All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.landawn.abacus.util.FloatList Maven / Gradle / Ivy

There is a newer version: 1.10.1
Show newest version
/*
 * Copyright (c) 2015, Haiyang Li.
 * 
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package com.landawn.abacus.util;

import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collection;
import java.util.Comparator;
import java.util.List;
import java.util.Map;
import java.util.Random;
import java.util.Set;

import com.landawn.abacus.util.Try.Function;
import com.landawn.abacus.util.function.BiConsumer;
import com.landawn.abacus.util.function.BiFunction;
import com.landawn.abacus.util.function.IntFunction;
import com.landawn.abacus.util.function.Supplier;
import com.landawn.abacus.util.stream.Collector;
import com.landawn.abacus.util.stream.FloatStream;

/**
 * 
 * @since 0.8
 * 
 * @author Haiyang Li
 */
public final class FloatList extends PrimitiveList {
    private static final long serialVersionUID = 6459013170687883950L;

    private float[] elementData = N.EMPTY_FLOAT_ARRAY;
    private int size = 0;

    public FloatList() {
        super();
    }

    public FloatList(int initialCapacity) {
        elementData = initialCapacity == 0 ? N.EMPTY_FLOAT_ARRAY : new float[initialCapacity];
    }

    /**
     * The specified array is used as the element array for this list without copying action.
     * 
     * @param a
     */
    public FloatList(float[] a) {
        this(a, a.length);
    }

    public FloatList(float[] a, int size) {
        N.checkFromIndexSize(0, size, a.length);

        this.elementData = a;
        this.size = size;
    }

    @SafeVarargs
    public static FloatList of(final float... a) {
        return new FloatList(N.nullToEmpty(a));
    }

    public static FloatList of(final float[] a, final int size) {
        N.checkFromIndexSize(0, size, N.len(a));

        return new FloatList(N.nullToEmpty(a), size);
    }

    public static FloatList copyOf(final float[] a) {
        return of(N.clone(a));
    }

    public static FloatList copyOf(final float[] a, final int fromIndex, final int toIndex) {
        return of(N.copyOfRange(a, fromIndex, toIndex));
    }

    public static FloatList from(Collection c) {
        if (N.isNullOrEmpty(c)) {
            return new FloatList();
        }

        return from(c, 0f);
    }

    public static FloatList from(Collection c, float defaultForNull) {
        if (N.isNullOrEmpty(c)) {
            return new FloatList();
        }

        final float[] a = new float[c.size()];
        int idx = 0;

        for (Float e : c) {
            a[idx++] = e == null ? defaultForNull : e;
        }

        return of(a);
    }

    public static FloatList from(final Collection c, final int fromIndex, final int toIndex) {
        N.checkFromToIndex(fromIndex, toIndex, N.size(c));

        if (N.isNullOrEmpty(c)) {
            return new FloatList();
        }

        return from(c, fromIndex, toIndex, 0);
    }

    public static FloatList from(final Collection c, final int fromIndex, final int toIndex, float defaultForNull) {
        return of(N.toFloatArray(c, fromIndex, toIndex, defaultForNull));
    }

    public static FloatList repeat(float element, final int len) {
        return of(Array.repeat(element, len));
    }

    public static FloatList random(final int len) {
        final float[] a = new float[len];

        for (int i = 0; i < len; i++) {
            a[i] = RAND.nextFloat();
        }

        return of(a);
    }

    /**
     * Returns the original element array without copying.
     * 
     * @return
     */
    @Override
    public float[] array() {
        return elementData;
    }

    public float get(int index) {
        rangeCheck(index);

        return elementData[index];
    }

    private void rangeCheck(int index) {
        if (index >= size) {
            throw new IndexOutOfBoundsException("Index: " + index + ", Size: " + size);
        }
    }

    /**
     * 
     * @param index
     * @param e
     * @return the old value in the specified position.
     */
    public float set(int index, float e) {
        rangeCheck(index);

        float oldValue = elementData[index];

        elementData[index] = e;

        return oldValue;
    }

    public void add(float e) {
        ensureCapacityInternal(size + 1);

        elementData[size++] = e;
    }

    public void add(int index, float e) {
        rangeCheckForAdd(index);

        ensureCapacityInternal(size + 1);

        int numMoved = size - index;

        if (numMoved > 0) {
            N.copy(elementData, index, elementData, index + 1, numMoved);
        }

        elementData[index] = e;

        size++;
    }

    public boolean addAll(FloatList c) {
        if (N.isNullOrEmpty(c)) {
            return false;
        }

        int numNew = c.size();

        ensureCapacityInternal(size + numNew);

        N.copy(c.array(), 0, elementData, size, numNew);

        size += numNew;

        return true;
    }

    public boolean addAll(int index, FloatList c) {
        rangeCheckForAdd(index);

        if (N.isNullOrEmpty(c)) {
            return false;
        }

        int numNew = c.size();

        ensureCapacityInternal(size + numNew); // Increments modCount

        int numMoved = size - index;

        if (numMoved > 0) {
            N.copy(elementData, index, elementData, index + numNew, numMoved);
        }

        N.copy(c.array(), 0, elementData, index, numNew);

        size += numNew;

        return true;
    }

    @Override
    public boolean addAll(float[] a) {
        return addAll(size(), a);
    }

    @Override
    public boolean addAll(int index, float[] a) {
        rangeCheckForAdd(index);

        if (N.isNullOrEmpty(a)) {
            return false;
        }

        int numNew = a.length;

        ensureCapacityInternal(size + numNew); // Increments modCount

        int numMoved = size - index;

        if (numMoved > 0) {
            N.copy(elementData, index, elementData, index + numNew, numMoved);
        }

        N.copy(a, 0, elementData, index, numNew);

        size += numNew;

        return true;
    }

    private void rangeCheckForAdd(int index) {
        if (index > size || index < 0) {
            throw new IndexOutOfBoundsException("Index: " + index + ", Size: " + size);
        }
    }

    /**
     * 
     * @param e
     * @return true if this list contained the specified element
     */
    public boolean remove(float e) {
        for (int i = 0; i < size; i++) {
            if (N.equals(elementData[i], e)) {

                fastRemove(i);

                return true;
            }
        }

        return false;
    }

    /**
     * 
     * @param e
     * @return true if this list contained the specified element
     */
    public boolean removeAllOccurrences(float e) {
        int w = 0;

        for (int i = 0; i < size; i++) {
            if (!N.equals(elementData[i], e)) {
                elementData[w++] = elementData[i];
            }
        }

        int numRemoved = size - w;

        if (numRemoved > 0) {
            N.fill(elementData, w, size, 0);

            size = w;
        }

        return numRemoved > 0;
    }

    private void fastRemove(int index) {
        int numMoved = size - index - 1;

        if (numMoved > 0) {
            N.copy(elementData, index + 1, elementData, index, numMoved);
        }

        elementData[--size] = 0; // clear to let GC do its work
    }

    public boolean removeAll(FloatList c) {
        if (N.isNullOrEmpty(c)) {
            return false;
        }

        return batchRemove(c, false) > 0;
    }

    @Override
    public boolean removeAll(float[] a) {
        if (N.isNullOrEmpty(a)) {
            return false;
        }

        return removeAll(of(a));
    }

    public  boolean removeIf(Try.FloatPredicate p) throws E {
        final FloatList tmp = new FloatList(size());

        for (int i = 0; i < size; i++) {
            if (p.test(elementData[i]) == false) {
                tmp.add(elementData[i]);
            }
        }

        if (tmp.size() == this.size()) {
            return false;
        }

        N.copy(tmp.elementData, 0, this.elementData, 0, tmp.size());
        N.fill(this.elementData, tmp.size(), size, 0f);
        size = tmp.size;

        return true;
    }

    public boolean retainAll(FloatList c) {
        if (N.isNullOrEmpty(c)) {
            boolean result = size() > 0;
            clear();
            return result;
        }

        return batchRemove(c, true) > 0;
    }

    public boolean retainAll(float[] a) {
        if (N.isNullOrEmpty(a)) {
            boolean result = size() > 0;
            clear();
            return result;
        }

        return retainAll(FloatList.of(a));
    }

    private int batchRemove(FloatList c, boolean complement) {
        final float[] elementData = this.elementData;

        int w = 0;

        if (c.size() > 3 && size() > 9) {
            final Set set = c.toSet();

            for (int i = 0; i < size; i++) {
                if (set.contains(elementData[i]) == complement) {
                    elementData[w++] = elementData[i];
                }
            }
        } else {
            for (int i = 0; i < size; i++) {
                if (c.contains(elementData[i]) == complement) {
                    elementData[w++] = elementData[i];
                }
            }
        }

        int numRemoved = size - w;

        if (numRemoved > 0) {
            N.fill(elementData, w, size, 0);

            size = w;
        }

        return numRemoved;
    }

    /**
     * 
     * @param index
     * @return the deleted element
     */
    public float delete(int index) {
        rangeCheck(index);

        float oldValue = elementData[index];

        fastRemove(index);

        return oldValue;
    }

    @Override
    @SafeVarargs
    public final void deleteAll(int... indices) {
        final float[] tmp = N.deleteAll(elementData, indices);
        N.copy(tmp, 0, elementData, 0, tmp.length);
        N.fill(elementData, tmp.length, size, 0f);
        size = tmp.length;

    }

    @Override
    public void deleteRange(final int fromIndex, final int toIndex) {
        N.checkFromToIndex(fromIndex, toIndex, size());

        if (fromIndex == toIndex) {
            return;
        }

        final int newSize = size() - (toIndex - fromIndex);

        if (toIndex < size()) {
            System.arraycopy(elementData, toIndex, elementData, fromIndex, size - toIndex);
        }

        N.fill(elementData, newSize, size(), 0);

        size = newSize;
    }

    public int replaceAll(float oldVal, float newVal) {
        if (size() == 0) {
            return 0;
        }

        int result = 0;

        for (int i = 0, len = size(); i < len; i++) {
            if (Float.compare(elementData[i], oldVal) == 0) {
                elementData[i] = newVal;

                result++;
            }
        }

        return result;
    }

    public  void replaceAll(Try.FloatUnaryOperator operator) throws E {
        for (int i = 0, len = size(); i < len; i++) {
            elementData[i] = operator.applyAsFloat(elementData[i]);
        }
    }

    public  boolean replaceIf(Try.FloatPredicate predicate, float newValue) throws E {
        boolean result = false;

        for (int i = 0, len = size(); i < len; i++) {
            if (predicate.test(elementData[i])) {
                elementData[i] = newValue;

                result = true;
            }
        }

        return result;
    }

    public void fill(final float val) {
        fill(0, size(), val);
    }

    public void fill(final int fromIndex, final int toIndex, final float val) {
        checkFromToIndex(fromIndex, toIndex);

        N.fill(elementData, fromIndex, toIndex, val);
    }

    public boolean contains(float e) {
        return indexOf(e) >= 0;
    }

    public boolean containsAll(FloatList c) {
        if (N.isNullOrEmpty(c)) {
            return true;
        } else if (isEmpty()) {
            return false;
        }

        final boolean isThisContainer = size() >= c.size();
        final FloatList container = isThisContainer ? this : c;
        final float[] iterElements = isThisContainer ? c.array() : this.array();

        if (needToSet(size(), c.size())) {
            final Set set = container.toSet();

            for (int i = 0, iterLen = isThisContainer ? c.size() : this.size(); i < iterLen; i++) {
                if (set.contains(iterElements[i]) == false) {
                    return false;
                }
            }
        } else {
            for (int i = 0, iterLen = isThisContainer ? c.size() : this.size(); i < iterLen; i++) {
                if (container.contains(iterElements[i]) == false) {
                    return false;
                }
            }
        }

        return true;
    }

    @Override
    public boolean containsAll(float[] a) {
        if (N.isNullOrEmpty(a)) {
            return true;
        } else if (isEmpty()) {
            return false;
        }

        return containsAll(of(a));
    }

    public boolean containsAny(FloatList c) {
        if (this.isEmpty() || N.isNullOrEmpty(c)) {
            return false;
        }

        return !disjoint(c);
    }

    @Override
    public boolean containsAny(float[] a) {
        if (this.isEmpty() || N.isNullOrEmpty(a)) {
            return false;
        }

        return !disjoint(a);
    }

    public boolean disjoint(final FloatList c) {
        if (isEmpty() || N.isNullOrEmpty(c)) {
            return true;
        }

        final boolean isThisContainer = size() >= c.size();
        final FloatList container = isThisContainer ? this : c;
        final float[] iterElements = isThisContainer ? c.array() : this.array();

        if (needToSet(size(), c.size())) {
            final Set set = container.toSet();

            for (int i = 0, iterLen = isThisContainer ? c.size() : this.size(); i < iterLen; i++) {
                if (set.contains(iterElements[i])) {
                    return false;
                }
            }
        } else {
            for (int i = 0, iterLen = isThisContainer ? c.size() : this.size(); i < iterLen; i++) {
                if (container.contains(iterElements[i])) {
                    return false;
                }
            }
        }

        return true;
    }

    @Override
    public boolean disjoint(final float[] b) {
        if (isEmpty() || N.isNullOrEmpty(b)) {
            return true;
        }

        return disjoint(of(b));
    }

    /**
     * 
     * @param b
     * @return
     * @see IntList#intersection(IntList)
     */
    public FloatList intersection(final FloatList b) {
        if (N.isNullOrEmpty(b)) {
            return new FloatList();
        }

        final Multiset bOccurrences = b.toMultiset();

        final FloatList c = new FloatList(N.min(9, size(), b.size()));

        for (int i = 0, len = size(); i < len; i++) {
            if (bOccurrences.getAndRemove(elementData[i]) > 0) {
                c.add(elementData[i]);
            }
        }

        return c;
    }

    public FloatList intersection(final float[] a) {
        if (N.isNullOrEmpty(a)) {
            return new FloatList();
        }

        return intersection(of(a));
    }

    /**
     * 
     * @param b
     * @return
     * @see IntList#difference(IntList)
     */
    public FloatList difference(FloatList b) {
        if (N.isNullOrEmpty(b)) {
            return of(N.copyOfRange(elementData, 0, size()));
        }

        final Multiset bOccurrences = b.toMultiset();

        final FloatList c = new FloatList(N.min(size(), N.max(9, size() - b.size())));

        for (int i = 0, len = size(); i < len; i++) {
            if (bOccurrences.getAndRemove(elementData[i]) < 1) {
                c.add(elementData[i]);
            }
        }

        return c;
    }

    public FloatList difference(final float[] a) {
        if (N.isNullOrEmpty(a)) {
            return of(N.copyOfRange(elementData, 0, size()));
        }

        return difference(of(a));
    }

    /**
     * 
     * @param b
     * @return this.difference(b).addAll(b.difference(this))
     * @see IntList#symmetricDifference(IntList)
     */
    public FloatList symmetricDifference(FloatList b) {
        if (N.isNullOrEmpty(b)) {
            return this.copy();
        } else if (this.isEmpty()) {
            return b.copy();
        }

        final Multiset bOccurrences = b.toMultiset();
        final FloatList c = new FloatList(N.max(9, Math.abs(size() - b.size())));

        for (int i = 0, len = size(); i < len; i++) {
            if (bOccurrences.getAndRemove(elementData[i]) < 1) {
                c.add(elementData[i]);
            }
        }

        for (int i = 0, len = b.size(); i < len; i++) {
            if (bOccurrences.getAndRemove(b.elementData[i]) > 0) {
                c.add(b.elementData[i]);
            }

            if (bOccurrences.isEmpty()) {
                break;
            }
        }

        return c;
    }

    public FloatList symmetricDifference(final float[] a) {
        if (N.isNullOrEmpty(a)) {
            return of(N.copyOfRange(elementData, 0, size()));
        } else if (this.isEmpty()) {
            return of(N.copyOfRange(a, 0, a.length));
        }

        return symmetricDifference(of(a));
    }

    public int occurrencesOf(final float objectToFind) {
        return N.occurrencesOf(elementData, objectToFind);
    }

    public int indexOf(float e) {
        return indexOf(0, e);
    }

    public int indexOf(final int fromIndex, float e) {
        checkFromToIndex(fromIndex, size);

        for (int i = fromIndex; i < size; i++) {
            if (N.equals(elementData[i], e)) {
                return i;
            }
        }

        return -1;
    }

    public int lastIndexOf(float e) {
        return lastIndexOf(size, e);
    }

    /**
     * 
     * @param fromIndex the start index to traverse backwards from. Inclusive.
     * @param e
     * @return
     */
    public int lastIndexOf(final int fromIndex, float e) {
        checkFromToIndex(0, fromIndex);

        for (int i = fromIndex == size ? size - 1 : fromIndex; i >= 0; i--) {
            if (N.equals(elementData[i], e)) {
                return i;
            }
        }

        return -1;
    }

    public OptionalFloat min() {
        return size() == 0 ? OptionalFloat.empty() : OptionalFloat.of(N.min(elementData, 0, size));
    }

    public OptionalFloat min(final int fromIndex, final int toIndex) {
        checkFromToIndex(fromIndex, toIndex);

        return fromIndex == toIndex ? OptionalFloat.empty() : OptionalFloat.of(N.min(elementData, fromIndex, toIndex));
    }

    public OptionalFloat median() {
        return size() == 0 ? OptionalFloat.empty() : OptionalFloat.of(N.median(elementData, 0, size));
    }

    public OptionalFloat median(final int fromIndex, final int toIndex) {
        checkFromToIndex(fromIndex, toIndex);

        return fromIndex == toIndex ? OptionalFloat.empty() : OptionalFloat.of(N.median(elementData, fromIndex, toIndex));
    }

    public OptionalFloat max() {
        return size() == 0 ? OptionalFloat.empty() : OptionalFloat.of(N.max(elementData, 0, size));
    }

    public OptionalFloat max(final int fromIndex, final int toIndex) {
        checkFromToIndex(fromIndex, toIndex);

        return fromIndex == toIndex ? OptionalFloat.empty() : OptionalFloat.of(N.max(elementData, fromIndex, toIndex));
    }

    public OptionalFloat kthLargest(final int k) {
        return kthLargest(0, size(), k);
    }

    public OptionalFloat kthLargest(final int fromIndex, final int toIndex, final int k) {
        checkFromToIndex(fromIndex, toIndex);
        N.checkArgPositive(k, "k");

        return toIndex - fromIndex < k ? OptionalFloat.empty() : OptionalFloat.of(N.kthLargest(elementData, fromIndex, toIndex, k));
    }

    public float sum() {
        return sum(0, size());
    }

    public float sum(final int fromIndex, final int toIndex) {
        checkFromToIndex(fromIndex, toIndex);

        return N.sum(elementData, fromIndex, toIndex);
    }

    public OptionalDouble average() {
        return average(0, size());
    }

    public OptionalDouble average(final int fromIndex, final int toIndex) {
        checkFromToIndex(fromIndex, toIndex);

        return fromIndex == toIndex ? OptionalDouble.empty() : OptionalDouble.of(N.average(elementData, fromIndex, toIndex));
    }

    public  void forEach(Try.FloatConsumer action) throws E {
        forEach(0, size, action);
    }

    public  void forEach(final int fromIndex, final int toIndex, Try.FloatConsumer action) throws E {
        N.checkFromToIndex(fromIndex < toIndex ? fromIndex : (toIndex == -1 ? 0 : toIndex), fromIndex < toIndex ? toIndex : fromIndex, size);

        if (size > 0) {
            if (fromIndex <= toIndex) {
                for (int i = fromIndex; i < toIndex; i++) {
                    action.accept(elementData[i]);
                }
            } else {
                for (int i = N.min(size - 1, fromIndex); i > toIndex; i--) {
                    action.accept(elementData[i]);
                }
            }
        }
    }

    public OptionalFloat first() {
        return size() == 0 ? OptionalFloat.empty() : OptionalFloat.of(elementData[0]);
    }

    public OptionalFloat last() {
        return size() == 0 ? OptionalFloat.empty() : OptionalFloat.of(elementData[size() - 1]);
    }

    public  OptionalFloat findFirst(Try.FloatPredicate predicate) throws E {
        for (int i = 0; i < size; i++) {
            if (predicate.test(elementData[i])) {
                return OptionalFloat.of(elementData[i]);
            }
        }

        return OptionalFloat.empty();
    }

    public  OptionalFloat findLast(Try.FloatPredicate predicate) throws E {
        for (int i = size - 1; i >= 0; i--) {
            if (predicate.test(elementData[i])) {
                return OptionalFloat.of(elementData[i]);
            }
        }

        return OptionalFloat.empty();
    }

    public  OptionalInt findFirstIndex(Try.FloatPredicate predicate) throws E {
        for (int i = 0; i < size; i++) {
            if (predicate.test(elementData[i])) {
                return OptionalInt.of(i);
            }
        }

        return OptionalInt.empty();
    }

    public  OptionalInt findLastIndex(Try.FloatPredicate predicate) throws E {
        for (int i = size - 1; i >= 0; i--) {
            if (predicate.test(elementData[i])) {
                return OptionalInt.of(i);
            }
        }

        return OptionalInt.empty();
    }

    /**
     * Returns whether all elements of this List match the provided predicate.
     * 
     * @param filter
     * @return
     */
    public  boolean allMatch(Try.FloatPredicate filter) throws E {
        return allMatch(0, size(), filter);
    }

    public  boolean allMatch(final int fromIndex, final int toIndex, Try.FloatPredicate filter) throws E {
        checkFromToIndex(fromIndex, toIndex);

        if (size > 0) {
            for (int i = fromIndex; i < toIndex; i++) {
                if (filter.test(elementData[i]) == false) {
                    return false;
                }
            }
        }

        return true;
    }

    /**
     * Returns whether any elements of this List match the provided predicate.
     * 
     * @param filter
     * @return
     */
    public  boolean anyMatch(Try.FloatPredicate filter) throws E {
        return anyMatch(0, size(), filter);
    }

    public  boolean anyMatch(final int fromIndex, final int toIndex, Try.FloatPredicate filter) throws E {
        checkFromToIndex(fromIndex, toIndex);

        if (size > 0) {
            for (int i = fromIndex; i < toIndex; i++) {
                if (filter.test(elementData[i])) {
                    return true;
                }
            }
        }

        return false;
    }

    /**
     * Returns whether no elements of this List match the provided predicate.
     * 
     * @param filter
     * @return
     */
    public  boolean noneMatch(Try.FloatPredicate filter) throws E {
        return noneMatch(0, size(), filter);
    }

    public  boolean noneMatch(final int fromIndex, final int toIndex, Try.FloatPredicate filter) throws E {
        checkFromToIndex(fromIndex, toIndex);

        if (size > 0) {
            for (int i = fromIndex; i < toIndex; i++) {
                if (filter.test(elementData[i])) {
                    return false;
                }
            }
        }

        return true;
    }

    /**
     * 
     * @param filter
     * @return
     */
    public  int count(Try.FloatPredicate filter) throws E {
        return count(0, size(), filter);
    }

    public  int count(final int fromIndex, final int toIndex, Try.FloatPredicate filter) throws E {
        checkFromToIndex(fromIndex, toIndex);

        return N.count(elementData, fromIndex, toIndex, filter);
    }

    /**
     * 
     * @param filter
     * @return a new List with the elements match the provided predicate.
     */
    public  FloatList filter(Try.FloatPredicate filter) throws E {
        return filter(0, size(), filter);
    }

    public  FloatList filter(final int fromIndex, final int toIndex, Try.FloatPredicate filter) throws E {
        checkFromToIndex(fromIndex, toIndex);

        return N.filter(elementData, fromIndex, toIndex, filter);
    }

    /**
     * 
     * @param filter
     * @return a new List with the elements match the provided predicate.
     */
    public  FloatList filter(Try.FloatPredicate filter, int max) throws E {
        return filter(0, size(), filter, max);
    }

    public  FloatList filter(final int fromIndex, final int toIndex, Try.FloatPredicate filter, final int max) throws E {
        checkFromToIndex(fromIndex, toIndex);

        return N.filter(elementData, fromIndex, toIndex, filter, max);
    }

    public  FloatList map(final Try.FloatUnaryOperator mapper) throws E {
        return map(0, size, mapper);
    }

    public  FloatList map(final int fromIndex, final int toIndex, final Try.FloatUnaryOperator mapper) throws E {
        checkFromToIndex(fromIndex, toIndex);

        final FloatList result = new FloatList(toIndex - fromIndex);

        for (int i = fromIndex; i < toIndex; i++) {
            result.add(mapper.applyAsFloat(elementData[i]));
        }

        return result;
    }

    public  List mapToObj(final Try.FloatFunction mapper) throws E {
        return mapToObj(0, size, mapper);
    }

    public  List mapToObj(final int fromIndex, final int toIndex, final Try.FloatFunction mapper) throws E {
        checkFromToIndex(fromIndex, toIndex);

        final List result = new ArrayList<>(toIndex - fromIndex);

        for (int i = fromIndex; i < toIndex; i++) {
            result.add(mapper.apply(elementData[i]));
        }

        return result;
    }

    /**
     * This is equivalent to:
     * 
     * 
     *    if (isEmpty()) {
     *        return OptionalFloat.empty();
     *    }
     *
     *    float result = elementData[0];
     *
     *    for (int i = 1; i < size; i++) {
     *        result = accumulator.applyAsFloat(result, elementData[i]);
     *    }
     *
     *    return OptionalFloat.of(result);
     * 
     * 
* * @param accumulator * @return */ public OptionalFloat reduce(final Try.FloatBinaryOperator accumulator) throws E { if (isEmpty()) { return OptionalFloat.empty(); } float result = elementData[0]; for (int i = 1; i < size; i++) { result = accumulator.applyAsFloat(result, elementData[i]); } return OptionalFloat.of(result); } /** * This is equivalent to: *
     * 
     *     if (isEmpty()) {
     *         return identity;
     *     }
     * 
     *     float result = identity;
     * 
     *     for (int i = 0; i < size; i++) {
     *         result = accumulator.applyAsFloat(result, elementData[i]);
     *    }
     * 
     *     return result;
     * 
     * 
* * @param identity * @param accumulator * @return */ public float reduce(final float identity, final Try.FloatBinaryOperator accumulator) throws E { if (isEmpty()) { return identity; } float result = identity; for (int i = 0; i < size; i++) { result = accumulator.applyAsFloat(result, elementData[i]); } return result; } @Override public boolean hasDuplicates() { return N.hasDuplicates(elementData, 0, size, false); } @Override public FloatList distinct(final int fromIndex, final int toIndex) { checkFromToIndex(fromIndex, toIndex); if (toIndex - fromIndex > 1) { return of(N.distinct(elementData, fromIndex, toIndex)); } else { return of(N.copyOfRange(elementData, fromIndex, toIndex)); } } public FloatList top(final int n) { return top(0, size(), n); } public FloatList top(final int fromIndex, final int toIndex, final int n) { checkFromToIndex(fromIndex, toIndex); return of(N.top(elementData, fromIndex, toIndex, n)); } public FloatList top(final int n, Comparator cmp) { return top(0, size(), n, cmp); } public FloatList top(final int fromIndex, final int toIndex, final int n, Comparator cmp) { checkFromToIndex(fromIndex, toIndex); return of(N.top(elementData, fromIndex, toIndex, n, cmp)); } @Override public void sort() { if (size > 1) { N.sort(elementData, 0, size); } } public void parallelSort() { if (size > 1) { N.parallelSort(elementData, 0, size); } } public void reverseSort() { if (size > 1) { sort(); reverse(); } } /** * This List should be sorted first. * * @param key * @return */ public int binarySearch(final float key) { return N.binarySearch(elementData, key); } /** * This List should be sorted first. * * @param fromIndex * @param toIndex * @param key * @return */ public int binarySearch(final int fromIndex, final int toIndex, final float key) { checkFromToIndex(fromIndex, toIndex); return N.binarySearch(elementData, fromIndex, toIndex, key); } @Override public void reverse() { if (size > 1) { N.reverse(elementData, 0, size); } } @Override public void reverse(final int fromIndex, final int toIndex) { checkFromToIndex(fromIndex, toIndex); if (toIndex - fromIndex > 1) { N.reverse(elementData, fromIndex, toIndex); } } @Override public void rotate(int distance) { if (size > 1) { N.rotate(elementData, distance); } } @Override public void shuffle() { if (size() > 1) { N.shuffle(elementData); } } @Override public void shuffle(final Random rnd) { if (size() > 1) { N.shuffle(elementData, rnd); } } @Override public void swap(int i, int j) { rangeCheck(i); rangeCheck(j); set(i, set(j, elementData[i])); } @Override public FloatList copy() { return new FloatList(N.copyOfRange(elementData, 0, size)); } @Override public FloatList copy(final int fromIndex, final int toIndex) { checkFromToIndex(fromIndex, toIndex); return new FloatList(N.copyOfRange(elementData, fromIndex, toIndex)); } /** * @param from * @param to * @param step * * @see N#copyOfRange(int[], int, int, int) */ @Override public FloatList copy(final int from, final int to, final int step) { checkFromToIndex(from < to ? from : (to == -1 ? 0 : to), from < to ? to : from); return new FloatList(N.copyOfRange(elementData, from, to, step)); } @Override public FloatList copyThen(Try.Consumer action) throws E { final FloatList copy = copy(); action.accept(copy); return copy; } @Override public List split(final int fromIndex, final int toIndex, final int size) { checkFromToIndex(fromIndex, toIndex); final List list = N.split(elementData, fromIndex, toIndex, size); @SuppressWarnings("rawtypes") final List result = (List) list; for (int i = 0, len = list.size(); i < len; i++) { result.set(i, of(list.get(i))); } return result; } // @Override // public List split(int fromIndex, int toIndex, FloatPredicate predicate) { // checkIndex(fromIndex, toIndex); // // final List result = new ArrayList<>(); // FloatList piece = null; // // for (int i = fromIndex; i < toIndex;) { // if (piece == null) { // piece = FloatList.of(N.EMPTY_FLOAT_ARRAY); // } // // if (predicate.test(elementData[i])) { // piece.add(elementData[i]); // i++; // } else { // result.add(piece); // piece = null; // } // } // // if (piece != null) { // result.add(piece); // } // // return result; // } @Override public String join(int fromIndex, int toIndex, char delimiter) { checkFromToIndex(fromIndex, toIndex); return StringUtil.join(elementData, fromIndex, toIndex, delimiter); } @Override public String join(int fromIndex, int toIndex, String delimiter) { checkFromToIndex(fromIndex, toIndex); return StringUtil.join(elementData, fromIndex, toIndex, delimiter); } @Override public FloatList trimToSize() { if (elementData.length > size) { elementData = N.copyOfRange(elementData, 0, size); } return this; } @Override public void clear() { if (size > 0) { N.fill(elementData, 0, size, 0); } size = 0; } @Override public boolean isEmpty() { return size == 0; } @Override public int size() { return size; } public List boxed() { return boxed(0, size); } public List boxed(int fromIndex, int toIndex) { checkFromToIndex(fromIndex, toIndex); final List res = new ArrayList<>(toIndex - fromIndex); for (int i = fromIndex; i < toIndex; i++) { res.add(elementData[i]); } return res; } @Override public float[] toArray() { return N.copyOfRange(elementData, 0, size); } public DoubleList toDoubleList() { final double[] a = new double[size]; for (int i = 0; i < size; i++) { a[i] = elementData[i]; } return DoubleList.of(a); } @Override public > C toCollection(final int fromIndex, final int toIndex, final IntFunction supplier) { checkFromToIndex(fromIndex, toIndex); final C c = supplier.apply(toIndex - fromIndex); for (int i = fromIndex; i < toIndex; i++) { c.add(elementData[i]); } return c; } @Override public Multiset toMultiset(final int fromIndex, final int toIndex, final IntFunction> supplier) { checkFromToIndex(fromIndex, toIndex); final Multiset multiset = supplier.apply(toIndex - fromIndex); for (int i = fromIndex; i < toIndex; i++) { multiset.add(elementData[i]); } return multiset; } public Map toMap(Try.FloatFunction keyExtractor, Try.FloatFunction valueMapper) throws E, E2 { final IntFunction> mapFactory = Fn.Factory.ofMap(); return toMap(keyExtractor, valueMapper, mapFactory); } public , E extends Exception, E2 extends Exception> M toMap(Try.FloatFunction keyExtractor, Try.FloatFunction valueMapper, IntFunction mapFactory) throws E, E2 { final Try.BinaryOperator mergeFunction = Fn.throwingMerger(); return toMap(keyExtractor, valueMapper, mergeFunction, mapFactory); } public Map toMap(Try.FloatFunction keyExtractor, Try.FloatFunction valueMapper, Try.BinaryOperator mergeFunction) throws E, E2, E3 { final IntFunction> mapFactory = Fn.Factory.ofMap(); return toMap(keyExtractor, valueMapper, mergeFunction, mapFactory); } public , E extends Exception, E2 extends Exception, E3 extends Exception> M toMap(Try.FloatFunction keyExtractor, Try.FloatFunction valueMapper, Try.BinaryOperator mergeFunction, IntFunction mapFactory) throws E, E2, E3 { final M result = mapFactory.apply(size); for (int i = 0; i < size; i++) { Fn.merge(result, keyExtractor.apply(elementData[i]), valueMapper.apply(elementData[i]), mergeFunction); } return result; } public Map toMap(Try.FloatFunction classifier, Collector downstream) throws E { final IntFunction> mapFactory = Fn.Factory.ofMap(); return toMap(classifier, downstream, mapFactory); } public , E extends Exception> M toMap(final Try.FloatFunction classifier, final Collector downstream, final IntFunction mapFactory) throws E { final M result = mapFactory.apply(size); final Supplier downstreamSupplier = downstream.supplier(); final BiConsumer downstreamAccumulator = downstream.accumulator(); final Map intermediate = (Map) result; K key = null; A v = null; for (int i = 0; i < size; i++) { key = N.checkArgNotNull(classifier.apply(elementData[i]), "element cannot be mapped to a null key"); if ((v = intermediate.get(key)) == null) { if ((v = downstreamSupplier.get()) != null) { intermediate.put(key, v); } } downstreamAccumulator.accept(v, elementData[i]); } final BiFunction function = new BiFunction() { @Override public A apply(K k, A v) { return (A) downstream.finisher().apply(v); } }; N.replaceAll(intermediate, function); return result; } public FloatIterator iterator() { if (isEmpty()) { return FloatIterator.EMPTY; } return FloatIterator.of(elementData, 0, size); } public FloatStream stream() { return FloatStream.of(elementData, 0, size()); } public FloatStream stream(final int fromIndex, final int toIndex) { checkFromToIndex(fromIndex, toIndex); return FloatStream.of(elementData, fromIndex, toIndex); } @Override public R apply(Try.Function func) throws E { return func.apply(this); } @Override public Optional applyIfNotEmpty(Function func) throws E { return isEmpty() ? Optional. empty() : Optional.ofNullable(func.apply(this)); } @Override public void accept(Try.Consumer action) throws E { action.accept(this); } @Override public void acceptIfNotEmpty(Try.Consumer action) throws E { if (size > 0) { action.accept(this); } } @Override public int hashCode() { return N.hashCode(elementData, 0, size); } @Override public boolean equals(Object obj) { if (obj == this) { return true; } if (obj instanceof FloatList) { final FloatList other = (FloatList) obj; return this.size == other.size && N.equals(this.elementData, 0, other.elementData, 0, this.size); } return false; } @Override public String toString() { return size == 0 ? "[]" : N.toString(elementData, 0, size); } private void ensureCapacityInternal(int minCapacity) { if (elementData == N.EMPTY_FLOAT_ARRAY) { minCapacity = Math.max(DEFAULT_CAPACITY, minCapacity); } ensureExplicitCapacity(minCapacity); } private void ensureExplicitCapacity(int minCapacity) { if (minCapacity - elementData.length > 0) { grow(minCapacity); } } private void grow(int minCapacity) { int oldCapacity = elementData.length; int newCapacity = oldCapacity + (oldCapacity >> 1); if (newCapacity - minCapacity < 0) { newCapacity = minCapacity; } if (newCapacity - MAX_ARRAY_SIZE > 0) { newCapacity = hugeCapacity(minCapacity); } elementData = Arrays.copyOf(elementData, newCapacity); } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy