafeVarargs public static double[] concat(final double[]... aa) { if (N.isNullOrEmpty(aa)) { return N.EMPTY_DOUBLE_ARRAY; } else if (aa.length == 1) { return N.isNullOrEmpty(aa[0]) ? N.EMPTY_DOUBLE_ARRAY : aa[0].clone(); } int len = 0; for (double[] a : aa) { if (N.isNullOrEmpty(a)) { continue; } len += a.length; } final double[] c = new double[len]; int fromIndex = 0; for (double[] a : aa) { if (N.isNullOrEmpty(a)) { continue; } System.arraycopy(a, 0, c, fromIndex, a.length); fromIndex += a.length; } return c; } /** * * @param a * @param b * @return */ @SuppressWarnings("unchecked") public static T[] concat(final T[] a, final T[] b) { if (N.isNullOrEmpty(a)) { return N.isNullOrEmpty(b) ? a : b.clone(); } else if (N.isNullOrEmpty(b)) { return a.clone(); } final T[] c = (T[]) newArray(a.getClass().getComponentType(), a.length + b.length); copy(a, 0, c, 0, a.length); copy(b, 0, c, a.length, b.length); return c; } /** * * @param aa * @return * @throws NullPointerException if the specified aa is null. */ @SafeVarargs public static T[] concat(final T[]... aa) { N.checkArgNotNull(aa, "aa"); if (aa.length == 1) { return N.isNullOrEmpty(aa[0]) ? aa[0] : aa[0].clone(); } int len = 0; for (T[] a : aa) { if (N.isNullOrEmpty(a)) { continue; } len += a.length; } final T[] c = N.newArray(aa.getClass().getComponentType().getComponentType(), len); int fromIndex = 0; for (T[] a : aa) { if (N.isNullOrEmpty(a)) { continue; } System.arraycopy(a, 0, c, fromIndex, a.length); fromIndex += a.length; } return c; } public static List concat(final Collection a, final Collection b) { if (N.isNullOrEmpty(a)) { return N.isNullOrEmpty(b) ? new ArrayList(0) : new ArrayList<>(b); } else if (N.isNullOrEmpty(b)) { return new ArrayList<>(a); } final List result = new ArrayList<>(a.size() + b.size()); result.addAll(a); result.addAll(b); return result; } @SafeVarargs public static List concat(final Collection... a) { if (N.isNullOrEmpty(a)) { return new ArrayList<>(); } return concat(Arrays.asList(a)); } public static List concat(final Collection> c) { if (N.isNullOrEmpty(c)) { return new ArrayList<>(); } int count = 0; for (Collection e : c) { if (N.notNullOrEmpty(e)) { count += e.size(); } } final List result = new ArrayList<>(count); for (Collection e : c) { if (N.notNullOrEmpty(e)) { result.addAll(e); } } return result; } public static ObjIterator concat(final Iterator a, final Iterator b) { return Iterators.concat(a, b); } @SafeVarargs public static ObjIterator concat(final Iterator... a) { return Iterators.concat(a); } public static ObjIterator concatt(final Collection> c) { return Iterators.concat(c); } public static int replaceAll(final boolean[] a, final boolean oldVal, final boolean newVal) { if (N.isNullOrEmpty(a)) { return 0; } int result = 0; for (int i = 0, len = a.length; i < len; i++) { if (a[i] == oldVal) { a[i] = newVal; result++; } } return result; } public static int replaceAll(final char[] a, final char oldVal, final char newVal) { if (N.isNullOrEmpty(a)) { return 0; } int result = 0; for (int i = 0, len = a.length; i < len; i++) { if (a[i] == oldVal) { a[i] = newVal; result++; } } return result; } public static int replaceAll(final byte[] a, final byte oldVal, final byte newVal) { if (N.isNullOrEmpty(a)) { return 0; } int result = 0; for (int i = 0, len = a.length; i < len; i++) { if (a[i] == oldVal) { a[i] = newVal; result++; } } return result; } public static int replaceAll(final short[] a, final short oldVal, final short newVal) { if (N.isNullOrEmpty(a)) { return 0; } int result = 0; for (int i = 0, len = a.length; i < len; i++) { if (a[i] == oldVal) { a[i] = newVal; result++; } } return result; } public static int replaceAll(final int[] a, final int oldVal, final int newVal) { if (N.isNullOrEmpty(a)) { return 0; } int result = 0; for (int i = 0, len = a.length; i < len; i++) { if (a[i] == oldVal) { a[i] = newVal; result++; } } return result; } public static int replaceAll(final long[] a, final long oldVal, final long newVal) { if (N.isNullOrEmpty(a)) { return 0; } int result = 0; for (int i = 0, len = a.length; i < len; i++) { if (a[i] == oldVal) { a[i] = newVal; result++; } } return result; } public static int replaceAll(final float[] a, final float oldVal, final float newVal) { if (N.isNullOrEmpty(a)) { return 0; } int result = 0; for (int i = 0, len = a.length; i < len; i++) { if (Float.compare(a[i], oldVal) == 0) { a[i] = newVal; result++; } } return result; } public static int replaceAll(final double[] a, final double oldVal, final double newVal) { if (N.isNullOrEmpty(a)) { return 0; } int result = 0; for (int i = 0, len = a.length; i < len; i++) { if (Double.compare(a[i], oldVal) == 0) { a[i] = newVal; result++; } } return result; } public static int replaceAll(final T[] a, final Object oldVal, final T newVal) { if (N.isNullOrEmpty(a)) { return 0; } int result = 0; if (oldVal == null) { for (int i = 0, len = a.length; i < len; i++) { if (a[i] == null) { a[i] = newVal; result++; } } } else { for (int i = 0, len = a.length; i < len; i++) { if (equals(a[i], oldVal)) { a[i] = newVal; result++; } } } return result; } public static int replaceAll(final List list, final Object oldVal, final T newVal) { if (N.isNullOrEmpty(list)) { return 0; } int result = 0; final int size = list.size(); if (size < REPLACEALL_THRESHOLD || list instanceof RandomAccess) { if (oldVal == null) { for (int i = 0; i < size; i++) { if (list.get(i) == null) { list.set(i, newVal); result++; } } } else { for (int i = 0; i < size; i++) { if (oldVal.equals(list.get(i))) { list.set(i, newVal); result++; } } } } else { final ListIterator itr = list.listIterator(); if (oldVal == null) { for (int i = 0; i < size; i++) { if (itr.next() == null) { itr.set(newVal); result++; } } } else { for (int i = 0; i < size; i++) { if (oldVal.equals(itr.next())) { itr.set(newVal); result++; } } } } return result; } /** *

* Copies the given array and adds the given element at the end of the new * array. * * @param a * @param element * @return A new array containing the existing elements plus the new element */ public static boolean[] add(final boolean[] a, final boolean element) { if (N.isNullOrEmpty(a)) { return Array.of(element); } final boolean[] newArray = new boolean[a.length + 1]; copy(a, 0, newArray, 0, a.length); newArray[a.length] = element; return newArray; } /** *

* Copies the given array and adds the given element at the end of the new * array. * * @param a * @param element * @return A new array containing the existing elements plus the new element */ public static char[] add(final char[] a, final char element) { if (N.isNullOrEmpty(a)) { return Array.of(element); } final char[] newArray = new char[a.length + 1]; copy(a, 0, newArray, 0, a.length); newArray[a.length] = element; return newArray; } /** *

* Copies the given array and adds the given element at the end of the new * array. * * @param a * @param element * @return A new array containing the existing elements plus the new element */ public static byte[] add(final byte[] a, final byte element) { if (N.isNullOrEmpty(a)) { return Array.of(element); } final byte[] newArray = new byte[a.length + 1]; copy(a, 0, newArray, 0, a.length); newArray[a.length] = element; return newArray; } /** *

* Copies the given array and adds the given element at the end of the new * array. * * @param a * @param element * @return A new array containing the existing elements plus the new element */ public static short[] add(final short[] a, final short element) { if (N.isNullOrEmpty(a)) { return Array.of(element); } final short[] newArray = new short[a.length + 1]; copy(a, 0, newArray, 0, a.length); newArray[a.length] = element; return newArray; } /** *

* Copies the given array and adds the given element at the end of the new * array. * * @param a * @param element * @return A new array containing the existing elements plus the new element */ public static int[] add(final int[] a, final int element) { if (N.isNullOrEmpty(a)) { return Array.of(element); } final int[] newArray = new int[a.length + 1]; copy(a, 0, newArray, 0, a.length); newArray[a.length] = element; return newArray; } /** *

* Copies the given array and adds the given element at the end of the new * array. * * @param a * @param element * @return A new array containing the existing elements plus the new element */ public static long[] add(final long[] a, final long element) { if (N.isNullOrEmpty(a)) { return Array.of(element); } final long[] newArray = new long[a.length + 1]; copy(a, 0, newArray, 0, a.length); newArray[a.length] = element; return newArray; } /** *

* Copies the given array and adds the given element at the end of the new * array. * * @param a * @param element * @return A new array containing the existing elements plus the new element */ public static float[] add(final float[] a, final float element) { if (N.isNullOrEmpty(a)) { return Array.of(element); } final float[] newArray = new float[a.length + 1]; copy(a, 0, newArray, 0, a.length); newArray[a.length] = element; return newArray; } /** *

* Copies the given array and adds the given element at the end of the new * array. * * @param a * @param element * @return A new array containing the existing elements plus the new element */ public static double[] add(final double[] a, final double element) { if (N.isNullOrEmpty(a)) { return Array.of(element); } final double[] newArray = new double[a.length + 1]; copy(a, 0, newArray, 0, a.length); newArray[a.length] = element; return newArray; } /** *

* Copies the given array and adds the given element at the end of the new * array. * * @param a * @param element * @return A new array containing the existing elements plus the new element */ public static String[] add(final String[] a, final String element) { if (N.isNullOrEmpty(a)) { return N.asArray(element); } final String[] newArray = new String[a.length + 1]; copy(a, 0, newArray, 0, a.length); newArray[a.length] = element; return newArray; } /** *

* Copies the given array and adds the given element at the end of the new * array. * * @param a * @param element * @return A new array containing the existing elements plus the new element * @throws NullPointerException if the specified a is null. */ public static T[] add(final T[] a, final T element) { N.checkArgNotNull(a, "a"); if (N.isNullOrEmpty(a)) { return N.asArray(element); } final T[] newArray = (T[]) Array.newInstance(a.getClass().getComponentType(), a.length + 1); copy(a, 0, newArray, 0, a.length); newArray[a.length] = element; return newArray; } /** *

* Adds all the elements of the given arrays into a new array. *

* * @param a * the first array whose elements are added to the new array. * @param b * the second array whose elements are added to the new array. * @return A new array containing the elements from a and b */ @SafeVarargs public static boolean[] addAll(final boolean[] a, final boolean... b) { if (N.isNullOrEmpty(a)) { return N.isNullOrEmpty(b) ? N.EMPTY_BOOLEAN_ARRAY : b.clone(); } final boolean[] newArray = new boolean[a.length + b.length]; copy(a, 0, newArray, 0, a.length); copy(b, 0, newArray, a.length, b.length); return newArray; } /** *

* Adds all the elements of the given arrays into a new array. *

* * @param a * the first array whose elements are added to the new array. * @param b * the second array whose elements are added to the new array. * @return A new array containing the elements from a and b */ @SafeVarargs public static char[] addAll(final char[] a, final char... b) { if (N.isNullOrEmpty(a)) { return N.isNullOrEmpty(b) ? N.EMPTY_CHAR_ARRAY : b.clone(); } final char[] newArray = new char[a.length + b.length]; copy(a, 0, newArray, 0, a.length); copy(b, 0, newArray, a.length, b.length); return newArray; } /** *

* Adds all the elements of the given arrays into a new array. *

* * @param a * the first array whose elements are added to the new array. * @param b * the second array whose elements are added to the new array. * @return A new array containing the elements from a and b */ @SafeVarargs public static byte[] addAll(final byte[] a, final byte... b) { if (N.isNullOrEmpty(a)) { return N.isNullOrEmpty(b) ? N.EMPTY_BYTE_ARRAY : b.clone(); } final byte[] newArray = new byte[a.length + b.length]; copy(a, 0, newArray, 0, a.length); copy(b, 0, newArray, a.length, b.length); return newArray; } /** *

* Adds all the elements of the given arrays into a new array. *

* * @param a * the first array whose elements are added to the new array. * @param b * the second array whose elements are added to the new array. * @return A new array containing the elements from a and b */ @SafeVarargs public static short[] addAll(final short[] a, final short... b) { if (N.isNullOrEmpty(a)) { return N.isNullOrEmpty(b) ? N.EMPTY_SHORT_ARRAY : b.clone(); } final short[] newArray = new short[a.length + b.length]; copy(a, 0, newArray, 0, a.length); copy(b, 0, newArray, a.length, b.length); return newArray; } /** *

* Adds all the elements of the given arrays into a new array. *

* * @param a * the first array whose elements are added to the new array. * @param b * the second array whose elements are added to the new array. * @return A new array containing the elements from a and b */ @SafeVarargs public static int[] addAll(final int[] a, final int... b) { if (N.isNullOrEmpty(a)) { return N.isNullOrEmpty(b) ? N.EMPTY_INT_ARRAY : b.clone(); } final int[] newArray = new int[a.length + b.length]; copy(a, 0, newArray, 0, a.length); copy(b, 0, newArray, a.length, b.length); return newArray; } /** *

* Adds all the elements of the given arrays into a new array. *

* * @param a * the first array whose elements are added to the new array. * @param b * the second array whose elements are added to the new array. * @return A new array containing the elements from a and b */ @SafeVarargs public static long[] addAll(final long[] a, final long... b) { if (N.isNullOrEmpty(a)) { return N.isNullOrEmpty(b) ? N.EMPTY_LONG_ARRAY : b.clone(); } final long[] newArray = new long[a.length + b.length]; copy(a, 0, newArray, 0, a.length); copy(b, 0, newArray, a.length, b.length); return newArray; } /** *

* Adds all the elements of the given arrays into a new array. *

* * @param a * the first array whose elements are added to the new array. * @param b * the second array whose elements are added to the new array. * @return A new array containing the elements from a and b */ @SafeVarargs public static float[] addAll(final float[] a, final float... b) { if (N.isNullOrEmpty(a)) { return N.isNullOrEmpty(b) ? N.EMPTY_FLOAT_ARRAY : b.clone(); } final float[] newArray = new float[a.length + b.length]; copy(a, 0, newArray, 0, a.length); copy(b, 0, newArray, a.length, b.length); return newArray; } /** *

* Adds all the elements of the given arrays into a new array. *

* * @param a * the first array whose elements are added to the new array. * @param b * the second array whose elements are added to the new array. * @return A new array containing the elements from a and b */ @SafeVarargs public static double[] addAll(final double[] a, final double... b) { if (N.isNullOrEmpty(a)) { return N.isNullOrEmpty(b) ? N.EMPTY_DOUBLE_ARRAY : b.clone(); } final double[] newArray = new double[a.length + b.length]; copy(a, 0, newArray, 0, a.length); copy(b, 0, newArray, a.length, b.length); return newArray; } /** *

* Adds all the elements of the given arrays into a new array. *

* * @param a * the first array whose elements are added to the new array. * @param b * the second array whose elements are added to the new array. * @return A new array containing the elements from a and b */ @SafeVarargs public static String[] addAll(final String[] a, final String... b) { if (N.isNullOrEmpty(a)) { return N.isNullOrEmpty(b) ? N.EMPTY_STRING_ARRAY : b.clone(); } final String[] newArray = new String[a.length + b.length]; copy(a, 0, newArray, 0, a.length); copy(b, 0, newArray, a.length, b.length); return newArray; } /** *

* Adds all the elements of the given arrays into a new array. *

* * @param a * the first array whose elements are added to the new array. * @param b * the second array whose elements are added to the new array. * @return A new array containing the elements from a and b * @throws NullPointerException if the specified a is null. */ @SafeVarargs public static T[] addAll(final T[] a, final T... b) { N.checkArgNotNull(a, "a"); if (N.isNullOrEmpty(a)) { return N.isNullOrEmpty(b) ? b : b.clone(); } final T[] newArray = (T[]) Array.newInstance(a.getClass().getComponentType(), a.length + b.length); copy(a, 0, newArray, 0, a.length); copy(b, 0, newArray, a.length, b.length); return newArray; } /** *

* Inserts the specified element at the specified position in the array. * Shifts the element currently at that position (if any) and any subsequent * elements to the right (adds one to their indices). *

* *

* This method returns a new array with the same elements of the input array * plus the given element on the specified position. The component type of * the returned array is always the same as that of the input array. *

* * @param a * @param index * the position of the new object * @param element * the object to add * @return A new array containing the existing elements and the new element */ public static boolean[] insert(final boolean[] a, final int index, final boolean element) { if (N.isNullOrEmpty(a) && index == 0) { return Array.of(element); } final boolean[] newArray = new boolean[a.length + 1]; if (index > 0) { copy(a, 0, newArray, 0, index); } newArray[index] = element; if (index < a.length) { copy(a, index, newArray, index + 1, a.length - index); } return newArray; } /** *

* Inserts the specified element at the specified position in the array. * Shifts the element currently at that position (if any) and any subsequent * elements to the right (adds one to their indices). *

* *

* This method returns a new array with the same elements of the input array * plus the given element on the specified position. The component type of * the returned array is always the same as that of the input array. *

* * @param a * @param index * the position of the new object * @param element * the object to add * @return A new array containing the existing elements and the new element */ public static char[] insert(final char[] a, final int index, final char element) { if (N.isNullOrEmpty(a) && index == 0) { return Array.of(element); } final char[] newArray = new char[a.length + 1]; if (index > 0) { copy(a, 0, newArray, 0, index); } newArray[index] = element; if (index < a.length) { copy(a, index, newArray, index + 1, a.length - index); } return newArray; } /** *

* Inserts the specified element at the specified position in the array. * Shifts the element currently at that position (if any) and any subsequent * elements to the right (adds one to their indices). *

* *

* This method returns a new array with the same elements of the input array * plus the given element on the specified position. The component type of * the returned array is always the same as that of the input array. *

* * @param a * @param index * the position of the new object * @param element * the object to add * @return A new array containing the existing elements and the new element */ public static byte[] insert(final byte[] a, final int index, final byte element) { if (N.isNullOrEmpty(a) && index == 0) { return Array.of(element); } final byte[] newArray = new byte[a.length + 1]; if (index > 0) { copy(a, 0, newArray, 0, index); } newArray[index] = element; if (index < a.length) { copy(a, index, newArray, index + 1, a.length - index); } return newArray; } /** *

* Inserts the specified element at the specified position in the array. * Shifts the element currently at that position (if any) and any subsequent * elements to the right (adds one to their indices). *

* *

* This method returns a new array with the same elements of the input array * plus the given element on the specified position. The component type of * the returned array is always the same as that of the input array. *

* * @param a * @param index * the position of the new object * @param element * the object to add * @return A new array containing the existing elements and the new element */ public static short[] insert(final short[] a, final int index, final short element) { if (N.isNullOrEmpty(a) && index == 0) { return Array.of(element); } final short[] newArray = new short[a.length + 1]; if (index > 0) { copy(a, 0, newArray, 0, index); } newArray[index] = element; if (index < a.length) { copy(a, index, newArray, index + 1, a.length - index); } return newArray; } /** *

* Inserts the specified element at the specified position in the array. * Shifts the element currently at that position (if any) and any subsequent * elements to the right (adds one to their indices). *

* *

* This method returns a new array with the same elements of the input array * plus the given element on the specified position. The component type of * the returned array is always the same as that of the input array. *

* * @param a * @param index * the position of the new object * @param element * the object to add * @return A new array containing the existing elements and the new element */ public static int[] insert(final int[] a, final int index, final int element) { if (N.isNullOrEmpty(a) && index == 0) { return Array.of(element); } final int[] newArray = new int[a.length + 1]; if (index > 0) { copy(a, 0, newArray, 0, index); } newArray[index] = element; if (index < a.length) { copy(a, index, newArray, index + 1, a.length - index); } return newArray; } /** *

* Inserts the specified element at the specified position in the array. * Shifts the element currently at that position (if any) and any subsequent * elements to the right (adds one to their indices). *

* *

* This method returns a new array with the same elements of the input array * plus the given element on the specified position. The component type of * the returned array is always the same as that of the input array. *

* * @param a * @param index * the position of the new object * @param element * the object to add * @return A new array containing the existing elements and the new element */ public static long[] insert(final long[] a, final int index, final long element) { if (N.isNullOrEmpty(a) && index == 0) { return Array.of(element); } final long[] newArray = new long[a.length + 1]; if (index > 0) { copy(a, 0, newArray, 0, index); } newArray[index] = element; if (index < a.length) { copy(a, index, newArray, index + 1, a.length - index); } return newArray; } /** *

* Inserts the specified element at the specified position in the array. * Shifts the element currently at that position (if any) and any subsequent * elements to the right (adds one to their indices). *

* *

* This method returns a new array with the same elements of the input array * plus the given element on the specified position. The component type of * the returned array is always the same as that of the input array. *

* * @param a * @param index * the position of the new object * @param element * the object to add * @return A new array containing the existing elements and the new element */ public static float[] insert(final float[] a, final int index, final float element) { if (N.isNullOrEmpty(a) && index == 0) { return Array.of(element); } final float[] newArray = new float[a.length + 1]; if (index > 0) { copy(a, 0, newArray, 0, index); } newArray[index] = element; if (index < a.length) { copy(a, index, newArray, index + 1, a.length - index); } return newArray; } /** *

* Inserts the specified element at the specified position in the array. * Shifts the element currently at that position (if any) and any subsequent * elements to the right (adds one to their indices). *

* *

* This method returns a new array with the same elements of the input array * plus the given element on the specified position. The component type of * the returned array is always the same as that of the input array. *

* * @param a * @param index * the position of the new object * @param element * the object to add * @return A new array containing the existing elements and the new element */ public static double[] insert(final double[] a, final int index, final double element) { if (N.isNullOrEmpty(a) && index == 0) { return Array.of(element); } final double[] newArray = new double[a.length + 1]; if (index > 0) { copy(a, 0, newArray, 0, index); } newArray[index] = element; if (index < a.length) { copy(a, index, newArray, index + 1, a.length - index); } return newArray; } public static String[] insert(final String[] a, final int index, final String element) { if (N.isNullOrEmpty(a) && index == 0) { return N.asArray(element); } final String[] newArray = new String[a.length + 1]; if (index > 0) { copy(a, 0, newArray, 0, index); } newArray[index] = element; if (index < a.length) { copy(a, index, newArray, index + 1, a.length - index); } return newArray; } /** *

* Inserts the specified element at the specified position in the array. * Shifts the element currently at that position (if any) and any subsequent * elements to the right (adds one to their indices). *

* *

* This method returns a new array with the same elements of the input array * plus the given element on the specified position. The component type of * the returned array is always the same as that of the input array. *

* * @param a * @param index * the position of the new object * @param element * the object to add * @return A new array containing the existing elements and the new element * @throws NullPointerException if the specified a is null. */ public static T[] insert(final T[] a, final int index, final T element) { N.checkArgNotNull(a, "a"); final T[] newArray = N.newArray(a.getClass().getComponentType(), a.length + 1); if (index > 0) { copy(a, 0, newArray, 0, index); } newArray[index] = element; if (index < a.length) { copy(a, index, newArray, index + 1, a.length - index); } return newArray; } /** *

* Inserts the specified elements at the specified position in the array. * Shifts the element currently at that position (if any) and any subsequent * elements to the right (adds one to their indices). *

* * @param a * the first array whose elements are added to the new array. * @param index * the position of the new elements start from * @param b * the second array whose elements are added to the new array. * @return A new array containing the elements from a and b */ @SafeVarargs public static boolean[] insertAll(final boolean[] a, final int index, final boolean... b) { if (N.isNullOrEmpty(a) && index == 0) { return b.clone(); } final boolean[] newArray = new boolean[a.length + b.length]; if (index > 0) { copy(a, 0, newArray, 0, index); } copy(b, 0, newArray, index, b.length); if (index < a.length) { copy(a, index, newArray, index + b.length, a.length - index); } return newArray; } /** *

* Inserts the specified elements at the specified position in the array. * Shifts the element currently at that position (if any) and any subsequent * elements to the right (adds one to their indices). *

* * @param a * the first array whose elements are added to the new array. * @param index * the position of the new elements start from * @param b * the second array whose elements are added to the new array. * @return A new array containing the elements from a and b */ @SafeVarargs public static char[] insertAll(final char[] a, final int index, final char... b) { if (N.isNullOrEmpty(a) && index == 0) { return b.clone(); } final char[] newArray = new char[a.length + b.length]; if (index > 0) { copy(a, 0, newArray, 0, index); } copy(b, 0, newArray, index, b.length); if (index < a.length) { copy(a, index, newArray, index + b.length, a.length - index); } return newArray; } /** *

* Inserts the specified elements at the specified position in the array. * Shifts the element currently at that position (if any) and any subsequent * elements to the right (adds one to their indices). *

* * @param a * the first array whose elements are added to the new array. * @param index * the position of the new elements start from * @param b * the second array whose elements are added to the new array. * @return A new array containing the elements from a and b */ @SafeVarargs public static byte[] insertAll(final byte[] a, final int index, final byte... b) { if (N.isNullOrEmpty(a) && index == 0) { return b.clone(); } final byte[] newArray = new byte[a.length + b.length]; if (index > 0) { copy(a, 0, newArray, 0, index); } copy(b, 0, newArray, index, b.length); if (index < a.length) { copy(a, index, newArray, index + b.length, a.length - index); } return newArray; } /** *

* Inserts the specified elements at the specified position in the array. * Shifts the element currently at that position (if any) and any subsequent * elements to the right (adds one to their indices). *

* * @param a * the first array whose elements are added to the new array. * @param index * the position of the new elements start from * @param b * the second array whose elements are added to the new array. * @return A new array containing the elements from a and b */ @SafeVarargs public static short[] insertAll(final short[] a, final int index, final short... b) { if (N.isNullOrEmpty(a) && index == 0) { return b.clone(); } final short[] newArray = new short[a.length + b.length]; if (index > 0) { copy(a, 0, newArray, 0, index); } copy(b, 0, newArray, index, b.length); if (index < a.length) { copy(a, index, newArray, index + b.length, a.length - index); } return newArray; } /** *

* Inserts the specified elements at the specified position in the array. * Shifts the element currently at that position (if any) and any subsequent * elements to the right (adds one to their indices). *

* * @param a * the first array whose elements are added to the new array. * @param index * the position of the new elements start from * @param b * the second array whose elements are added to the new array. * @return A new array containing the elements from a and b */ @SafeVarargs public static int[] insertAll(final int[] a, final int index, final int... b) { if (N.isNullOrEmpty(a) && index == 0) { return b.clone(); } final int[] newArray = new int[a.length + b.length]; if (index > 0) { copy(a, 0, newArray, 0, index); } copy(b, 0, newArray, index, b.length); if (index < a.length) { copy(a, index, newArray, index + b.length, a.length - index); } return newArray; } /** *

* Inserts the specified elements at the specified position in the array. * Shifts the element currently at that position (if any) and any subsequent * elements to the right (adds one to their indices). *

* * @param a * the first array whose elements are added to the new array. * @param index * the position of the new elements start from * @param b * the second array whose elements are added to the new array. * @return A new array containing the elements from a and b */ @SafeVarargs public static long[] insertAll(final long[] a, final int index, final long... b) { if (N.isNullOrEmpty(a) && index == 0) { return b.clone(); } final long[] newArray = new long[a.length + b.length]; if (index > 0) { copy(a, 0, newArray, 0, index); } copy(b, 0, newArray, index, b.length); if (index < a.length) { copy(a, index, newArray, index + b.length, a.length - index); } return newArray; } /** *

* Inserts the specified elements at the specified position in the array. * Shifts the element currently at that position (if any) and any subsequent * elements to the right (adds one to their indices). *

* * @param a * the first array whose elements are added to the new array. * @param index * the position of the new elements start from * @param b * the second array whose elements are added to the new array. * @return A new array containing the elements from a and b */ @SafeVarargs public static float[] insertAll(final float[] a, final int index, final float... b) { if (N.isNullOrEmpty(a) && index == 0) { return b.clone(); } final float[] newArray = new float[a.length + b.length]; if (index > 0) { copy(a, 0, newArray, 0, index); } copy(b, 0, newArray, index, b.length); if (index < a.length) { copy(a, index, newArray, index + b.length, a.length - index); } return newArray; } /** *

* Inserts the specified elements at the specified position in the array. * Shifts the element currently at that position (if any) and any subsequent * elements to the right (adds one to their indices). *

* * @param a * the first array whose elements are added to the new array. * @param index * the position of the new elements start from * @param b * the second array whose elements are added to the new array. * @return A new array containing the elements from a and b */ @SafeVarargs public static double[] insertAll(final double[] a, final int index, final double... b) { if (N.isNullOrEmpty(a) && index == 0) { return b.clone(); } final double[] newArray = new double[a.length + b.length]; if (index > 0) { copy(a, 0, newArray, 0, index); } copy(b, 0, newArray, index, b.length); if (index < a.length) { copy(a, index, newArray, index + b.length, a.length - index); } return newArray; } @SafeVarargs public static String[] insertAll(final String[] a, final int index, final String... b) { if (N.isNullOrEmpty(a) && index == 0) { return b.clone(); } final String[] newArray = new String[a.length + b.length]; if (index > 0) { copy(a, 0, newArray, 0, index); } copy(b, 0, newArray, index, b.length); if (index < a.length) { copy(a, index, newArray, index + b.length, a.length - index); } return newArray; } /** *

* Inserts the specified elements at the specified position in the array. * Shifts the element currently at that position (if any) and any subsequent * elements to the right (adds one to their indices). *

* * @param a * the first array whose elements are added to the new array. * @param index * the position of the new elements start from * @param b * the second array whose elements are added to the new array. * @return A new array containing the elements from a and b * @throws NullPointerException if the specified a is null. */ @SafeVarargs public static T[] insertAll(final T[] a, final int index, final T... b) { N.checkArgNotNull(a, "a"); final T[] newArray = (T[]) Array.newInstance(a.getClass().getComponentType(), a.length + b.length); if (index > 0) { copy(a, 0, newArray, 0, index); } copy(b, 0, newArray, index, b.length); if (index < a.length) { copy(a, index, newArray, index + b.length, a.length - index); } return newArray; } /** *

* Removes the element at the specified position from the specified array. * All subsequent elements are shifted to the left (subtracts one from their * indices). *

* *

* This method returns a new array with the same elements of the input array * except the element on the specified position. The component type of the * returned array is always the same as that of the input array. *

* * * @param * the component type of the array * @param a * @param index * the position of the element to be removed * @return A new array containing the existing elements except the element * at the specified position. */ public static boolean[] delete(final boolean[] a, final int index) { final boolean[] result = new boolean[a.length - 1]; if (index > 0) { copy(a, 0, result, 0, index); } if (index + 1 < a.length) { copy(a, index + 1, result, index, a.length - index - 1); } return result; } /** *

* Removes the element at the specified position from the specified array. * All subsequent elements are shifted to the left (subtracts one from their * indices). *

* *

* This method returns a new array with the same elements of the input array * except the element on the specified position. The component type of the * returned array is always the same as that of the input array. *

* * * @param * the component type of the array * @param a * @param index * the position of the element to be removed * @return A new array containing the existing elements except the element * at the specified position. */ public static char[] delete(final char[] a, final int index) { final char[] result = new char[a.length - 1]; if (index > 0) { copy(a, 0, result, 0, index); } if (index + 1 < a.length) { copy(a, index + 1, result, index, a.length - index - 1); } return result; } /** *

* Removes the element at the specified position from the specified array. * All subsequent elements are shifted to the left (subtracts one from their * indices). *

* *

* This method returns a new array with the same elements of the input array * except the element on the specified position. The component type of the * returned array is always the same as that of the input array. *

* * * @param * the component type of the array * @param a * @param index * the position of the element to be removed * @return A new array containing the existing elements except the element * at the specified position. */ public static byte[] delete(final byte[] a, final int index) { final byte[] result = new byte[a.length - 1]; if (index > 0) { copy(a, 0, result, 0, index); } if (index + 1 < a.length) { copy(a, index + 1, result, index, a.length - index - 1); } return result; } /** *

* Removes the element at the specified position from the specified array. * All subsequent elements are shifted to the left (subtracts one from their * indices). *

* *

* This method returns a new array with the same elements of the input array * except the element on the specified position. The component type of the * returned array is always the same as that of the input array. *

* * * @param * the component type of the array * @param a * @param index * the position of the element to be removed * @return A new array containing the existing elements except the element * at the specified position. */ public static short[] delete(final short[] a, final int index) { final short[] result = new short[a.length - 1]; if (index > 0) { copy(a, 0, result, 0, index); } if (index + 1 < a.length) { copy(a, index + 1, result, index, a.length - index - 1); } return result; } /** *

* Removes the element at the specified position from the specified array. * All subsequent elements are shifted to the left (subtracts one from their * indices). *

* *

* This method returns a new array with the same elements of the input array * except the element on the specified position. The component type of the * returned array is always the same as that of the input array. *

* * * @param * the component type of the array * @param a * @param index * the position of the element to be removed * @return A new array containing the existing elements except the element * at the specified position. */ public static int[] delete(final int[] a, final int index) { final int[] result = new int[a.length - 1]; if (index > 0) { copy(a, 0, result, 0, index); } if (index + 1 < a.length) { copy(a, index + 1, result, index, a.length - index - 1); } return result; } /** *

* Removes the element at the specified position from the specified array. * All subsequent elements are shifted to the left (subtracts one from their * indices). *

* *

* This method returns a new array with the same elements of the input array * except the element on the specified position. The component type of the * returned array is always the same as that of the input array. *

* * * @param * the component type of the array * @param a * @param index * the position of the element to be removed * @return A new array containing the existing elements except the element * at the specified position. */ public static long[] delete(final long[] a, final int index) { final long[] result = new long[a.length - 1]; if (index > 0) { copy(a, 0, result, 0, index); } if (index + 1 < a.length) { copy(a, index + 1, result, index, a.length - index - 1); } return result; } /** *

* Removes the element at the specified position from the specified array. * All subsequent elements are shifted to the left (subtracts one from their * indices). *

* *

* This method returns a new array with the same elements of the input array * except the element on the specified position. The component type of the * returned array is always the same as that of the input array. *

* * * @param * the component type of the array * @param a * @param index * the position of the element to be removed * @return A new array containing the existing elements except the element * at the specified position. */ public static float[] delete(final float[] a, final int index) { final float[] result = new float[a.length - 1]; if (index > 0) { copy(a, 0, result, 0, index); } if (index + 1 < a.length) { copy(a, index + 1, result, index, a.length - index - 1); } return result; } /** *

* Removes the element at the specified position from the specified array. * All subsequent elements are shifted to the left (subtracts one from their * indices). *

* *

* This method returns a new array with the same elements of the input array * except the element on the specified position. The component type of the * returned array is always the same as that of the input array. *

* * * @param * the component type of the array * @param a * @param index * the position of the element to be removed * @return A new array containing the existing elements except the element * at the specified position. */ public static double[] delete(final double[] a, final int index) { final double[] result = new double[a.length - 1]; if (index > 0) { copy(a, 0, result, 0, index); } if (index + 1 < a.length) { copy(a, index + 1, result, index, a.length - index - 1); } return result; } /** *

* Removes the element at the specified position from the specified array. * All subsequent elements are shifted to the left (subtracts one from their * indices). *

* *

* This method returns a new array with the same elements of the input array * except the element on the specified position. The component type of the * returned array is always the same as that of the input array. *

* * * @param * the component type of the array * @param a * @param index * the position of the element to be removed * @return A new array containing the existing elements except the element * at the specified position. */ public static T[] delete(final T[] a, final int index) { final T[] result = N.newArray(a.getClass().getComponentType(), a.length - 1); if (index > 0) { copy(a, 0, result, 0, index); } if (index + 1 < a.length) { copy(a, index + 1, result, index, a.length - index - 1); } return result; } /** *

* Removes the elements at the specified positions from the specified array. * All remaining elements are shifted to the left. *

* *

* This method returns a new array with the same elements of the input array * except those at the specified positions. The component type of the * returned array is always the same as that of the input array. *

* *

* If the input array is {@code null}, an IndexOutOfBoundsException will be * thrown, because in that case no valid index can be specified. *

* *
     * N.deleteAll([true, false, true], 0, 2) = [false]
     * N.removeAll([true, false, true], 1, 2) = [true]
     * 
* * @param a * the array to remove the element from, may not be {@code null} * @param indices * the positions of the elements to be removed * @return A new array containing the existing elements except those at the * specified positions. */ @SafeVarargs public static boolean[] deleteAll(final boolean[] a, int... indices) { if (N.isNullOrEmpty(indices)) { return a.clone(); } else if (indices.length == 1) { return delete(a, indices[0]); } indices = indices.clone(); N.sort(indices); final int lastIndex = indices[indices.length - 1]; if (indices[0] < 0 || lastIndex >= a.length) { throw new IndexOutOfBoundsException("The specified indices are from: " + indices[0] + " to: " + lastIndex); } int diff = 1; for (int i = 1, len = indices.length; i < len; i++) { if (indices[i] == indices[i - 1]) { continue; } diff++; } final boolean[] result = new boolean[a.length - diff]; int dest = 0; int len = 0; for (int i = 0, preIndex = -1; i < indices.length; preIndex = indices[i], i++) { if (indices[i] - preIndex > 1) { len = indices[i] - preIndex - 1; copy(a, preIndex + 1, result, dest, len); dest += len; } } if (lastIndex < a.length - 1) { len = a.length - lastIndex - 1; copy(a, lastIndex + 1, result, dest, len); dest += len; } return result; } /** *

* Removes the elements at the specified positions from the specified array. * All remaining elements are shifted to the left. *

* *

* This method returns a new array with the same elements of the input array * except those at the specified positions. The component type of the * returned array is always the same as that of the input array. *

* *
     * N.deleteAll([1], 0)             = []
     * N.deleteAll([2, 6], 0)          = [6]
     * N.deleteAll([2, 6], 0, 1)       = []
     * N.deleteAll([2, 6, 3], 1, 2)    = [2]
     * N.deleteAll([2, 6, 3], 0, 2)    = [6]
     * N.deleteAll([2, 6, 3], 0, 1, 2) = []
     * 
* * @param a * @param indices * the positions of the elements to be removed * @return A new array containing the existing elements except those at the * specified positions. */ @SafeVarargs public static char[] deleteAll(final char[] a, int... indices) { if (N.isNullOrEmpty(indices)) { return a.clone(); } else if (indices.length == 1) { return delete(a, indices[0]); } indices = indices.clone(); N.sort(indices); final int lastIndex = indices[indices.length - 1]; if (indices[0] < 0 || lastIndex >= a.length) { throw new IndexOutOfBoundsException("The specified indices are from: " + indices[0] + " to: " + lastIndex); } int diff = 1; for (int i = 1, len = indices.length; i < len; i++) { if (indices[i] == indices[i - 1]) { continue; } diff++; } final char[] result = new char[a.length - diff]; int dest = 0; int len = 0; for (int i = 0, preIndex = -1; i < indices.length; preIndex = indices[i], i++) { if (indices[i] - preIndex > 1) { len = indices[i] - preIndex - 1; copy(a, preIndex + 1, result, dest, len); dest += len; } } if (lastIndex < a.length - 1) { len = a.length - lastIndex - 1; copy(a, lastIndex + 1, result, dest, len); dest += len; } return result; } /** *

* Removes the elements at the specified positions from the specified array. * All remaining elements are shifted to the left. *

* *

* This method returns a new array with the same elements of the input array * except those at the specified positions. The component type of the * returned array is always the same as that of the input array. *

* *
     * N.deleteAll([1], 0)             = []
     * N.deleteAll([2, 6], 0)          = [6]
     * N.deleteAll([2, 6], 0, 1)       = []
     * N.deleteAll([2, 6, 3], 1, 2)    = [2]
     * N.deleteAll([2, 6, 3], 0, 2)    = [6]
     * N.deleteAll([2, 6, 3], 0, 1, 2) = []
     * 
* * @param a * @param indices * the positions of the elements to be removed * @return A new array containing the existing elements except those at the * specified positions. * */ @SafeVarargs public static byte[] deleteAll(final byte[] a, int... indices) { if (N.isNullOrEmpty(indices)) { return a.clone(); } else if (indices.length == 1) { return delete(a, indices[0]); } indices = indices.clone(); N.sort(indices); final int lastIndex = indices[indices.length - 1]; if (indices[0] < 0 || lastIndex >= a.length) { throw new IndexOutOfBoundsException("The specified indices are from: " + indices[0] + " to: " + lastIndex); } int diff = 1; for (int i = 1, len = indices.length; i < len; i++) { if (indices[i] == indices[i - 1]) { continue; } diff++; } final byte[] result = new byte[a.length - diff]; int dest = 0; int len = 0; for (int i = 0, preIndex = -1; i < indices.length; preIndex = indices[i], i++) { if (indices[i] - preIndex > 1) { len = indices[i] - preIndex - 1; copy(a, preIndex + 1, result, dest, len); dest += len; } } if (lastIndex < a.length - 1) { len = a.length - lastIndex - 1; copy(a, lastIndex + 1, result, dest, len); dest += len; } return result; } /** *

* Removes the elements at the specified positions from the specified array. * All remaining elements are shifted to the left. *

* *

* This method returns a new array with the same elements of the input array * except those at the specified positions. The component type of the * returned array is always the same as that of the input array. *

* *
     * N.deleteAll([1], 0)             = []
     * N.deleteAll([2, 6], 0)          = [6]
     * N.deleteAll([2, 6], 0, 1)       = []
     * N.deleteAll([2, 6, 3], 1, 2)    = [2]
     * N.deleteAll([2, 6, 3], 0, 2)    = [6]
     * N.deleteAll([2, 6, 3], 0, 1, 2) = []
     * 
* * @param a * @param indices * the positions of the elements to be removed * @return A new array containing the existing elements except those at the * specified positions. * */ @SafeVarargs public static short[] deleteAll(final short[] a, int... indices) { if (N.isNullOrEmpty(indices)) { return a.clone(); } else if (indices.length == 1) { return delete(a, indices[0]); } indices = indices.clone(); N.sort(indices); final int lastIndex = indices[indices.length - 1]; if (indices[0] < 0 || lastIndex >= a.length) { throw new IndexOutOfBoundsException("The specified indices are from: " + indices[0] + " to: " + lastIndex); } int diff = 1; for (int i = 1, len = indices.length; i < len; i++) { if (indices[i] == indices[i - 1]) { continue; } diff++; } final short[] result = new short[a.length - diff]; int dest = 0; int len = 0; for (int i = 0, preIndex = -1; i < indices.length; preIndex = indices[i], i++) { if (indices[i] - preIndex > 1) { len = indices[i] - preIndex - 1; copy(a, preIndex + 1, result, dest, len); dest += len; } } if (lastIndex < a.length - 1) { len = a.length - lastIndex - 1; copy(a, lastIndex + 1, result, dest, len); dest += len; } return result; } /** *

* Removes the elements at the specified positions from the specified array. * All remaining elements are shifted to the left. *

* *

* This method returns a new array with the same elements of the input array * except those at the specified positions. The component type of the * returned array is always the same as that of the input array. *

* *
     * N.deleteAll([1], 0)             = []
     * N.deleteAll([2, 6], 0)          = [6]
     * N.deleteAll([2, 6], 0, 1)       = []
     * N.deleteAll([2, 6, 3], 1, 2)    = [2]
     * N.deleteAll([2, 6, 3], 0, 2)    = [6]
     * N.deleteAll([2, 6, 3], 0, 1, 2) = []
     * 
* * @param a * @param indices * the positions of the elements to be removed * @return A new array containing the existing elements except those at the * specified positions. * @throws IndexOutOfBoundsException * if any index is out of range (index < 0 || index >= * array.length), or if the array is {@code null}. * */ @SafeVarargs public static int[] deleteAll(final int[] a, int... indices) { if (N.isNullOrEmpty(indices)) { return a.clone(); } else if (indices.length == 1) { return delete(a, indices[0]); } indices = indices.clone(); N.sort(indices); final int lastIndex = indices[indices.length - 1]; if (indices[0] < 0 || lastIndex >= a.length) { throw new IndexOutOfBoundsException("The specified indices are from: " + indices[0] + " to: " + lastIndex); } int diff = 1; for (int i = 1, len = indices.length; i < len; i++) { if (indices[i] == indices[i - 1]) { continue; } diff++; } final int[] result = new int[a.length - diff]; int dest = 0; int len = 0; for (int i = 0, preIndex = -1; i < indices.length; preIndex = indices[i], i++) { if (indices[i] - preIndex > 1) { len = indices[i] - preIndex - 1; copy(a, preIndex + 1, result, dest, len); dest += len; } } if (lastIndex < a.length - 1) { len = a.length - lastIndex - 1; copy(a, lastIndex + 1, result, dest, len); dest += len; } return result; } /** *

* Removes the elements at the specified positions from the specified array. * All remaining elements are shifted to the left. *

* *

* This method returns a new array with the same elements of the input array * except those at the specified positions. The component type of the * returned array is always the same as that of the input array. *

* *
     * N.deleteAll([1], 0)             = []
     * N.deleteAll([2, 6], 0)          = [6]
     * N.deleteAll([2, 6], 0, 1)       = []
     * N.deleteAll([2, 6, 3], 1, 2)    = [2]
     * N.deleteAll([2, 6, 3], 0, 2)    = [6]
     * N.deleteAll([2, 6, 3], 0, 1, 2) = []
     * 
* * @param a * the array to remove the element from, may not be {@code null} * @param indices * the positions of the elements to be removed * @return A new array containing the existing elements except those at the * specified positions. */ @SafeVarargs public static long[] deleteAll(final long[] a, int... indices) { if (N.isNullOrEmpty(indices)) { return a.clone(); } else if (indices.length == 1) { return delete(a, indices[0]); } indices = indices.clone(); N.sort(indices); final int lastIndex = indices[indices.length - 1]; if (indices[0] < 0 || lastIndex >= a.length) { throw new IndexOutOfBoundsException("The specified indices are from: " + indices[0] + " to: " + lastIndex); } int diff = 1; for (int i = 1, len = indices.length; i < len; i++) { if (indices[i] == indices[i - 1]) { continue; } diff++; } final long[] result = new long[a.length - diff]; int dest = 0; int len = 0; for (int i = 0, preIndex = -1; i < indices.length; preIndex = indices[i], i++) { if (indices[i] - preIndex > 1) { len = indices[i] - preIndex - 1; copy(a, preIndex + 1, result, dest, len); dest += len; } } if (lastIndex < a.length - 1) { len = a.length - lastIndex - 1; copy(a, lastIndex + 1, result, dest, len); dest += len; } return result; } /** *

* Removes the elements at the specified positions from the specified array. * All remaining elements are shifted to the left. *

* *

* This method returns a new array with the same elements of the input array * except those at the specified positions. The component type of the * returned array is always the same as that of the input array. *

* *
     * N.deleteAll([1], 0)             = []
     * N.deleteAll([2, 6], 0)          = [6]
     * N.deleteAll([2, 6], 0, 1)       = []
     * N.deleteAll([2, 6, 3], 1, 2)    = [2]
     * N.deleteAll([2, 6, 3], 0, 2)    = [6]
     * N.deleteAll([2, 6, 3], 0, 1, 2) = []
     * 
* * @param a * @param indices * the positions of the elements to be removed * @return A new array containing the existing elements except those at the * specified positions. * */ @SafeVarargs public static float[] deleteAll(final float[] a, int... indices) { if (N.isNullOrEmpty(indices)) { return a.clone(); } else if (indices.length == 1) { return delete(a, indices[0]); } indices = indices.clone(); N.sort(indices); final int lastIndex = indices[indices.length - 1]; if (indices[0] < 0 || lastIndex >= a.length) { throw new IndexOutOfBoundsException("The specified indices are from: " + indices[0] + " to: " + lastIndex); } int diff = 1; for (int i = 1, len = indices.length; i < len; i++) { if (indices[i] == indices[i - 1]) { continue; } diff++; } final float[] result = new float[a.length - diff]; int dest = 0; int len = 0; for (int i = 0, preIndex = -1; i < indices.length; preIndex = indices[i], i++) { if (indices[i] - preIndex > 1) { len = indices[i] - preIndex - 1; copy(a, preIndex + 1, result, dest, len); dest += len; } } if (lastIndex < a.length - 1) { len = a.length - lastIndex - 1; copy(a, lastIndex + 1, result, dest, len); dest += len; } return result; } /** *

* Removes the elements at the specified positions from the specified array. * All remaining elements are shifted to the left. *

* *

* This method returns a new array with the same elements of the input array * except those at the specified positions. The component type of the * returned array is always the same as that of the input array. *

* *
     * N.deleteAll([1], 0)             = []
     * N.deleteAll([2, 6], 0)          = [6]
     * N.deleteAll([2, 6], 0, 1)       = []
     * N.deleteAll([2, 6, 3], 1, 2)    = [2]
     * N.deleteAll([2, 6, 3], 0, 2)    = [6]
     * N.deleteAll([2, 6, 3], 0, 1, 2) = []
     * 
* * @param a * @param indices * the positions of the elements to be removed * @return A new array containing the existing elements except those at the * specified positions. * */ @SafeVarargs public static double[] deleteAll(final double[] a, int... indices) { if (N.isNullOrEmpty(indices)) { return a.clone(); } else if (indices.length == 1) { return delete(a, indices[0]); } indices = indices.clone(); N.sort(indices); final int lastIndex = indices[indices.length - 1]; if (indices[0] < 0 || lastIndex >= a.length) { throw new IndexOutOfBoundsException("The specified indices are from: " + indices[0] + " to: " + lastIndex); } int diff = 1; for (int i = 1, len = indices.length; i < len; i++) { if (indices[i] == indices[i - 1]) { continue; } diff++; } final double[] result = new double[a.length - diff]; int dest = 0; int len = 0; for (int i = 0, preIndex = -1; i < indices.length; preIndex = indices[i], i++) { if (indices[i] - preIndex > 1) { len = indices[i] - preIndex - 1; copy(a, preIndex + 1, result, dest, len); dest += len; } } if (lastIndex < a.length - 1) { len = a.length - lastIndex - 1; copy(a, lastIndex + 1, result, dest, len); dest += len; } return result; } /** *

* Removes the elements at the specified positions from the specified array. * All remaining elements are shifted to the left. *

* *

* This method returns a new array with the same elements of the input array * except those at the specified positions. The component type of the * returned array is always the same as that of the input array. *

* * *
     * N.deleteAll(["a", "b", "c"], 0, 2) = ["b"]
     * N.deleteAll(["a", "b", "c"], 1, 2) = ["a"]
     * 
* * @param * the component type of the array * @param a * @param indices * the positions of the elements to be removed * @return A new array containing the existing elements except those at the * specified positions. * @throws NullPointerException if the specified a is null. */ @SafeVarargs public static T[] deleteAll(final T[] a, int... indices) { N.checkArgNotNull(a, "a"); if (N.isNullOrEmpty(indices)) { return a.clone(); } else if (indices.length == 1) { return delete(a, indices[0]); } indices = indices.clone(); N.sort(indices); return deleteAllBySortedIndices(a, indices); } private static T[] deleteAllBySortedIndices(final T[] a, int... indices) { final int lastIndex = indices[indices.length - 1]; if (indices[0] < 0 || lastIndex >= a.length) { throw new IndexOutOfBoundsException("The specified indices are from: " + indices[0] + " to: " + lastIndex); } int diff = 1; for (int i = 1, len = indices.length; i < len; i++) { if (indices[i] == indices[i - 1]) { continue; } diff++; } final T[] result = N.newArray(a.getClass().getComponentType(), a.length - diff); int dest = 0; int len = 0; for (int i = 0, preIndex = -1; i < indices.length; preIndex = indices[i], i++) { if (indices[i] - preIndex > 1) { len = indices[i] - preIndex - 1; copy(a, preIndex + 1, result, dest, len); dest += len; } } if (lastIndex < a.length - 1) { len = a.length - lastIndex - 1; copy(a, lastIndex + 1, result, dest, len); dest += len; } return result; } /** * * Removes the elements at the specified positions from the specified List. * * @param list * @param indices * @return */ @SuppressWarnings("rawtypes") @SafeVarargs public static boolean deleteAll(final List list, int... indices) { N.checkArgNotNull(list); if (N.isNullOrEmpty(indices)) { return false; } else if (indices.length == 1) { list.remove(indices[0]); return true; } indices = indices.clone(); sort(indices); if (indices[0] < 0 || indices[indices.length - 1] >= list.size()) { throw new IndexOutOfBoundsException("The specified indices are from: " + indices[0] + " to: " + indices[indices.length - 1]); } if (list instanceof LinkedList) { final Iterator iterator = list.iterator(); int idx = -1; for (int i = 0, len = indices.length; i < len; i++) { if (i > 0 && indices[i] == indices[i - 1]) { continue; } while (idx < indices[i]) { idx++; iterator.next(); } iterator.remove(); } } else { final Object[] a = list.toArray(); final Object[] res = deleteAllBySortedIndices(a, indices); list.clear(); list.addAll((List) Arrays.asList(res)); } return true; } /** * Deletes the values from {@code fromIndex} to {@code toIndex}. * * @param a * @param fromIndex * @param toIndex * @return a new array */ public static boolean[] deleteRange(final boolean[] a, final int fromIndex, final int toIndex) { N.checkFromToIndex(fromIndex, toIndex, a.length); if (fromIndex == toIndex) { return a.clone(); } final boolean[] b = new boolean[a.length - (toIndex - fromIndex)]; if (fromIndex > 0) { N.copy(a, 0, b, 0, fromIndex); } if (toIndex < a.length) { N.copy(a, toIndex, b, fromIndex, a.length - toIndex); } return b; } /** * Deletes the values from {@code fromIndex} to {@code toIndex}. * * @param a * @param fromIndex * @param toIndex * @return a new array */ public static char[] deleteRange(final char[] a, final int fromIndex, final int toIndex) { N.checkFromToIndex(fromIndex, toIndex, a.length); if (fromIndex == toIndex) { return a.clone(); } final char[] b = new char[a.length - (toIndex - fromIndex)]; if (fromIndex > 0) { N.copy(a, 0, b, 0, fromIndex); } if (toIndex < a.length) { N.copy(a, toIndex, b, fromIndex, a.length - toIndex); } return b; } /** * Deletes the values from {@code fromIndex} to {@code toIndex}. * * @param a * @param fromIndex * @param toIndex * @return a new array */ public static byte[] deleteRange(final byte[] a, final int fromIndex, final int toIndex) { N.checkFromToIndex(fromIndex, toIndex, a.length); if (fromIndex == toIndex) { return a.clone(); } final byte[] b = new byte[a.length - (toIndex - fromIndex)]; if (fromIndex > 0) { N.copy(a, 0, b, 0, fromIndex); } if (toIndex < a.length) { N.copy(a, toIndex, b, fromIndex, a.length - toIndex); } return b; } /** * Deletes the values from {@code fromIndex} to {@code toIndex}. * * @param a * @param fromIndex * @param toIndex * @return a new array */ public static short[] deleteRange(final short[] a, final int fromIndex, final int toIndex) { N.checkFromToIndex(fromIndex, toIndex, a.length); if (fromIndex == toIndex) { return a.clone(); } final short[] b = new short[a.length - (toIndex - fromIndex)]; if (fromIndex > 0) { N.copy(a, 0, b, 0, fromIndex); } if (toIndex < a.length) { N.copy(a, toIndex, b, fromIndex, a.length - toIndex); } return b; } /** * Deletes the values from {@code fromIndex} to {@code toIndex}. * * @param a * @param fromIndex * @param toIndex * @return a new array */ public static int[] deleteRange(final int[] a, final int fromIndex, final int toIndex) { N.checkFromToIndex(fromIndex, toIndex, a.length); if (fromIndex == toIndex) { return a.clone(); } final int[] b = new int[a.length - (toIndex - fromIndex)]; if (fromIndex > 0) { N.copy(a, 0, b, 0, fromIndex); } if (toIndex < a.length) { N.copy(a, toIndex, b, fromIndex, a.length - toIndex); } return b; } /** * Deletes the values from {@code fromIndex} to {@code toIndex}. * * @param a * @param fromIndex * @param toIndex * @return a new array */ public static long[] deleteRange(final long[] a, final int fromIndex, final int toIndex) { N.checkFromToIndex(fromIndex, toIndex, a.length); if (fromIndex == toIndex) { return a.clone(); } final long[] b = new long[a.length - (toIndex - fromIndex)]; if (fromIndex > 0) { N.copy(a, 0, b, 0, fromIndex); } if (toIndex < a.length) { N.copy(a, toIndex, b, fromIndex, a.length - toIndex); } return b; } /** * Deletes the values from {@code fromIndex} to {@code toIndex}. * * @param a * @param fromIndex * @param toIndex * @return a new array */ public static float[] deleteRange(final float[] a, final int fromIndex, final int toIndex) { N.checkFromToIndex(fromIndex, toIndex, a.length); if (fromIndex == toIndex) { return a.clone(); } final float[] b = new float[a.length - (toIndex - fromIndex)]; if (fromIndex > 0) { N.copy(a, 0, b, 0, fromIndex); } if (toIndex < a.length) { N.copy(a, toIndex, b, fromIndex, a.length - toIndex); } return b; } /** * Deletes the values from {@code fromIndex} to {@code toIndex}. * * @param a * @param fromIndex * @param toIndex * @return a new array */ public static double[] deleteRange(final double[] a, final int fromIndex, final int toIndex) { N.checkFromToIndex(fromIndex, toIndex, a.length); if (fromIndex == toIndex) { return a.clone(); } final double[] b = new double[a.length - (toIndex - fromIndex)]; if (fromIndex > 0) { N.copy(a, 0, b, 0, fromIndex); } if (toIndex < a.length) { N.copy(a, toIndex, b, fromIndex, a.length - toIndex); } return b; } /** * Deletes the values from {@code fromIndex} to {@code toIndex}. * * @param a * @param fromIndex * @param toIndex * @return a new array */ public static T[] deleteRange(final T[] a, final int fromIndex, final int toIndex) { N.checkFromToIndex(fromIndex, toIndex, a.length); if (fromIndex == toIndex) { return a.clone(); } final T[] b = Array.newInstance(a.getClass().getComponentType(), a.length - (toIndex - fromIndex)); if (fromIndex > 0) { N.copy(a, 0, b, 0, fromIndex); } if (toIndex < a.length) { N.copy(a, toIndex, b, fromIndex, a.length - toIndex); } return b; } /** * Returns {@code true} if the {@code List} is updated when {@code fromIndex < toIndex}, otherwise {@code false} is returned when {@code fromIndex == toIndex}. * * @param c * @param fromIndex * @param toIndex * @return */ @SuppressWarnings("unchecked") public static boolean deleteRange(final List c, final int fromIndex, final int toIndex) { N.checkFromToIndex(fromIndex, toIndex, c.size()); if (fromIndex == toIndex) { return false; } if (c instanceof LinkedList || toIndex - fromIndex <= 3) { c.subList(fromIndex, toIndex).clear(); } else { if (isListElementDataFieldGettable && isListElementDataFieldSettable && listElementDataField != null && c instanceof ArrayList) { T[] array = null; try { array = (T[]) listElementDataField.get(c); N.copy(array, toIndex, array, fromIndex, c.size() - toIndex); listSizeField.set(c, c.size() - (toIndex - fromIndex)); // update modCount c.add(null); c.remove(c.size() - 1); return true; } catch (Exception e) { // ignore; isListElementDataFieldSettable = false; } } final List tmp = new ArrayList<>(c.size() - (toIndex - fromIndex)); if (fromIndex > 0) { tmp.addAll(c.subList(0, fromIndex)); } if (toIndex < c.size()) { tmp.addAll(c.subList(toIndex, c.size())); } c.clear(); c.addAll(tmp); } return true; } /** *

* Removes the first occurrence of the specified element from the specified * array. All subsequent elements are shifted to the left (subtracts one * from their indices). If the array doesn't contains such an element, no * elements are removed from the array. *

* *

* This method returns a new array with the same elements of the input array * except the first occurrence of the specified element. The component type * of the returned array is always the same as that of the input array. *

* * @param a * @param element * the element to be removed * @return A new array containing the existing elements except the first * occurrence of the specified element. */ public static boolean[] remove(final boolean[] a, final boolean element) { if (N.isNullOrEmpty(a)) { return N.EMPTY_BOOLEAN_ARRAY; } int index = indexOf(a, 0, element); return index == INDEX_NOT_FOUND ? a.clone() : delete(a, index); } /** *

* Removes the first occurrence of the specified element from the specified * array. All subsequent elements are shifted to the left (subtracts one * from their indices). If the array doesn't contains such an element, no * elements are removed from the array. *

* *

* This method returns a new array with the same elements of the input array * except the first occurrence of the specified element. The component type * of the returned array is always the same as that of the input array. *

* * @param a * @param element * the element to be removed * @return A new array containing the existing elements except the first * occurrence of the specified element. */ public static char[] remove(final char[] a, final char element) { if (N.isNullOrEmpty(a)) { return N.EMPTY_CHAR_ARRAY; } int index = indexOf(a, 0, element); return index == INDEX_NOT_FOUND ? a.clone() : delete(a, index); } /** *

* Removes the first occurrence of the specified element from the specified * array. All subsequent elements are shifted to the left (subtracts one * from their indices). If the array doesn't contains such an element, no * elements are removed from the array. *

* *

* This method returns a new array with the same elements of the input array * except the first occurrence of the specified element. The component type * of the returned array is always the same as that of the input array. *

* * @param a * @param element * the element to be removed * @return A new array containing the existing elements except the first * occurrence of the specified element. */ public static byte[] remove(final byte[] a, final byte element) { if (N.isNullOrEmpty(a)) { return N.EMPTY_BYTE_ARRAY; } int index = indexOf(a, 0, element); return index == INDEX_NOT_FOUND ? a.clone() : delete(a, index); } /** *

* Removes the first occurrence of the specified element from the specified * array. All subsequent elements are shifted to the left (subtracts one * from their indices). If the array doesn't contains such an element, no * elements are removed from the array. *

* *

* This method returns a new array with the same elements of the input array * except the first occurrence of the specified element. The component type * of the returned array is always the same as that of the input array. *

* * @param a * @param element * the element to be removed * @return A new array containing the existing elements except the first * occurrence of the specified element. */ public static short[] remove(final short[] a, final short element) { if (N.isNullOrEmpty(a)) { return N.EMPTY_SHORT_ARRAY; } int index = indexOf(a, 0, element); return index == INDEX_NOT_FOUND ? a.clone() : delete(a, index); } /** *

* Removes the first occurrence of the specified element from the specified * array. All subsequent elements are shifted to the left (subtracts one * from their indices). If the array doesn't contains such an element, no * elements are removed from the array. *

* *

* This method returns a new array with the same elements of the input array * except the first occurrence of the specified element. The component type * of the returned array is always the same as that of the input array. *

* * @param a * @param element * the element to be removed * @return A new array containing the existing elements except the first * occurrence of the specified element. */ public static int[] remove(final int[] a, final int element) { if (N.isNullOrEmpty(a)) { return N.EMPTY_INT_ARRAY; } int index = indexOf(a, 0, element); return index == INDEX_NOT_FOUND ? a.clone() : delete(a, index); } /** *

* Removes the first occurrence of the specified element from the specified * array. All subsequent elements are shifted to the left (subtracts one * from their indices). If the array doesn't contains such an element, no * elements are removed from the array. *

* *

* This method returns a new array with the same elements of the input array * except the first occurrence of the specified element. The component type * of the returned array is always the same as that of the input array. *

* * @param a * @param element * the element to be removed * @return A new array containing the existing elements except the first * occurrence of the specified element. */ public static long[] remove(final long[] a, final long element) { if (N.isNullOrEmpty(a)) { return N.EMPTY_LONG_ARRAY; } int index = indexOf(a, 0, element); return index == INDEX_NOT_FOUND ? a.clone() : delete(a, index); } /** *

* Removes the first occurrence of the specified element from the specified * array. All subsequent elements are shifted to the left (subtracts one * from their indices). If the array doesn't contains such an element, no * elements are removed from the array. *

* *

* This method returns a new array with the same elements of the input array * except the first occurrence of the specified element. The component type * of the returned array is always the same as that of the input array. *

* * @param a * @param element * the element to be removed * @return A new array containing the existing elements except the first * occurrence of the specified element. */ public static float[] remove(final float[] a, final float element) { if (N.isNullOrEmpty(a)) { return N.EMPTY_FLOAT_ARRAY; } int index = indexOf(a, 0, element); return index == INDEX_NOT_FOUND ? a.clone() : delete(a, index); } /** *

* Removes the first occurrence of the specified element from the specified * array. All subsequent elements are shifted to the left (subtracts one * from their indices). If the array doesn't contains such an element, no * elements are removed from the array. *

* *

* This method returns a new array with the same elements of the input array * except the first occurrence of the specified element. The component type * of the returned array is always the same as that of the input array. *

* * @param a * @param element * the element to be removed * @return A new array containing the existing elements except the first * occurrence of the specified element. */ public static double[] remove(final double[] a, final double element) { if (N.isNullOrEmpty(a)) { return N.EMPTY_DOUBLE_ARRAY; } int index = indexOf(a, 0, element); return index == INDEX_NOT_FOUND ? a.clone() : delete(a, index); } /** *

* Removes the first occurrence of the specified element from the specified * array. All subsequent elements are shifted to the left (subtracts one * from their indices). If the array doesn't contains such an element, no * elements are removed from the array. *

* *

* This method returns a new array with the same elements of the input array * except the first occurrence of the specified element. The component type * of the returned array is always the same as that of the input array. *

* * @param a * @param element * the element to be removed * @return A new array containing the existing elements except the first * occurrence of the specified element. */ public static T[] remove(final T[] a, final Object element) { if (N.isNullOrEmpty(a)) { return a; } int index = indexOf(a, 0, element); return index == INDEX_NOT_FOUND ? a.clone() : delete(a, index); } /** *

* Removes the first occurrence of the specified element from the specified * collection. If the collection doesn't contains such an element, no * elements are removed from the collection. *

* * @param c * @param element the element to be removed * @return true if this collection changed as a result of the call */ static boolean remove(final Collection c, final Object element) { if (N.isNullOrEmpty(c)) { return false; } return c.remove(element); } /** * Removes all the occurrences of the specified element from the specified * array. All subsequent elements are shifted to the left (subtracts one * from their indices). If the array doesn't contains such an element, no * elements are removed from the array. * * @param a * @param element * @return A new array containing the existing elements except the * occurrences of the specified element. */ public static boolean[] removeAllOccurrences(final boolean[] a, final boolean element) { if (N.isNullOrEmpty(a)) { return N.EMPTY_BOOLEAN_ARRAY; } final boolean[] copy = a.clone(); int idx = 0; for (int i = 0, len = a.length; i < len; i++) { if (a[i] == element) { continue; } copy[idx++] = a[i]; } return idx == copy.length ? copy : N.copyOfRange(copy, 0, idx); } /** * Removes all the occurrences of the specified element from the specified * array. All subsequent elements are shifted to the left (subtracts one * from their indices). If the array doesn't contains such an element, no * elements are removed from the array. * * @param a * @param element * @return A new array containing the existing elements except the * occurrences of the specified element. */ public static char[] removeAllOccurrences(final char[] a, final char element) { if (N.isNullOrEmpty(a)) { return N.EMPTY_CHAR_ARRAY; } final char[] copy = a.clone(); int idx = 0; for (int i = 0, len = a.length; i < len; i++) { if (a[i] == element) { continue; } copy[idx++] = a[i]; } return idx == copy.length ? copy : N.copyOfRange(copy, 0, idx); } /** * Removes all the occurrences of the specified element from the specified * array. All subsequent elements are shifted to the left (subtracts one * from their indices). If the array doesn't contains such an element, no * elements are removed from the array. * * @param a * @param element * @return A new array containing the existing elements except the * occurrences of the specified element. */ public static byte[] removeAllOccurrences(final byte[] a, final byte element) { if (N.isNullOrEmpty(a)) { return N.EMPTY_BYTE_ARRAY; } final byte[] copy = a.clone(); int idx = 0; for (int i = 0, len = a.length; i < len; i++) { if (a[i] == element) { continue; } copy[idx++] = a[i]; } return idx == copy.length ? copy : N.copyOfRange(copy, 0, idx); } /** * Removes all the occurrences of the specified element from the specified * array. All subsequent elements are shifted to the left (subtracts one * from their indices). If the array doesn't contains such an element, no * elements are removed from the array. * * @param a * @param element * @return A new array containing the existing elements except the * occurrences of the specified element. */ public static short[] removeAllOccurrences(final short[] a, final short element) { if (N.isNullOrEmpty(a)) { return N.EMPTY_SHORT_ARRAY; } final short[] copy = a.clone(); int idx = 0; for (int i = 0, len = a.length; i < len; i++) { if (a[i] == element) { continue; } copy[idx++] = a[i]; } return idx == copy.length ? copy : N.copyOfRange(copy, 0, idx); } /** * Removes all the occurrences of the specified element from the specified * array. All subsequent elements are shifted to the left (subtracts one * from their indices). If the array doesn't contains such an element, no * elements are removed from the array. * * @param a * @param element * @return A new array containing the existing elements except the * occurrences of the specified element. */ public static int[] removeAllOccurrences(final int[] a, final int element) { if (N.isNullOrEmpty(a)) { return N.EMPTY_INT_ARRAY; } final int[] copy = a.clone(); int idx = 0; for (int i = 0, len = a.length; i < len; i++) { if (a[i] == element) { continue; } copy[idx++] = a[i]; } return idx == copy.length ? copy : N.copyOfRange(copy, 0, idx); } /** * Removes all the occurrences of the specified element from the specified * array. All subsequent elements are shifted to the left (subtracts one * from their indices). If the array doesn't contains such an element, no * elements are removed from the array. * * @param a * @param element * @return A new array containing the existing elements except the * occurrences of the specified element. */ public static long[] removeAllOccurrences(final long[] a, final long element) { if (N.isNullOrEmpty(a)) { return N.EMPTY_LONG_ARRAY; } final long[] copy = a.clone(); int idx = 0; for (int i = 0, len = a.length; i < len; i++) { if (a[i] == element) { continue; } copy[idx++] = a[i]; } return idx == copy.length ? copy : N.copyOfRange(copy, 0, idx); } /** * Removes all the occurrences of the specified element from the specified * array. All subsequent elements are shifted to the left (subtracts one * from their indices). If the array doesn't contains such an element, no * elements are removed from the array. * * @param a * @param element * @return A new array containing the existing elements except the * occurrences of the specified element. */ public static float[] removeAllOccurrences(final float[] a, final float element) { if (N.isNullOrEmpty(a)) { return N.EMPTY_FLOAT_ARRAY; } final float[] copy = a.clone(); int idx = 0; for (int i = 0, len = a.length; i < len; i++) { if (equals(a[i], element)) { continue; } copy[idx++] = a[i]; } return idx == copy.length ? copy : N.copyOfRange(copy, 0, idx); } /** * Removes all the occurrences of the specified element from the specified * array. All subsequent elements are shifted to the left (subtracts one * from their indices). If the array doesn't contains such an element, no * elements are removed from the array. * * @param a * @param element * @return A new array containing the existing elements except the * occurrences of the specified element. */ public static double[] removeAllOccurrences(final double[] a, final double element) { if (N.isNullOrEmpty(a)) { return N.EMPTY_DOUBLE_ARRAY; } final double[] copy = a.clone(); int idx = 0; for (int i = 0, len = a.length; i < len; i++) { if (equals(a[i], element)) { continue; } copy[idx++] = a[i]; } return idx == copy.length ? copy : N.copyOfRange(copy, 0, idx); } /** * Removes all the occurrences of the specified element from the specified * array. All subsequent elements are shifted to the left (subtracts one * from their indices). If the array doesn't contains such an element, no * elements are removed from the array. * * @param a * @param element * @return A new array containing the existing elements except the * occurrences of the specified element. */ public static T[] removeAllOccurrences(final T[] a, final Object element) { if (N.isNullOrEmpty(a)) { return a; } final T[] copy = a.clone(); int idx = 0; for (int i = 0, len = a.length; i < len; i++) { if (equals(a[i], element)) { continue; } copy[idx++] = a[i]; } return idx == copy.length ? copy : N.copyOfRange(copy, 0, idx); } public static boolean removeAllOccurrences(Collection c, final Object element) { if (N.isNullOrEmpty(c)) { return false; } return Iterables.removeAll(c, N.asSet(element)); } /** * Returns a new array with removes all the occurrences of specified elements from a * * @param a * @param elements * @return * @see Collection#removeAll(Collection) */ @SafeVarargs public static boolean[] removeAll(final boolean[] a, final boolean... elements) { if (N.isNullOrEmpty(a)) { return N.EMPTY_BOOLEAN_ARRAY; } else if (N.isNullOrEmpty(elements)) { return a.clone(); } else if (elements.length == 1) { return removeAllOccurrences(a, elements[0]); } final BooleanList list = BooleanList.of(a.clone()); list.removeAll(BooleanList.of(elements)); return list.trimToSize().array(); } /** * Returns a new array with removes all the occurrences of specified elements from a * * @param a * @param elements * @return * @see Collection#removeAll(Collection) */ @SafeVarargs public static char[] removeAll(final char[] a, final char... elements) { if (N.isNullOrEmpty(a)) { return N.EMPTY_CHAR_ARRAY; } else if (N.isNullOrEmpty(elements)) { return a.clone(); } else if (elements.length == 1) { return removeAllOccurrences(a, elements[0]); } final CharList list = CharList.of(a.clone()); list.removeAll(CharList.of(elements)); return list.trimToSize().array(); } /** * Returns a new array with removes all the occurrences of specified elements from a * * @param a * @param elements * @return * @see Collection#removeAll(Collection) */ @SafeVarargs public static byte[] removeAll(final byte[] a, final byte... elements) { if (N.isNullOrEmpty(a)) { return N.EMPTY_BYTE_ARRAY; } else if (N.isNullOrEmpty(elements)) { return a.clone(); } else if (elements.length == 1) { return removeAllOccurrences(a, elements[0]); } final ByteList list = ByteList.of(a.clone()); list.removeAll(ByteList.of(elements)); return list.trimToSize().array(); } /** * Returns a new array with removes all the occurrences of specified elements from a * * @param a * @param elements * @return * @see Collection#removeAll(Collection) */ @SafeVarargs public static short[] removeAll(final short[] a, final short... elements) { if (N.isNullOrEmpty(a)) { return N.EMPTY_SHORT_ARRAY; } else if (N.isNullOrEmpty(elements)) { return a.clone(); } else if (elements.length == 1) { return removeAllOccurrences(a, elements[0]); } final ShortList list = ShortList.of(a.clone()); list.removeAll(ShortList.of(elements)); return list.trimToSize().array(); } /** * Returns a new array with removes all the occurrences of specified elements from a * * @param a * @param elements * @return * @see Collection#removeAll(Collection) */ @SafeVarargs public static int[] removeAll(final int[] a, final int... elements) { if (N.isNullOrEmpty(a)) { return N.EMPTY_INT_ARRAY; } else if (N.isNullOrEmpty(elements)) { return a.clone(); } else if (elements.length == 1) { return removeAllOccurrences(a, elements[0]); } final IntList list = IntList.of(a.clone()); list.removeAll(IntList.of(elements)); return list.trimToSize().array(); } /** * Returns a new array with removes all the occurrences of specified elements from a * * @param a * @param elements * @return * @see Collection#removeAll(Collection) */ @SafeVarargs public static long[] removeAll(final long[] a, final long... elements) { if (N.isNullOrEmpty(a)) { return N.EMPTY_LONG_ARRAY; } else if (N.isNullOrEmpty(elements)) { return a.clone(); } else if (elements.length == 1) { return removeAllOccurrences(a, elements[0]); } final LongList list = LongList.of(a.clone()); list.removeAll(LongList.of(elements)); return list.trimToSize().array(); } /** * Returns a new array with removes all the occurrences of specified elements from a * * @param a * @param elements * @return * @see Collection#removeAll(Collection) */ @SafeVarargs public static float[] removeAll(final float[] a, final float... elements) { if (N.isNullOrEmpty(a)) { return N.EMPTY_FLOAT_ARRAY; } else if (N.isNullOrEmpty(elements)) { return a.clone(); } else if (elements.length == 1) { return removeAllOccurrences(a, elements[0]); } final FloatList list = FloatList.of(a.clone()); list.removeAll(FloatList.of(elements)); return list.trimToSize().array(); } /** * Returns a new array with removes all the occurrences of specified elements from a * * @param a * @param elements * @return * @see Collection#removeAll(Collection) */ @SafeVarargs public static double[] removeAll(final double[] a, final double... elements) { if (N.isNullOrEmpty(a)) { return N.EMPTY_DOUBLE_ARRAY; } else if (N.isNullOrEmpty(elements)) { return a.clone(); } else if (elements.length == 1) { return removeAllOccurrences(a, elements[0]); } final DoubleList list = DoubleList.of(a.clone()); list.removeAll(DoubleList.of(elements)); return list.trimToSize().array(); } /** * Returns a new array with removes all the occurrences of specified elements from a * * @param a * @param elements * @return * @see Collection#removeAll(Collection) */ @SafeVarargs public static T[] removeAll(final T[] a, final Object... elements) { if (N.isNullOrEmpty(a)) { return a; } else if (N.isNullOrEmpty(elements)) { return a.clone(); } else if (elements.length == 1) { return removeAllOccurrences(a, elements[0]); } final Set set = N.asSet(elements); final List result = new ArrayList<>(); for (T e : a) { if (!set.contains(e)) { result.add(e); } } return result.toArray((T[]) N.newArray(a.getClass().getComponentType(), result.size())); } @SafeVarargs public static boolean removeAll(final Collection c, final Object... elements) { if (N.isNullOrEmpty(c) || N.isNullOrEmpty(elements)) { return false; } else { return Iterables.removeAll(c, N.asSet(elements)); } } public static boolean[] removeDuplicates(final boolean[] a) { if (N.isNullOrEmpty(a)) { return N.EMPTY_BOOLEAN_ARRAY; } return removeDuplicates(a, false); } public static boolean[] removeDuplicates(final boolean[] a, final boolean isSorted) { if (N.isNullOrEmpty(a)) { return N.EMPTY_BOOLEAN_ARRAY; } return removeDuplicates(a, 0, a.length, isSorted); } public static boolean[] removeDuplicates(final boolean[] a, final int from, final int to, final boolean isSorted) { checkFromToIndex(from, to, len(a)); if (N.isNullOrEmpty(a) && from == 0 && to == 0) { return N.EMPTY_BOOLEAN_ARRAY; } else if (to - from <= 1) { return N.copyOfRange(a, from, to); } final Boolean[] b = new Boolean[2]; for (int i = from; i < to; i++) { if (b[0] == null) { b[0] = a[i]; } else if (b[0].booleanValue() != a[i]) { b[1] = a[i]; break; } } return b[1] == null ? new boolean[] { b[0].booleanValue() } : new boolean[] { b[0].booleanValue(), b[1].booleanValue() }; } public static char[] removeDuplicates(final char[] a) { if (N.isNullOrEmpty(a)) { return N.EMPTY_CHAR_ARRAY; } return removeDuplicates(a, false); } public static char[] removeDuplicates(final char[] a, final boolean isSorted) { if (N.isNullOrEmpty(a)) { return N.EMPTY_CHAR_ARRAY; } return removeDuplicates(a, 0, a.length, isSorted); } public static char[] removeDuplicates(final char[] a, final int from, final int to, final boolean isSorted) { checkFromToIndex(from, to, len(a)); if (N.isNullOrEmpty(a) && from == 0 && to == 0) { return N.EMPTY_CHAR_ARRAY; } else if (to - from <= 1) { return N.copyOfRange(a, from, to); } if (isSorted) { final char[] b = (from == 0 && to == a.length) ? a.clone() : N.copyOfRange(a, from, to); int idx = 1; for (int i = 1, len = b.length; i < len; i++) { if (b[i] == b[i - 1]) { continue; } b[idx++] = b[i]; } return idx == b.length ? b : N.copyOfRange(b, 0, idx); } else { final Set set = new LinkedHashSet<>(N.initHashCapacity(a.length)); for (int i = from; i < to; i++) { set.add(a[i]); } if (set.size() == to - from) { return (from == 0 && to == a.length) ? a.clone() : N.copyOfRange(a, from, to); } else { final char[] result = new char[set.size()]; int i = 0; for (char e : set) { result[i++] = e; } return result; } } } public static byte[] removeDuplicates(final byte[] a) { if (N.isNullOrEmpty(a)) { return N.EMPTY_BYTE_ARRAY; } return removeDuplicates(a, false); } public static byte[] removeDuplicates(final byte[] a, final boolean isSorted) { if (N.isNullOrEmpty(a)) { return N.EMPTY_BYTE_ARRAY; } return removeDuplicates(a, 0, a.length, isSorted); } public static byte[] removeDuplicates(final byte[] a, final int from, final int to, final boolean isSorted) { checkFromToIndex(from, to, len(a)); if (N.isNullOrEmpty(a) && from == 0 && to == 0) { return N.EMPTY_BYTE_ARRAY; } else if (to - from <= 1) { return N.copyOfRange(a, from, to); } if (isSorted) { final byte[] b = (from == 0 && to == a.length) ? a.clone() : N.copyOfRange(a, from, to); int idx = 1; for (int i = 1, len = b.length; i < len; i++) { if (b[i] == b[i - 1]) { continue; } b[idx++] = b[i]; } return idx == b.length ? b : N.copyOfRange(b, 0, idx); } else { final Set set = new LinkedHashSet<>(N.initHashCapacity(a.length)); for (int i = from; i < to; i++) { set.add(a[i]); } if (set.size() == to - from) { return (from == 0 && to == a.length) ? a.clone() : N.copyOfRange(a, from, to); } else { final byte[] result = new byte[set.size()]; int i = 0; for (byte e : set) { result[i++] = e; } return result; } } } public static short[] removeDuplicates(final short[] a) { if (N.isNullOrEmpty(a)) { return N.EMPTY_SHORT_ARRAY; } return removeDuplicates(a, false); } public static short[] removeDuplicates(final short[] a, final boolean isSorted) { if (N.isNullOrEmpty(a)) { return N.EMPTY_SHORT_ARRAY; } return removeDuplicates(a, 0, a.length, isSorted); } public static short[] removeDuplicates(final short[] a, final int from, final int to, final boolean isSorted) { checkFromToIndex(from, to, len(a)); if (N.isNullOrEmpty(a) && from == 0 && to == 0) { return N.EMPTY_SHORT_ARRAY; } else if (to - from <= 1) { return N.copyOfRange(a, from, to); } if (isSorted) { final short[] b = (from == 0 && to == a.length) ? a.clone() : N.copyOfRange(a, from, to); int idx = 1; for (int i = 1, len = b.length; i < len; i++) { if (b[i] == b[i - 1]) { continue; } b[idx++] = b[i]; } return idx == b.length ? b : N.copyOfRange(b, 0, idx); } else { final Set set = new LinkedHashSet<>(N.initHashCapacity(a.length)); for (int i = from; i < to; i++) { set.add(a[i]); } if (set.size() == to - from) { return (from == 0 && to == a.length) ? a.clone() : N.copyOfRange(a, from, to); } else { final short[] result = new short[set.size()]; int i = 0; for (short e : set) { result[i++] = e; } return result; } } } public static int[] removeDuplicates(final int[] a) { if (N.isNullOrEmpty(a)) { return N.EMPTY_INT_ARRAY; } return removeDuplicates(a, false); } public static int[] removeDuplicates(final int[] a, final boolean isSorted) { if (N.isNullOrEmpty(a)) { return N.EMPTY_INT_ARRAY; } return removeDuplicates(a, 0, a.length, isSorted); } public static int[] removeDuplicates(final int[] a, final int from, final int to, final boolean isSorted) { checkFromToIndex(from, to, len(a)); if (N.isNullOrEmpty(a) && from == 0 && to == 0) { return N.EMPTY_INT_ARRAY; } else if (to - from <= 1) { return N.copyOfRange(a, from, to); } if (isSorted) { final int[] b = (from == 0 && to == a.length) ? a.clone() : N.copyOfRange(a, from, to); int idx = 1; for (int i = 1, len = b.length; i < len; i++) { if (b[i] == b[i - 1]) { continue; } b[idx++] = b[i]; } return idx == b.length ? b : N.copyOfRange(b, 0, idx); } else { final Set set = new LinkedHashSet<>(N.initHashCapacity(a.length)); for (int i = from; i < to; i++) { set.add(a[i]); } if (set.size() == to - from) { return (from == 0 && to == a.length) ? a.clone() : N.copyOfRange(a, from, to); } else { final int[] result = new int[set.size()]; int i = 0; for (int e : set) { result[i++] = e; } return result; } } } public static long[] removeDuplicates(final long[] a) { if (N.isNullOrEmpty(a)) { return N.EMPTY_LONG_ARRAY; } return removeDuplicates(a, false); } public static long[] removeDuplicates(final long[] a, final boolean isSorted) { if (N.isNullOrEmpty(a)) { return N.EMPTY_LONG_ARRAY; } return removeDuplicates(a, 0, a.length, isSorted); } public static long[] removeDuplicates(final long[] a, final int from, final int to, final boolean isSorted) { checkFromToIndex(from, to, len(a)); if (N.isNullOrEmpty(a) && from == 0 && to == 0) { return N.EMPTY_LONG_ARRAY; } else if (to - from <= 1) { return N.copyOfRange(a, from, to); } if (isSorted) { final long[] b = (from == 0 && to == a.length) ? a.clone() : N.copyOfRange(a, from, to); int idx = 1; for (int i = 1, len = b.length; i < len; i++) { if (b[i] == b[i - 1]) { continue; } b[idx++] = b[i]; } return idx == b.length ? b : N.copyOfRange(b, 0, idx); } else { final Set set = new LinkedHashSet<>(N.initHashCapacity(a.length)); for (int i = from; i < to; i++) { set.add(a[i]); } if (set.size() == to - from) { return (from == 0 && to == a.length) ? a.clone() : N.copyOfRange(a, from, to); } else { final long[] result = new long[set.size()]; int i = 0; for (long e : set) { result[i++] = e; } return result; } } } public static float[] removeDuplicates(final float[] a) { if (N.isNullOrEmpty(a)) { return N.EMPTY_FLOAT_ARRAY; } return removeDuplicates(a, false); } public static float[] removeDuplicates(final float[] a, final boolean isSorted) { if (N.isNullOrEmpty(a)) { return N.EMPTY_FLOAT_ARRAY; } return removeDuplicates(a, 0, a.length, isSorted); } public static float[] removeDuplicates(final float[] a, final int from, final int to, final boolean isSorted) { checkFromToIndex(from, to, len(a)); if (N.isNullOrEmpty(a) && from == 0 && to == 0) { return N.EMPTY_FLOAT_ARRAY; } else if (to - from <= 1) { return N.copyOfRange(a, from, to); } if (isSorted) { final float[] b = (from == 0 && to == a.length) ? a.clone() : N.copyOfRange(a, from, to); int idx = 1; for (int i = 1, len = b.length; i < len; i++) { if (N.equals(b[i], b[i - 1])) { continue; } b[idx++] = b[i]; } return idx == b.length ? b : N.copyOfRange(b, 0, idx); } else { final Set set = new LinkedHashSet<>(N.initHashCapacity(a.length)); for (int i = from; i < to; i++) { set.add(a[i]); } if (set.size() == to - from) { return (from == 0 && to == a.length) ? a.clone() : N.copyOfRange(a, from, to); } else { final float[] result = new float[set.size()]; int i = 0; for (float e : set) { result[i++] = e; } return result; } } } public static double[] removeDuplicates(final double[] a) { if (N.isNullOrEmpty(a)) { return N.EMPTY_DOUBLE_ARRAY; } return removeDuplicates(a, false); } public static double[] removeDuplicates(final double[] a, final boolean isSorted) { if (N.isNullOrEmpty(a)) { return N.EMPTY_DOUBLE_ARRAY; } return removeDuplicates(a, 0, a.length, isSorted); } public static double[] removeDuplicates(final double[] a, final int from, final int to, final boolean isSorted) { checkFromToIndex(from, to, len(a)); if (N.isNullOrEmpty(a) && from == 0 && to == 0) { return N.EMPTY_DOUBLE_ARRAY; } else if (to - from <= 1) { return N.copyOfRange(a, from, to); } if (isSorted) { final double[] b = (from == 0 && to == a.length) ? a.clone() : N.copyOfRange(a, from, to); int idx = 1; for (int i = 1, len = b.length; i < len; i++) { if (N.equals(b[i], b[i - 1])) { continue; } b[idx++] = b[i]; } return idx == b.length ? b : N.copyOfRange(b, 0, idx); } else { final Set set = new LinkedHashSet<>(N.initHashCapacity(a.length)); for (int i = from; i < to; i++) { set.add(a[i]); } if (set.size() == to - from) { return (from == 0 && to == a.length) ? a.clone() : N.copyOfRange(a, from, to); } else { final double[] result = new double[set.size()]; int i = 0; for (double e : set) { result[i++] = e; } return result; } } } /** *

* Removes all duplicates elements *

* *
     * N.removeElements(["a", "b", "a"]) = ["a", "b"]
     * 
* * @param * the component type of the array * @param a * @return A new array containing the existing elements except the duplicates * * @throws NullPointerException if the specified array a is null. */ public static T[] removeDuplicates(final T[] a) { if (N.isNullOrEmpty(a)) { return a; } return removeDuplicates(a, false); } public static T[] removeDuplicates(final T[] a, final boolean isSorted) { if (N.isNullOrEmpty(a)) { return a; } return removeDuplicates(a, 0, a.length, isSorted); } public static T[] removeDuplicates(final T[] a, final int from, final int to, final boolean isSorted) { checkFromToIndex(from, to, len(a)); if (N.isNullOrEmpty(a) && from == 0 && to == 0) { return a; } else if (to - from <= 1) { return N.copyOfRange(a, from, to); } if (isSorted) { final T[] b = (from == 0 && to == a.length) ? a.clone() : N.copyOfRange(a, from, to); int idx = 1; for (int i = 1, len = b.length; i < len; i++) { if (N.equals(b[i], b[i - 1])) { continue; } b[idx++] = b[i]; } return idx == b.length ? b : N.copyOfRange(b, 0, idx); } else { final List list = distinct(a, from, to); return list.toArray((T[]) N.newArray(a.getClass().getComponentType(), list.size())); } } /** * * @param c * @return true if there is one or more duplicated elements are removed. otherwise false is returned. */ public static boolean removeDuplicates(final Collection c) { if (N.isNullOrEmpty(c) || c.size() == 1) { return false; } return removeDuplicates(c, false); } /** * * @param c * @param isSorted * @return true if there is one or more duplicated elements are removed. otherwise false is returned. */ @SuppressWarnings("rawtypes") public static boolean removeDuplicates(final Collection c, final boolean isSorted) { if (N.isNullOrEmpty(c) || c.size() == 1) { return false; } if (isSorted) { boolean hasDuplicates = false; final Iterator it = c.iterator(); Object pre = it.next(); Object next = null; while (it.hasNext()) { next = it.next(); if (N.equals(next, pre)) { it.remove(); hasDuplicates = true; } else { pre = next; } } return hasDuplicates; } else { List list = distinct(c); final boolean hasDuplicates = list.size() != c.size(); if (hasDuplicates) { c.clear(); c.addAll((List) list); } return hasDuplicates; } } // Primitive/Object array converters // ---------------------------------------------------------------------- public static boolean hasDuplicates(final char[] a) { return hasDuplicates(a, false); } public static boolean hasDuplicates(final char[] a, final boolean isSorted) { if (N.isNullOrEmpty(a)) { return false; } return hasDuplicates(a, 0, a.length, isSorted); } static boolean hasDuplicates(final char[] a, final int fromIndex, final int toIndex, final boolean isSorted) { N.checkFromToIndex(fromIndex, toIndex, a.length); if (N.isNullOrEmpty(a) || toIndex - fromIndex < 2) { return false; } else if (toIndex - fromIndex == 2) { return a[fromIndex] == a[fromIndex + 1]; } else if (toIndex - fromIndex == 3) { return a[fromIndex] == a[fromIndex + 1] || a[fromIndex] == a[fromIndex + 2] || a[fromIndex + 1] == a[fromIndex + 2]; } if (isSorted) { for (int i = fromIndex + 1; i < toIndex; i++) { if (a[i] == a[i - 1]) { return true; } } return false; } else { final Set set = new HashSet<>(N.initHashCapacity(toIndex - fromIndex)); for (int i = fromIndex; i < toIndex; i++) { if (set.add(a[i]) == false) { return true; } } return false; } } public static boolean hasDuplicates(final byte[] a) { return hasDuplicates(a, false); } public static boolean hasDuplicates(final byte[] a, final boolean isSorted) { if (N.isNullOrEmpty(a)) { return false; } return hasDuplicates(a, 0, a.length, isSorted); } static boolean hasDuplicates(final byte[] a, final int fromIndex, final int toIndex, final boolean isSorted) { N.checkFromToIndex(fromIndex, toIndex, a.length); if (N.isNullOrEmpty(a) || toIndex - fromIndex < 2) { return false; } else if (toIndex - fromIndex == 2) { return a[fromIndex] == a[fromIndex + 1]; } else if (toIndex - fromIndex == 3) { return a[fromIndex] == a[fromIndex + 1] || a[fromIndex] == a[fromIndex + 2] || a[fromIndex + 1] == a[fromIndex + 2]; } if (isSorted) { for (int i = fromIndex + 1; i < toIndex; i++) { if (a[i] == a[i - 1]) { return true; } } return false; } else { final Set set = new HashSet<>(N.initHashCapacity(toIndex - fromIndex)); for (int i = fromIndex; i < toIndex; i++) { if (set.add(a[i]) == false) { return true; } } return false; } } public static boolean hasDuplicates(final short[] a) { return hasDuplicates(a, false); } public static boolean hasDuplicates(final short[] a, final boolean isSorted) { if (N.isNullOrEmpty(a)) { return false; } return hasDuplicates(a, 0, a.length, isSorted); } static boolean hasDuplicates(final short[] a, final int fromIndex, final int toIndex, final boolean isSorted) { N.checkFromToIndex(fromIndex, toIndex, a.length); if (N.isNullOrEmpty(a) || toIndex - fromIndex < 2) { return false; } else if (toIndex - fromIndex == 2) { return a[fromIndex] == a[fromIndex + 1]; } else if (toIndex - fromIndex == 3) { return a[fromIndex] == a[fromIndex + 1] || a[fromIndex] == a[fromIndex + 2] || a[fromIndex + 1] == a[fromIndex + 2]; } if (isSorted) { for (int i = fromIndex + 1; i < toIndex; i++) { if (a[i] == a[i - 1]) { return true; } } return false; } else { final Set set = new HashSet<>(N.initHashCapacity(toIndex - fromIndex)); for (int i = fromIndex; i < toIndex; i++) { if (set.add(a[i]) == false) { return true; } } return false; } } public static boolean hasDuplicates(final int[] a) { return hasDuplicates(a, false); } public static boolean hasDuplicates(final int[] a, final boolean isSorted) { if (N.isNullOrEmpty(a)) { return false; } return hasDuplicates(a, 0, a.length, isSorted); } static boolean hasDuplicates(final int[] a, final int fromIndex, final int toIndex, final boolean isSorted) { N.checkFromToIndex(fromIndex, toIndex, a.length); if (N.isNullOrEmpty(a) || toIndex - fromIndex < 2) { return false; } else if (toIndex - fromIndex == 2) { return a[fromIndex] == a[fromIndex + 1]; } else if (toIndex - fromIndex == 3) { return a[fromIndex] == a[fromIndex + 1] || a[fromIndex] == a[fromIndex + 2] || a[fromIndex + 1] == a[fromIndex + 2]; } if (isSorted) { for (int i = fromIndex + 1; i < toIndex; i++) { if (a[i] == a[i - 1]) { return true; } } return false; } else { final Set set = new HashSet<>(N.initHashCapacity(toIndex - fromIndex)); for (int i = fromIndex; i < toIndex; i++) { if (set.add(a[i]) == false) { return true; } } return false; } } public static boolean hasDuplicates(final long[] a) { return hasDuplicates(a, false); } public static boolean hasDuplicates(final long[] a, final boolean isSorted) { if (N.isNullOrEmpty(a)) { return false; } return hasDuplicates(a, 0, a.length, isSorted); } static boolean hasDuplicates(final long[] a, final int fromIndex, final int toIndex, final boolean isSorted) { N.checkFromToIndex(fromIndex, toIndex, a.length); if (N.isNullOrEmpty(a) || toIndex - fromIndex < 2) { return false; } else if (toIndex - fromIndex == 2) { return a[fromIndex] == a[fromIndex + 1]; } else if (toIndex - fromIndex == 3) { return a[fromIndex] == a[fromIndex + 1] || a[fromIndex] == a[fromIndex + 2] || a[fromIndex + 1] == a[fromIndex + 2]; } if (isSorted) { for (int i = fromIndex + 1; i < toIndex; i++) { if (a[i] == a[i - 1]) { return true; } } return false; } else { final Set set = new HashSet<>(N.initHashCapacity(toIndex - fromIndex)); for (int i = fromIndex; i < toIndex; i++) { if (set.add(a[i]) == false) { return true; } } return false; } } public static boolean hasDuplicates(final float[] a) { return hasDuplicates(a, false); } public static boolean hasDuplicates(final float[] a, final boolean isSorted) { if (N.isNullOrEmpty(a)) { return false; } return hasDuplicates(a, 0, a.length, isSorted); } static boolean hasDuplicates(final float[] a, final int fromIndex, final int toIndex, final boolean isSorted) { N.checkFromToIndex(fromIndex, toIndex, a.length); if (N.isNullOrEmpty(a) || toIndex - fromIndex < 2) { return false; } else if (toIndex - fromIndex == 2) { return N.equals(a[fromIndex], a[fromIndex + 1]); } else if (toIndex - fromIndex == 3) { return N.equals(a[fromIndex], a[fromIndex + 1]) || N.equals(a[fromIndex], a[fromIndex + 2]) || N.equals(a[fromIndex + 1], a[fromIndex + 2]); } if (isSorted) { for (int i = fromIndex + 1; i < toIndex; i++) { if (N.equals(a[i], a[i - 1])) { return true; } } return false; } else { final Set set = new HashSet<>(N.initHashCapacity(toIndex - fromIndex)); for (int i = fromIndex; i < toIndex; i++) { if (set.add(a[i]) == false) { return true; } } return false; } } public static boolean hasDuplicates(final double[] a) { return hasDuplicates(a, false); } public static boolean hasDuplicates(final double[] a, final boolean isSorted) { if (N.isNullOrEmpty(a)) { return false; } return hasDuplicates(a, 0, a.length, isSorted); } static boolean hasDuplicates(final double[] a, final int fromIndex, final int toIndex, final boolean isSorted) { N.checkFromToIndex(fromIndex, toIndex, a.length); if (N.isNullOrEmpty(a) || toIndex - fromIndex < 2) { return false; } else if (toIndex - fromIndex == 2) { return N.equals(a[fromIndex], a[fromIndex + 1]); } else if (toIndex - fromIndex == 3) { return N.equals(a[fromIndex], a[fromIndex + 1]) || N.equals(a[fromIndex], a[fromIndex + 2]) || N.equals(a[fromIndex + 1], a[fromIndex + 2]); } if (isSorted) { for (int i = fromIndex + 1; i < toIndex; i++) { if (N.equals(a[i], a[i - 1])) { return true; } } return false; } else { final Set set = new HashSet<>(N.initHashCapacity(toIndex - fromIndex)); for (int i = fromIndex; i < toIndex; i++) { if (set.add(a[i]) == false) { return true; } } return false; } } public static boolean hasDuplicates(final T[] a) { return hasDuplicates(a, false); } public static boolean hasDuplicates(final T[] a, final boolean isSorted) { if (N.isNullOrEmpty(a)) { return false; } return hasDuplicates(a, 0, a.length, isSorted); } static boolean hasDuplicates(final T[] a, final int fromIndex, final int toIndex, final boolean isSorted) { N.checkFromToIndex(fromIndex, toIndex, a.length); if (N.isNullOrEmpty(a) || toIndex - fromIndex < 2) { return false; } else if (toIndex - fromIndex == 2) { return N.equals(a[fromIndex], a[fromIndex + 1]); } else if (toIndex - fromIndex == 3) { return N.equals(a[fromIndex], a[fromIndex + 1]) || N.equals(a[fromIndex], a[fromIndex + 2]) || N.equals(a[fromIndex + 1], a[fromIndex + 2]); } if (isSorted) { for (int i = fromIndex + 1; i < toIndex; i++) { if (N.equals(a[i], a[i - 1])) { return true; } } return false; } else { final Set set = new HashSet<>(N.initHashCapacity(toIndex - fromIndex)); for (int i = fromIndex; i < toIndex; i++) { if (set.add(hashKey(a[i])) == false) { return true; } } return false; } } public static boolean hasDuplicates(final Collection c) { return hasDuplicates(c, false); } public static boolean hasDuplicates(final Collection c, final boolean isSorted) { if (N.isNullOrEmpty(c) || c.size() == 1) { return false; } if (isSorted) { final Iterator it = c.iterator(); Object pre = it.next(); Object next = null; while (it.hasNext()) { next = it.next(); if (N.equals(next, pre)) { return true; } pre = next; } return false; } else { final Set set = new HashSet<>(N.initHashCapacity(c.size())); for (Object e : c) { if (set.add(hashKey(e)) == false) { return true; } } return false; } } /** * * @param a * @return a long number */ @SafeVarargs public static int sum(final char... a) { if (N.isNullOrEmpty(a)) { return 0; } return sum(a, 0, a.length); } public static int sum(final char[] a, final int from, final int to) { checkFromToIndex(from, to, len(a)); if (N.isNullOrEmpty(a)) { if (to > 0) { throw new IndexOutOfBoundsException(); } return 0; } int sum = 0; for (int i = from; i < to; i++) { sum += a[i]; } return sum; } /** * * @param a * @return a long number */ @SafeVarargs public static int sum(final byte... a) { if (N.isNullOrEmpty(a)) { return 0; } return sum(a, 0, a.length); } public static int sum(final byte[] a, final int from, final int to) { checkFromToIndex(from, to, len(a)); if (N.isNullOrEmpty(a)) { if (to > 0) { throw new IndexOutOfBoundsException(); } return 0; } int sum = 0; for (int i = from; i < to; i++) { sum += a[i]; } return sum; } /** * * @param a * @return a long number */ @SafeVarargs public static int sum(final short... a) { if (N.isNullOrEmpty(a)) { return 0; } return sum(a, 0, a.length); } public static int sum(final short[] a, final int from, final int to) { checkFromToIndex(from, to, len(a)); if (N.isNullOrEmpty(a)) { if (to > 0) { throw new IndexOutOfBoundsException(); } return 0; } int sum = 0; for (int i = from; i < to; i++) { sum += a[i]; } return sum; } /** * * @param a * @return a long number */ @SafeVarargs public static int sum(final int... a) { if (N.isNullOrEmpty(a)) { return 0; } return sum(a, 0, a.length); } public static int sum(final int[] a, final int from, final int to) { checkFromToIndex(from, to, len(a)); if (N.isNullOrEmpty(a)) { if (to > 0) { throw new IndexOutOfBoundsException(); } return 0; } int sum = 0; for (int i = from; i < to; i++) { sum += a[i]; } return sum; } /** * * @param a * @return a long number */ @SafeVarargs public static long sum(final long... a) { if (N.isNullOrEmpty(a)) { return 0L; } return sum(a, 0, a.length); } public static long sum(final long[] a, final int from, final int to) { checkFromToIndex(from, to, len(a)); if (N.isNullOrEmpty(a)) { if (to > 0) { throw new IndexOutOfBoundsException(); } return 0L; } long sum = 0; for (int i = from; i < to; i++) { sum += a[i]; } return sum; } /** * * @param a * @return a double number */ @SafeVarargs public static float sum(final float... a) { if (N.isNullOrEmpty(a)) { return 0f; } return sum(a, 0, a.length); } public static float sum(final float[] a, final int from, final int to) { checkFromToIndex(from, to, len(a)); if (N.isNullOrEmpty(a)) { if (to > 0) { throw new IndexOutOfBoundsException(); } return 0f; } // float sum = 0; // // for (int i = from; i < to; i++) { // sum += a[i]; // } // // return sum; return (float) FloatStream.of(a, from, to).sum(); } /** * * @param a * @return a double number */ @SafeVarargs public static double sum(final double... a) { if (N.isNullOrEmpty(a)) { return 0d; } return sum(a, 0, a.length); } public static double sum(final double[] a, final int from, final int to) { checkFromToIndex(from, to, len(a)); if (N.isNullOrEmpty(a)) { if (to > 0) { throw new IndexOutOfBoundsException(); } return 0d; } // double sum = 0; // // for (int i = from; i < to; i++) { // sum += a[i]; // } // // return sum; return DoubleStream.of(a, from, to).sum(); } /** * * @param a * @return a double number */ @SafeVarargs public static double average(final char... a) { if (N.isNullOrEmpty(a)) { return 0d; } return average(a, 0, a.length); } public static double average(final char[] a, final int from, final int to) { checkFromToIndex(from, to, len(a)); if (N.isNullOrEmpty(a)) { if (to > 0) { throw new IndexOutOfBoundsException(); } return 0d; } else if (from == to) { return 0d; } long sum = 0; for (int i = from; i < to; i++) { sum += a[i]; } return ((double) sum) / (to - from); } /** * * @param a * @return a double number */ @SafeVarargs public static double average(final byte... a) { if (N.isNullOrEmpty(a)) { return 0d; } return average(a, 0, a.length); } public static double average(final byte[] a, final int from, final int to) { checkFromToIndex(from, to, len(a)); if (N.isNullOrEmpty(a)) { if (to > 0) { throw new IndexOutOfBoundsException(); } return 0d; } else if (from == to) { return 0d; } long sum = 0; for (int i = from; i < to; i++) { sum += a[i]; } return ((double) sum) / (to - from); } /** * * @param a * @return a double number */ @SafeVarargs public static double average(final short... a) { if (N.isNullOrEmpty(a)) { return 0d; } return average(a, 0, a.length); } public static double average(final short[] a, final int from, final int to) { checkFromToIndex(from, to, len(a)); if (N.isNullOrEmpty(a)) { if (to > 0) { throw new IndexOutOfBoundsException(); } return 0d; } else if (from == to) { return 0d; } long sum = 0; for (int i = from; i < to; i++) { sum += a[i]; } return ((double) sum) / (to - from); } /** * * @param a * @return a double number */ @SafeVarargs public static double average(final int... a) { if (N.isNullOrEmpty(a)) { return 0d; } return average(a, 0, a.length); } public static double average(final int[] a, final int from, final int to) { checkFromToIndex(from, to, len(a)); if (N.isNullOrEmpty(a)) { if (to > 0) { throw new IndexOutOfBoundsException(); } return 0d; } else if (from == to) { return 0d; } long sum = 0; for (int i = from; i < to; i++) { sum += a[i]; } return ((double) sum) / (to - from); } /** * * @param a * @return a double number */ @SafeVarargs public static double average(final long... a) { if (N.isNullOrEmpty(a)) { return 0d; } return average(a, 0, a.length); } public static double average(final long[] a, final int from, final int to) { checkFromToIndex(from, to, len(a)); if (N.isNullOrEmpty(a)) { if (to > 0) { throw new IndexOutOfBoundsException(); } return 0d; } else if (from == to) { return 0d; } long sum = 0; for (int i = from; i < to; i++) { sum += a[i]; } return ((double) sum) / (to - from); } /** * * @param a * @return a double number */ @SafeVarargs public static double average(final float... a) { if (N.isNullOrEmpty(a)) { return 0d; } return average(a, 0, a.length); } public static double average(final float[] a, final int from, final int to) { checkFromToIndex(from, to, len(a)); if (N.isNullOrEmpty(a)) { if (to > 0) { throw new IndexOutOfBoundsException(); } return 0d; } else if (from == to) { return 0d; } // double sum = 0; // // for (int i = from; i < to; i++) { // sum += a[i]; // } // // return sum / (to - from); return FloatStream.of(a, from, to).average().orElse(0); } /** * * @param a * @return a double number */ @SafeVarargs public static double average(final double... a) { if (N.isNullOrEmpty(a)) { return 0d; } return average(a, 0, a.length); } public static double average(final double[] a, final int from, final int to) { checkFromToIndex(from, to, len(a)); if (N.isNullOrEmpty(a)) { if (to > 0) { throw new IndexOutOfBoundsException(); } return 0d; } else if (from == to) { return 0d; } // return sum(a, from, to) / (to - from); return DoubleStream.of(a, from, to).average().orElse(0); } /** *

* Gets the minimum of two char values. *

* * @param a * @param b * @return the smallest of the values */ public static char min(final char a, final char b) { return (a <= b) ? a : b; } /** *

* Gets the minimum of two byte values. *

* * @param a * @param b * @return the smallest of the values */ public static byte min(final byte a, final byte b) { return (a <= b) ? a : b; } /** *

* Gets the minimum of two short values. *

* * @param a * @param b * @return the smallest of the values */ public static short min(final short a, final short b) { return (a <= b) ? a : b; } /** *

* Gets the minimum of two int values. *

* * @param a * @param b * @return the smallest of the values */ public static int min(final int a, final int b) { return (a <= b) ? a : b; } /** *

* Gets the minimum of two long values. *

* * @param a * @param b * @return the smallest of the values */ public static long min(final long a, final long b) { return (a <= b) ? a : b; } /** *

* Gets the minimum of two float values. *

* * @param a * @param b * @return the smallest of the values */ public static float min(final float a, final float b) { return Math.min(a, b); } /** *

* Gets the minimum of two double values. *

* * @param a * @param b * @return the smallest of the values */ public static double min(final double a, final double b) { return Math.min(a, b); } public static > T min(final T a, final T b) { return (T) min(a, b, NULL_MAX_COMPARATOR); } public static T min(final T a, final T b, final Comparator cmp) { return (cmp == null ? NULL_MAX_COMPARATOR : cmp).compare(a, b) <= 0 ? a : b; } /** *

* Gets the minimum of three char values. *

* * @param a * @param b * @param c * @return */ public static char min(final char a, final char b, final char c) { final char m = (a <= b) ? a : b; return (m <= c) ? m : c; } /** *

* Gets the minimum of three byte values. *

* * @param a * @param b * @param c * @return */ public static byte min(final byte a, final byte b, final byte c) { final byte m = (a <= b) ? a : b; return (m <= c) ? m : c; } /** *

* Gets the minimum of three short values. *

* * @param a * @param b * @param c * @return */ public static short min(final short a, final short b, final short c) { final short m = (a <= b) ? a : b; return (m <= c) ? m : c; } /** *

* Gets the minimum of three int values. *

* * @param a * @param b * @param c * @return */ public static int min(final int a, final int b, final int c) { final int m = (a <= b) ? a : b; return (m <= c) ? m : c; } /** *

* Gets the minimum of three long values. *

* * @param a * @param b * @param c * @return */ public static long min(final long a, final long b, final long c) { final long m = (a <= b) ? a : b; return (m <= c) ? m : c; } /** *

* Gets the minimum of three float values. *

* * @param a * @param b * @param c * @return */ public static float min(final float a, final float b, final float c) { return Math.min(Math.min(a, b), c); } /** *

* Gets the minimum of three double values. *

* * @param a * @param b * @param c * @return */ public static double min(final double a, final double b, final double c) { return Math.min(Math.min(a, b), c); } public static > T min(final T a, final T b, final T c) { return (T) min(a, b, c, NULL_MAX_COMPARATOR); } public static T min(final T a, final T b, final T c, final Comparator cmp) { return min(min(a, b, cmp), c, cmp); } /** *

* Returns the minimum value in an array. *

* * @param a * an array, must not be null or empty * @return the minimum value in the array */ @SafeVarargs public static char min(final char... a) { N.checkArgNotNullOrEmpty(a, "The spcified array 'a' can not be null or empty"); if (N.isNullOrEmpty(a)) { throw new IllegalArgumentException("The length of array can not be null or empty"); } return min(a, 0, a.length); } public static char min(final char[] a, final int from, final int to) { if (N.isNullOrEmpty(a) || to - from < 1) { throw new IllegalArgumentException("The length of array can not be null or empty"); } // Finds and returns min char min = a[from]; for (int i = from + 1; i < to; i++) { if (a[i] < min) { min = a[i]; } } return min; } /** *

* Returns the minimum value in an array. *

* * @param a * an array, must not be null or empty * @return the minimum value in the array */ @SafeVarargs public static byte min(final byte... a) { N.checkArgNotNullOrEmpty(a, "The spcified array 'a' can not be null or empty"); return min(a, 0, a.length); } public static byte min(final byte[] a, final int from, final int to) { if (N.isNullOrEmpty(a) || to - from < 1) { throw new IllegalArgumentException("The length of array can not be null or empty"); } // Finds and returns min byte min = a[from]; for (int i = from + 1; i < to; i++) { if (a[i] < min) { min = a[i]; } } return min; } /** *

* Returns the minimum value in an array. *

* * @param a * an array, must not be null or empty * @return the minimum value in the array */ @SafeVarargs public static short min(final short... a) { N.checkArgNotNullOrEmpty(a, "The spcified array 'a' can not be null or empty"); return min(a, 0, a.length); } public static short min(final short[] a, final int from, final int to) { if (N.isNullOrEmpty(a) || to - from < 1) { throw new IllegalArgumentException("The length of array can not be null or empty"); } // Finds and returns min short min = a[from]; for (int i = from + 1; i < to; i++) { if (a[i] < min) { min = a[i]; } } return min; } /** *

* Returns the minimum value in an array. *

* * @param a * an array, must not be null or empty * @return the minimum value in the array */ @SafeVarargs public static int min(final int... a) { N.checkArgNotNullOrEmpty(a, "The spcified array 'a' can not be null or empty"); return min(a, 0, a.length); } public static int min(final int[] a, final int from, final int to) { if (N.isNullOrEmpty(a) || to - from < 1) { throw new IllegalArgumentException("The length of array can not be null or empty"); } // Finds and returns min int min = a[from]; for (int i = from + 1; i < to; i++) { if (a[i] < min) { min = a[i]; } } return min; } // Min in array // -------------------------------------------------------------------- /** *

* Returns the minimum value in an array. *

* * @param a * an array, must not be null or empty * @return the minimum value in the array */ @SafeVarargs public static long min(final long... a) { N.checkArgNotNullOrEmpty(a, "The spcified array 'a' can not be null or empty"); return min(a, 0, a.length); } public static long min(final long[] a, final int from, final int to) { if (N.isNullOrEmpty(a) || to - from < 1) { throw new IllegalArgumentException("The length of array can not be null or empty"); } // Finds and returns min long min = a[from]; for (int i = from + 1; i < to; i++) { if (a[i] < min) { min = a[i]; } } return min; } /** *

* Returns the minimum value in an array. *

* * @param a * an array, must not be null or empty * @return the minimum value in the array * @see IEEE754rUtil#min(float[]) IEEE754rUtils for a version of this method * that handles NaN differently */ @SafeVarargs public static float min(final float... a) { N.checkArgNotNullOrEmpty(a, "The spcified array 'a' can not be null or empty"); return min(a, 0, a.length); } public static float min(final float[] a, final int from, final int to) { if (N.isNullOrEmpty(a) || to - from < 1) { throw new IllegalArgumentException("The length of array can not be null or empty"); } // Finds and returns min float min = a[from]; for (int i = from + 1; i < to; i++) { min = Math.min(min, a[i]); if (Float.isNaN(min)) { return min; } } return min; } /** *

* Returns the minimum value in an array. *

* * @param a * an array, must not be null or empty * @return the minimum value in the array * @see IEEE754rUtil#min(double[]) IEEE754rUtils for a version of this * method that handles NaN differently */ @SafeVarargs public static double min(final double... a) { N.checkArgNotNullOrEmpty(a, "The spcified array 'a' can not be null or empty"); return min(a, 0, a.length); } public static double min(final double[] a, final int from, final int to) { if (N.isNullOrEmpty(a) || to - from < 1) { throw new IllegalArgumentException("The length of array can not be null or empty"); } // Finds and returns min double min = a[from]; for (int i = from + 1; i < to; i++) { min = Math.min(min, a[i]); if (Double.isNaN(min)) { return min; } } return min; } /** * Returns the minimum element in the array. * * @param a * an array, must not be null or empty * @return the minimum value in the array */ public static > T min(final T[] a) { N.checkArgNotNullOrEmpty(a, "The spcified array 'a' can not be null or empty"); return min(a, 0, a.length); } public static > T min(final T[] a, final int from, final int to) { return (T) min(a, from, to, NULL_MAX_COMPARATOR); } /** * Returns the minimum element in the array. * * @param a * an array, must not be null or empty * @param cmp * @return the minimum value in the array */ public static T min(final T[] a, final Comparator cmp) { N.checkArgNotNullOrEmpty(a, "The spcified array 'a' can not be null or empty"); return min(a, 0, a.length, cmp); } public static T min(final T[] a, final int from, final int to, Comparator cmp) { if (N.isNullOrEmpty(a) || to - from < 1) { throw new IllegalArgumentException("The length of array can not be null or empty"); } cmp = cmp == null ? NULL_MAX_COMPARATOR : cmp; T candidate = a[from]; for (int i = from + 1; i < to; i++) { if (cmp.compare(a[i], candidate) < 0) { candidate = a[i]; } if (candidate == null && cmp == NULL_MIN_COMPARATOR) { return null; } } return candidate; } public static > T min(final Collection c) { N.checkArgNotNullOrEmpty(c, "The spcified collection 'c' can not be null or empty"); return min(c, 0, c.size()); } public static > T min(final Collection c, final int from, final int to) { N.checkArgNotNullOrEmpty(c, "The spcified collection 'c' can not be null or empty"); return (T) min(c, from, to, NULL_MAX_COMPARATOR); } public static T min(final Collection c, Comparator cmp) { N.checkArgNotNullOrEmpty(c, "The spcified collection 'c' can not be null or empty"); return min(c, 0, c.size(), cmp); } /** * Returns the minimum element in the collection. * * @param c * @param from * @param to * @param cmp * @return the minimum value in the Collection */ public static T min(final Collection c, final int from, final int to, Comparator cmp) { checkFromToIndex(from, to, len(c)); if (N.isNullOrEmpty(c) || to - from < 1 || from >= c.size()) { throw new IllegalArgumentException("The size of collection can not be null or empty"); } cmp = cmp == null ? NULL_MAX_COMPARATOR : cmp; T candidate = null; T e = null; if (c instanceof List && c instanceof RandomAccess) { final List list = (List) c; candidate = list.get(from); for (int i = from + 1; i < to; i++) { e = list.get(i); if (cmp.compare(e, candidate) < 0) { candidate = e; } if (candidate == null && cmp == NULL_MIN_COMPARATOR) { return null; } } } else { final Iterator it = c.iterator(); for (int i = 0; i < to; i++) { if (i < from) { it.next(); continue; } else if (i == from) { candidate = it.next(); } else { e = it.next(); if (cmp.compare(e, candidate) < 0) { candidate = e; } if (candidate == null && cmp == NULL_MIN_COMPARATOR) { return null; } } } } return candidate; } public static > List minAll(final T[] a) { return minAll(a, NULL_MAX_COMPARATOR); } public static List minAll(final T[] a, Comparator cmp) { if (N.isNullOrEmpty(a)) { return new ArrayList<>(); } cmp = cmp == null ? NULL_MAX_COMPARATOR : cmp; final List result = new ArrayList<>(); T candicate = a[0]; int cp = 0; result.add(candicate); for (int i = 1, len = a.length; i < len; i++) { cp = cmp.compare(a[i], candicate); if (cp == 0) { result.add(a[i]); } else if (cp < 0) { result.clear(); result.add(a[i]); candicate = a[i]; } } return result; } public static > List minAll(final Collection c) { return minAll(c, NULL_MAX_COMPARATOR); } public static List minAll(final Collection c, Comparator cmp) { if (N.isNullOrEmpty(c)) { return new ArrayList<>(); } cmp = cmp == null ? NULL_MAX_COMPARATOR : cmp; final Iterator iter = c.iterator(); final List result = new ArrayList<>(); T candicate = iter.next(); T next = null; int cp = 0; result.add(candicate); while (iter.hasNext()) { next = iter.next(); cp = cmp.compare(next, candicate); if (cp == 0) { result.add(next); } else if (cp < 0) { result.clear(); result.add(next); candicate = next; } } return result; } /** *

* Gets the maximum of two char values. *

* * @param a * @param b * @return the largest of the values */ public static char max(final char a, final char b) { return (a >= b) ? a : b; } /** *

* Gets the maximum of two byte values. *

* * @param a * @param b * @return the largest of the values */ public static byte max(final byte a, final byte b) { return (a >= b) ? a : b; } /** *

* Gets the maximum of two short values. *

* * @param a * @param b * @return the largest of the values */ public static short max(final short a, final short b) { return (a >= b) ? a : b; } /** *

* Gets the maximum of two int values. *

* * @param a * @param b * @return the largest of the values */ public static int max(final int a, final int b) { return (a >= b) ? a : b; } /** *

* Gets the maximum of two long values. *

* * @param a * @param b * @return the largest of the values */ public static long max(final long a, final long b) { return (a >= b) ? a : b; } /** *

* Gets the maximum of two float values. *

* * @param a * @param b * @return the largest of the values */ public static float max(final float a, final float b) { return Math.max(a, b); } /** *

* Gets the maximum of two double values. *

* * @param a * @param b * @return the largest of the values */ public static double max(final double a, final double b) { return Math.max(a, b); } public static > T max(final T a, final T b) { return (T) max(a, b, NULL_MIN_COMPARATOR); } public static T max(final T a, final T b, final Comparator cmp) { return (cmp == null ? NULL_MIN_COMPARATOR : cmp).compare(a, b) >= 0 ? a : b; } /** * Gets the maximum of three char values. * * @param a * @param b * @param c * @return */ public static char max(final char a, final char b, final char c) { final char m = (a >= b) ? a : b; return (m >= c) ? m : c; } /** * Gets the maximum of three byte values. * * @param a * @param b * @param c * @return */ public static byte max(final byte a, final byte b, final byte c) { final byte m = (a >= b) ? a : b; return (m >= c) ? m : c; } /** * Gets the maximum of three short values. * * @param a * @param b * @param c * @return */ public static short max(final short a, final short b, final short c) { final short m = (a >= b) ? a : b; return (m >= c) ? m : c; } /** * Gets the maximum of three int values. * * @param a * @param b * @param c * @return */ public static int max(final int a, final int b, final int c) { final int m = (a >= b) ? a : b; return (m >= c) ? m : c; } /** * Gets the maximum of three long values. * * @param a * @param b * @param c * @return */ public static long max(final long a, final long b, final long c) { final long m = (a >= b) ? a : b; return (m >= c) ? m : c; } /** * Gets the maximum of three float values. * * @param a * @param b * @param c * @return */ public static float max(final float a, final float b, final float c) { return Math.max(Math.max(a, b), c); } /** * Gets the maximum of three double values. * * @param a * @param b * @param c * @return */ public static double max(final double a, final double b, final double c) { return Math.max(Math.max(a, b), c); } public static > T max(final T a, final T b, final T c) { return (T) max(a, b, c, NULL_MIN_COMPARATOR); } public static T max(final T a, final T b, final T c, final Comparator cmp) { return max(max(a, b, cmp), c, cmp); } /** *

* Returns the maximum value in an array. *

* * @param a * an array, must not be null or empty * @return the maximum value in the array */ @SafeVarargs public static char max(final char... a) { N.checkArgNotNullOrEmpty(a, "The spcified array 'a' can not be null or empty"); return max(a, 0, a.length); } public static char max(final char[] a, final int from, final int to) { if (N.isNullOrEmpty(a) || to - from < 1) { throw new IllegalArgumentException("The length of array can not be null or empty"); } // Finds and returns max char max = a[from]; for (int i = from + 1; i < to; i++) { if (a[i] > max) { max = a[i]; } } return max; } /** *

* Returns the maximum value in an array. *

* * @param a * an array, must not be null or empty * @return the maximum value in the array */ @SafeVarargs public static byte max(final byte... a) { N.checkArgNotNullOrEmpty(a, "The spcified array 'a' can not be null or empty"); return max(a, 0, a.length); } public static byte max(final byte[] a, final int from, final int to) { if (N.isNullOrEmpty(a) || to - from < 1) { throw new IllegalArgumentException("The length of array can not be null or empty"); } // Finds and returns max byte max = a[from]; for (int i = from + 1; i < to; i++) { if (a[i] > max) { max = a[i]; } } return max; } /** *

* Returns the maximum value in an array. *

* * @param a * an array, must not be null or empty * @return the maximum value in the array */ @SafeVarargs public static short max(final short... a) { N.checkArgNotNullOrEmpty(a, "The spcified array 'a' can not be null or empty"); return max(a, 0, a.length); } public static short max(final short[] a, final int from, final int to) { if (N.isNullOrEmpty(a) || to - from < 1) { throw new IllegalArgumentException("The length of array can not be null or empty"); } // Finds and returns max short max = a[from]; for (int i = from + 1; i < to; i++) { if (a[i] > max) { max = a[i]; } } return max; } /** *

* Returns the maximum value in an array. *

* * @param a * an array, must not be null or empty * @return the maximum value in the array */ @SafeVarargs public static int max(final int... a) { N.checkArgNotNullOrEmpty(a, "The spcified array 'a' can not be null or empty"); return max(a, 0, a.length); } public static int max(final int[] a, final int from, final int to) { if (N.isNullOrEmpty(a) || to - from < 1) { throw new IllegalArgumentException("The length of array can not be null or empty"); } // Finds and returns max int max = a[from]; for (int i = from + 1; i < to; i++) { if (a[i] > max) { max = a[i]; } } return max; } /** *

* Returns the maximum value in an array. *

* * @param a * an array, must not be null or empty * @return the maximum value in the array */ @SafeVarargs public static long max(final long... a) { N.checkArgNotNullOrEmpty(a, "The spcified array 'a' can not be null or empty"); return max(a, 0, a.length); } public static long max(final long[] a, final int from, final int to) { if (N.isNullOrEmpty(a) || to - from < 1) { throw new IllegalArgumentException("The length of array can not be null or empty"); } // Finds and returns max long max = a[from]; for (int i = from + 1; i < to; i++) { if (a[i] > max) { max = a[i]; } } return max; } /** *

* Returns the maximum value in an array. *

* * @param a * an array, must not be null or empty * @return the maximum value in the array * @see IEEE754rUtil#max(float[]) IEEE754rUtils for a version of this method * that handles NaN differently */ @SafeVarargs public static float max(final float... a) { N.checkArgNotNullOrEmpty(a, "The spcified array 'a' can not be null or empty"); return max(a, 0, a.length); } public static float max(final float[] a, final int from, final int to) { if (N.isNullOrEmpty(a) || to - from < 1) { throw new IllegalArgumentException("The length of array can not be null or empty"); } // Finds and returns max float max = a[from]; for (int i = from + 1; i < to; i++) { max = Math.max(max, a[i]); if (Float.isNaN(max)) { return max; } } return max; } /** *

* Returns the maximum value in an array. *

* * @param a * an array, must not be null or empty * @return the maximum value in the array * @see IEEE754rUtil#max(double[]) IEEE754rUtils for a version of this * method that handles NaN differently */ @SafeVarargs public static double max(final double... a) { N.checkArgNotNullOrEmpty(a, "The spcified array 'a' can not be null or empty"); return max(a, 0, a.length); } public static double max(final double[] a, final int from, final int to) { if (N.isNullOrEmpty(a) || to - from < 1) { throw new IllegalArgumentException("The length of array can not be null or empty"); } // Finds and returns max double max = a[from]; for (int i = from + 1; i < to; i++) { max = Math.max(max, a[i]); if (Double.isNaN(max)) { return max; } } return max; } /** * Returns the maximum element in the array. * * @param a * an array, must not be null or empty * @return the maximum value in the array * @throws IllegalArgumentException * if a is null or empty. */ public static > T max(final T[] a) { N.checkArgNotNullOrEmpty(a, "The spcified array 'a' can not be null or empty"); return max(a, 0, a.length); } public static > T max(final T[] a, final int from, final int to) { return (T) max(a, from, to, NULL_MIN_COMPARATOR); } /** * Returns the maximum element in the array. * * @param a * an array, must not be null or empty * @param cmp * @return the maximum value in the array */ public static T max(final T[] a, final Comparator cmp) { N.checkArgNotNullOrEmpty(a, "The spcified array 'a' can not be null or empty"); return max(a, 0, a.length, cmp); } public static T max(final T[] a, final int from, final int to, Comparator cmp) { if (N.isNullOrEmpty(a) || to - from < 1) { throw new IllegalArgumentException("The length of array can not be null or empty"); } cmp = cmp == null ? NULL_MIN_COMPARATOR : cmp; T candidate = a[from]; for (int i = from + 1; i < to; i++) { if (cmp.compare(a[i], candidate) > 0) { candidate = a[i]; } if (candidate == null && cmp == NULL_MAX_COMPARATOR) { return null; } } return candidate; } public static > T max(final Collection c) { N.checkArgNotNullOrEmpty(c, "The spcified collection 'c' can not be null or empty"); return max(c, 0, c.size()); } public static > T max(final Collection c, final int from, final int to) { N.checkArgNotNullOrEmpty(c, "The spcified collection 'c' can not be null or empty"); return (T) max(c, from, to, NULL_MIN_COMPARATOR); } public static T max(final Collection c, Comparator cmp) { N.checkArgNotNullOrEmpty(c, "The spcified collection 'c' can not be null or empty"); return max(c, 0, c.size(), cmp); } /** * Returns the maximum element in the collection. * * @param c * @param from * @param to * @param cmp * @return the maximum value in the Collection */ public static T max(final Collection c, final int from, final int to, Comparator cmp) { checkFromToIndex(from, to, len(c)); if (N.isNullOrEmpty(c) || to - from < 1 || from >= c.size()) { throw new IllegalArgumentException("The size of collection can not be null or empty"); } cmp = cmp == null ? NULL_MIN_COMPARATOR : cmp; T candidate = null; T e = null; if (c instanceof List && c instanceof RandomAccess) { final List list = (List) c; candidate = list.get(from); for (int i = from + 1; i < to; i++) { e = list.get(i); if (cmp.compare(e, candidate) > 0) { candidate = e; } if (candidate == null && cmp == NULL_MAX_COMPARATOR) { return null; } } } else { final Iterator it = c.iterator(); for (int i = 0; i < to; i++) { if (i < from) { it.next(); continue; } else if (i == from) { candidate = it.next(); } else { e = it.next(); if (cmp.compare(e, candidate) > 0) { candidate = e; } } if (candidate == null && cmp == NULL_MAX_COMPARATOR) { return null; } } } return candidate; } public static > List maxAll(final T[] a) { return maxAll(a, NULL_MIN_COMPARATOR); } public static List maxAll(final T[] a, Comparator cmp) { if (N.isNullOrEmpty(a)) { return new ArrayList<>(); } cmp = cmp == null ? NULL_MIN_COMPARATOR : cmp; final List result = new ArrayList<>(); T candicate = a[0]; int cp = 0; result.add(candicate); for (int i = 1, len = a.length; i < len; i++) { cp = cmp.compare(a[i], candicate); if (cp == 0) { result.add(a[i]); } else if (cp > 0) { result.clear(); result.add(a[i]); candicate = a[i]; } } return result; } public static > List maxAll(final Collection c) { return maxAll(c, NULL_MIN_COMPARATOR); } public static List maxAll(final Collection c, Comparator cmp) { if (N.isNullOrEmpty(c)) { return new ArrayList<>(); } cmp = cmp == null ? NULL_MIN_COMPARATOR : cmp; final Iterator iter = c.iterator(); final List result = new ArrayList<>(); T candicate = iter.next(); T next = null; int cp = 0; result.add(candicate); while (iter.hasNext()) { next = iter.next(); cp = cmp.compare(next, candicate); if (cp == 0) { result.add(next); } else if (cp > 0) { result.clear(); result.add(next); candicate = next; } } return result; } /** * Gets the median of three values. * * @param a * @param b * @param c * @return the median of the values * @see #median(int...) */ public static char median(final char a, final char b, final char c) { if ((a >= b && a <= c) || (a >= c && a <= b)) { return a; } else if ((b >= a && b <= c) || (b >= c && b <= a)) { return b; } else { return c; } } /** * Gets the median of three values. * * @param a * @param b * @param c * @return the median of the values * @see #median(int...) */ public static byte median(final byte a, final byte b, final byte c) { if ((a >= b && a <= c) || (a >= c && a <= b)) { return a; } else if ((b >= a && b <= c) || (b >= c && b <= a)) { return b; } else { return c; } } /** * Gets the median of three values. * * @param a * @param b * @param c * @return the median of the values * @see #median(int...) */ public static short median(final short a, final short b, final short c) { if ((a >= b && a <= c) || (a >= c && a <= b)) { return a; } else if ((b >= a && b <= c) || (b >= c && b <= a)) { return b; } else { return c; } } /** * Gets the median of three values. * * @param a * @param b * @param c * @return the median of the values * @see #median(int...) */ public static int median(final int a, final int b, final int c) { if ((a >= b && a <= c) || (a >= c && a <= b)) { return a; } else if ((b >= a && b <= c) || (b >= c && b <= a)) { return b; } else { return c; } } /** * Gets the median of three values. * * @param a * @param b * @param c * @return the median of the values * @see #median(int...) */ public static long median(final long a, final long b, final long c) { if ((a >= b && a <= c) || (a >= c && a <= b)) { return a; } else if ((b >= a && b <= c) || (b >= c && b <= a)) { return b; } else { return c; } } /** * Gets the median of three values. * * @param a * @param b * @param c * @return the median of the values * @see #median(int...) */ public static float median(final float a, final float b, final float c) { int ab = Float.compare(a, b); int ac = Float.compare(a, c); int bc = 0; if ((ab >= 0 && ac <= 0) || (ac >= 0 && ab <= 0)) { return a; } else if ((((bc = Float.compare(b, c)) <= 0) && ab <= 0) || (bc >= 0 && ab >= 0)) { return b; } else { return c; } } /** * Gets the median of three values. * * @param a * @param b * @param c * @return the median of the values * @see #median(int...) */ public static double median(final double a, final double b, final double c) { int ab = Double.compare(a, b); int ac = Double.compare(a, c); int bc = 0; if ((ab >= 0 && ac <= 0) || (ac >= 0 && ab <= 0)) { return a; } else if ((((bc = Double.compare(b, c)) <= 0) && ab <= 0) || (bc >= 0 && ab >= 0)) { return b; } else { return c; } } /** * Gets the median of three values. * * @param a * @param b * @param c * @return the median of the values * @see #median(int...) */ public static > T median(final T a, final T b, final T c) { return (T) median(a, b, c, NULL_MIN_COMPARATOR); } /** * Gets the median of three values. * * @param a * @param b * @param c * @return the median of the values * @see #median(int...) */ public static T median(final T a, final T b, final T c, final Comparator cmp) { int ab = cmp.compare(a, b); int ac = cmp.compare(a, c); int bc = 0; if ((ab >= 0 && ac <= 0) || (ac >= 0 && ab <= 0)) { return a; } else if ((((bc = cmp.compare(b, c)) <= 0) && ab <= 0) || (bc >= 0 && ab >= 0)) { return b; } else { return c; } } /** * Returns the length / 2 + 1 largest value in the specified array. * * @param a an array, must not be null or empty * @return the median value in the array * @see #median(int...) */ @SafeVarargs public static char median(final char... a) { N.checkArgNotNullOrEmpty(a, "The spcified array 'a' can not be null or empty"); return median(a, 0, a.length); } public static char median(final char[] a, final int from, final int to) { if (N.isNullOrEmpty(a) || to - from < 1) { throw new IllegalArgumentException("The length of array can not be null or empty"); } checkFromToIndex(from, to, a.length); final int len = to - from; if (len == 1) { return a[from]; } else if (len == 2) { return min(a[from], a[from + 1]); } else if (len == 3) { return median(a[from], a[from + 1], a[from + 2]); } else { return kthLargest(a, from, to, len / 2 + 1); } } /** * Returns the length / 2 + 1 largest value in the specified array. * * @param a an array, must not be null or empty * @return the median value in the array * @see #median(int...) */ @SafeVarargs public static byte median(final byte... a) { N.checkArgNotNullOrEmpty(a, "The spcified array 'a' can not be null or empty"); return median(a, 0, a.length); } public static byte median(final byte[] a, final int from, final int to) { if (N.isNullOrEmpty(a) || to - from < 1) { throw new IllegalArgumentException("The length of array can not be null or empty"); } checkFromToIndex(from, to, a.length); final int len = to - from; if (len == 1) { return a[from]; } else if (len == 2) { return min(a[from], a[from + 1]); } else if (len == 3) { return median(a[from], a[from + 1], a[from + 2]); } else { return kthLargest(a, from, to, len / 2 + 1); } } /** * Returns the length / 2 + 1 largest value in the specified array. * * @param a an array, must not be null or empty * @return the median value in the array * @see #median(int...) */ @SafeVarargs public static short median(final short... a) { N.checkArgNotNullOrEmpty(a, "The spcified array 'a' can not be null or empty"); return median(a, 0, a.length); } public static short median(final short[] a, final int from, final int to) { if (N.isNullOrEmpty(a) || to - from < 1) { throw new IllegalArgumentException("The length of array can not be null or empty"); } checkFromToIndex(from, to, a.length); final int len = to - from; if (len == 1) { return a[from]; } else if (len == 2) { return min(a[from], a[from + 1]); } else if (len == 3) { return median(a[from], a[from + 1], a[from + 2]); } else { return kthLargest(a, from, to, len / 2 + 1); } } /** * Returns the length / 2 + 1 largest value in the specified array. * * @param a an array, must not be null or empty * @return the median value in the array * @see #median(int...) */ @SafeVarargs public static int median(final int... a) { N.checkArgNotNullOrEmpty(a, "The spcified array 'a' can not be null or empty"); return median(a, 0, a.length); } public static int median(final int[] a, final int from, final int to) { if (N.isNullOrEmpty(a) || to - from < 1) { throw new IllegalArgumentException("The length of array can not be null or empty"); } checkFromToIndex(from, to, a.length); final int len = to - from; if (len == 1) { return a[from]; } else if (len == 2) { return min(a[from], a[from + 1]); } else if (len == 3) { return median(a[from], a[from + 1], a[from + 2]); } else { return kthLargest(a, from, to, len / 2 + 1); } } /** * Returns the length / 2 + 1 largest value in the specified array. * * @param a an array, must not be null or empty * @return the median value in the array * @see #median(int...) */ @SafeVarargs public static long median(final long... a) { N.checkArgNotNullOrEmpty(a, "The spcified array 'a' can not be null or empty"); return median(a, 0, a.length); } public static long median(final long[] a, final int from, final int to) { if (N.isNullOrEmpty(a) || to - from < 1) { throw new IllegalArgumentException("The length of array can not be null or empty"); } checkFromToIndex(from, to, a.length); final int len = to - from; if (len == 1) { return a[from]; } else if (len == 2) { return min(a[from], a[from + 1]); } else if (len == 3) { return median(a[from], a[from + 1], a[from + 2]); } else { return kthLargest(a, from, to, len / 2 + 1); } } /** * Returns the length / 2 + 1 largest value in the specified array. * * @param a an array, must not be null or empty * @return the median value in the array * @see #median(int...) */ @SafeVarargs public static float median(final float... a) { N.checkArgNotNullOrEmpty(a, "The spcified array 'a' can not be null or empty"); return median(a, 0, a.length); } public static float median(final float[] a, final int from, final int to) { if (N.isNullOrEmpty(a) || to - from < 1) { throw new IllegalArgumentException("The length of array can not be null or empty"); } checkFromToIndex(from, to, a.length); final int len = to - from; if (len == 1) { return a[from]; } else if (len == 2) { return min(a[from], a[from + 1]); } else if (len == 3) { return median(a[from], a[from + 1], a[from + 2]); } else { return kthLargest(a, from, to, len / 2 + 1); } } /** * Returns the length / 2 + 1 largest value in the specified array. * * @param a an array, must not be null or empty * @return the median value in the array * @see #median(int...) */ @SafeVarargs public static double median(final double... a) { N.checkArgNotNullOrEmpty(a, "The spcified array 'a' can not be null or empty"); return median(a, 0, a.length); } public static double median(final double[] a, final int from, final int to) { if (N.isNullOrEmpty(a) || to - from < 1) { throw new IllegalArgumentException("The length of array can not be null or empty"); } checkFromToIndex(from, to, a.length); final int len = to - from; if (len == 1) { return a[from]; } else if (len == 2) { return min(a[from], a[from + 1]); } else if (len == 3) { return median(a[from], a[from + 1], a[from + 2]); } else { return kthLargest(a, from, to, len / 2 + 1); } } /** * Returns the length / 2 + 1 largest value in the specified array. * * @param a an array, must not be null or empty * @return the median value in the array * @see #median(int...) */ public static > T median(final T[] a) { N.checkArgNotNullOrEmpty(a, "The spcified array 'a' can not be null or empty"); return median(a, 0, a.length); } public static > T median(final T[] a, final int from, final int to) { if (N.isNullOrEmpty(a) || to - from < 1) { throw new IllegalArgumentException("The length of array can not be null or empty"); } return (T) median(a, from, to, NATURAL_ORDER); } /** * Returns the length / 2 + 1 largest value in the specified array. * * @param a an array, must not be null or empty * @return the median value in the array * @see #median(int...) */ public static T median(final T[] a, Comparator cmp) { N.checkArgNotNullOrEmpty(a, "The spcified array 'a' can not be null or empty"); return median(a, 0, a.length, cmp); } public static T median(final T[] a, final int from, final int to, Comparator cmp) { if (N.isNullOrEmpty(a) || to - from < 1) { throw new IllegalArgumentException("The length of array can not be null or empty"); } checkFromToIndex(from, to, a.length); cmp = cmp == null ? NATURAL_ORDER : cmp; final int len = to - from; return kthLargest(a, from, to, len / 2 + 1, cmp); } /** * Returns the length / 2 + 1 largest value in the specified array. * * @param a an array, must not be null or empty * @return the median value in the array * @see #median(int...) */ public static > T median(final Collection c) { N.checkArgNotNullOrEmpty(c, "The spcified collection 'c' can not be null or empty"); return median(c, 0, c.size()); } public static > T median(final Collection c, final int from, final int to) { return (T) median(c, from, to, NATURAL_ORDER); } /** * Returns the length / 2 + 1 largest value in the specified array. * * @param a an array, must not be null or empty * @return the median value in the array * @see #median(int...) */ public static T median(final Collection c, Comparator cmp) { N.checkArgNotNullOrEmpty(c, "The spcified collection 'c' can not be null or empty"); return median(c, 0, c.size(), cmp); } public static T median(final Collection c, final int from, final int to, Comparator cmp) { if (N.isNullOrEmpty(c) || to - from < 1) { throw new IllegalArgumentException("The length of collection can not be null or empty"); } checkFromToIndex(from, to, c.size()); cmp = cmp == null ? NATURAL_ORDER : cmp; final int len = to - from; return kthLargest(c, from, to, len / 2 + 1, cmp); } /** * * @param a * @param k * @return the kth largest element. * @throws IllegalArgumentException if the length of the specified array is less than k. */ public static char kthLargest(final char[] a, final int k) { N.checkArgNotNullOrEmpty(a, "The spcified array 'a' can not be null or empty"); return Array.kthLargest(a, k); } /** * * @param a * @param from * @param to * @param k * @return the kth largest element from a[from] to a[to] * @throws IllegalArgumentException if to - from is less than k. */ public static char kthLargest(final char[] a, final int from, final int to, final int k) { if (N.isNullOrEmpty(a) || to - from < 1) { throw new IllegalArgumentException("The length of array can not be null or empty"); } return Array.kthLargest(a, from, to, k); } /** * * @param a * @param k * @return the kth largest element. * @throws IllegalArgumentException if the length of the specified array is less than k. */ public static byte kthLargest(final byte[] a, final int k) { N.checkArgNotNullOrEmpty(a, "The spcified array 'a' can not be null or empty"); return Array.kthLargest(a, k); } /** * * @param a * @param from * @param to * @param k * @return the kth largest element from a[from] to a[to] * @throws IllegalArgumentException if to - from is less than k. */ public static byte kthLargest(final byte[] a, final int from, final int to, final int k) { if (N.isNullOrEmpty(a) || to - from < 1) { throw new IllegalArgumentException("The length of array can not be null or empty"); } return Array.kthLargest(a, from, to, k); } /** * * @param a * @param k * @return the kth largest element. * @throws IllegalArgumentException if the length of the specified array is less than k. */ public static short kthLargest(final short[] a, final int k) { N.checkArgNotNullOrEmpty(a, "The spcified array 'a' can not be null or empty"); return Array.kthLargest(a, k); } /** * * @param a * @param from * @param to * @param k * @return the kth largest element from a[from] to a[to] * @throws IllegalArgumentException if to - from is less than k. */ public static short kthLargest(final short[] a, final int from, final int to, final int k) { if (N.isNullOrEmpty(a) || to - from < 1) { throw new IllegalArgumentException("The length of array can not be null or empty"); } return Array.kthLargest(a, from, to, k); } /** * * @param a * @param k * @return the kth largest element. * @throws IllegalArgumentException if the length of the specified array is less than k. */ public static int kthLargest(final int[] a, final int k) { N.checkArgNotNullOrEmpty(a, "The spcified array 'a' can not be null or empty"); return Array.kthLargest(a, k); } /** * * @param a * @param from * @param to * @param k * @return the kth largest element from a[from] to a[to] * @throws IllegalArgumentException if to - from is less than k. */ public static int kthLargest(final int[] a, final int from, final int to, final int k) { if (N.isNullOrEmpty(a) || to - from < 1) { throw new IllegalArgumentException("The length of array can not be null or empty"); } return Array.kthLargest(a, from, to, k); } /** * * @param a * @param k * @return the kth largest element. * @throws IllegalArgumentException if the length of the specified array is less than k. */ public static long kthLargest(final long[] a, final int k) { N.checkArgNotNullOrEmpty(a, "The spcified array 'a' can not be null or empty"); return Array.kthLargest(a, k); } /** * * @param a * @param from * @param to * @param k * @return the kth largest element from a[from] to a[to] * @throws IllegalArgumentException if to - from is less than k. */ public static long kthLargest(final long[] a, final int from, final int to, final int k) { if (N.isNullOrEmpty(a) || to - from < 1) { throw new IllegalArgumentException("The length of array can not be null or empty"); } return Array.kthLargest(a, from, to, k); } /** * * @param a * @param k * @return the kth largest element. * @throws IllegalArgumentException if the length of the specified array is less than k. */ public static float kthLargest(final float[] a, final int k) { N.checkArgNotNullOrEmpty(a, "The spcified array 'a' can not be null or empty"); return Array.kthLargest(a, k); } /** * * @param a * @param from * @param to * @param k * @return the kth largest element from a[from] to a[to] * @throws IllegalArgumentException if to - from is less than k. */ public static float kthLargest(final float[] a, final int from, final int to, final int k) { if (N.isNullOrEmpty(a) || to - from < 1) { throw new IllegalArgumentException("The length of array can not be null or empty"); } return Array.kthLargest(a, from, to, k); } /** * * @param a * @param k * @return the kth largest element. * @throws IllegalArgumentException if the length of the specified array is less than k. */ public static double kthLargest(final double[] a, final int k) { N.checkArgNotNullOrEmpty(a, "The spcified array 'a' can not be null or empty"); return Array.kthLargest(a, k); } /** * * @param a * @param from * @param to * @param k * @return the kth largest element from a[from] to a[to] * @throws IllegalArgumentException if to - from is less than k. */ public static double kthLargest(final double[] a, final int from, final int to, final int k) { if (N.isNullOrEmpty(a) || to - from < 1) { throw new IllegalArgumentException("The length of array can not be null or empty"); } return Array.kthLargest(a, from, to, k); } /** * * @param a * @param k * @return the kth largest element. * @throws IllegalArgumentException if the length of the specified array is less than k. */ public static > T kthLargest(final T[] a, final int k) { N.checkArgNotNullOrEmpty(a, "The spcified array 'a' can not be null or empty"); return Array.kthLargest(a, k); } /** * * @param a * @param from * @param to * @param k * @return the kth largest element from a[from] to a[to] * @throws IllegalArgumentException if to - from is less than k. */ public static > T kthLargest(final T[] a, final int from, final int to, final int k) { if (N.isNullOrEmpty(a) || to - from < 1) { throw new IllegalArgumentException("The length of array can not be null or empty"); } return Array.kthLargest(a, from, to, k); } /** * * @param a * @param k * @param cmp * @return the kth largest element. * @throws IllegalArgumentException if the length of the specified array is less than k. */ public static T kthLargest(final T[] a, final int k, final Comparator cmp) { N.checkArgNotNullOrEmpty(a, "The spcified array 'a' can not be null or empty"); return Array.kthLargest(a, k, cmp); } /** * * @param a * @param from * @param to * @param k * @param cmp * @return the kth largest element from a[from] to a[to] * @throws IllegalArgumentException if to - from is less than k. */ public static T kthLargest(final T[] a, final int from, final int to, final int k, final Comparator cmp) { if (N.isNullOrEmpty(a) || to - from < 1) { throw new IllegalArgumentException("The length of array can not be null or empty"); } return Array.kthLargest(a, from, to, k, cmp); } /** * * @param c * @param k * @return the kth largest element. * @throws IllegalArgumentException if the length of the specified array is less than k. */ public static > T kthLargest(final Collection c, final int k) { N.checkArgNotNullOrEmpty(c, "The spcified collection 'c' can not be null or empty"); return Array.kthLargest(c, k); } /** * * @param c * @param from * @param to * @param k * @return the kth largest element from a[from] to a[to] * @throws IllegalArgumentException if to - from is less than k. */ public static > T kthLargest(final Collection c, final int from, final int to, final int k) { if (N.isNullOrEmpty(c) || to - from < 1) { throw new IllegalArgumentException("The length of collection can not be null or empty"); } return Array.kthLargest(c, from, to, k); } /** * * @param c * @param k * @param cmp * @return the kth largest element. * @throws IllegalArgumentException if the length of the specified array is less than k. */ public static T kthLargest(final Collection c, final int k, final Comparator cmp) { N.checkArgNotNullOrEmpty(c, "The spcified collection 'c' can not be null or empty"); return Array.kthLargest(c, k, cmp); } /** * * @param c * @param from * @param to * @param k * @param cmp * @return the kth largest element from a[from] to a[to] * @throws IllegalArgumentException if to - from is less than k. */ public static T kthLargest(final Collection c, final int from, final int to, final int k, final Comparator cmp) { if (N.isNullOrEmpty(c) || to - from < 1) { throw new IllegalArgumentException("The length of collection can not be null or empty"); } return Array.kthLargest(c, from, to, k, cmp); } /** * Returns the elements at: Percentage * length of the specified array. * * @param sortedArray * @return * @throws IllegalArgumentException if the specified sortedArray is null or empty. */ public static Map percentiles(final char[] sortedArray) { N.checkArgNotNullOrEmpty(sortedArray, "The spcified 'sortedArray' can not be null or empty"); final int len = sortedArray.length; final Map m = new LinkedHashMap<>(N.initHashCapacity(Percentage.values().length)); for (Percentage p : Percentage.values()) { m.put(p, sortedArray[(int) (len * p.doubleValue())]); } return ImmutableMap.of(m); } /** * Returns the elements at: Percentage * length of the specified array. * * @param sortedArray * @return * @throws IllegalArgumentException if the specified sortedArray is null or empty. */ public static Map percentiles(final byte[] sortedArray) { N.checkArgNotNullOrEmpty(sortedArray, "The spcified 'sortedArray' can not be null or empty"); final int len = sortedArray.length; final Map m = new LinkedHashMap<>(N.initHashCapacity(Percentage.values().length)); for (Percentage p : Percentage.values()) { m.put(p, sortedArray[(int) (len * p.doubleValue())]); } return ImmutableMap.of(m); } /** * Returns the elements at: Percentage * length of the specified array. * * @param sortedArray * @return * @throws IllegalArgumentException if the specified sortedArray is null or empty. */ public static Map percentiles(final short[] sortedArray) { N.checkArgNotNullOrEmpty(sortedArray, "The spcified 'sortedArray' can not be null or empty"); final int len = sortedArray.length; final Map m = new LinkedHashMap<>(N.initHashCapacity(Percentage.values().length)); for (Percentage p : Percentage.values()) { m.put(p, sortedArray[(int) (len * p.doubleValue())]); } return ImmutableMap.of(m); } /** * Returns the elements at: Percentage * length of the specified array. * * @param sortedArray * @return * @throws IllegalArgumentException if the specified sortedArray is null or empty. */ public static Map percentiles(final int[] sortedArray) { N.checkArgNotNullOrEmpty(sortedArray, "The spcified 'sortedArray' can not be null or empty"); final int len = sortedArray.length; final Map m = new LinkedHashMap<>(N.initHashCapacity(Percentage.values().length)); for (Percentage p : Percentage.values()) { m.put(p, sortedArray[(int) (len * p.doubleValue())]); } return ImmutableMap.of(m); } /** * Returns the elements at: Percentage * length of the specified array. * * @param sortedArray * @return * @throws IllegalArgumentException if the specified sortedArray is null or empty. */ public static Map percentiles(final long[] sortedArray) { N.checkArgNotNullOrEmpty(sortedArray, "The spcified 'sortedArray' can not be null or empty"); final int len = sortedArray.length; final Map m = new LinkedHashMap<>(N.initHashCapacity(Percentage.values().length)); for (Percentage p : Percentage.values()) { m.put(p, sortedArray[(int) (len * p.doubleValue())]); } return ImmutableMap.of(m); } /** * Returns the elements at: Percentage * length of the specified array. * * @param sortedArray * @return * @throws IllegalArgumentException if the specified sortedArray is null or empty. */ public static Map percentiles(final float[] sortedArray) { N.checkArgNotNullOrEmpty(sortedArray, "The spcified 'sortedArray' can not be null or empty"); final int len = sortedArray.length; final Map m = new LinkedHashMap<>(N.initHashCapacity(Percentage.values().length)); for (Percentage p : Percentage.values()) { m.put(p, sortedArray[(int) (len * p.doubleValue())]); } return ImmutableMap.of(m); } /** * Returns the elements at: Percentage * length of the specified array. * * @param sortedArray * @return * @throws IllegalArgumentException if the specified sortedArray is null or empty. */ public static Map percentiles(final double[] sortedArray) { N.checkArgNotNullOrEmpty(sortedArray, "The spcified 'sortedArray' can not be null or empty"); final int len = sortedArray.length; final Map m = new LinkedHashMap<>(N.initHashCapacity(Percentage.values().length)); for (Percentage p : Percentage.values()) { m.put(p, sortedArray[(int) (len * p.doubleValue())]); } return ImmutableMap.of(m); } /** * Returns the elements at: Percentage * length of the specified array. * * @param sortedArray * @return * @throws IllegalArgumentException if the specified sortedArray is null or empty. */ public static Map percentiles(final T[] sortedArray) { N.checkArgNotNullOrEmpty(sortedArray, "The spcified 'sortedArray' can not be null or empty"); final int len = sortedArray.length; final Map m = new LinkedHashMap<>(N.initHashCapacity(Percentage.values().length)); for (Percentage p : Percentage.values()) { m.put(p, sortedArray[(int) (len * p.doubleValue())]); } return ImmutableMap.of(m); } /** * Returns the elements at: Percentage * length of the specified array. * * @param sortedArray * @return * @throws IllegalArgumentException if the specified sortedArray is null or empty. */ public static Map percentiles(final List sortedList) { N.checkArgNotNullOrEmpty(sortedList, "The spcified 'sortedList' can not be null or empty"); final int size = sortedList.size(); final Map m = new LinkedHashMap<>(N.initHashCapacity(Percentage.values().length)); for (Percentage p : Percentage.values()) { m.put(p, sortedList.get((int) (size * p.doubleValue()))); } return ImmutableMap.of(m); } public static String toJSON(final Object obj) { return Utils.jsonParser.serialize(obj, Utils.jsc); } public static String toJSON(final Object obj, final JSONSerializationConfig config) { return Utils.jsonParser.serialize(obj, config); } public static void toJSON(final File file, final Object obj) { Utils.jsonParser.serialize(file, obj); } public static void toJSON(final File file, final Object obj, final JSONSerializationConfig config) { Utils.jsonParser.serialize(file, obj, config); } public static void toJSON(final OutputStream os, final Object obj) { Utils.jsonParser.serialize(os, obj); } public static void toJSON(final OutputStream os, final Object obj, final JSONSerializationConfig config) { Utils.jsonParser.serialize(os, obj, config); } public static void toJSON(final Writer writer, final Object obj) { Utils.jsonParser.serialize(writer, obj); } public static void toJSON(final Writer writer, final Object obj, final JSONSerializationConfig config) { Utils.jsonParser.serialize(writer, obj, config); } public static T fromJSON(final Class targetClass, final String json) { return Utils.jsonParser.deserialize(targetClass, json); } public static T fromJSON(final Class targetClass, final String json, final JSONDeserializationConfig config) { return Utils.jsonParser.deserialize(targetClass, json, config); } public static T fromJSON(final Class targetClass, final File json) { return Utils.jsonParser.deserialize(targetClass, json); } public static T fromJSON(final Class targetClass, final File json, final JSONDeserializationConfig config) { return Utils.jsonParser.deserialize(targetClass, json, config); } public static T fromJSON(final Class targetClass, final InputStream json) { return Utils.jsonParser.deserialize(targetClass, json); } public static T fromJSON(final Class targetClass, final InputStream json, final JSONDeserializationConfig config) { return Utils.jsonParser.deserialize(targetClass, json, config); } public static T fromJSON(final Class targetClass, final Reader json) { return Utils.jsonParser.deserialize(targetClass, json); } public static T fromJSON(final Class targetClass, final Reader json, final JSONDeserializationConfig config) { return Utils.jsonParser.deserialize(targetClass, json, config); } public static T fromJSON(final Class targetClass, final String json, final int fromIndex, final int toIndex) { return Utils.jsonParser.deserialize(targetClass, json, fromIndex, toIndex); } public static T fromJSON(final Class targetClass, final String json, final int fromIndex, final int toIndex, final JSONDeserializationConfig config) { return Utils.jsonParser.deserialize(targetClass, json, fromIndex, toIndex, config); } /** * * @param targetType can be the {@code Type} of {@code Entity/Array/Collection/Map}. * @param json * @return */ public static T fromJSON(final Type targetType, final String json) { return fromJSON(targetType, json, null); } /** * * @param targetType can be the {@code Type} of {@code Entity/Array/Collection/Map}. * @param json * @param config * @return */ public static T fromJSON(final Type targetType, final String json, final JSONDeserializationConfig config) { return Utils.jsonParser.deserialize(targetType.clazz(), json, setConfig(targetType, config, true)); } /** * * @param targetType can be the {@code Type} of {@code Entity/Array/Collection/Map}. * @param json * @return */ public static T fromJSON(final Type targetType, final File json) { return fromJSON(targetType, json, null); } /** * * @param targetType can be the {@code Type} of {@code Entity/Array/Collection/Map}. * @param json * @param config * @return */ public static T fromJSON(final Type targetType, final File json, final JSONDeserializationConfig config) { return Utils.jsonParser.deserialize(targetType.clazz(), json, setConfig(targetType, config, true)); } /** * * @param targetType can be the {@code Type} of {@code Entity/Array/Collection/Map}. * @param json * @return */ public static T fromJSON(final Type targetType, final InputStream json) { return fromJSON(targetType, json, null); } /** * * @param targetType can be the {@code Type} of {@code Entity/Array/Collection/Map}. * @param json * @param config * @return */ public static T fromJSON(final Type targetType, final InputStream json, final JSONDeserializationConfig config) { return Utils.jsonParser.deserialize(targetType.clazz(), json, setConfig(targetType, config, true)); } /** * * @param targetType can be the {@code Type} of {@code Entity/Array/Collection/Map}. * @param json * @return */ public static T fromJSON(final Type targetType, final Reader json) { return fromJSON(targetType, json, null); } /** * * @param targetType can be the {@code Type} of {@code Entity/Array/Collection/Map}. * @param json * @param config * @return */ public static T fromJSON(final Type targetType, final Reader json, final JSONDeserializationConfig config) { return Utils.jsonParser.deserialize(targetType.clazz(), json, setConfig(targetType, config, true)); } /** * * @param targetType can be the {@code Type} of {@code Entity/Array/Collection/Map}. * @param json * @param fromIndex * @param toIndex * @return */ public static T fromJSON(final Type targetType, final String json, final int fromIndex, final int toIndex) { return fromJSON(targetType, json, fromIndex, toIndex, null); } /** * * @param targetType can be the {@code Type} of {@code Entity/Array/Collection/Map}. * @param json * @param fromIndex * @param toIndex * @param config * @return */ public static T fromJSON(final Type targetType, final String json, final int fromIndex, final int toIndex, final JSONDeserializationConfig config) { return Utils.jsonParser.deserialize(targetType.clazz(), json, fromIndex, toIndex, setConfig(targetType, config, true)); } public static String toXML(final Object obj) { return Utils.xmlParser.serialize(obj); } public static String toXML(final Object obj, final XMLSerializationConfig config) { return Utils.xmlParser.serialize(obj, config); } public static void toXML(final File file, final Object obj) { Utils.xmlParser.serialize(file, obj); } public static void toXML(final File file, final Object obj, final XMLSerializationConfig config) { Utils.xmlParser.serialize(file, obj, config); } public static void toXML(final OutputStream os, final Object obj) { Utils.xmlParser.serialize(os, obj); } public static void toXML(final OutputStream os, final Object obj, final XMLSerializationConfig config) { Utils.xmlParser.serialize(os, obj, config); } public static void toXML(final Writer writer, final Object obj) { Utils.xmlParser.serialize(writer, obj); } public static void toXML(final Writer writer, final Object obj, final XMLSerializationConfig config) { Utils.xmlParser.serialize(writer, obj, config); } public static T fromXML(final Class targetClass, final String xml) { return Utils.xmlParser.deserialize(targetClass, xml); } public static T fromXML(final Class targetClass, final String xml, final XMLDeserializationConfig config) { return Utils.xmlParser.deserialize(targetClass, xml, config); } public static T fromXML(final Class targetClass, final File xml) { return Utils.xmlParser.deserialize(targetClass, xml); } public static T fromXML(final Class targetClass, final File xml, final XMLDeserializationConfig config) { return Utils.xmlParser.deserialize(targetClass, xml, config); } public static T fromXML(final Class targetClass, final InputStream xml) { return Utils.xmlParser.deserialize(targetClass, xml); } public static T fromXML(final Class targetClass, final InputStream xml, final XMLDeserializationConfig config) { return Utils.xmlParser.deserialize(targetClass, xml, config); } public static T fromXML(final Class targetClass, final Reader xml) { return Utils.xmlParser.deserialize(targetClass, xml); } public static T fromXML(final Class targetClass, final Reader xml, final XMLDeserializationConfig config) { return Utils.xmlParser.deserialize(targetClass, xml, config); } /** * * @param targetType can be the {@code Type} of {@code Entity/Array/Collection/Map}. * @param xml * @return */ public static T fromXML(final Type targetType, final String xml) { return fromJSON(targetType, xml, null); } /** * * @param targetType can be the {@code Type} of {@code Entity/Array/Collection/Map}. * @param xml * @param config * @return */ public static T fromXML(final Type targetType, final String xml, final XMLDeserializationConfig config) { return Utils.xmlParser.deserialize(targetType.clazz(), xml, setConfig(targetType, config, false)); } /** * * @param targetType can be the {@code Type} of {@code Entity/Array/Collection/Map}. * @param xml * @return */ public static T fromXML(final Type targetType, final File xml) { return fromJSON(targetType, xml, null); } /** * * @param targetType can be the {@code Type} of {@code Entity/Array/Collection/Map}. * @param xml * @param config * @return */ public static T fromXML(final Type targetType, final File xml, final XMLDeserializationConfig config) { return Utils.xmlParser.deserialize(targetType.clazz(), xml, setConfig(targetType, config, false)); } /** * * @param targetType can be the {@code Type} of {@code Entity/Array/Collection/Map}. * @param xml * @return */ public static T fromXML(final Type targetType, final InputStream xml) { return fromJSON(targetType, xml, null); } /** * * @param targetType can be the {@code Type} of {@code Entity/Array/Collection/Map}. * @param xml * @param config * @return */ public static T fromXML(final Type targetType, final InputStream xml, final XMLDeserializationConfig config) { return Utils.xmlParser.deserialize(targetType.clazz(), xml, setConfig(targetType, config, false)); } /** * * @param targetType can be the {@code Type} of {@code Entity/Array/Collection/Map}. * @param xml * @return */ public static T fromXML(final Type targetType, final Reader xml) { return fromJSON(targetType, xml, null); } /** * * @param targetType can be the {@code Type} of {@code Entity/Array/Collection/Map}. * @param xml * @param config * @return */ public static T fromXML(final Type targetType, final Reader xml, final XMLDeserializationConfig config) { return Utils.xmlParser.deserialize(targetType.clazz(), xml, setConfig(targetType, config, false)); } private static > C setConfig(final Type targetType, final C config, boolean isJSON) { C res = config; if (targetType.isCollection()) { if (config == null || config.getElementType() == null) { res = config == null ? (C) (isJSON ? JDC.create() : XDC.create()) : (C) config.copy(); res.setElementType(targetType.getParameterTypes()[0]); } } else if (targetType.isMap()) { if (config == null || config.getMapKeyType() == null || config.getMapValueType() == null) { res = config == null ? (C) (isJSON ? JDC.create() : XDC.create()) : (C) config.copy(); if (res.getMapKeyType() == null) { res.setMapKeyType(targetType.getParameterTypes()[0]); } if (res.getMapValueType() == null) { res.setMapValueType(targetType.getParameterTypes()[1]); } } } return res; } public static String xml2JSON(final String xml) { return xml2JSON(Map.class, xml); } public static String xml2JSON(final Class cls, final String xml) { return Utils.jsonParser.serialize(Utils.xmlParser.deserialize(cls, xml), Utils.jsc); } public static String json2XML(final String json) { return json2XML(Map.class, json); } public static String json2XML(final Class cls, final String json) { return Utils.xmlParser.serialize(Utils.jsonParser.deserialize(cls, json)); } public static void execute(final Try.Runnable cmd, final int retryTimes, final long retryInterval, final Predicate retryCondition) { try { Retry.of(retryTimes, retryInterval, retryCondition).run(cmd); } catch (Exception e) { throw N.toRuntimeException(e); } } public static T execute(final Callable cmd, final int retryTimes, final long retryInterval, final BiPredicate retryCondition) { try { final Retry retry = Retry.of(retryTimes, retryInterval, retryCondition); return retry.call(cmd); } catch (Exception e) { throw N.toRuntimeException(e); } } public static ContinuableFuture asyncExecute(final Runnable command) { return asyncExecutor.execute(command); } public static ContinuableFuture asyncExecute(final Runnable command, final long delay) { return asyncExecutor.execute(command, delay); } @SafeVarargs public static List> asyncExecute(final Runnable... commands) { return asyncExecutor.execute(commands); } public static List> asyncExecute(final List commands) { return asyncExecutor.execute(commands); } public static ContinuableFuture asyncExecute(final Callable command) { return asyncExecutor.execute(command); } public static ContinuableFuture asyncExecute(final Callable command, final long delay) { return asyncExecutor.execute(command, delay); } @SafeVarargs public static List> asyncExecute(final Callable... commands) { return asyncExecutor.execute(commands); } public static List> asyncExecute(final Collection> commands) { return asyncExecutor.execute(commands); } public static ContinuableFuture asyncExecute(final Try.Runnable cmd, final int retryTimes, final long retryInterval, final Predicate retryCondition) { return asyncExecutor.execute(new Callable() { @Override public Void call() throws Exception { Retry.of(retryTimes, retryInterval, retryCondition).run(cmd); return null; } }); } public static ContinuableFuture asyncExecute(final Callable cmd, final int retryTimes, final long retryInterval, final BiPredicate retryCondition) { return asyncExecutor.execute(new Callable() { @Override public T call() throws Exception { final Retry retry = Retry.of(retryTimes, retryInterval, retryCondition); return retry.call(cmd); } }); } public static void parse(final Iterator iter, final Try.Consumer elementParser) throws E { parse(iter, elementParser, Fn.emptyAction()); } public static void parse(final Iterator iter, final Try.Consumer elementParser, final Try.Runnable onComplete) throws E, E2 { parse(iter, 0, Long.MAX_VALUE, elementParser, onComplete); } public static void parse(final Iterator iter, final long offset, final long count, final Try.Consumer elementParser) throws E { parse(iter, offset, count, elementParser, Fn.emptyAction()); } public static void parse(final Iterator iter, final long offset, final long count, final Try.Consumer elementParser, final Try.Runnable onComplete) throws E, E2 { parse(iter, offset, count, 0, 0, elementParser, onComplete); } public static void parse(final Iterator iter, long offset, long count, final int processThreadNum, final int queueSize, final Try.Consumer elementParser) throws E { parse(iter, offset, count, processThreadNum, queueSize, elementParser, Fn.emptyAction()); } /** * Parse the elements in the specified iterators one by one. * * @param iter * @param offset * @param count * @param processThreadNum new threads started to parse/process the lines/records * @param queueSize size of queue to save the processing records/lines loaded from source data. Default size is 1024. * @param elementParser. * @param onComplete * @param onError */ public static void parse(final Iterator iter, long offset, long count, final int processThreadNum, final int queueSize, final Try.Consumer elementParser, final Try.Runnable onComplete) throws E, E2 { parse(N.asList(iter), offset, count, 0, processThreadNum, queueSize, elementParser, onComplete); } public static void parse(final Collection> iterators, final Try.Consumer elementParser) throws E { parse(iterators, elementParser, Fn.emptyAction()); } public static void parse(final Collection> iterators, final Try.Consumer elementParser, final Try.Runnable onComplete) throws E, E2 { parse(iterators, 0, Long.MAX_VALUE, elementParser, onComplete); } public static void parse(final Collection> iterators, final long offset, final long count, final Try.Consumer elementParser) throws E { parse(iterators, offset, count, elementParser, Fn.emptyAction()); } public static void parse(final Collection> iterators, final long offset, final long count, final Try.Consumer elementParser, final Try.Runnable onComplete) throws E, E2 { parse(iterators, offset, count, 0, 0, 0, elementParser, onComplete); } public static void parse(final Collection> iterators, final int readThreadNum, final int processThreadNum, final int queueSize, final Try.Consumer elementParser) throws E { parse(iterators, readThreadNum, processThreadNum, queueSize, elementParser, Fn.emptyAction()); } public static void parse(final Collection> iterators, final int readThreadNum, final int processThreadNum, final int queueSize, final Try.Consumer elementParser, final Try.Runnable onComplete) throws E { parse(iterators, 0, Long.MAX_VALUE, readThreadNum, processThreadNum, queueSize, elementParser); } public static void parse(final Collection> iterators, final long offset, final long count, final int readThreadNum, final int processThreadNum, final int queueSize, final Try.Consumer elementParser) throws E { parse(iterators, offset, count, readThreadNum, processThreadNum, queueSize, elementParser, Fn.emptyAction()); } /** * Parse the elements in the specified iterators one by one. * * @param iterators * @param offset * @param count * @param readThreadNum new threads started to parse/process the lines/records * @param processThreadNum new threads started to parse/process the lines/records * @param queueSize size of queue to save the processing records/lines loaded from source data. Default size is 1024. * @param elementParser. * @param onComplete */ public static void parse(final Collection> iterators, final long offset, final long count, final int readThreadNum, final int processThreadNum, final int queueSize, final Try.Consumer elementParser, final Try.Runnable onComplete) throws E, E2 { N.checkArgument(offset >= 0 && count >= 0, "'offset'=%s and 'count'=%s can not be negative", offset, count); if (N.isNullOrEmpty(iterators)) { return; } if (logger.isInfoEnabled()) { logger.info("### Start to parse"); } try (final Stream stream = ((readThreadNum > 0 || queueSize > 0) ? Stream.parallelConcatt(iterators, (readThreadNum == 0 ? 1 : readThreadNum), (queueSize == 0 ? 1024 : queueSize)) : Stream.concatt(iterators))) { final Iterator iteratorII = stream.skip(offset).limit(count).iterator(); if (processThreadNum == 0) { while (iteratorII.hasNext()) { elementParser.accept(iteratorII.next()); } if (onComplete != null) { onComplete.run(); } } else { final AtomicInteger activeThreadNum = new AtomicInteger(); final ExecutorService executorService = Executors.newFixedThreadPool(processThreadNum); final Holder errorHolder = new Holder<>(); for (int i = 0; i < processThreadNum; i++) { activeThreadNum.incrementAndGet(); executorService.execute(new Runnable() { @Override public void run() { T element = null; try { while (errorHolder.value() == null) { synchronized (iteratorII) { if (iteratorII.hasNext()) { element = iteratorII.next(); } else { break; } } elementParser.accept(element); } } catch (Exception e) { synchronized (errorHolder) { if (errorHolder.value() == null) { errorHolder.setValue(e); } else { errorHolder.value().addSuppressed(e); } } } finally { activeThreadNum.decrementAndGet(); } } }); } while (activeThreadNum.get() > 0) { N.sleep(1); } if (errorHolder.value() == null && onComplete != null) { try { onComplete.run(); } catch (Exception e) { errorHolder.setValue(e); } } if (errorHolder.value() != null) { throw N.toRuntimeException(errorHolder.value()); } } } finally { if (logger.isInfoEnabled()) { logger.info("### ### End to parse"); } } } public static RuntimeException toRuntimeException(Throwable e) { if (e instanceof RuntimeException) { return (RuntimeException) e; } else if (e instanceof ExecutionException || e instanceof InvocationTargetException) { return e.getCause() == null ? new UncheckedException(e) : toRuntimeException(e.getCause()); } else if (e instanceof IOException) { return new UncheckedIOException((IOException) e); } else if (e instanceof SQLException) { return new UncheckedSQLException((SQLException) e); } else { return new UncheckedException(e); } } public static void sleep(final long timeoutInMillis) { if (timeoutInMillis <= 0) { return; } try { TimeUnit.MILLISECONDS.sleep(timeoutInMillis); } catch (InterruptedException e) { throw new UncheckedException(e); } } public static void sleep(final long timeout, final TimeUnit unit) { N.checkArgNotNull(unit, "unit"); if (timeout <= 0) { return; } try { unit.sleep(timeout); } catch (InterruptedException e) { throw new UncheckedException(e); } } /** * Note: Copied from Google Guava under Apache License v2.0 *
*
* * If a thread is interrupted during such a call, the call continues to block until the result is available or the * timeout elapses, and only then re-interrupts the thread. * * @param timeoutInMillis */ public static void sleepUninterruptibly(final long timeoutInMillis) { if (timeoutInMillis <= 0) { return; } boolean interrupted = false; try { long remainingNanos = TimeUnit.MILLISECONDS.toNanos(timeoutInMillis); final long sysNanos = System.nanoTime(); final long end = remainingNanos >= Long.MAX_VALUE - sysNanos ? Long.MAX_VALUE : sysNanos + remainingNanos; while (true) { try { // TimeUnit.sleep() treats negative timeouts just like zero. TimeUnit.NANOSECONDS.sleep(remainingNanos); return; } catch (InterruptedException e) { interrupted = true; remainingNanos = end - System.nanoTime(); } } } finally { if (interrupted) { Thread.currentThread().interrupt(); } } } /** * Note: Copied from Google Guava under Apache License v2.0 *
*
* * If a thread is interrupted during such a call, the call continues to block until the result is available or the * timeout elapses, and only then re-interrupts the thread. * * @param timeoutInMillis */ public static void sleepUninterruptibly(final long timeout, final TimeUnit unit) { N.checkArgNotNull(unit, "unit"); if (timeout <= 0) { return; } boolean interrupted = false; try { long remainingNanos = unit.toNanos(timeout); final long sysNanos = System.nanoTime(); final long end = remainingNanos >= Long.MAX_VALUE - sysNanos ? Long.MAX_VALUE : sysNanos + remainingNanos; while (true) { try { // TimeUnit.sleep() treats negative timeouts just like zero. TimeUnit.NANOSECONDS.sleep(remainingNanos); return; } catch (InterruptedException e) { interrupted = true; remainingNanos = end - System.nanoTime(); } } } finally { if (interrupted) { Thread.currentThread().interrupt(); } } } /** * Note: Copied from Google Guava under Apache License v2.0 *
*
* * If a thread is interrupted during such a call, the call continues to block until the result is available or the * timeout elapses, and only then re-interrupts the thread. * * @param cmd */ public static void runUninterruptibly(final Try.Runnable cmd) { N.checkArgNotNull(cmd); boolean interrupted = false; try { while (true) { try { cmd.run(); return; } catch (InterruptedException e) { interrupted = true; } } } finally { if (interrupted) { Thread.currentThread().interrupt(); } } } /** * Note: Copied from Google Guava under Apache License v2.0 *
*
* * If a thread is interrupted during such a call, the call continues to block until the result is available or the * timeout elapses, and only then re-interrupts the thread. * * @param timeoutInMillis * @param cmd */ public static void runUninterruptibly(final long timeoutInMillis, final Try.LongConsumer cmd) { N.checkArgNotNull(cmd); boolean interrupted = false; try { long remainingMillis = timeoutInMillis; final long sysMillis = System.currentTimeMillis(); final long end = remainingMillis >= Long.MAX_VALUE - sysMillis ? Long.MAX_VALUE : sysMillis + remainingMillis; while (true) { try { cmd.accept(remainingMillis); return; } catch (InterruptedException e) { interrupted = true; remainingMillis = end - System.currentTimeMillis(); } } } finally { if (interrupted) { Thread.currentThread().interrupt(); } } } /** * Note: Copied from Google Guava under Apache License v2.0 *
*
* * If a thread is interrupted during such a call, the call continues to block until the result is available or the * timeout elapses, and only then re-interrupts the thread. * * @param timeout * @param unit * @param cmd */ public static void runUninterruptibly(final long timeout, final TimeUnit unit, final Try.BiConsumer cmd) { N.checkArgNotNull(unit, "unit"); N.checkArgNotNull(cmd); boolean interrupted = false; try { long remainingNanos = unit.toNanos(timeout); final long sysNanos = System.nanoTime(); final long end = remainingNanos >= Long.MAX_VALUE - sysNanos ? Long.MAX_VALUE : sysNanos + remainingNanos; while (true) { try { cmd.accept(remainingNanos, TimeUnit.NANOSECONDS); return; } catch (InterruptedException e) { interrupted = true; remainingNanos = end - System.nanoTime(); } } } finally { if (interrupted) { Thread.currentThread().interrupt(); } } } /** * Note: Copied from Google Guava under Apache License v2.0 *
*
* * If a thread is interrupted during such a call, the call continues to block until the result is available or the * timeout elapses, and only then re-interrupts the thread. * * @param cmd * @return */ public static T callUninterruptibly(Try.Callable cmd) { N.checkArgNotNull(cmd); boolean interrupted = false; try { while (true) { try { return cmd.call(); } catch (InterruptedException e) { interrupted = true; } } } finally { if (interrupted) { Thread.currentThread().interrupt(); } } } /** * Note: Copied from Google Guava under Apache License v2.0 *
*
* * If a thread is interrupted during such a call, the call continues to block until the result is available or the * timeout elapses, and only then re-interrupts the thread. * * @param timeoutInMillis * @param cmd * @return */ public static T callUninterruptibly(final long timeoutInMillis, final Try.LongFunction cmd) { N.checkArgNotNull(cmd); boolean interrupted = false; try { long remainingMillis = timeoutInMillis; final long sysMillis = System.currentTimeMillis(); final long end = remainingMillis >= Long.MAX_VALUE - sysMillis ? Long.MAX_VALUE : sysMillis + remainingMillis; while (true) { try { return cmd.apply(remainingMillis); } catch (InterruptedException e) { interrupted = true; remainingMillis = end - System.currentTimeMillis(); } } } finally { if (interrupted) { Thread.currentThread().interrupt(); } } } /** * Note: Copied from Google Guava under Apache License v2.0 *
*
* * If a thread is interrupted during such a call, the call continues to block until the result is available or the * timeout elapses, and only then re-interrupts the thread. * * @param timeout * @param unit * @param cmd * @return */ public static T callUninterruptibly(final long timeout, final TimeUnit unit, final Try.BiFunction cmd) { N.checkArgNotNull(unit, "unit"); N.checkArgNotNull(cmd); boolean interrupted = false; try { long remainingNanos = unit.toNanos(timeout); final long sysNanos = System.nanoTime(); final long end = remainingNanos >= Long.MAX_VALUE - sysNanos ? Long.MAX_VALUE : sysNanos + remainingNanos; while (true) { try { return cmd.apply(remainingNanos, TimeUnit.NANOSECONDS); } catch (InterruptedException e) { interrupted = true; remainingNanos = end - System.nanoTime(); } } } finally { if (interrupted) { Thread.currentThread().interrupt(); } } } /** * * @param obj * @return the input obj */ public static T println(final T obj) { final String str = N.deepToString(obj); System.out.println(str); return obj; } /** * * @param format * @param args * @return the input args */ @SafeVarargs public static T[] fprintln(final String format, final T... args) { System.out.printf(format, args); System.out.println(); return args; } /** * Returns the value of the {@code long} argument; throwing an exception if the value overflows an {@code int}. * * @param value the long value * @return the argument as an int * @throws ArithmeticException if the {@code argument} overflows an int */ public static int toIntExact(long value) { if (value < Integer.MIN_VALUE || value > Integer.MAX_VALUE) { throw new ArithmeticException("integer overflow"); } return (int) value; } /** * Returns an empty Nullable if {@code val} is {@code null} while {@code targetType} is primitive or can not be assigned to {@code targetType}. * Please be aware that {@code null} can be assigned to any {@code Object} type except primitive types: {@code boolean/char/byte/short/int/long/double}. * * @param val * @param targetType * @return */ @SuppressWarnings("unchecked") public static Nullable castIfAssignable(final Object val, final Class targetType) { if (Primitives.isPrimitiveType(targetType)) { return val != null && Primitives.wrap(targetType).isAssignableFrom(val.getClass()) ? Nullable.of((T) val) : Nullable. empty(); } return val == null || targetType.isAssignableFrom(val.getClass()) ? Nullable.of((T) val) : Nullable. empty(); } /** * Returns a {@code Nullable} with the value returned by {@code action} or an empty {@code Nullable} if exception happens. * * @param cmd * @return */ public static Nullable tryOrEmpty(final Callable cmd) { try { return Nullable.of(cmd.call()); } catch (Exception e) { return Nullable. empty(); } } /** * Returns a {@code Nullable} with the value returned by {@code func.apply(seed)} or an empty {@code Nullable} if exception happens. * * @param seed * @param func * @return */ public static Nullable tryOrEmpty(final T seed, final Try.Function func) { try { return Nullable.of(func.apply(seed)); } catch (Exception e) { return Nullable. empty(); } } /** * Returns a {@code Nullable} with value got from the specified {@code supplier} if {@code b} is {@code true}, * otherwise returns an empty {@code Nullable} if {@code b} is false. * * @param b * @param supplier * @return * @throws E */ public static Nullable ifOrEmpty(final boolean b, final Try.Supplier supplier) throws E { if (b) { return Nullable.of(supplier.get()); } else { return Nullable.empty(); } } /** * Returns a {@code Nullable} with value returned by {@code func.apply(seed)} if {@code b} is {@code true}, * otherwise returns an empty {@code Nullable} if {@code b} is false. * * @param b * @param seed * @param func * @return * @throws E */ public static Nullable ifOrEmpty(final boolean b, final T seed, final Try.Function func) throws E { if (b) { return Nullable.of(func.apply(seed)); } else { return Nullable.empty(); } } /** * * @param b * @param actionForTrue do nothing if it's {@code null} even {@code b} is true. * @param actionForFalse do nothing if it's {@code null} even {@code b} is false. * @throws E1 * @throws E2 */ public static void ifOrElse(final boolean b, final Try.Runnable actionForTrue, final Try.Runnable actionForFalse) throws E1, E2 { if (b) { if (actionForTrue != null) { actionForTrue.run(); } } else { if (actionForFalse != null) { actionForFalse.run(); } } } /** * * @param b * @param seed * @param actionForTrue do nothing if it's {@code null} even {@code b} is true. * @param actionForFalse do nothing if it's {@code null} even {@code b} is false. * @throws E1 * @throws E2 */ public static void ifOrElse(final boolean b, final T seed, final Try.Consumer actionForTrue, final Try.Consumer actionForFalse) throws E1, E2 { if (b) { if (actionForTrue != null) { actionForTrue.accept(seed); } } else { if (actionForFalse != null) { actionForFalse.accept(seed); } } } // /** // * // * @param value // * @return // */ // public static OptionalBoolean nullable(Boolean value) { // return OptionalBoolean.ofNullable(value); // } // // /** // * // * @param value // * @return // */ // public static OptionalChar nullable(Character value) { // return OptionalChar.ofNullable(value); // } // // /** // * // * @param value // * @return // */ // public static OptionalByte nullable(Byte value) { // return OptionalByte.ofNullable(value); // } // // /** // * // * @param value // * @return // */ // public static OptionalShort nullable(Short value) { // return OptionalShort.ofNullable(value); // } // // /** // * // * @param value // * @return // */ // public static OptionalInt nullable(Integer value) { // return OptionalInt.ofNullable(value); // } // // /** // * // * @param value // * @return // */ // public static OptionalLong nullable(Long value) { // return OptionalLong.ofNullable(value); // } // // /** // * // * @param value // * @return // */ // public static OptionalFloat nullable(Float value) { // return OptionalFloat.ofNullable(value); // } // // /** // * // * @param value // * @return // */ // public static OptionalDouble nullable(Double value) { // return OptionalDouble.ofNullable(value); // } // // /** // * // * @param value // * @return // */ // public static Optional nullable(T value) { // return Optional.ofNullable(value); // } /** * * @param a * @return * @see Iterators#concat(Object[]...) */ @SafeVarargs public static ObjIterator iterate(final T[]... a) { return Iterators.concat(a); } /** * * @param a * @return * @see Iterators#concat(Collection) */ @SafeVarargs public static ObjIterator iterate(final Collection... a) { return Iterators.concat(a); } /** * * @param c * @return * @see Iterators#concatt(Collection) */ public static ObjIterator iterate(final Collection> c) { return Iterators.concatt(c); } public static boolean disjoint(final Object[] a, final Object[] b) { if (isNullOrEmpty(a) || isNullOrEmpty(b)) { return true; } return a.length >= b.length ? disjoint(Arrays.asList(a), asSet(b)) : disjoint(asSet(a), Arrays.asList(b)); } /** * Returns {@code true} if the two specified arrays have no elements in common. * * @param a * @param b * @return {@code true} if the two specified arrays have no elements in common. * @see Collections#disjoint(Collection, Collection) */ public static boolean disjoint(final Collection c1, final Collection c2) { if (isNullOrEmpty(c1) || isNullOrEmpty(c2)) { return true; } if (c1 instanceof Set || (c2 instanceof Set == false && c1.size() > c2.size())) { for (Object e : c2) { if (c1.contains(e)) { return false; } } } else { for (Object e : c1) { if (c2.contains(e)) { return false; } } } return true; } public static List merge(final T[] a, final T[] b, final Try.BiFunction nextSelector) throws E { if (isNullOrEmpty(a)) { return isNullOrEmpty(b) ? new ArrayList() : asList(b); } else if (isNullOrEmpty(b)) { return asList(a); } final List result = new ArrayList<>(a.length + b.length); final int lenA = a.length; final int lenB = b.length; int cursorA = 0; int cursorB = 0; while (cursorA < lenA || cursorB < lenB) { if (cursorA < lenA) { if (cursorB < lenB) { if (nextSelector.apply(a[cursorA], b[cursorB]) == Nth.FIRST) { result.add(a[cursorA++]); } else { result.add(b[cursorB++]); } } else { result.add(a[cursorA++]); } } else { result.add(b[cursorB++]); } } return result; } public static List merge(final Collection a, final Collection b, final Try.BiFunction nextSelector) throws E { if (isNullOrEmpty(a)) { return isNullOrEmpty(b) ? new ArrayList() : new ArrayList(b); } else if (isNullOrEmpty(b)) { return new ArrayList(a); } final List result = new ArrayList<>(a.size() + b.size()); final Iterator iterA = a.iterator(); final Iterator iterB = b.iterator(); T nextA = null; T nextB = null; boolean hasNextA = false; boolean hasNextB = false; while (hasNextA || hasNextB || iterA.hasNext() || iterB.hasNext()) { if (hasNextA) { if (iterB.hasNext()) { if (nextSelector.apply(nextA, (nextB = iterB.next())) == Nth.FIRST) { hasNextA = false; hasNextB = true; result.add(nextA); } else { result.add(nextB); } } else { hasNextA = false; result.add(nextA); } } else if (hasNextB) { if (iterA.hasNext()) { if (nextSelector.apply((nextA = iterA.next()), nextB) == Nth.FIRST) { result.add(nextA); } else { hasNextA = true; hasNextB = false; result.add(nextB); } } else { hasNextB = false; result.add(nextB); } } else if (iterA.hasNext()) { if (iterB.hasNext()) { if (nextSelector.apply((nextA = iterA.next()), (nextB = iterB.next())) == Nth.FIRST) { hasNextB = true; result.add(nextA); } else { hasNextA = true; result.add(nextB); } } else { result.add(iterA.next()); } } else { result.add(iterB.next()); } } return result; } public static List zip(final A[] a, final B[] b, final Try.BiFunction zipFunction) throws E { if (isNullOrEmpty(a) || isNullOrEmpty(b)) { return new ArrayList<>(); } final int minLen = min(a.length, b.length); final List result = new ArrayList<>(minLen); for (int i = 0; i < minLen; i++) { result.add(zipFunction.apply(a[i], b[i])); } return result; } public static List zip(final Collection a, final Collection b, final Try.BiFunction zipFunction) throws E { if (isNullOrEmpty(a) || isNullOrEmpty(b)) { return new ArrayList<>(); } final Iterator iterA = a.iterator(); final Iterator iterB = b.iterator(); final int minLen = min(a.size(), b.size()); final List result = new ArrayList<>(minLen); for (int i = 0; i < minLen; i++) { result.add(zipFunction.apply(iterA.next(), iterB.next())); } return result; } public static List zip(final A[] a, final B[] b, final C[] c, final Try.TriFunction zipFunction) throws E { if (isNullOrEmpty(a) || isNullOrEmpty(b) || isNullOrEmpty(c)) { return new ArrayList<>(); } final int minLen = min(a.length, b.length, c.length); final List result = new ArrayList<>(minLen); for (int i = 0; i < minLen; i++) { result.add(zipFunction.apply(a[i], b[i], c[i])); } return result; } public static List zip(final Collection a, final Collection b, final Collection c, final Try.TriFunction zipFunction) throws E { if (isNullOrEmpty(a) || isNullOrEmpty(b) || isNullOrEmpty(c)) { return new ArrayList<>(); } final Iterator iterA = a.iterator(); final Iterator iterB = b.iterator(); final Iterator iterC = c.iterator(); final int minLen = min(a.size(), b.size(), c.size()); final List result = new ArrayList<>(minLen); for (int i = 0; i < minLen; i++) { result.add(zipFunction.apply(iterA.next(), iterB.next(), iterC.next())); } return result; } public static List zip(final A[] a, final B[] b, final A valueForNoneA, final B valueForNoneB, final Try.BiFunction zipFunction) throws E { final int lenA = len(a); final int lenB = len(b); final int maxLen = max(lenA, lenB); final List result = new ArrayList<>(maxLen); for (int i = 0; i < maxLen; i++) { result.add(zipFunction.apply(i < lenA ? a[i] : valueForNoneA, i < lenB ? b[i] : valueForNoneB)); } return result; } public static List zip(final Collection a, final Collection b, final A valueForNoneA, final B valueForNoneB, final Try.BiFunction zipFunction) throws E { final Iterator iterA = a == null ? ObjIterator. empty() : a.iterator(); final Iterator iterB = b == null ? ObjIterator. empty() : b.iterator(); final int lenA = len(a); final int lenB = len(b); final int maxLen = max(lenA, lenB); final List result = new ArrayList<>(maxLen); for (int i = 0; i < maxLen; i++) { result.add(zipFunction.apply(i < lenA ? iterA.next() : valueForNoneA, i < lenB ? iterB.next() : valueForNoneB)); } return result; } public static List zip(final A[] a, final B[] b, final C[] c, final A valueForNoneA, final B valueForNoneB, final C valueForNoneC, final Try.TriFunction zipFunction) throws E { final int lenA = len(a); final int lenB = len(b); final int lenC = len(c); final int maxLen = max(lenA, lenB, lenC); final List result = new ArrayList<>(maxLen); for (int i = 0; i < maxLen; i++) { result.add(zipFunction.apply(i < lenA ? a[i] : valueForNoneA, i < lenB ? b[i] : valueForNoneB, i < lenC ? c[i] : valueForNoneC)); } return result; } public static List zip(final Collection a, final Collection b, final Collection c, final A valueForNoneA, final B valueForNoneB, final C valueForNoneC, final Try.TriFunction zipFunction) throws E { final Iterator iterA = a == null ? ObjIterator. empty() : a.iterator(); final Iterator iterB = b == null ? ObjIterator. empty() : b.iterator(); final Iterator iterC = c == null ? ObjIterator. empty() : c.iterator(); final int lenA = len(a); final int lenB = len(b); final int lenC = len(c); final int maxLen = max(lenA, lenB, lenC); final List result = new ArrayList<>(maxLen); for (int i = 0; i < maxLen; i++) { result.add(zipFunction.apply(i < lenA ? iterA.next() : valueForNoneA, i < lenB ? iterB.next() : valueForNoneB, i < lenC ? iterC.next() : valueForNoneC)); } return result; } /** * * @param c * @param unzip the second parameter is an output parameter. * @return */ public static Pair, List> unzip(final Collection c, final Try.BiConsumer, E> unzip) throws E { final int len = len(c); final List l = new ArrayList(len); final List r = new ArrayList(len); final Pair p = new Pair<>(); if (notNullOrEmpty(c)) { for (T e : c) { unzip.accept(e, p); l.add(p.left); r.add(p.right); } } return Pair.of(l, r); } /** * * @param c * @param unzip the second parameter is an output parameter. * @param supplier * @return */ public static , RC extends Collection, E extends Exception> Pair unzip(final Collection c, final Try.BiConsumer, E> unzip, final IntFunction> supplier) throws E { final int len = len(c); final LC l = (LC) supplier.apply(len); final RC r = (RC) supplier.apply(len); final Pair p = new Pair<>(); if (notNullOrEmpty(c)) { for (T e : c) { unzip.accept(e, p); l.add(p.left); r.add(p.right); } } return Pair.of(l, r); } /** * * @param c * @param unzip the second parameter is an output parameter. * @return */ public static Triple, List, List> unzipp(final Collection c, final Try.BiConsumer, E> unzip) throws E { final int len = len(c); final List l = new ArrayList(len); final List m = new ArrayList(len); final List r = new ArrayList(len); final Triple t = new Triple<>(); if (notNullOrEmpty(c)) { for (T e : c) { unzip.accept(e, t); l.add(t.left); m.add(t.middle); r.add(t.right); } } return Triple.of(l, m, r); } /** * * @param c * @param unzip the second parameter is an output parameter. * @param supplier * @return */ public static , MC extends Collection, RC extends Collection, E extends Exception> Triple unzipp( final Collection c, final Try.BiConsumer, E> unzip, final IntFunction> supplier) throws E { final int len = len(c); final LC l = (LC) supplier.apply(len); final MC m = (MC) supplier.apply(len); final RC r = (RC) supplier.apply(len); final Triple t = new Triple<>(); if (notNullOrEmpty(c)) { for (T e : c) { unzip.accept(e, t); l.add(t.left); m.add(t.middle); r.add(t.right); } } return Triple.of(l, m, r); } public static List> rollup(Collection c) { final List> res = new ArrayList<>(); res.add(new ArrayList()); if (notNullOrEmpty(c)) { for (T e : c) { final List prev = res.get(res.size() - 1); List cur = new ArrayList<>(prev.size() + 1); cur.addAll(prev); cur.add(e); res.add(cur); } } return res; } /** * Note: copy from Google Guava under Apache License v2. *
* * Returns the set of all possible subsets of {@code set}. For example, * {@code powerSet(ImmutableSet.of(1, 2))} returns the set {@code {{}, * {1}, {2}, {1, 2}}}. * *

Elements appear in these subsets in the same iteration order as they * appeared in the input set. The order in which these subsets appear in the * outer set is undefined. Note that the power set of the empty set is not the * empty set, but a one-element set containing the empty set. * *

The returned set and its constituent sets use {@code equals} to decide * whether two elements are identical, even if the input set uses a different * concept of equivalence. * *

Notes: This is an implementation of the Plain Changes algorithm * for permutations generation, described in Knuth's "The Art of Computer * Programming", Volume 4, Chapter 7, Section 7.2.1.2. * *

If the input list contains equal elements, some of the generated * permutations will be equal. * *

An empty collection has only one permutation, which is an empty list. * * @param elements the original collection whose elements have to be permuted. * @return an immutable {@link Collection} containing all the different * permutations of the original collection. * @throws NullPointerException if the specified collection is null or has any * null elements. */ public static Collection> permutations(Collection elements) { return new PermutationCollection(elements); } /** * Note: copy from Google Guava under Apache License v2. *
* * Returns a {@link Collection} of all the permutations of the specified * {@link Iterable}. * *

Notes: This is an implementation of the algorithm for * Lexicographical Permutations Generation, described in Knuth's "The Art of * Computer Programming", Volume 4, Chapter 7, Section 7.2.1.2. The * iteration order follows the lexicographical order. This means that * the first permutation will be in ascending order, and the last will be in * descending order. * *

Duplicate elements are considered equal. For example, the list [1, 1] * will have only one permutation, instead of two. This is why the elements * have to implement {@link Comparable}. * *

An empty iterable has only one permutation, which is an empty list. * *

This method is equivalent to * {@code Collections2.orderedPermutations(list, Ordering.natural())}. * * @param elements the original iterable whose elements have to be permuted. * @return an immutable {@link Collection} containing all the different * permutations of the original iterable. * @throws NullPointerException if the specified iterable is null or has any * null elements. */ public static > Collection> orderedPermutations(Collection elements) { return orderedPermutations(elements, Comparators.naturalOrder()); } /** * Note: copy from Google Guava under Apache License v2. *
* * Returns a {@link Collection} of all the permutations of the specified * {@link Iterable} using the specified {@link Comparator} for establishing * the lexicographical ordering. * *

Examples:

   {@code
     *
     *   for (List perm : orderedPermutations(asList("b", "c", "a"))) {
     *     println(perm);
     *   }
     *   // -> ["a", "b", "c"]
     *   // -> ["a", "c", "b"]
     *   // -> ["b", "a", "c"]
     *   // -> ["b", "c", "a"]
     *   // -> ["c", "a", "b"]
     *   // -> ["c", "b", "a"]
     *
     *   for (List perm : orderedPermutations(asList(1, 2, 2, 1))) {
     *     println(perm);
     *   }
     *   // -> [1, 1, 2, 2]
     *   // -> [1, 2, 1, 2]
     *   // -> [1, 2, 2, 1]
     *   // -> [2, 1, 1, 2]
     *   // -> [2, 1, 2, 1]
     *   // -> [2, 2, 1, 1]}
* *

Notes: This is an implementation of the algorithm for * Lexicographical Permutations Generation, described in Knuth's "The Art of * Computer Programming", Volume 4, Chapter 7, Section 7.2.1.2. The * iteration order follows the lexicographical order. This means that * the first permutation will be in ascending order, and the last will be in * descending order. * *

Elements that compare equal are considered equal and no new permutations * are created by swapping them. * *

An empty iterable has only one permutation, which is an empty list. * * @param elements the original iterable whose elements have to be permuted. * @param comparator a comparator for the iterable's elements. * @return an immutable {@link Collection} containing all the different * permutations of the original iterable. * @throws NullPointerException If the specified iterable is null, has any * null elements, or if the specified comparator is null. */ public static Collection> orderedPermutations(Collection elements, Comparator comparator) { return new OrderedPermutationCollection(elements, comparator); } /** * Note: copy from Google Guava under Apache License v2. *
* * Returns every possible list that can be formed by choosing one element * from each of the given lists in order; the "n-ary * Cartesian * product" of the lists. For example:

   {@code
     *
     *   Lists.cartesianProduct(ImmutableList.of(
     *       ImmutableList.of(1, 2),
     *       ImmutableList.of("A", "B", "C")))}
* *

returns a list containing six lists in the following order: * *

    *
  • {@code ImmutableList.of(1, "A")} *
  • {@code ImmutableList.of(1, "B")} *
  • {@code ImmutableList.of(1, "C")} *
  • {@code ImmutableList.of(2, "A")} *
  • {@code ImmutableList.of(2, "B")} *
  • {@code ImmutableList.of(2, "C")} *
* *

The result is guaranteed to be in the "traditional", lexicographical * order for Cartesian products that you would get from nesting for loops: *

   {@code
     *
     *   for (B b0 : lists.get(0)) {
     *     for (B b1 : lists.get(1)) {
     *       ...
     *       ImmutableList tuple = ImmutableList.of(b0, b1, ...);
     *       // operate on tuple
     *     }
     *   }}
* *

Note that if any input list is empty, the Cartesian product will also be * empty. If no lists at all are provided (an empty list), the resulting * Cartesian product has one element, an empty list (counter-intuitive, but * mathematically consistent). * *

Performance notes: while the cartesian product of lists of size * {@code m, n, p} is a list of size {@code m x n x p}, its actual memory * consumption is much smaller. When the cartesian product is constructed, the * input lists are merely copied. Only as the resulting list is iterated are * the individual lists created, and these are not retained after iteration. * * @param cs the lists to choose elements from, in the order that * the elements chosen from those lists should appear in the resulting * lists * @param any common base class shared by all axes (often just {@link * Object}) * @return the Cartesian product, as an immutable list containing immutable * lists * @throws IllegalArgumentException if the size of the cartesian product would * be greater than {@link Integer#MAX_VALUE} * @throws NullPointerException if {@code lists}, any one of the * {@code lists}, or any element of a provided list is null */ @SafeVarargs public static List> cartesianProduct(final Collection... cs) { return cartesianProduct(Arrays.asList(cs)); } /** * Note: copy from Google Guava under Apache License v2. *
* * Returns every possible list that can be formed by choosing one element * from each of the given lists in order; the "n-ary * Cartesian * product" of the lists. For example:

   {@code
     *
     *   Lists.cartesianProduct(ImmutableList.of(
     *       ImmutableList.of(1, 2),
     *       ImmutableList.of("A", "B", "C")))}
* *

returns a list containing six lists in the following order: * *

    *
  • {@code ImmutableList.of(1, "A")} *
  • {@code ImmutableList.of(1, "B")} *
  • {@code ImmutableList.of(1, "C")} *
  • {@code ImmutableList.of(2, "A")} *
  • {@code ImmutableList.of(2, "B")} *
  • {@code ImmutableList.of(2, "C")} *
* *

The result is guaranteed to be in the "traditional", lexicographical * order for Cartesian products that you would get from nesting for loops: *

   {@code
     *
     *   for (B b0 : lists.get(0)) {
     *     for (B b1 : lists.get(1)) {
     *       ...
     *       ImmutableList tuple = ImmutableList.of(b0, b1, ...);
     *       // operate on tuple
     *     }
     *   }}
* *

Note that if any input list is empty, the Cartesian product will also be * empty. If no lists at all are provided (an empty list), the resulting * Cartesian product has one element, an empty list (counter-intuitive, but * mathematically consistent). * *

Performance notes: while the cartesian product of lists of size * {@code m, n, p} is a list of size {@code m x n x p}, its actual memory * consumption is much smaller. When the cartesian product is constructed, the * input lists are merely copied. Only as the resulting list is iterated are * the individual lists created, and these are not retained after iteration. * * @param cs the lists to choose elements from, in the order that * the elements chosen from those lists should appear in the resulting * lists * @param any common base class shared by all axes (often just {@link * Object}) * @return the Cartesian product, as an immutable list containing immutable * lists * @throws IllegalArgumentException if the size of the cartesian product would * be greater than {@link Integer#MAX_VALUE} * @throws NullPointerException if {@code lists}, any one of the {@code lists}, * or any element of a provided list is null */ public static List> cartesianProduct(final Collection> cs) { return new CartesianList<>(cs); } static void replaceAll(Map map, BiFunction function) { N.checkArgNotNull(function); for (Map.Entry entry : map.entrySet()) { K k; V v; try { k = entry.getKey(); v = entry.getValue(); } catch (IllegalStateException ise) { // this usually means the entry is no longer in the map. throw new ConcurrentModificationException(ise); } // ise thrown from function is not a cme. v = function.apply(k, v); try { entry.setValue(v); } catch (IllegalStateException ise) { // this usually means the entry is no longer in the map. throw new ConcurrentModificationException(ise); } } } static V merge(Map map, K key, V value, Try.BiFunction remappingFunction) throws E { N.checkArgNotNull(remappingFunction); N.checkArgNotNull(value); V oldValue = map.get(key); V newValue = (oldValue == null) ? value : remappingFunction.apply(oldValue, value); if (newValue == null) { map.remove(key); } else { map.put(key, newValue); } return newValue; } private static final class PowerSet extends AbstractSet> { final ImmutableMap inputSet; PowerSet(Set input) { this.inputSet = indexMap(input); N.checkArgument(inputSet.size() <= 30, "Too many elements to create power set: %s > 30", inputSet.size()); } @Override public int size() { return 1 << inputSet.size(); } @Override public boolean isEmpty() { return false; } @Override public Iterator> iterator() { return new Iterator>() { private final int size = size(); private int position; @Override public boolean hasNext() { return position < size; } @Override public Set next() { if (!hasNext()) { throw new NoSuchElementException(); } return new SubSet<>(inputSet, position++); } @Override public void remove() { throw new UnsupportedOperationException(); } }; } @Override public boolean contains(Object obj) { if (obj instanceof Set) { Set set = (Set) obj; return inputSet.keySet().containsAll(set); } return false; } @Override public boolean equals(Object obj) { if (obj instanceof PowerSet) { PowerSet that = (PowerSet) obj; return inputSet.equals(that.inputSet); } return super.equals(obj); } @Override public int hashCode() { /* * The sum of the sums of the hash codes in each subset is just the sum of * each input element's hash code times the number of sets that element * appears in. Each element appears in exactly half of the 2^n sets, so: */ return inputSet.keySet().hashCode() << (inputSet.size() - 1); } @Override public String toString() { return "powerSet(" + inputSet + ")"; } /** * Returns a map from the ith element of list to i. */ private static ImmutableMap indexMap(Collection c) { final Map map = new LinkedHashMap<>(); int i = 0; for (E e : c) { map.put(e, i++); } return ImmutableMap.of(map); } } private static final class SubSet extends AbstractSet { private final ImmutableMap inputSet; private final ImmutableList elements; private final int mask; SubSet(ImmutableMap inputSet, int mask) { this.inputSet = inputSet; this.elements = ImmutableList.of((E[]) inputSet.keySet().toArray()); this.mask = mask; } @Override public Iterator iterator() { return new Iterator() { int remainingSetBits = mask; @Override public boolean hasNext() { return remainingSetBits != 0; } @Override public E next() { int index = Integer.numberOfTrailingZeros(remainingSetBits); if (index == 32) { throw new NoSuchElementException(); } remainingSetBits &= ~(1 << index); return elements.get(index); } @Override public void remove() { throw new UnsupportedOperationException(); } }; } @Override public int size() { return Integer.bitCount(mask); } @Override public boolean contains(Object o) { Integer index = inputSet.get(o); return index != null && (mask & (1 << index)) != 0; } } private static final class PermutationCollection extends AbstractCollection> { final List inputList; PermutationCollection(Collection input) { this.inputList = new ArrayList<>(input); } @Override public int size() { return Matth.factorial(inputList.size()); } @Override public boolean isEmpty() { return false; } @Override public Iterator> iterator() { return PermutationIterator.of(inputList); } @Override public boolean contains(Object obj) { if (obj instanceof Collection) { return isPermutations(inputList, (Collection) obj); } return false; } @Override public String toString() { return "permutations(" + inputList + ")"; } } private static final class OrderedPermutationCollection extends AbstractCollection> { final List inputList; final Comparator comparator; final int size; OrderedPermutationCollection(Collection input, Comparator comparator) { this.inputList = new ArrayList(input); N.sort(inputList, comparator); this.comparator = comparator; this.size = calculateSize(inputList, comparator); } @Override public int size() { return size; } @Override public boolean isEmpty() { return false; } @Override public Iterator> iterator() { return PermutationIterator.ordered(inputList, comparator); } @Override public boolean contains(Object obj) { if (obj instanceof Collection) { return isPermutations(inputList, (Collection) obj); } return false; } @Override public String toString() { return "orderedPermutationCollection(" + inputList + ")"; } /** * The number of permutations with repeated elements is calculated as * follows: *

    *
  • For an empty list, it is 1 (base case).
  • *
  • When r numbers are added to a list of n-r elements, the number of * permutations is increased by a factor of (n choose r).
  • *
*/ private static int calculateSize(List sortedInputList, Comparator comparator) { long permutations = 1; int n = 1; int r = 1; while (n < sortedInputList.size()) { int comparison = comparator.compare(sortedInputList.get(n - 1), sortedInputList.get(n)); if (comparison < 0) { // We move to the next non-repeated element. permutations *= Matth.binomial(n, r); r = 0; if (!isPositiveInt(permutations)) { return Integer.MAX_VALUE; } } n++; r++; } permutations *= Matth.binomial(n, r); if (!isPositiveInt(permutations)) { return Integer.MAX_VALUE; } return (int) permutations; } private static boolean isPositiveInt(long n) { return n >= 0 && n <= Integer.MAX_VALUE; } } /** * Returns {@code true} if the second list is a permutation of the first. */ private static boolean isPermutations(Collection a, Collection b) { if (a.size() != b.size()) { return false; } return N.difference(a, b).size() == 0; } private static final class CartesianList extends AbstractList> implements RandomAccess { private final transient Object[][] axes; private final transient int[] axesSizeProduct; CartesianList(final Collection> cs) { final Iterator> iter = cs.iterator(); this.axes = new Object[cs.size()][]; for (int i = 0, len = this.axes.length; i < len; i++) { this.axes[i] = iter.next().toArray(); } this.axesSizeProduct = new int[axes.length + 1]; axesSizeProduct[axes.length] = 1; try { for (int i = axes.length - 1; i >= 0; i--) { axesSizeProduct[i] = Matth.multiplyExact(axesSizeProduct[i + 1], axes[i].length); } } catch (ArithmeticException e) { throw new IllegalArgumentException("Cartesian product too large; must have size at most Integer.MAX_VALUE"); } } @Override public List get(final int index) { N.checkArgument(index < size(), "Invalid index %s. It must be less than the size %s", index, size()); final List result = new ArrayList<>(axes.length); for (int k = 0, len = axes.length; k < len; k++) { result.add((E) axes[k][getAxisIndexForProductIndex(index, k)]); } return result; } @Override public int size() { return axesSizeProduct[0]; } @Override public boolean contains(Object obj) { if (!(obj instanceof Collection)) { return false; } final Collection c = (Collection) obj; if (c.size() != axes.length) { return false; } int idx = 0; for (Object e : c) { boolean found = false; for (Object p : axes[idx++]) { if (N.equals(e, p)) { found = true; break; } } if (found == false) { return false; } } return true; } private int getAxisIndexForProductIndex(int index, int axis) { return (index / axesSizeProduct[axis + 1]) % axes[axis].length; } } static T createMask(final Class interfaceClass) { InvocationHandler h = new InvocationHandler() { @Override public Object invoke(final Object proxy, final Method method, final Object[] args) throws Throwable { throw new UnsupportedOperationException("It's a mask"); } }; return newProxyInstance(interfaceClass, h); } static class NullMask implements Serializable { private static final long serialVersionUID = 5887875956120266479L; private NullMask() { } @Override public String toString() { return "NULL"; } private Object readResolve() { return NULL_MASK; } } }









Performance notes: while the power set of a set with size {@code * n} is of size {@code 2^n}, its memory usage is only {@code O(n)}. When the * power set is constructed, the input set is merely copied. Only as the * power set is iterated are the individual subsets created, and these subsets * themselves occupy only a small constant amount of memory. * * @param set the set of elements to construct a power set from * @return the power set, as an immutable set of immutable sets * @throws IllegalArgumentException if {@code set} has more than 30 unique * elements (causing the power set size to exceed the {@code int} range) * @throws NullPointerException if {@code set} is or contains {@code null} * @see Power set article at * Wikipedia */ public static Set> powerSet(Set set) { return new PowerSet<>(set); } /** * Note: copy from Google Guava under Apache License v2. *
* * Returns a {@link Collection} of all the permutations of the specified * {@link Collection}. * *