All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.landawn.abacus.util.Matth Maven / Gradle / Ivy

/*
 * Copyright (C) 2017 HaiYang Li
 *
 * Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except
 * in compliance with the License. You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software distributed under the License
 * is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express
 * or implied. See the License for the specific language governing permissions and limitations under
 * the License.
 */

package com.landawn.abacus.util;

import static java.lang.Double.MAX_EXPONENT;
import static java.lang.Double.MIN_EXPONENT;
import static java.lang.Double.POSITIVE_INFINITY;
import static java.lang.Double.doubleToRawLongBits;
import static java.lang.Double.isNaN;
import static java.lang.Double.longBitsToDouble;
import static java.lang.Math.abs;
import static java.lang.Math.getExponent;
import static java.lang.Math.min;
import static java.math.RoundingMode.CEILING;
import static java.math.RoundingMode.FLOOR;
import static java.math.RoundingMode.HALF_EVEN;
import static java.math.RoundingMode.HALF_UP;

import java.math.BigDecimal;
import java.math.BigInteger;
import java.math.RoundingMode;
import java.util.ArrayList;
import java.util.List;

/**
 *  Note: A lot of codes in this classed are copied from Google Guava and Apache Commons Math under under the Apache License, Version 2.0.
 *  The purpose of copying the code is to re-organize the APIs.
 *
 */
public abstract class Matth {
    private Matth() {
        // utility class.
    }

    private static final long ONE_BITS = doubleToRawLongBits(1.0);

    /** The biggest half power of two that can fit in an unsigned int. */
    static final int INT_MAX_POWER_OF_SQRT2_UNSIGNED = 0xB504F333;

    /** The biggest half power of two that fits into an unsigned long */
    static final long MAX_POWER_OF_SQRT2_UNSIGNED = 0xB504F333F9DE6484L;

    static final long MAX_SIGNED_POWER_OF_TWO = 1L << (Long.SIZE - 2);

    static final long FLOOR_SQRT_MAX_LONG = 3037000499L;

    static final int FLOOR_SQRT_MAX_INT = 46340;

    // The mask for the significand, according to the {@link
    // Double#doubleToRawLongBits(double)} spec.
    static final long SIGNIFICAND_MASK = 0x000fffffffffffffL;

    static final int SIGNIFICAND_BITS = 52;

    // The mask for the exponent, according to the {@link
    // Double#doubleToRawLongBits(double)} spec.
    static final long EXPONENT_MASK = 0x7ff0000000000000L;

    // The mask for the sign, according to the {@link
    // Double#doubleToRawLongBits(double)} spec.
    static final long SIGN_MASK = 0x8000000000000000L;

    static final int EXPONENT_BIAS = 1023;

    /**
     * The implicit 1 bit that is omitted in significands of normal doubles.
     */
    static final long IMPLICIT_BIT = SIGNIFICAND_MASK + 1;

    private static final double MIN_INT_AS_DOUBLE = -0x1p31;

    private static final double MAX_INT_AS_DOUBLE = 0x1p31 - 1.0;

    private static final double MIN_LONG_AS_DOUBLE = -0x1p63;

    /*
     * We cannot store Long.MAX_VALUE as a double without losing precision. Instead, we store
     * Long.MAX_VALUE + 1 == -Long.MIN_VALUE, and then offset all comparisons by 1.
     */
    private static final double MAX_LONG_AS_DOUBLE_PLUS_ONE = 0x1p63;

    // maxLog10ForLeadingZeros[i] == floor(log10(2^(Long.SIZE - i)))
    static final byte[] int_maxLog10ForLeadingZeros = { 9, 9, 9, 8, 8, 8, 7, 7, 7, 6, 6, 6, 6, 5, 5, 5, 4, 4, 4, 3, 3, 3, 3, 2, 2, 2, 1, 1, 1, 0, 0, 0, 0 };

    static final int[] int_powersOf10 = { 1, 10, 100, 1000, 10000, 100000, 1000000, 10000000, 100000000, 1000000000 };

    private static final int[] int_factorials = { 1, 1, 1 * 2, 1 * 2 * 3, 1 * 2 * 3 * 4, 1 * 2 * 3 * 4 * 5, 1 * 2 * 3 * 4 * 5 * 6, 1 * 2 * 3 * 4 * 5 * 6 * 7,
            1 * 2 * 3 * 4 * 5 * 6 * 7 * 8, 1 * 2 * 3 * 4 * 5 * 6 * 7 * 8 * 9, 1 * 2 * 3 * 4 * 5 * 6 * 7 * 8 * 9 * 10,
            1 * 2 * 3 * 4 * 5 * 6 * 7 * 8 * 9 * 10 * 11, 1 * 2 * 3 * 4 * 5 * 6 * 7 * 8 * 9 * 10 * 11 * 12 };

    // binomial(biggestBinomials[k], k) fits in an int, but not binomial(biggestBinomials[k]+1,k).
    static int[] int_biggestBinomials = { Integer.MAX_VALUE, Integer.MAX_VALUE, 65536, 2345, 477, 193, 110, 75, 58, 49, 43, 39, 37, 35, 34, 34, 33 };

    // halfPowersOf10[i] = largest int less than 10^(i + 0.5)
    static final int[] int_halfPowersOf10 = { 3, 31, 316, 3162, 31622, 316227, 3162277, 31622776, 316227766, Integer.MAX_VALUE };

    // maxLog10ForLeadingZeros[i] == floor(log10(2^(Long.SIZE - i))) 
    static final byte[] maxLog10ForLeadingZeros = { 19, 18, 18, 18, 18, 17, 17, 17, 16, 16, 16, 15, 15, 15, 15, 14, 14, 14, 13, 13, 13, 12, 12, 12, 12, 11, 11,
            11, 10, 10, 10, 9, 9, 9, 9, 8, 8, 8, 7, 7, 7, 6, 6, 6, 6, 5, 5, 5, 4, 4, 4, 3, 3, 3, 3, 2, 2, 2, 1, 1, 1, 0, 0, 0 };

    static final long[] powersOf10 = { 1L, 10L, 100L, 1000L, 10000L, 100000L, 1000000L, 10000000L, 100000000L, 1000000000L, 10000000000L, 100000000000L,
            1000000000000L, 10000000000000L, 100000000000000L, 1000000000000000L, 10000000000000000L, 100000000000000000L, 1000000000000000000L };

    // halfPowersOf10[i] = largest long less than 10^(i + 0.5)  
    static final long[] halfPowersOf10 = { 3L, 31L, 316L, 3162L, 31622L, 316227L, 3162277L, 31622776L, 316227766L, 3162277660L, 31622776601L, 316227766016L,
            3162277660168L, 31622776601683L, 316227766016837L, 3162277660168379L, 31622776601683793L, 316227766016837933L, 3162277660168379331L };

    static final long[] long_factorials = { 1L, 1L, 1L * 2, 1L * 2 * 3, 1L * 2 * 3 * 4, 1L * 2 * 3 * 4 * 5, 1L * 2 * 3 * 4 * 5 * 6, 1L * 2 * 3 * 4 * 5 * 6 * 7,
            1L * 2 * 3 * 4 * 5 * 6 * 7 * 8, 1L * 2 * 3 * 4 * 5 * 6 * 7 * 8 * 9, 1L * 2 * 3 * 4 * 5 * 6 * 7 * 8 * 9 * 10,
            1L * 2 * 3 * 4 * 5 * 6 * 7 * 8 * 9 * 10 * 11, 1L * 2 * 3 * 4 * 5 * 6 * 7 * 8 * 9 * 10 * 11 * 12,
            1L * 2 * 3 * 4 * 5 * 6 * 7 * 8 * 9 * 10 * 11 * 12 * 13, 1L * 2 * 3 * 4 * 5 * 6 * 7 * 8 * 9 * 10 * 11 * 12 * 13 * 14,
            1L * 2 * 3 * 4 * 5 * 6 * 7 * 8 * 9 * 10 * 11 * 12 * 13 * 14 * 15, 1L * 2 * 3 * 4 * 5 * 6 * 7 * 8 * 9 * 10 * 11 * 12 * 13 * 14 * 15 * 16,
            1L * 2 * 3 * 4 * 5 * 6 * 7 * 8 * 9 * 10 * 11 * 12 * 13 * 14 * 15 * 16 * 17,
            1L * 2 * 3 * 4 * 5 * 6 * 7 * 8 * 9 * 10 * 11 * 12 * 13 * 14 * 15 * 16 * 17 * 18,
            1L * 2 * 3 * 4 * 5 * 6 * 7 * 8 * 9 * 10 * 11 * 12 * 13 * 14 * 15 * 16 * 17 * 18 * 19,
            1L * 2 * 3 * 4 * 5 * 6 * 7 * 8 * 9 * 10 * 11 * 12 * 13 * 14 * 15 * 16 * 17 * 18 * 19 * 20 };

    /*
     * binomial(biggestBinomials[k], k) fits in a long, but not binomial(biggestBinomials[k] + 1, k).
     */
    static final int[] biggestBinomials = { Integer.MAX_VALUE, Integer.MAX_VALUE, Integer.MAX_VALUE, 3810779, 121977, 16175, 4337, 1733, 887, 534, 361, 265,
            206, 169, 143, 125, 111, 101, 94, 88, 83, 79, 76, 74, 72, 70, 69, 68, 67, 67, 66, 66, 66, 66 };

    /*
     * binomial(biggestSimpleBinomials[k], k) doesn't need to use the slower GCD-based impl, but
     * binomial(biggestSimpleBinomials[k] + 1, k) does.
     */
    static final int[] biggestSimpleBinomials = { Integer.MAX_VALUE, Integer.MAX_VALUE, Integer.MAX_VALUE, 2642246, 86251, 11724, 3218, 1313, 684, 419, 287,
            214, 169, 139, 119, 105, 95, 87, 81, 76, 73, 70, 68, 66, 64, 63, 62, 62, 61, 61, 61 };

    /*
     * This bitmask is used as an optimization for cheaply testing for divisiblity by 2, 3, or 5.
     * Each bit is set to 1 for all remainders that indicate divisibility by 2, 3, or 5, so
     * 1, 7, 11, 13, 17, 19, 23, 29 are set to 0. 30 and up don't matter because they won't be hit.
     */
    private static final int SIEVE_30 = ~((1 << 1) | (1 << 7) | (1 << 11) | (1 << 13) | (1 << 17) | (1 << 19) | (1 << 23) | (1 << 29));

    /*
     * If n <= millerRabinBases[i][0], then testing n against bases millerRabinBases[i][1..] suffices
     * to prove its primality. Values from miller-rabin.appspot.com.
     *
     * NOTE: We could get slightly better bases that would be treated as unsigned, but benchmarks
     * showed negligible performance improvements.
     */
    private static final long[][] millerRabinBaseSets = { { 291830, 126401071349994536L }, { 885594168, 725270293939359937L, 3569819667048198375L },
            { 273919523040L, 15, 7363882082L, 992620450144556L }, { 47636622961200L, 2, 2570940, 211991001, 3749873356L },
            { 7999252175582850L, 2, 4130806001517L, 149795463772692060L, 186635894390467037L, 3967304179347715805L },
            { 585226005592931976L, 2, 123635709730000L, 9233062284813009L, 43835965440333360L, 761179012939631437L, 1263739024124850375L },
            { Long.MAX_VALUE, 2, 325, 9375, 28178, 450775, 9780504, 1795265022 } };

    /** Constant: {@value}. */
    static final double F_1_3 = 1d / 3d;
    /** Constant: {@value}. */
    static final double F_1_5 = 1d / 5d;
    /** Constant: {@value}. */
    static final double F_1_7 = 1d / 7d;
    /** Constant: {@value}. */
    static final double F_1_9 = 1d / 9d;
    /** Constant: {@value}. */
    static final double F_1_11 = 1d / 11d;
    /** Constant: {@value}. */
    static final double F_1_13 = 1d / 13d;
    /** Constant: {@value}. */
    static final double F_1_15 = 1d / 15d;
    /** Constant: {@value}. */
    static final double F_1_17 = 1d / 17d;
    /** Constant: {@value}. */
    static final double F_3_4 = 3d / 4d;
    /** Constant: {@value}. */
    static final double F_15_16 = 15d / 16d;
    /** Constant: {@value}. */
    static final double F_13_14 = 13d / 14d;
    /** Constant: {@value}. */
    static final double F_11_12 = 11d / 12d;
    /** Constant: {@value}. */
    static final double F_9_10 = 9d / 10d;
    /** Constant: {@value}. */
    static final double F_7_8 = 7d / 8d;
    /** Constant: {@value}. */
    static final double F_5_6 = 5d / 6d;
    /** Constant: {@value}. */
    static final double F_1_2 = 1d / 2d;
    /** Constant: {@value}. */
    static final double F_1_4 = 1d / 4d;

    //    /**
    //     * Primality test: tells if the argument is a (provable) prime or not. 
    //     * 
    //     * @param n number to test.
    //     * @return true if n is prime. (All numbers < 2 return false).
    //     */
    //    public static boolean isPrime(int n) {
    //        if (n < 2) {
    //            return false;
    //        } else if (n < 4) {
    //            return true;
    //        }
    //
    //        for (int i = 2, to = (int) Math.sqrt(n); i <= to; i++) {
    //            if (n % i == 0) {
    //                return false;
    //            }
    //        }
    //
    //        return true;
    //    }

    /**
     * Returns {@code true} if {@code n} is a
     * prime number: an integer greater
     * than one that cannot be factored into a product of smaller positive integers.
     * Returns {@code false} if {@code n} is zero, one, or a composite number (one which can
     * be factored into smaller positive integers).
     *
     * 

To test larger numbers, use {@link BigInteger#isProbablePrime}. * * @throws IllegalArgumentException if {@code n} is negative * @since 20.0 */ public static boolean isPrime(long n) { if (n < 2) { checkNonNegative("n", n); return false; } if (n < 14 && (n == 2 || n == 3 || n == 5 || n == 7 || n == 11 || n == 13)) { return true; } if ((SIEVE_30 & (1 << (n % 30))) != 0) { return false; } if (n % 7 == 0 || n % 11 == 0 || n % 13 == 0) { return false; } if (n < 17 * 17) { return true; } for (long[] baseSet : millerRabinBaseSets) { if (n <= baseSet[0]) { for (int i = 1; i < baseSet.length; i++) { if (!MillerRabinTester.test(baseSet[i], n)) { return false; } } return true; } } throw new AssertionError(); } public static boolean isPerfectSquare(int n) { if (n < 0) { return false; } switch (n & 0xF) { case 0: case 1: case 4: case 9: long tst = (long) Math.sqrt(n); return tst * tst == n; default: return false; } } public static boolean isPerfectSquare(long n) { if (n < 0) { return false; } switch ((int) (n & 0xF)) { case 0: case 1: case 4: case 9: long tst = (long) Math.sqrt(n); return tst * tst == n; default: return false; } } public static boolean isPowerOfTwo(int x) { return x > 0 & (x & (x - 1)) == 0; } public static boolean isPowerOfTwo(long x) { return x > 0 & (x & (x - 1)) == 0; } public static boolean isPowerOfTwo(double x) { return x > 0.0 && isFinite(x) && isPowerOfTwo(getSignificand(x)); } /** * Returns {@code true} if {@code x} represents a power of two. */ public static boolean isPowerOfTwo(BigInteger x) { N.checkArgNotNull(x); return x.signum() > 0 && x.getLowestSetBit() == x.bitLength() - 1; } // public static boolean isPowerOfFour(int n) { // return (n > 0) && ((n & (n - 1)) == 0) && ((n & 0x55555555) == n); // } // // public static boolean isPowerOfFour(long n) { // return (n > 0) && ((n & (n - 1)) == 0) && ((n & 0x5555555555555555L) == n); // } public static double log(double a) { return Math.log(a); } public static int log2(int x, RoundingMode mode) { checkPositive("x", x); switch (mode) { case UNNECESSARY: checkRoundingUnnecessary(isPowerOfTwo(x)); // fall through case DOWN: case FLOOR: return (Integer.SIZE - 1) - Integer.numberOfLeadingZeros(x); case UP: case CEILING: return Integer.SIZE - Integer.numberOfLeadingZeros(x - 1); case HALF_DOWN: case HALF_UP: case HALF_EVEN: // Since sqrt(2) is irrational, log2(x) - logFloor cannot be exactly 0.5 int leadingZeros = Integer.numberOfLeadingZeros(x); int cmp = INT_MAX_POWER_OF_SQRT2_UNSIGNED >>> leadingZeros; // floor(2^(logFloor + 0.5)) int logFloor = (Integer.SIZE - 1) - leadingZeros; return logFloor + lessThanBranchFree(cmp, x); default: throw new AssertionError(); } } /** * Returns the base-2 logarithm of {@code x}, rounded according to the specified rounding mode. * * @throws IllegalArgumentException if {@code x <= 0} * @throws ArithmeticException if {@code mode} is {@link RoundingMode#UNNECESSARY} and {@code x} * is not a power of two */ @SuppressWarnings("fallthrough") // TODO(kevinb): remove after this warning is disabled globally public static int log2(long x, RoundingMode mode) { checkPositive("x", x); switch (mode) { case UNNECESSARY: checkRoundingUnnecessary(isPowerOfTwo(x)); // fall through case DOWN: case FLOOR: return (Long.SIZE - 1) - Long.numberOfLeadingZeros(x); case UP: case CEILING: return Long.SIZE - Long.numberOfLeadingZeros(x - 1); case HALF_DOWN: case HALF_UP: case HALF_EVEN: // Since sqrt(2) is irrational, log2(x) - logFloor cannot be exactly 0.5 int leadingZeros = Long.numberOfLeadingZeros(x); long cmp = MAX_POWER_OF_SQRT2_UNSIGNED >>> leadingZeros; // floor(2^(logFloor + 0.5)) int logFloor = (Long.SIZE - 1) - leadingZeros; return logFloor + lessThanBranchFree(cmp, x); default: throw new AssertionError("impossible"); } } /** * Returns the base 2 logarithm of a double value. * *

Special cases: *

    *
  • If {@code x} is NaN or less than zero, the result is NaN. *
  • If {@code x} is positive infinity, the result is positive infinity. *
  • If {@code x} is positive or negative zero, the result is negative infinity. *
* *

The computed result is within 1 ulp of the exact result. * *

If the result of this method will be immediately rounded to an {@code int}, * {@link #log2(double, RoundingMode)} is faster. */ public static double log2(double x) { return Math.log(x) / LN_2; // surprisingly within 1 ulp according to tests } /** * Returns the base 2 logarithm of a double value, rounded with the specified rounding mode to an * {@code int}. * *

Regardless of the rounding mode, this is faster than {@code (int) log2(x)}. * * @throws IllegalArgumentException if {@code x <= 0.0}, {@code x} is NaN, or {@code x} is * infinite */ @SuppressWarnings("fallthrough") public static int log2(double x, RoundingMode mode) { N.checkArgument(x > 0.0 && isFinite(x), "x must be positive and finite"); int exponent = getExponent(x); if (!isNormal(x)) { return log2(x * IMPLICIT_BIT, mode) - SIGNIFICAND_BITS; // Do the calculation on a normal value. } // x is positive, finite, and normal boolean increment; switch (mode) { case UNNECESSARY: checkRoundingUnnecessary(isPowerOfTwo(x)); // fall through case FLOOR: increment = false; break; case CEILING: increment = !isPowerOfTwo(x); break; case DOWN: increment = exponent < 0 & !isPowerOfTwo(x); break; case UP: increment = exponent >= 0 & !isPowerOfTwo(x); break; case HALF_DOWN: case HALF_EVEN: case HALF_UP: double xScaled = scaleNormalize(x); // sqrt(2) is irrational, and the spec is relative to the "exact numerical result," // so log2(x) is never exactly exponent + 0.5. increment = (xScaled * xScaled) > 2.0; break; default: throw new AssertionError(); } return increment ? exponent + 1 : exponent; } /** * Returns the base-2 logarithm of {@code x}, rounded according to the specified rounding mode. * * @throws IllegalArgumentException if {@code x <= 0} * @throws ArithmeticException if {@code mode} is {@link RoundingMode#UNNECESSARY} and {@code x} * is not a power of two */ @SuppressWarnings("fallthrough") // TODO(kevinb): remove after this warning is disabled globally public static int log2(BigInteger x, RoundingMode mode) { checkPositive("x", N.checkArgNotNull(x)); int logFloor = x.bitLength() - 1; switch (mode) { case UNNECESSARY: checkRoundingUnnecessary(isPowerOfTwo(x)); // fall through case DOWN: case FLOOR: return logFloor; case UP: case CEILING: return isPowerOfTwo(x) ? logFloor : logFloor + 1; case HALF_DOWN: case HALF_UP: case HALF_EVEN: if (logFloor < SQRT2_PRECOMPUTE_THRESHOLD) { BigInteger halfPower = SQRT2_PRECOMPUTED_BITS.shiftRight(SQRT2_PRECOMPUTE_THRESHOLD - logFloor); if (x.compareTo(halfPower) <= 0) { return logFloor; } else { return logFloor + 1; } } // Since sqrt(2) is irrational, log2(x) - logFloor cannot be exactly 0.5 // // To determine which side of logFloor.5 the logarithm is, // we compare x^2 to 2^(2 * logFloor + 1). BigInteger x2 = x.pow(2); int logX2Floor = x2.bitLength() - 1; return (logX2Floor < 2 * logFloor + 1) ? logFloor : logFloor + 1; default: throw new AssertionError(); } } public static int log10(int x, RoundingMode mode) { checkPositive("x", x); int logFloor = log10Floor(x); int floorPow = int_powersOf10[logFloor]; switch (mode) { case UNNECESSARY: checkRoundingUnnecessary(x == floorPow); // fall through case FLOOR: case DOWN: return logFloor; case CEILING: case UP: return logFloor + lessThanBranchFree(floorPow, x); case HALF_DOWN: case HALF_UP: case HALF_EVEN: // sqrt(10) is irrational, so log10(x) - logFloor is never exactly 0.5 return logFloor + lessThanBranchFree(int_halfPowersOf10[logFloor], x); default: throw new AssertionError(); } } private static int log10Floor(int x) { /* * Based on Hacker's Delight Fig. 11-5, the two-table-lookup, branch-free implementation. * * The key idea is that based on the number of leading zeros (equivalently, floor(log2(x))), * we can narrow the possible floor(log10(x)) values to two. For example, if floor(log2(x)) * is 6, then 64 <= x < 128, so floor(log10(x)) is either 1 or 2. */ int y = int_maxLog10ForLeadingZeros[Integer.numberOfLeadingZeros(x)]; /* * y is the higher of the two possible values of floor(log10(x)). If x < 10^y, then we want the * lower of the two possible values, or y - 1, otherwise, we want y. */ return y - lessThanBranchFree(x, int_powersOf10[y]); } /** * Returns the base-10 logarithm of {@code x}, rounded according to the specified rounding mode. * * @throws IllegalArgumentException if {@code x <= 0} * @throws ArithmeticException if {@code mode} is {@link RoundingMode#UNNECESSARY} and {@code x} * is not a power of ten */ @SuppressWarnings("fallthrough") // TODO(kevinb): remove after this warning is disabled globally public static int log10(long x, RoundingMode mode) { checkPositive("x", x); int logFloor = log10Floor(x); long floorPow = powersOf10[logFloor]; switch (mode) { case UNNECESSARY: checkRoundingUnnecessary(x == floorPow); // fall through case FLOOR: case DOWN: return logFloor; case CEILING: case UP: return logFloor + lessThanBranchFree(floorPow, x); case HALF_DOWN: case HALF_UP: case HALF_EVEN: // sqrt(10) is irrational, so log10(x)-logFloor is never exactly 0.5 return logFloor + lessThanBranchFree(halfPowersOf10[logFloor], x); default: throw new AssertionError(); } } public static double log10(double x) { return Math.log10(x); } /* * The maximum number of bits in a square root for which we'll precompute an explicit half power * of two. This can be any value, but higher values incur more class load time and linearly * increasing memory consumption. */ static final int SQRT2_PRECOMPUTE_THRESHOLD = 256; static final BigInteger SQRT2_PRECOMPUTED_BITS = new BigInteger("16a09e667f3bcc908b2fb1366ea957d3e3adec17512775099da2f590b0667322a", 16); /** * Returns the base-10 logarithm of {@code x}, rounded according to the specified rounding mode. * * @throws IllegalArgumentException if {@code x <= 0} * @throws ArithmeticException if {@code mode} is {@link RoundingMode#UNNECESSARY} and {@code x} * is not a power of ten */ @SuppressWarnings("fallthrough") public static int log10(BigInteger x, RoundingMode mode) { checkPositive("x", x); if (fitsInLong(x)) { return log10(x.longValue(), mode); } int approxLog10 = (int) (log2(x, FLOOR) * LN_2 / LN_10); BigInteger approxPow = BigInteger.TEN.pow(approxLog10); int approxCmp = approxPow.compareTo(x); /* * We adjust approxLog10 and approxPow until they're equal to floor(log10(x)) and * 10^floor(log10(x)). */ if (approxCmp > 0) { /* * The code is written so that even completely incorrect approximations will still yield the * correct answer eventually, but in practice this branch should almost never be entered, and * even then the loop should not run more than once. */ do { approxLog10--; approxPow = approxPow.divide(BigInteger.TEN); approxCmp = approxPow.compareTo(x); } while (approxCmp > 0); } else { BigInteger nextPow = BigInteger.TEN.multiply(approxPow); int nextCmp = nextPow.compareTo(x); while (nextCmp <= 0) { approxLog10++; approxPow = nextPow; approxCmp = nextCmp; nextPow = BigInteger.TEN.multiply(approxPow); nextCmp = nextPow.compareTo(x); } } int floorLog = approxLog10; BigInteger floorPow = approxPow; int floorCmp = approxCmp; switch (mode) { case UNNECESSARY: checkRoundingUnnecessary(floorCmp == 0); // fall through case FLOOR: case DOWN: return floorLog; case CEILING: case UP: return floorPow.equals(x) ? floorLog : floorLog + 1; case HALF_DOWN: case HALF_UP: case HALF_EVEN: // Since sqrt(10) is irrational, log10(x) - floorLog can never be exactly 0.5 BigInteger x2 = x.pow(2); BigInteger halfPowerSquared = floorPow.pow(2).multiply(BigInteger.TEN); return (x2.compareTo(halfPowerSquared) <= 0) ? floorLog : floorLog + 1; default: throw new AssertionError(); } } static boolean fitsInLong(BigInteger x) { return x.bitLength() <= Long.SIZE - 1; } private static final double LN_10 = Math.log(10); private static final double LN_2 = Math.log(2); public static int pow(int b, int k) { checkNonNegative("exponent", k); switch (b) { case 0: return (k == 0) ? 1 : 0; case 1: return 1; case (-1): return ((k & 1) == 0) ? 1 : -1; case 2: return (k < Integer.SIZE) ? (1 << k) : 0; case (-2): if (k < Integer.SIZE) { return ((k & 1) == 0) ? (1 << k) : -(1 << k); } else { return 0; } default: // continue below to handle the general case } for (int accum = 1;; k >>= 1) { switch (k) { case 0: return accum; case 1: return b * accum; default: accum *= ((k & 1) == 0) ? 1 : b; b *= b; } } } /** * Returns {@code b} to the {@code k}th power. Even if the result overflows, it will be equal to * {@code BigInteger.valueOf(b).pow(k).longValue()}. This implementation runs in {@code O(log k)} * time. * * @throws IllegalArgumentException if {@code k < 0} */ public static long pow(long b, int k) { checkNonNegative("exponent", k); if (-2 <= b && b <= 2) { switch ((int) b) { case 0: return (k == 0) ? 1 : 0; case 1: return 1; case (-1): return ((k & 1) == 0) ? 1 : -1; case 2: return (k < Long.SIZE) ? 1L << k : 0; case (-2): if (k < Long.SIZE) { return ((k & 1) == 0) ? 1L << k : -(1L << k); } else { return 0; } default: throw new AssertionError(); } } for (long accum = 1;; k >>= 1) { switch (k) { case 0: return accum; case 1: return accum * b; default: accum *= ((k & 1) == 0) ? 1 : b; b *= b; } } } /** * Returns the smallest power of two greater than or equal to {@code x}. This is equivalent to * {@code checkedPow(2, log2(x, CEILING))}. * * @throws IllegalArgumentException if {@code x <= 0} * @throws ArithmeticException of the next-higher power of two is not representable as a * {@code long}, i.e. when {@code x > 2^62} * @since 20.0 */ public static long ceilingPowerOfTwo(long x) { checkPositive("x", x); if (x > MAX_SIGNED_POWER_OF_TWO) { throw new ArithmeticException("ceilingPowerOfTwo(" + x + ") is not representable as a long"); } return 1L << -Long.numberOfLeadingZeros(x - 1); } public static BigInteger ceilingPowerOfTwo(BigInteger x) { return BigInteger.ZERO.setBit(log2(x, RoundingMode.CEILING)); } /** * Returns the largest power of two less than or equal to {@code x}. This is equivalent to * {@code checkedPow(2, log2(x, FLOOR))}. * * @throws IllegalArgumentException if {@code x <= 0} * @since 20.0 */ public static long floorPowerOfTwo(long x) { checkPositive("x", x); // Long.highestOneBit was buggy on GWT. We've fixed it, but I'm not certain when the fix will // be released. return 1L << ((Long.SIZE - 1) - Long.numberOfLeadingZeros(x)); } public static BigInteger floorPowerOfTwo(BigInteger x) { return BigInteger.ZERO.setBit(log2(x, RoundingMode.FLOOR)); } /** * Returns the square root of {@code x}, rounded with the specified rounding mode. * * @throws IllegalArgumentException if {@code x < 0} * @throws ArithmeticException if {@code mode} is {@link RoundingMode#UNNECESSARY} and * {@code sqrt(x)} is not an integer */ @SuppressWarnings("fallthrough") public static int sqrt(int x, RoundingMode mode) { checkNonNegative("x", x); int sqrtFloor = sqrtFloor(x); switch (mode) { case UNNECESSARY: checkRoundingUnnecessary(sqrtFloor * sqrtFloor == x); // fall through case FLOOR: case DOWN: return sqrtFloor; case CEILING: case UP: return sqrtFloor + lessThanBranchFree(sqrtFloor * sqrtFloor, x); case HALF_DOWN: case HALF_UP: case HALF_EVEN: int halfSquare = sqrtFloor * sqrtFloor + sqrtFloor; /* * We wish to test whether or not x <= (sqrtFloor + 0.5)^2 = halfSquare + 0.25. Since both * x and halfSquare are integers, this is equivalent to testing whether or not x <= * halfSquare. (We have to deal with overflow, though.) * * If we treat halfSquare as an unsigned int, we know that * sqrtFloor^2 <= x < (sqrtFloor + 1)^2 * halfSquare - sqrtFloor <= x < halfSquare + sqrtFloor + 1 * so |x - halfSquare| <= sqrtFloor. Therefore, it's safe to treat x - halfSquare as a * signed int, so lessThanBranchFree is safe for use. */ return sqrtFloor + lessThanBranchFree(halfSquare, x); default: throw new AssertionError(); } } private static int sqrtFloor(int x) { // There is no loss of precision in converting an int to a double, according to // http://java.sun.com/docs/books/jls/third_edition/html/conversions.html#5.1.2 return (int) Math.sqrt(x); } /** * Returns the square root of {@code x}, rounded with the specified rounding mode. * * @throws IllegalArgumentException if {@code x < 0} * @throws ArithmeticException if {@code mode} is {@link RoundingMode#UNNECESSARY} and * {@code sqrt(x)} is not an integer */ @SuppressWarnings("fallthrough") public static long sqrt(long x, RoundingMode mode) { checkNonNegative("x", x); if (fitsInInt(x)) { return sqrt((int) x, mode); } /* * Let k be the true value of floor(sqrt(x)), so that * * k * k <= x < (k + 1) * (k + 1) * (double) (k * k) <= (double) x <= (double) ((k + 1) * (k + 1)) * since casting to double is nondecreasing. * Note that the right-hand inequality is no longer strict. * Math.sqrt(k * k) <= Math.sqrt(x) <= Math.sqrt((k + 1) * (k + 1)) * since Math.sqrt is monotonic. * (long) Math.sqrt(k * k) <= (long) Math.sqrt(x) <= (long) Math.sqrt((k + 1) * (k + 1)) * since casting to long is monotonic * k <= (long) Math.sqrt(x) <= k + 1 * since (long) Math.sqrt(k * k) == k, as checked exhaustively in * {@link LongMathTest#testSqrtOfPerfectSquareAsDoubleIsPerfect} */ long guess = (long) Math.sqrt(x); // Note: guess is always <= FLOOR_SQRT_MAX_LONG. long guessSquared = guess * guess; // Note (2013-2-26): benchmarks indicate that, inscrutably enough, using if statements is // faster here than using lessThanBranchFree. switch (mode) { case UNNECESSARY: checkRoundingUnnecessary(guessSquared == x); return guess; case FLOOR: case DOWN: if (x < guessSquared) { return guess - 1; } return guess; case CEILING: case UP: if (x > guessSquared) { return guess + 1; } return guess; case HALF_DOWN: case HALF_UP: case HALF_EVEN: long sqrtFloor = guess - ((x < guessSquared) ? 1 : 0); long halfSquare = sqrtFloor * sqrtFloor + sqrtFloor; /* * We wish to test whether or not x <= (sqrtFloor + 0.5)^2 = halfSquare + 0.25. Since both x * and halfSquare are integers, this is equivalent to testing whether or not x <= * halfSquare. (We have to deal with overflow, though.) * * If we treat halfSquare as an unsigned long, we know that * sqrtFloor^2 <= x < (sqrtFloor + 1)^2 * halfSquare - sqrtFloor <= x < halfSquare + sqrtFloor + 1 * so |x - halfSquare| <= sqrtFloor. Therefore, it's safe to treat x - halfSquare as a * signed long, so lessThanBranchFree is safe for use. */ return sqrtFloor + lessThanBranchFree(halfSquare, x); default: throw new AssertionError(); } } public static BigInteger sqrt(BigInteger x, RoundingMode mode) { checkNonNegative("x", x); if (fitsInLong(x)) { return BigInteger.valueOf(sqrt(x.longValue(), mode)); } BigInteger sqrtFloor = sqrtFloor(x); switch (mode) { case UNNECESSARY: checkRoundingUnnecessary(sqrtFloor.pow(2).equals(x)); // fall through case FLOOR: case DOWN: return sqrtFloor; case CEILING: case UP: int sqrtFloorInt = sqrtFloor.intValue(); boolean sqrtFloorIsExact = (sqrtFloorInt * sqrtFloorInt == x.intValue()) // fast check mod 2^32 && sqrtFloor.pow(2).equals(x); // slow exact check return sqrtFloorIsExact ? sqrtFloor : sqrtFloor.add(BigInteger.ONE); case HALF_DOWN: case HALF_UP: case HALF_EVEN: BigInteger halfSquare = sqrtFloor.pow(2).add(sqrtFloor); /* * We wish to test whether or not x <= (sqrtFloor + 0.5)^2 = halfSquare + 0.25. Since both x * and halfSquare are integers, this is equivalent to testing whether or not x <= * halfSquare. */ return (halfSquare.compareTo(x) >= 0) ? sqrtFloor : sqrtFloor.add(BigInteger.ONE); default: throw new AssertionError(); } } private static BigInteger sqrtFloor(BigInteger x) { /* * Adapted from Hacker's Delight, Figure 11-1. * * Using DoubleUtils.bigToDouble, getting a double approximation of x is extremely fast, and * then we can get a double approximation of the square root. Then, we iteratively improve this * guess with an application of Newton's method, which sets guess := (guess + (x / guess)) / 2. * This iteration has the following two properties: * * a) every iteration (except potentially the first) has guess >= floor(sqrt(x)). This is * because guess' is the arithmetic mean of guess and x / guess, sqrt(x) is the geometric mean, * and the arithmetic mean is always higher than the geometric mean. * * b) this iteration converges to floor(sqrt(x)). In fact, the number of correct digits doubles * with each iteration, so this algorithm takes O(log(digits)) iterations. * * We start out with a double-precision approximation, which may be higher or lower than the * true value. Therefore, we perform at least one Newton iteration to get a guess that's * definitely >= floor(sqrt(x)), and then continue the iteration until we reach a fixed point. */ BigInteger sqrt0; int log2 = log2(x, FLOOR); if (log2 < Double.MAX_EXPONENT) { sqrt0 = sqrtApproxWithDoubles(x); } else { int shift = (log2 - SIGNIFICAND_BITS) & ~1; // even! /* * We have that x / 2^shift < 2^54. Our initial approximation to sqrtFloor(x) will be * 2^(shift/2) * sqrtApproxWithDoubles(x / 2^shift). */ sqrt0 = sqrtApproxWithDoubles(x.shiftRight(shift)).shiftLeft(shift >> 1); } BigInteger sqrt1 = sqrt0.add(x.divide(sqrt0)).shiftRight(1); if (sqrt0.equals(sqrt1)) { return sqrt0; } do { sqrt0 = sqrt1; sqrt1 = sqrt0.add(x.divide(sqrt0)).shiftRight(1); } while (sqrt1.compareTo(sqrt0) < 0); return sqrt0; } private static BigInteger sqrtApproxWithDoubles(BigInteger x) { return roundToBigInteger(Math.sqrt(bigToDouble(x)), HALF_EVEN); } /** * Returns the result of dividing {@code p} by {@code q}, rounding using the specified * {@code RoundingMode}. * * @throws ArithmeticException if {@code q == 0}, or if {@code mode == UNNECESSARY} and {@code a} * is not an integer multiple of {@code b} */ @SuppressWarnings("fallthrough") public static int divide(int p, int q, RoundingMode mode) { N.checkArgNotNull(mode); if (q == 0) { throw new ArithmeticException("/ by zero"); // for GWT } int div = p / q; int rem = p - q * div; // equal to p % q if (rem == 0) { return div; } /* * Normal Java division rounds towards 0, consistently with RoundingMode.DOWN. We just have to * deal with the cases where rounding towards 0 is wrong, which typically depends on the sign of * p / q. * * signum is 1 if p and q are both nonnegative or both negative, and -1 otherwise. */ int signum = 1 | ((p ^ q) >> (Integer.SIZE - 1)); boolean increment; switch (mode) { case UNNECESSARY: checkRoundingUnnecessary(rem == 0); // fall through case DOWN: increment = false; break; case UP: increment = true; break; case CEILING: increment = signum > 0; break; case FLOOR: increment = signum < 0; break; case HALF_EVEN: case HALF_DOWN: case HALF_UP: int absRem = abs(rem); int cmpRemToHalfDivisor = absRem - (abs(q) - absRem); // subtracting two nonnegative ints can't overflow // cmpRemToHalfDivisor has the same sign as compare(abs(rem), abs(q) / 2). if (cmpRemToHalfDivisor == 0) { // exactly on the half mark increment = (mode == HALF_UP || (mode == HALF_EVEN & (div & 1) != 0)); } else { increment = cmpRemToHalfDivisor > 0; // closer to the UP value } break; default: throw new AssertionError(); } return increment ? div + signum : div; } /** * Returns the result of dividing {@code p} by {@code q}, rounding using the specified * {@code RoundingMode}. * * @throws ArithmeticException if {@code q == 0}, or if {@code mode == UNNECESSARY} and {@code a} * is not an integer multiple of {@code b} */ @SuppressWarnings("fallthrough") public static long divide(long p, long q, RoundingMode mode) { N.checkArgNotNull(mode); long div = p / q; // throws if q == 0 long rem = p - q * div; // equals p % q if (rem == 0) { return div; } /* * Normal Java division rounds towards 0, consistently with RoundingMode.DOWN. We just have to * deal with the cases where rounding towards 0 is wrong, which typically depends on the sign of * p / q. * * signum is 1 if p and q are both nonnegative or both negative, and -1 otherwise. */ int signum = 1 | (int) ((p ^ q) >> (Long.SIZE - 1)); boolean increment; switch (mode) { case UNNECESSARY: checkRoundingUnnecessary(rem == 0); // fall through case DOWN: increment = false; break; case UP: increment = true; break; case CEILING: increment = signum > 0; break; case FLOOR: increment = signum < 0; break; case HALF_EVEN: case HALF_DOWN: case HALF_UP: long absRem = abs(rem); long cmpRemToHalfDivisor = absRem - (abs(q) - absRem); // subtracting two nonnegative longs can't overflow // cmpRemToHalfDivisor has the same sign as compare(abs(rem), abs(q) / 2). if (cmpRemToHalfDivisor == 0) { // exactly on the half mark increment = (mode == HALF_UP | (mode == HALF_EVEN & (div & 1) != 0)); } else { increment = cmpRemToHalfDivisor > 0; // closer to the UP value } break; default: throw new AssertionError(); } return increment ? div + signum : div; } public static BigInteger divide(BigInteger p, BigInteger q, RoundingMode mode) { BigDecimal pDec = new BigDecimal(p); BigDecimal qDec = new BigDecimal(q); return pDec.divide(qDec, 0, mode).toBigIntegerExact(); } /** * Returns {@code x mod m}, a non-negative value less than {@code m}. * This differs from {@code x % m}, which might be negative. * *

For example:

 {@code
     *
     * mod(7, 4) == 3
     * mod(-7, 4) == 1
     * mod(-1, 4) == 3
     * mod(-8, 4) == 0
     * mod(8, 4) == 0}
* * @throws ArithmeticException if {@code m <= 0} * @see * Remainder Operator */ public static int mod(int x, int m) { if (m <= 0) { throw new ArithmeticException("Modulus " + m + " must be > 0"); } int result = x % m; return (result >= 0) ? result : result + m; } /** * Returns {@code x mod m}, a non-negative value less than {@code m}. This differs from * {@code x % m}, which might be negative. * *

For example: * *

 {@code
     *
     * mod(7, 4) == 3
     * mod(-7, 4) == 1
     * mod(-1, 4) == 3
     * mod(-8, 4) == 0
     * mod(8, 4) == 0}
* * @throws ArithmeticException if {@code m <= 0} * @see * Remainder Operator */ public static int mod(long x, int m) { // Cast is safe because the result is guaranteed in the range [0, m) return (int) mod(x, (long) m); } /** * Returns {@code x mod m}, a non-negative value less than {@code m}. This differs from * {@code x % m}, which might be negative. * *

For example: * *

 {@code
     *
     * mod(7, 4) == 3
     * mod(-7, 4) == 1
     * mod(-1, 4) == 3
     * mod(-8, 4) == 0
     * mod(8, 4) == 0}
* * @throws ArithmeticException if {@code m <= 0} * @see * Remainder Operator */ public static long mod(long x, long m) { if (m <= 0) { throw new ArithmeticException("Modulus must be positive"); } long result = x % m; return (result >= 0) ? result : result + m; } /** * Returns the greatest common divisor of {@code a, b}. Returns {@code 0} if * {@code a == 0 && b == 0}. * * @throws IllegalArgumentException if {@code a < 0} or {@code b < 0} */ public static int gcd(int a, int b) { /* * The reason we require both arguments to be >= 0 is because otherwise, what do you return on * gcd(0, Integer.MIN_VALUE)? BigInteger.gcd would return positive 2^31, but positive 2^31 * isn't an int. */ checkNonNegative("a", a); checkNonNegative("b", b); if (a == 0) { // 0 % b == 0, so b divides a, but the converse doesn't hold. // BigInteger.gcd is consistent with this decision. return b; } else if (b == 0) { return a; // similar logic } /* * Uses the binary GCD algorithm; see http://en.wikipedia.org/wiki/Binary_GCD_algorithm. * This is >40% faster than the Euclidean algorithm in benchmarks. */ int aTwos = Integer.numberOfTrailingZeros(a); a >>= aTwos; // divide out all 2s int bTwos = Integer.numberOfTrailingZeros(b); b >>= bTwos; // divide out all 2s while (a != b) { // both a, b are odd // The key to the binary GCD algorithm is as follows: // Both a and b are odd. Assume a > b; then gcd(a - b, b) = gcd(a, b). // But in gcd(a - b, b), a - b is even and b is odd, so we can divide out powers of two. // We bend over backwards to avoid branching, adapting a technique from // http://graphics.stanford.edu/~seander/bithacks.html#IntegerMinOrMax int delta = a - b; // can't overflow, since a and b are nonnegative int minDeltaOrZero = delta & (delta >> (Integer.SIZE - 1)); // equivalent to Math.min(delta, 0) a = delta - minDeltaOrZero - minDeltaOrZero; // sets a to Math.abs(a - b) // a is now nonnegative and even b += minDeltaOrZero; // sets b to min(old a, b) a >>= Integer.numberOfTrailingZeros(a); // divide out all 2s, since 2 doesn't divide b } return a << min(aTwos, bTwos); } /** * Returns the greatest common divisor of {@code a, b}. Returns {@code 0} if * {@code a == 0 && b == 0}. * * @throws IllegalArgumentException if {@code a < 0} or {@code b < 0} */ public static long gcd(long a, long b) { /* * The reason we require both arguments to be >= 0 is because otherwise, what do you return on * gcd(0, Long.MIN_VALUE)? BigInteger.gcd would return positive 2^63, but positive 2^63 isn't an * int. */ checkNonNegative("a", a); checkNonNegative("b", b); if (a == 0) { // 0 % b == 0, so b divides a, but the converse doesn't hold. // BigInteger.gcd is consistent with this decision. return b; } else if (b == 0) { return a; // similar logic } /* * Uses the binary GCD algorithm; see http://en.wikipedia.org/wiki/Binary_GCD_algorithm. This is * >60% faster than the Euclidean algorithm in benchmarks. */ int aTwos = Long.numberOfTrailingZeros(a); a >>= aTwos; // divide out all 2s int bTwos = Long.numberOfTrailingZeros(b); b >>= bTwos; // divide out all 2s while (a != b) { // both a, b are odd // The key to the binary GCD algorithm is as follows: // Both a and b are odd. Assume a > b; then gcd(a - b, b) = gcd(a, b). // But in gcd(a - b, b), a - b is even and b is odd, so we can divide out powers of two. // We bend over backwards to avoid branching, adapting a technique from // http://graphics.stanford.edu/~seander/bithacks.html#IntegerMinOrMax long delta = a - b; // can't overflow, since a and b are nonnegative long minDeltaOrZero = delta & (delta >> (Long.SIZE - 1)); // equivalent to Math.min(delta, 0) a = delta - minDeltaOrZero - minDeltaOrZero; // sets a to Math.abs(a - b) // a is now nonnegative and even b += minDeltaOrZero; // sets b to min(old a, b) a >>= Long.numberOfTrailingZeros(a); // divide out all 2s, since 2 doesn't divide b } return a << min(aTwos, bTwos); } /** *

* Returns the least common multiple of the absolute value of two numbers, * using the formula {@code lcm(a,b) = (a / gcd(a,b)) * b}. *

* Special cases: *
    *
  • The invocations {@code lcm(Integer.MIN_VALUE, n)} and * {@code lcm(n, Integer.MIN_VALUE)}, where {@code abs(n)} is a * power of 2, throw an {@code ArithmeticException}, because the result * would be 2^31, which is too large for an int value.
  • *
  • The result of {@code lcm(0, x)} and {@code lcm(x, 0)} is * {@code 0} for any {@code x}. *
* * @param a Number. * @param b Number. * @return the least common multiple, never negative. * @throws ArithmeticException if the result cannot be represented as * a non-negative {@code int} value. * @since 1.1 */ public static int lcm(int a, int b) throws ArithmeticException { if (a == 0 || b == 0) { return 0; } int lcm = Math.abs(addExact(a / gcd(a, b), b)); if (lcm == Integer.MIN_VALUE) { throw new ArithmeticException(); } return lcm; } /** *

* Returns the least common multiple of the absolute value of two numbers, * using the formula {@code lcm(a,b) = (a / gcd(a,b)) * b}. *

* Special cases: *
    *
  • The invocations {@code lcm(Long.MIN_VALUE, n)} and * {@code lcm(n, Long.MIN_VALUE)}, where {@code abs(n)} is a * power of 2, throw an {@code ArithmeticException}, because the result * would be 2^63, which is too large for an int value.
  • *
  • The result of {@code lcm(0L, x)} and {@code lcm(x, 0L)} is * {@code 0L} for any {@code x}. *
* * @param a Number. * @param b Number. * @return the least common multiple, never negative. * @throws ArithmeticException if the result cannot be represented * as a non-negative {@code long} value. * @since 2.1 */ public static long lcm(long a, long b) throws ArithmeticException { if (a == 0 || b == 0) { return 0; } long lcm = Math.abs(addExact(a / gcd(a, b), b)); if (lcm == Integer.MIN_VALUE) { throw new ArithmeticException(); } return lcm; } /** * Returns the sum of {@code a} and {@code b}, provided it does not overflow. * * @throws ArithmeticException if {@code a + b} overflows in signed {@code int} arithmetic */ public static int addExact(int a, int b) { long result = (long) a + b; checkNoOverflow(result == (int) result); return (int) result; } /** * Returns the sum of {@code a} and {@code b}, provided it does not overflow. * * @throws ArithmeticException if {@code a + b} overflows in signed {@code long} arithmetic */ public static long addExact(long a, long b) { long result = a + b; checkNoOverflow((a ^ b) < 0 | (a ^ result) >= 0); return result; } /** * Returns the difference of {@code a} and {@code b}, provided it does not overflow. * * @throws ArithmeticException if {@code a - b} overflows in signed {@code int} arithmetic */ public static int subtractExact(int a, int b) { long result = (long) a - b; checkNoOverflow(result == (int) result); return (int) result; } /** * Returns the difference of {@code a} and {@code b}, provided it does not overflow. * * @throws ArithmeticException if {@code a - b} overflows in signed {@code long} arithmetic */ public static long subtractExact(long a, long b) { long result = a - b; checkNoOverflow((a ^ b) >= 0 | (a ^ result) >= 0); return result; } /** * Returns the product of {@code a} and {@code b}, provided it does not overflow. * * @throws ArithmeticException if {@code a * b} overflows in signed {@code int} arithmetic */ public static int multiplyExact(int a, int b) { long result = (long) a * b; checkNoOverflow(result == (int) result); return (int) result; } /** * Returns the product of {@code a} and {@code b}, provided it does not overflow. * * @throws ArithmeticException if {@code a * b} overflows in signed {@code long} arithmetic */ public static long multiplyExact(long a, long b) { // Hacker's Delight, Section 2-12 int leadingZeros = Long.numberOfLeadingZeros(a) + Long.numberOfLeadingZeros(~a) + Long.numberOfLeadingZeros(b) + Long.numberOfLeadingZeros(~b); /* * If leadingZeros > Long.SIZE + 1 it's definitely fine, if it's < Long.SIZE it's definitely * bad. We do the leadingZeros check to avoid the division below if at all possible. * * Otherwise, if b == Long.MIN_VALUE, then the only allowed values of a are 0 and 1. We take * care of all a < 0 with their own check, because in particular, the case a == -1 will * incorrectly pass the division check below. * * In all other cases, we check that either a is 0 or the result is consistent with division. */ if (leadingZeros > Long.SIZE + 1) { return a * b; } checkNoOverflow(leadingZeros >= Long.SIZE); checkNoOverflow(a >= 0 | b != Long.MIN_VALUE); long result = a * b; checkNoOverflow(a == 0 || result / a == b); return result; } /** * Returns the {@code b} to the {@code k}th power, provided it does not overflow. * *

{@link #pow} may be faster, but does not check for overflow. * * @throws ArithmeticException if {@code b} to the {@code k}th power overflows in signed * {@code int} arithmetic */ public static int powExact(int b, int k) { checkNonNegative("exponent", k); switch (b) { case 0: return (k == 0) ? 1 : 0; case 1: return 1; case (-1): return ((k & 1) == 0) ? 1 : -1; case 2: checkNoOverflow(k < Integer.SIZE - 1); return 1 << k; case (-2): checkNoOverflow(k < Integer.SIZE); return ((k & 1) == 0) ? 1 << k : -1 << k; default: // continue below to handle the general case } int accum = 1; while (true) { switch (k) { case 0: return accum; case 1: return multiplyExact(accum, b); default: if ((k & 1) != 0) { accum = multiplyExact(accum, b); } k >>= 1; if (k > 0) { checkNoOverflow(-FLOOR_SQRT_MAX_INT <= b & b <= FLOOR_SQRT_MAX_INT); b *= b; } } } } /** * Returns the {@code b} to the {@code k}th power, provided it does not overflow. * * @throws ArithmeticException if {@code b} to the {@code k}th power overflows in signed * {@code long} arithmetic */ public static long powExact(long b, int k) { checkNonNegative("exponent", k); if (b >= -2 & b <= 2) { switch ((int) b) { case 0: return (k == 0) ? 1 : 0; case 1: return 1; case (-1): return ((k & 1) == 0) ? 1 : -1; case 2: checkNoOverflow(k < Long.SIZE - 1); return 1L << k; case (-2): checkNoOverflow(k < Long.SIZE); return ((k & 1) == 0) ? (1L << k) : (-1L << k); default: throw new AssertionError(); } } long accum = 1; while (true) { switch (k) { case 0: return accum; case 1: return multiplyExact(accum, b); default: if ((k & 1) != 0) { accum = multiplyExact(accum, b); } k >>= 1; if (k > 0) { checkNoOverflow(-FLOOR_SQRT_MAX_LONG <= b && b <= FLOOR_SQRT_MAX_LONG); b *= b; } } } } /** * Returns the {@code int} value that is equal to {@code value}, if possible. * * @param value any value in the range of the {@code int} type * @return the {@code int} value that equals {@code value} * @throws IllegalArgumentException if {@code value} is greater than {@link Integer#MAX_VALUE} or * less than {@link Integer#MIN_VALUE} */ public static int castExact(long value) { int result = (int) value; if (result != value) { // don't use checkArgument here, to avoid boxing throw new IllegalArgumentException("Out of range: " + value); } return result; } /** * Returns the sum of {@code a} and {@code b} unless it would overflow or underflow in which case * {@code Integer.MAX_VALUE} or {@code Integer.MIN_VALUE} is returned, respectively. * * @since 20.0 */ public static int saturatedAdd(int a, int b) { return saturatedCast((long) a + b); } /** * Returns the sum of {@code a} and {@code b} unless it would overflow or underflow in which case * {@code Long.MAX_VALUE} or {@code Long.MIN_VALUE} is returned, respectively. * * @since 20.0 */ public static long saturatedAdd(long a, long b) { long naiveSum = a + b; if ((a ^ b) < 0 | (a ^ naiveSum) >= 0) { // If a and b have different signs or a has the same sign as the result then there was no // overflow, return. return naiveSum; } // we did over/under flow, if the sign is negative we should return MAX otherwise MIN return Long.MAX_VALUE + ((naiveSum >>> (Long.SIZE - 1)) ^ 1); } /** * Returns the difference of {@code a} and {@code b} unless it would overflow or underflow in * which case {@code Integer.MAX_VALUE} or {@code Integer.MIN_VALUE} is returned, respectively. * * @since 20.0 */ public static int saturatedSubtract(int a, int b) { return saturatedCast((long) a - b); } /** * Returns the difference of {@code a} and {@code b} unless it would overflow or underflow in * which case {@code Long.MAX_VALUE} or {@code Long.MIN_VALUE} is returned, respectively. * * @since 20.0 */ public static long saturatedSubtract(long a, long b) { long naiveDifference = a - b; if ((a ^ b) >= 0 | (a ^ naiveDifference) >= 0) { // If a and b have the same signs or a has the same sign as the result then there was no // overflow, return. return naiveDifference; } // we did over/under flow return Long.MAX_VALUE + ((naiveDifference >>> (Long.SIZE - 1)) ^ 1); } /** * Returns the product of {@code a} and {@code b} unless it would overflow or underflow in which * case {@code Integer.MAX_VALUE} or {@code Integer.MIN_VALUE} is returned, respectively. * * @since 20.0 */ public static int saturatedMultiply(int a, int b) { return saturatedCast((long) a * b); } /** * Returns the product of {@code a} and {@code b} unless it would overflow or underflow in which * case {@code Long.MAX_VALUE} or {@code Long.MIN_VALUE} is returned, respectively. * * @since 20.0 */ public static long saturatedMultiply(long a, long b) { // see checkedMultiply for explanation int leadingZeros = Long.numberOfLeadingZeros(a) + Long.numberOfLeadingZeros(~a) + Long.numberOfLeadingZeros(b) + Long.numberOfLeadingZeros(~b); if (leadingZeros > Long.SIZE + 1) { return a * b; } // the return value if we will overflow (which we calculate by overflowing a long :) ) long limit = Long.MAX_VALUE + ((a ^ b) >>> (Long.SIZE - 1)); if (leadingZeros < Long.SIZE | (a < 0 & b == Long.MIN_VALUE)) { // overflow return limit; } long result = a * b; if (a == 0 || result / a == b) { return result; } return limit; } /** * Returns the {@code b} to the {@code k}th power, unless it would overflow or underflow in which * case {@code Integer.MAX_VALUE} or {@code Integer.MIN_VALUE} is returned, respectively. * * @since 20.0 */ public static int saturatedPow(int b, int k) { checkNonNegative("exponent", k); switch (b) { case 0: return (k == 0) ? 1 : 0; case 1: return 1; case (-1): return ((k & 1) == 0) ? 1 : -1; case 2: if (k >= Integer.SIZE - 1) { return Integer.MAX_VALUE; } return 1 << k; case (-2): if (k >= Integer.SIZE) { return Integer.MAX_VALUE + (k & 1); } return ((k & 1) == 0) ? 1 << k : -1 << k; default: // continue below to handle the general case } int accum = 1; // if b is negative and k is odd then the limit is MIN otherwise the limit is MAX int limit = Integer.MAX_VALUE + ((b >>> Integer.SIZE - 1) & (k & 1)); while (true) { switch (k) { case 0: return accum; case 1: return saturatedMultiply(accum, b); default: if ((k & 1) != 0) { accum = saturatedMultiply(accum, b); } k >>= 1; if (k > 0) { if (-FLOOR_SQRT_MAX_INT > b | b > FLOOR_SQRT_MAX_INT) { return limit; } b *= b; } } } } /** * Returns the {@code b} to the {@code k}th power, unless it would overflow or underflow in which * case {@code Long.MAX_VALUE} or {@code Long.MIN_VALUE} is returned, respectively. * * @since 20.0 */ public static long saturatedPow(long b, int k) { checkNonNegative("exponent", k); if (b >= -2 & b <= 2) { switch ((int) b) { case 0: return (k == 0) ? 1 : 0; case 1: return 1; case (-1): return ((k & 1) == 0) ? 1 : -1; case 2: if (k >= Long.SIZE - 1) { return Long.MAX_VALUE; } return 1L << k; case (-2): if (k >= Long.SIZE) { return Long.MAX_VALUE + (k & 1); } return ((k & 1) == 0) ? (1L << k) : (-1L << k); default: throw new AssertionError(); } } long accum = 1; // if b is negative and k is odd then the limit is MIN otherwise the limit is MAX long limit = Long.MAX_VALUE + ((b >>> Long.SIZE - 1) & (k & 1)); while (true) { switch (k) { case 0: return accum; case 1: return saturatedMultiply(accum, b); default: if ((k & 1) != 0) { accum = saturatedMultiply(accum, b); } k >>= 1; if (k > 0) { if (-FLOOR_SQRT_MAX_LONG > b | b > FLOOR_SQRT_MAX_LONG) { return limit; } b *= b; } } } } /** * Returns the {@code int} nearest in value to {@code value}. * * @param value any {@code long} value * @return the same value cast to {@code int} if it is in the range of the {@code int} type, * {@link Integer#MAX_VALUE} if it is too large, or {@link Integer#MIN_VALUE} if it is too * small */ public static int saturatedCast(long value) { if (value > Integer.MAX_VALUE) { return Integer.MAX_VALUE; } if (value < Integer.MIN_VALUE) { return Integer.MIN_VALUE; } return (int) value; } /** * Returns {@code n!}, that is, the product of the first {@code n} positive * integers, {@code 1} if {@code n == 0}, or {@link Integer#MAX_VALUE} if the * result does not fit in a {@code int}. * * @throws IllegalArgumentException if {@code n < 0} */ public static int factorial(int n) { checkNonNegative("n", n); return (n < int_factorials.length) ? int_factorials[n] : Integer.MAX_VALUE; } /** * Returns {@code n!}, that is, the product of the first {@code n} positive integers, {@code 1} if * {@code n == 0}, or {@link Long#MAX_VALUE} if the result does not fit in a {@code long}. * * @throws IllegalArgumentException if {@code n < 0} */ public static long factoriall(int n) { checkNonNegative("n", n); return (n < long_factorials.length) ? long_factorials[n] : Long.MAX_VALUE; } /** * Returns {@code n!}, that is, the product of the first {@code n} positive integers, {@code 1} if * {@code n == 0}, or {@code n!}, or {@link Double#POSITIVE_INFINITY} if * {@code n! > Double.MAX_VALUE}. * *

The result is within 1 ulp of the true value. * * @throws IllegalArgumentException if {@code n < 0} */ public static double factorialll(int n) { checkNonNegative("n", n); if (n > MAX_FACTORIAL) { return Double.POSITIVE_INFINITY; } else { // Multiplying the last (n & 0xf) values into their own accumulator gives a more accurate // result than multiplying by everySixteenthFactorial[n >> 4] directly. double accum = 1.0; for (int i = 1 + (n & ~0xf); i <= n; i++) { accum *= i; } return accum * everySixteenthFactorial[n >> 4]; } } /** * Returns {@code n!}, that is, the product of the first {@code n} positive integers, or {@code 1} * if {@code n == 0}. * *

Warning: the result takes O(n log n) space, so use cautiously. * *

This uses an efficient binary recursive algorithm to compute the factorial with balanced * multiplies. It also removes all the 2s from the intermediate products (shifting them back in at * the end). * * @throws IllegalArgumentException if {@code n < 0} */ public static BigInteger facttorial(int n) { checkNonNegative("n", n); // If the factorial is small enough, just use LongMath to do it. if (n < long_factorials.length) { return BigInteger.valueOf(long_factorials[n]); } // Pre-allocate space for our list of intermediate BigIntegers. int approxSize = divide(n * log2(n, CEILING), Long.SIZE, CEILING); ArrayList bignums = new ArrayList<>(approxSize); // Start from the pre-computed maximum long factorial. int startingNumber = long_factorials.length; long product = long_factorials[startingNumber - 1]; // Strip off 2s from this value. int shift = Long.numberOfTrailingZeros(product); product >>= shift; // Use floor(log2(num)) + 1 to prevent overflow of multiplication. int productBits = log2(product, FLOOR) + 1; int bits = log2(startingNumber, FLOOR) + 1; // Check for the next power of two boundary, to save us a CLZ operation. int nextPowerOfTwo = 1 << (bits - 1); // Iteratively multiply the longs as big as they can go. for (long num = startingNumber; num <= n; num++) { // Check to see if the floor(log2(num)) + 1 has changed. if ((num & nextPowerOfTwo) != 0) { nextPowerOfTwo <<= 1; bits++; } // Get rid of the 2s in num. int tz = Long.numberOfTrailingZeros(num); long normalizedNum = num >> tz; shift += tz; // Adjust floor(log2(num)) + 1. int normalizedBits = bits - tz; // If it won't fit in a long, then we store off the intermediate product. if (normalizedBits + productBits >= Long.SIZE) { bignums.add(BigInteger.valueOf(product)); product = 1; productBits = 0; } product *= normalizedNum; productBits = log2(product, FLOOR) + 1; } // Check for leftovers. if (product > 1) { bignums.add(BigInteger.valueOf(product)); } // Efficiently multiply all the intermediate products together. return listProduct(bignums).shiftLeft(shift); } static BigInteger listProduct(List nums) { return listProduct(nums, 0, nums.size()); } static BigInteger listProduct(List nums, int start, int end) { switch (end - start) { case 0: return BigInteger.ONE; case 1: return nums.get(start); case 2: return nums.get(start).multiply(nums.get(start + 1)); case 3: return nums.get(start).multiply(nums.get(start + 1)).multiply(nums.get(start + 2)); default: // Otherwise, split the list in half and recursively do this. int m = (end + start) >>> 1; return listProduct(nums, start, m).multiply(listProduct(nums, m, end)); } } /** * Returns {@code n} choose {@code k}, also known as the binomial coefficient of {@code n} and * {@code k}, or {@link Integer#MAX_VALUE} if the result does not fit in an {@code int}. * * @throws IllegalArgumentException if {@code n < 0}, {@code k < 0} or {@code k > n} */ public static int binomial(int n, int k) { checkNonNegative("n", n); checkNonNegative("k", k); N.checkArgument(k <= n, "k (%s) > n (%s)", k, n); if (k > (n >> 1)) { k = n - k; } if (k >= int_biggestBinomials.length || n > int_biggestBinomials[k]) { return Integer.MAX_VALUE; } switch (k) { case 0: return 1; case 1: return n; default: long result = 1; for (int i = 0; i < k; i++) { result *= n - i; result /= i + 1; } return (int) result; } } /** * Returns {@code n} choose {@code k}, also known as the binomial coefficient of {@code n} and * {@code k}, or {@link Long#MAX_VALUE} if the result does not fit in a {@code long}. * * @throws IllegalArgumentException if {@code n < 0}, {@code k < 0}, or {@code k > n} */ public static long binomiall(int n, int k) { checkNonNegative("n", n); checkNonNegative("k", k); N.checkArgument(k <= n, "k (%s) > n (%s)", k, n); if (k > (n >> 1)) { k = n - k; } switch (k) { case 0: return 1; case 1: return n; default: if (n < long_factorials.length) { return long_factorials[n] / (long_factorials[k] * long_factorials[n - k]); } else if (k >= biggestBinomials.length || n > biggestBinomials[k]) { return Long.MAX_VALUE; } else if (k < biggestSimpleBinomials.length && n <= biggestSimpleBinomials[k]) { // guaranteed not to overflow long result = n--; for (int i = 2; i <= k; n--, i++) { result *= n; result /= i; } return result; } else { int nBits = log2(n, RoundingMode.CEILING); long result = 1; long numerator = n--; long denominator = 1; int numeratorBits = nBits; // This is an upper bound on log2(numerator, ceiling). /* * We want to do this in long math for speed, but want to avoid overflow. We adapt the * technique previously used by BigIntegerMath: maintain separate numerator and * denominator accumulators, multiplying the fraction into result when near overflow. */ for (int i = 2; i <= k; i++, n--) { if (numeratorBits + nBits < Long.SIZE - 1) { // It's definitely safe to multiply into numerator and denominator. numerator *= n; denominator *= i; numeratorBits += nBits; } else { // It might not be safe to multiply into numerator and denominator, // so multiply (numerator / denominator) into result. result = multiplyFraction(result, numerator, denominator); numerator = n; denominator = i; numeratorBits = nBits; } } return multiplyFraction(result, numerator, denominator); } } } /** * Returns {@code n} choose {@code k}, also known as the binomial coefficient of {@code n} and * {@code k}, that is, {@code n! / (k! (n - k)!)}. * *

Warning: the result can take as much as O(k log n) space. * * @throws IllegalArgumentException if {@code n < 0}, {@code k < 0}, or {@code k > n} */ public static BigInteger binnomial(int n, int k) { checkNonNegative("n", n); checkNonNegative("k", k); N.checkArgument(k <= n, "k (%s) > n (%s)", k, n); if (k > (n >> 1)) { k = n - k; } if (k < biggestBinomials.length && n <= biggestBinomials[k]) { return BigInteger.valueOf(binomial(n, k)); } BigInteger accum = BigInteger.ONE; long numeratorAccum = n; long denominatorAccum = 1; int bits = log2(n, RoundingMode.CEILING); int numeratorBits = bits; for (int i = 1; i < k; i++) { int p = n - i; int q = i + 1; // log2(p) >= bits - 1, because p >= n/2 if (numeratorBits + bits >= Long.SIZE - 1) { // The numerator is as big as it can get without risking overflow. // Multiply numeratorAccum / denominatorAccum into accum. accum = accum.multiply(BigInteger.valueOf(numeratorAccum)).divide(BigInteger.valueOf(denominatorAccum)); numeratorAccum = p; denominatorAccum = q; numeratorBits = bits; } else { // We can definitely multiply into the long accumulators without overflowing them. numeratorAccum *= p; denominatorAccum *= q; numeratorBits += bits; } } return accum.multiply(BigInteger.valueOf(numeratorAccum)).divide(BigInteger.valueOf(denominatorAccum)); } /** * Returns the arithmetic mean of {@code x} and {@code y}, rounded towards * negative infinity. This method is overflow resilient. * * @since 14.0 */ public static int mean(int x, int y) { // Efficient method for computing the arithmetic mean. // The alternative (x + y) / 2 fails for large values. // The alternative (x + y) >>> 1 fails for negative values. return (x & y) + ((x ^ y) >> 1); } /** * Returns the arithmetic mean of {@code x} and {@code y}, rounded toward negative infinity. This * method is resilient to overflow. * * @since 14.0 */ public static long mean(long x, long y) { // Efficient method for computing the arithmetic mean. // The alternative (x + y) / 2 fails for large values. // The alternative (x + y) >>> 1 fails for negative values. return (x & y) + ((x ^ y) >> 1); } public static double mean(double x, double y) { return checkFinite(x) + (checkFinite(x) - x) / 2; } /** * Returns the arithmetic mean of * {@code values}. * *

If these values are a sample drawn from a population, this is also an unbiased estimator of * the arithmetic mean of the population. * * @param values a nonempty series of values * @throws IllegalArgumentException if {@code values} is empty */ @SafeVarargs public static double mean(int... values) { N.checkArgument(values.length > 0, "Cannot take mean of 0 values"); // The upper bound on the the length of an array and the bounds on the int values mean that, in // this case only, we can compute the sum as a long without risking overflow or loss of // precision. So we do that, as it's slightly quicker than the Knuth algorithm. long sum = 0; for (int index = 0; index < values.length; ++index) { sum += values[index]; } return (double) sum / values.length; } /** * Returns the arithmetic mean of * {@code values}. * *

If these values are a sample drawn from a population, this is also an unbiased estimator of * the arithmetic mean of the population. * * @param values a nonempty series of values, which will be converted to {@code double} values * (this may cause loss of precision for longs of magnitude over 2^53 (slightly over 9e15)) * @throws IllegalArgumentException if {@code values} is empty */ @SafeVarargs public static double mean(long... values) { N.checkArgument(values.length > 0, "Cannot take mean of 0 values"); long count = 1; double mean = values[0]; for (int index = 1; index < values.length; ++index) { count++; // Art of Computer Programming vol. 2, Knuth, 4.2.2, (15) mean += (values[index] - mean) / count; } return mean; } @SafeVarargs public static double mean(double... values) { N.checkArgument(values.length > 0, "Cannot take mean of 0 values"); long count = 1; double mean = checkFinite(values[0]); for (int index = 1; index < values.length; ++index) { checkFinite(values[index]); count++; // Art of Computer Programming vol. 2, Knuth, 4.2.2, (15) mean += (values[index] - mean) / count; } return mean; } private static double checkFinite(double argument) { N.checkArgument(isFinite(argument)); return argument; } static double roundIntermediate(double x, RoundingMode mode) { if (!isFinite(x)) { throw new ArithmeticException("input is infinite or NaN"); } switch (mode) { case UNNECESSARY: checkRoundingUnnecessary(isMathematicalInteger(x)); return x; case FLOOR: if (x >= 0.0 || isMathematicalInteger(x)) { return x; } else { return (long) x - 1; } case CEILING: if (x <= 0.0 || isMathematicalInteger(x)) { return x; } else { return (long) x + 1; } case DOWN: return x; case UP: if (isMathematicalInteger(x)) { return x; } else { return (long) x + (x > 0 ? 1 : -1); } case HALF_EVEN: return Math.rint(x); case HALF_UP: { double z = Math.rint(x); if (abs(x - z) == 0.5) { return x + Math.copySign(0.5, x); } else { return z; } } case HALF_DOWN: { double z = Math.rint(x); if (abs(x - z) == 0.5) { return x; } else { return z; } } default: throw new AssertionError(); } } /** * Returns the {@code int} value that is equal to {@code x} rounded with the specified rounding * mode, if possible. * * @throws ArithmeticException if *

    *
  • {@code x} is infinite or NaN *
  • {@code x}, after being rounded to a mathematical integer using the specified rounding * mode, is either less than {@code Integer.MIN_VALUE} or greater than {@code * Integer.MAX_VALUE} *
  • {@code x} is not a mathematical integer and {@code mode} is * {@link RoundingMode#UNNECESSARY} *
*/ public static int roundToInt(double x, RoundingMode mode) { double z = roundIntermediate(x, mode); checkInRange(z > MIN_INT_AS_DOUBLE - 1.0 & z < MAX_INT_AS_DOUBLE + 1.0); return (int) z; } /** * Returns the {@code long} value that is equal to {@code x} rounded with the specified rounding * mode, if possible. * * @throws ArithmeticException if *
    *
  • {@code x} is infinite or NaN *
  • {@code x}, after being rounded to a mathematical integer using the specified rounding * mode, is either less than {@code Long.MIN_VALUE} or greater than {@code * Long.MAX_VALUE} *
  • {@code x} is not a mathematical integer and {@code mode} is * {@link RoundingMode#UNNECESSARY} *
*/ public static long roundToLong(double x, RoundingMode mode) { double z = roundIntermediate(x, mode); checkInRange(MIN_LONG_AS_DOUBLE - z < 1.0 & z < MAX_LONG_AS_DOUBLE_PLUS_ONE); return (long) z; } /** * Returns the {@code BigInteger} value that is equal to {@code x} rounded with the specified * rounding mode, if possible. * * @throws ArithmeticException if *
    *
  • {@code x} is infinite or NaN *
  • {@code x} is not a mathematical integer and {@code mode} is * {@link RoundingMode#UNNECESSARY} *
*/ // #roundIntermediate, java.lang.Math.getExponent, com.google.common.math.DoubleUtils public static BigInteger roundToBigInteger(double x, RoundingMode mode) { x = roundIntermediate(x, mode); if (MIN_LONG_AS_DOUBLE - x < 1.0 & x < MAX_LONG_AS_DOUBLE_PLUS_ONE) { return BigInteger.valueOf((long) x); } int exponent = getExponent(x); long significand = getSignificand(x); BigInteger result = BigInteger.valueOf(significand).shiftLeft(exponent - SIGNIFICAND_BITS); return (x < 0) ? result.negate() : result; } static final int MAX_FACTORIAL = 170; static final double[] everySixteenthFactorial = { 0x1.0p0, 0x1.30777758p44, 0x1.956ad0aae33a4p117, 0x1.ee69a78d72cb6p202, 0x1.fe478ee34844ap295, 0x1.c619094edabffp394, 0x1.3638dd7bd6347p498, 0x1.7cac197cfe503p605, 0x1.1e5dfc140e1e5p716, 0x1.8ce85fadb707ep829, 0x1.95d5f3d928edep945 }; /** * Returns {@code true} if {@code a} and {@code b} are within {@code tolerance} of each other. * *

Technically speaking, this is equivalent to * {@code Math.abs(a - b) <= tolerance || Double.valueOf(a).equals(Double.valueOf(b))}. * *

Notable special cases include: *

    *
  • All NaNs are fuzzily equal. *
  • If {@code a == b}, then {@code a} and {@code b} are always fuzzily equal. *
  • Positive and negative zero are always fuzzily equal. *
  • If {@code tolerance} is zero, and neither {@code a} nor {@code b} is NaN, then {@code a} * and {@code b} are fuzzily equal if and only if {@code a == b}. *
  • With {@link Double#POSITIVE_INFINITY} tolerance, all non-NaN values are fuzzily equal. *
  • With finite tolerance, {@code Double.POSITIVE_INFINITY} and {@code * Double.NEGATIVE_INFINITY} are fuzzily equal only to themselves. * *

    This is reflexive and symmetric, but not transitive, so it is not an * equivalence relation and not suitable for use in {@link Object#equals} * implementations. * * @throws IllegalArgumentException if {@code tolerance} is {@code < 0} or NaN * @since 13.0 */ public static boolean fuzzyEquals(double a, double b, double tolerance) { checkNonNegative("tolerance", tolerance); return Math.copySign(a - b, 1.0) <= tolerance // copySign(x, 1.0) is a branch-free version of abs(x), but with different NaN semantics || (a == b) // needed to ensure that infinities equal themselves || (Double.isNaN(a) && Double.isNaN(b)); } /** * Compares {@code a} and {@code b} "fuzzily," with a tolerance for nearly-equal values. * *

    This method is equivalent to * {@code fuzzyEquals(a, b, tolerance) ? 0 : Double.compare(a, b)}. In particular, like * {@link Double#compare(double, double)}, it treats all NaN values as equal and greater than all * other values (including {@link Double#POSITIVE_INFINITY}). * *

    This is not a total ordering and is not suitable for use in * {@link Comparable#compareTo} implementations. In particular, it is not transitive. * * @throws IllegalArgumentException if {@code tolerance} is {@code < 0} or NaN * @since 13.0 */ public static int fuzzyCompare(double a, double b, double tolerance) { if (fuzzyEquals(a, b, tolerance)) { return 0; } else if (a < b) { return -1; } else if (a > b) { return 1; } else { return Boolean.compare(Double.isNaN(a), Double.isNaN(b)); } } /** * Returns {@code true} if {@code x} represents a mathematical integer. * *

    This is equivalent to, but not necessarily implemented as, the expression {@code * !Double.isNaN(x) && !Double.isInfinite(x) && x == Math.rint(x)}. */ public static boolean isMathematicalInteger(double x) { return isFinite(x) && (x == 0.0 || SIGNIFICAND_BITS - Long.numberOfTrailingZeros(getSignificand(x)) <= getExponent(x)); } /** * Returns 1 if {@code x < y} as unsigned longs, and 0 otherwise. Assumes that x - y fits into a * signed long. The implementation is branch-free, and benchmarks suggest it is measurably faster * than the straightforward ternary expression. */ static int lessThanBranchFree(long x, long y) { // Returns the sign bit of x - y. return (int) (~~(x - y) >>> (Long.SIZE - 1)); } static int log10Floor(long x) { /* * Based on Hacker's Delight Fig. 11-5, the two-table-lookup, branch-free implementation. * * The key idea is that based on the number of leading zeros (equivalently, floor(log2(x))), we * can narrow the possible floor(log10(x)) values to two. For example, if floor(log2(x)) is 6, * then 64 <= x < 128, so floor(log10(x)) is either 1 or 2. */ int y = maxLog10ForLeadingZeros[Long.numberOfLeadingZeros(x)]; /* * y is the higher of the two possible values of floor(log10(x)). If x < 10^y, then we want the * lower of the two possible values, or y - 1, otherwise, we want y. */ return y - lessThanBranchFree(x, powersOf10[y]); } /** * Returns (x * numerator / denominator), which is assumed to come out to an integral value. */ static long multiplyFraction(long x, long numerator, long denominator) { if (x == 1) { return numerator / denominator; } long commonDivisor = gcd(x, denominator); x /= commonDivisor; denominator /= commonDivisor; // We know gcd(x, denominator) = 1, and x * numerator / denominator is exact, // so denominator must be a divisor of numerator. return x * (numerator / denominator); } static double nextDown(double d) { return -Math.nextUp(-d); } static long getSignificand(double d) { N.checkArgument(isFinite(d), "not a normal value"); int exponent = getExponent(d); long bits = doubleToRawLongBits(d); bits &= SIGNIFICAND_MASK; return (exponent == MIN_EXPONENT - 1) ? bits << 1 : bits | IMPLICIT_BIT; } // These values were generated by using checkedMultiply to see when the simple multiply/divide // algorithm would lead to an overflow. static boolean isFinite(double d) { return getExponent(d) <= MAX_EXPONENT; } static boolean isNormal(double d) { return getExponent(d) >= MIN_EXPONENT; } /* * Returns x scaled by a power of 2 such that it is in the range [1, 2). Assumes x is positive, * normal, and finite. */ static double scaleNormalize(double x) { long significand = doubleToRawLongBits(x) & SIGNIFICAND_MASK; return longBitsToDouble(significand | ONE_BITS); } static double bigToDouble(BigInteger x) { // This is an extremely fast implementation of BigInteger.doubleValue(). JDK patch pending. BigInteger absX = x.abs(); int exponent = absX.bitLength() - 1; // exponent == floor(log2(abs(x))) if (exponent < Long.SIZE - 1) { return x.longValue(); } else if (exponent > MAX_EXPONENT) { return x.signum() * POSITIVE_INFINITY; } /* * We need the top SIGNIFICAND_BITS + 1 bits, including the "implicit" one bit. To make rounding * easier, we pick out the top SIGNIFICAND_BITS + 2 bits, so we have one to help us round up or * down. twiceSignifFloor will contain the top SIGNIFICAND_BITS + 2 bits, and signifFloor the * top SIGNIFICAND_BITS + 1. * * It helps to consider the real number signif = absX * 2^(SIGNIFICAND_BITS - exponent). */ int shift = exponent - SIGNIFICAND_BITS - 1; long twiceSignifFloor = absX.shiftRight(shift).longValue(); long signifFloor = twiceSignifFloor >> 1; signifFloor &= SIGNIFICAND_MASK; // remove the implied bit /* * We round up if either the fractional part of signif is strictly greater than 0.5 (which is * true if the 0.5 bit is set and any lower bit is set), or if the fractional part of signif is * >= 0.5 and signifFloor is odd (which is true if both the 0.5 bit and the 1 bit are set). */ boolean increment = (twiceSignifFloor & 1) != 0 && ((signifFloor & 1) != 0 || absX.getLowestSetBit() < shift); long signifRounded = increment ? signifFloor + 1 : signifFloor; long bits = (long) ((exponent + EXPONENT_BIAS)) << SIGNIFICAND_BITS; bits += signifRounded; /* * If signifRounded == 2^53, we'd need to set all of the significand bits to zero and add 1 to * the exponent. This is exactly the behavior we get from just adding signifRounded to bits * directly. If the exponent is MAX_DOUBLE_EXPONENT, we round up (correctly) to * Double.POSITIVE_INFINITY. */ bits |= x.signum() & SIGN_MASK; return longBitsToDouble(bits); } /** * Returns its argument if it is non-negative, zero if it is negative. */ static double ensureNonNegative(double value) { N.checkArgument(!isNaN(value)); if (value > 0.0) { return value; } else { return 0.0; } } static int lessThanBranchFree(int x, int y) { // The double negation is optimized away by normal Java, but is necessary for GWT // to make sure bit twiddling works as expected. return ~~(x - y) >>> (Integer.SIZE - 1); } // These values were generated by using checkedMultiply to see when the simple multiply/divide // algorithm would lead to an overflow. static boolean fitsInInt(long x) { return (int) x == x; } static int checkPositive(String role, int x) { if (x <= 0) { throw new IllegalArgumentException(role + " (" + x + ") must be > 0"); } return x; } static long checkPositive(String role, long x) { if (x <= 0) { throw new IllegalArgumentException(role + " (" + x + ") must be > 0"); } return x; } static BigInteger checkPositive(String role, BigInteger x) { if (x.signum() <= 0) { throw new IllegalArgumentException(role + " (" + x + ") must be > 0"); } return x; } static int checkNonNegative(String role, int x) { if (x < 0) { throw new IllegalArgumentException(role + " (" + x + ") must be >= 0"); } return x; } static long checkNonNegative(String role, long x) { if (x < 0) { throw new IllegalArgumentException(role + " (" + x + ") must be >= 0"); } return x; } static BigInteger checkNonNegative(String role, BigInteger x) { if (x.signum() < 0) { throw new IllegalArgumentException(role + " (" + x + ") must be >= 0"); } return x; } static double checkNonNegative(String role, double x) { if (!(x >= 0)) { // not x < 0, to work with NaN. throw new IllegalArgumentException(role + " (" + x + ") must be >= 0"); } return x; } static void checkRoundingUnnecessary(boolean condition) { if (!condition) { throw new ArithmeticException("mode was UNNECESSARY, but rounding was necessary"); } } static void checkInRange(boolean condition) { if (!condition) { throw new ArithmeticException("not in range"); } } static void checkNoOverflow(boolean condition) { if (!condition) { throw new ArithmeticException("overflow"); } } /** Compute the inverse hyperbolic sine of a number. * @param a number on which evaluation is done * @return inverse hyperbolic sine of a */ public static double asinh(double a) { boolean negative = false; if (a < 0) { negative = true; a = -a; } double absAsinh; if (a > 0.167) { absAsinh = Math.log(Math.sqrt(a * a + 1) + a); } else { final double a2 = a * a; if (a > 0.097) { absAsinh = a * (1 - a2 * (F_1_3 - a2 * (F_1_5 - a2 * (F_1_7 - a2 * (F_1_9 - a2 * (F_1_11 - a2 * (F_1_13 - a2 * (F_1_15 - a2 * F_1_17 * F_15_16) * F_13_14) * F_11_12) * F_9_10) * F_7_8) * F_5_6) * F_3_4) * F_1_2); } else if (a > 0.036) { absAsinh = a * (1 - a2 * (F_1_3 - a2 * (F_1_5 - a2 * (F_1_7 - a2 * (F_1_9 - a2 * (F_1_11 - a2 * F_1_13 * F_11_12) * F_9_10) * F_7_8) * F_5_6) * F_3_4) * F_1_2); } else if (a > 0.0036) { absAsinh = a * (1 - a2 * (F_1_3 - a2 * (F_1_5 - a2 * (F_1_7 - a2 * F_1_9 * F_7_8) * F_5_6) * F_3_4) * F_1_2); } else { absAsinh = a * (1 - a2 * (F_1_3 - a2 * F_1_5 * F_3_4) * F_1_2); } } return negative ? -absAsinh : absAsinh; } /** Compute the inverse hyperbolic cosine of a number. * @param a number on which evaluation is done * @return inverse hyperbolic cosine of a */ public static double acosh(final double a) { return Math.log(a + Math.sqrt(a * a - 1)); } /** Compute the inverse hyperbolic tangent of a number. * @param a number on which evaluation is done * @return inverse hyperbolic tangent of a */ public static double atanh(double a) { boolean negative = false; if (a < 0) { negative = true; a = -a; } double absAtanh; if (a > 0.15) { absAtanh = 0.5 * Math.log((1 + a) / (1 - a)); } else { final double a2 = a * a; if (a > 0.087) { absAtanh = a * (1 + a2 * (F_1_3 + a2 * (F_1_5 + a2 * (F_1_7 + a2 * (F_1_9 + a2 * (F_1_11 + a2 * (F_1_13 + a2 * (F_1_15 + a2 * F_1_17)))))))); } else if (a > 0.031) { absAtanh = a * (1 + a2 * (F_1_3 + a2 * (F_1_5 + a2 * (F_1_7 + a2 * (F_1_9 + a2 * (F_1_11 + a2 * F_1_13)))))); } else if (a > 0.003) { absAtanh = a * (1 + a2 * (F_1_3 + a2 * (F_1_5 + a2 * (F_1_7 + a2 * F_1_9)))); } else { absAtanh = a * (1 + a2 * (F_1_3 + a2 * F_1_5)); } } return negative ? -absAtanh : absAtanh; } static final class UnsignedLongs { private UnsignedLongs() { } public static final long MAX_VALUE = -1L; // Equivalent to 2^64 - 1 /** * A (self-inverse) bijection which converts the ordering on unsigned longs to the ordering on * longs, that is, {@code a <= b} as unsigned longs if and only if {@code flip(a) <= flip(b)} as * signed longs. */ private static long flip(long a) { return a ^ Long.MIN_VALUE; } /** * Compares the two specified {@code long} values, treating them as unsigned values between * {@code 0} and {@code 2^64 - 1} inclusive. * * @param a the first unsigned {@code long} to compare * @param b the second unsigned {@code long} to compare * @return a negative value if {@code a} is less than {@code b}; a positive value if {@code a} is * greater than {@code b}; or zero if they are equal */ static int compare(long a, long b) { return Long.compare(flip(a), flip(b)); } /** * Returns dividend % divisor, where the dividend and divisor are treated as unsigned 64-bit * quantities. * * @param dividend the dividend (numerator) * @param divisor the divisor (denominator) * @throws ArithmeticException if divisor is 0 * @since 11.0 */ static long remainder(long dividend, long divisor) { if (divisor < 0) { // i.e., divisor >= 2^63: if (compare(dividend, divisor) < 0) { return dividend; // dividend < divisor } else { return dividend - divisor; // dividend >= divisor } } // Optimization - use signed modulus if dividend < 2^63 if (dividend >= 0) { return dividend % divisor; } /* * Otherwise, approximate the quotient, check, and correct if necessary. Our approximation is * guaranteed to be either exact or one less than the correct value. This follows from the fact * that floor(floor(x)/i) == floor(x/i) for any real x and integer i != 0. The proof is not * quite trivial. */ long quotient = ((dividend >>> 1) / divisor) << 1; long rem = dividend - quotient * divisor; return rem - (compare(rem, divisor) >= 0 ? divisor : 0); } } private enum MillerRabinTester { /** * Works for inputs <= FLOOR_SQRT_MAX_LONG. */ SMALL { @Override long mulMod(long a, long b, long m) { /* * NOTE(lowasser, 2015-Feb-12): Benchmarks suggest that changing this to * UnsignedLongs.remainder and increasing the threshold to 2^32 doesn't pay for itself, and * adding another enum constant hurts performance further -- I suspect because bimorphic * implementation is a sweet spot for the JVM. */ return (a * b) % m; } @Override long squareMod(long a, long m) { return (a * a) % m; } }, /** * Works for all nonnegative signed longs. */ LARGE { /** * Returns (a + b) mod m. Precondition: 0 <= a, b < m < 2^63. */ private long plusMod(long a, long b, long m) { return (a >= m - b) ? (a + b - m) : (a + b); } /** * Returns (a * 2^32) mod m. a may be any unsigned long. */ private long times2ToThe32Mod(long a, long m) { int remainingPowersOf2 = 32; do { int shift = Math.min(remainingPowersOf2, Long.numberOfLeadingZeros(a)); // shift is either the number of powers of 2 left to multiply a by, or the biggest shift // possible while keeping a in an unsigned long. a = UnsignedLongs.remainder(a << shift, m); remainingPowersOf2 -= shift; } while (remainingPowersOf2 > 0); return a; } @Override long mulMod(long a, long b, long m) { long aHi = a >>> 32; // < 2^31 long bHi = b >>> 32; // < 2^31 long aLo = a & 0xFFFFFFFFL; // < 2^32 long bLo = b & 0xFFFFFFFFL; // < 2^32 /* * a * b == aHi * bHi * 2^64 + (aHi * bLo + aLo * bHi) * 2^32 + aLo * bLo. * == (aHi * bHi * 2^32 + aHi * bLo + aLo * bHi) * 2^32 + aLo * bLo * * We carry out this computation in modular arithmetic. Since times2ToThe32Mod accepts any * unsigned long, we don't have to do a mod on every operation, only when intermediate * results can exceed 2^63. */ long result = times2ToThe32Mod(aHi * bHi /* < 2^62 */, m); // < m < 2^63 result += aHi * bLo; // aHi * bLo < 2^63, result < 2^64 if (result < 0) { result = UnsignedLongs.remainder(result, m); } // result < 2^63 again result += aLo * bHi; // aLo * bHi < 2^63, result < 2^64 result = times2ToThe32Mod(result, m); // result < m < 2^63 return plusMod(result, UnsignedLongs.remainder(aLo * bLo /* < 2^64 */, m), m); } @Override long squareMod(long a, long m) { long aHi = a >>> 32; // < 2^31 long aLo = a & 0xFFFFFFFFL; // < 2^32 /* * a^2 == aHi^2 * 2^64 + aHi * aLo * 2^33 + aLo^2 * == (aHi^2 * 2^32 + aHi * aLo * 2) * 2^32 + aLo^2 * We carry out this computation in modular arithmetic. Since times2ToThe32Mod accepts any * unsigned long, we don't have to do a mod on every operation, only when intermediate * results can exceed 2^63. */ long result = times2ToThe32Mod(aHi * aHi /* < 2^62 */, m); // < m < 2^63 long hiLo = aHi * aLo * 2; if (hiLo < 0) { hiLo = UnsignedLongs.remainder(hiLo, m); } // hiLo < 2^63 result += hiLo; // result < 2^64 result = times2ToThe32Mod(result, m); // result < m < 2^63 return plusMod(result, UnsignedLongs.remainder(aLo * aLo /* < 2^64 */, m), m); } }; static boolean test(long base, long n) { // Since base will be considered % n, it's okay if base > FLOOR_SQRT_MAX_LONG, // so long as n <= FLOOR_SQRT_MAX_LONG. return ((n <= FLOOR_SQRT_MAX_LONG) ? SMALL : LARGE).testWitness(base, n); } /** * Returns a * b mod m. */ abstract long mulMod(long a, long b, long m); /** * Returns a^2 mod m. */ abstract long squareMod(long a, long m); /** * Returns a^p mod m. */ private long powMod(long a, long p, long m) { long res = 1; for (; p != 0; p >>= 1) { if ((p & 1) != 0) { res = mulMod(res, a, m); } a = squareMod(a, m); } return res; } /** * Returns true if n is a strong probable prime relative to the specified base. */ private boolean testWitness(long base, long n) { int r = Long.numberOfTrailingZeros(n - 1); long d = (n - 1) >> r; base %= n; if (base == 0) { return true; } // Calculate a := base^d mod n. long a = powMod(base, d, n); // n passes this test if // base^d = 1 (mod n) // or base^(2^j * d) = -1 (mod n) for some 0 <= j < r. if (a == 1) { return true; } int j = 0; while (a != n - 1) { if (++j == r) { return false; } a = squareMod(a, n); } return true; } } public static abstract class Mathh extends Matth { private Mathh() { // utility class. } } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy