com.landawn.abacus.util.FloatMatrix Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of abacus-android Show documentation
Show all versions of abacus-android Show documentation
A general and simple library for Android
/*
* Copyright (C) 2016 HaiYang Li
*
* Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except
* in compliance with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software distributed under the License
* is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express
* or implied. See the License for the specific language governing permissions and limitations under
* the License.
*/
package com.landawn.abacus.util;
import java.util.NoSuchElementException;
import com.landawn.abacus.annotation.Beta;
import com.landawn.abacus.util.Try.Consumer;
import com.landawn.abacus.util.u.OptionalFloat;
import com.landawn.abacus.util.function.IntConsumer;
import com.landawn.abacus.util.stream.FloatIteratorEx;
import com.landawn.abacus.util.stream.FloatStream;
import com.landawn.abacus.util.stream.IntStream;
import com.landawn.abacus.util.stream.ObjIteratorEx;
import com.landawn.abacus.util.stream.Stream;
/**
*
* @since 0.8
*
* @author Haiyang Li
*/
public final class FloatMatrix extends AbstractMatrix, FloatMatrix> {
static final FloatMatrix EMPTY_FLOAT_MATRIX = new FloatMatrix(new float[0][0]);
public FloatMatrix(final float[][] a) {
super(a == null ? new float[0][0] : a);
}
public static FloatMatrix empty() {
return EMPTY_FLOAT_MATRIX;
}
@SafeVarargs
public static FloatMatrix of(final float[]... a) {
return N.isNullOrEmpty(a) ? EMPTY_FLOAT_MATRIX : new FloatMatrix(a);
}
@SafeVarargs
public static FloatMatrix from(final int[]... a) {
if (N.isNullOrEmpty(a)) {
return EMPTY_FLOAT_MATRIX;
}
final float[][] c = new float[a.length][a[0].length];
for (int i = 0, len = a.length; i < len; i++) {
for (int j = 0, col = a[0].length; j < col; j++) {
c[i][j] = a[i][j];
}
}
return new FloatMatrix(c);
}
public static FloatMatrix random(final int len) {
return new FloatMatrix(new float[][] { FloatList.random(len).array() });
}
public static FloatMatrix repeat(final float val, final int len) {
return new FloatMatrix(new float[][] { Array.repeat(val, len) });
}
public static FloatMatrix diagonalLU2RD(final float[] leftUp2RighDownDiagonal) {
return diagonal(leftUp2RighDownDiagonal, null);
}
public static FloatMatrix diagonalRU2LD(final float[] rightUp2LeftDownDiagonal) {
return diagonal(null, rightUp2LeftDownDiagonal);
}
public static FloatMatrix diagonal(final float[] leftUp2RighDownDiagonal, float[] rightUp2LeftDownDiagonal) {
N.checkArgument(
N.isNullOrEmpty(leftUp2RighDownDiagonal) || N.isNullOrEmpty(rightUp2LeftDownDiagonal)
|| leftUp2RighDownDiagonal.length == rightUp2LeftDownDiagonal.length,
"The length of 'leftUp2RighDownDiagonal' and 'rightUp2LeftDownDiagonal' must be same");
if (N.isNullOrEmpty(leftUp2RighDownDiagonal)) {
if (N.isNullOrEmpty(rightUp2LeftDownDiagonal)) {
return empty();
} else {
final int len = rightUp2LeftDownDiagonal.length;
final float[][] c = new float[len][len];
for (int i = 0, j = len - 1; i < len; i++, j--) {
c[i][j] = rightUp2LeftDownDiagonal[i];
}
return new FloatMatrix(c);
}
} else {
final int len = leftUp2RighDownDiagonal.length;
final float[][] c = new float[len][len];
for (int i = 0; i < len; i++) {
c[i][i] = leftUp2RighDownDiagonal[i];
}
if (N.notNullOrEmpty(rightUp2LeftDownDiagonal)) {
for (int i = 0, j = len - 1; i < len; i++, j--) {
c[i][j] = rightUp2LeftDownDiagonal[i];
}
}
return new FloatMatrix(c);
}
}
public float get(final int i, final int j) {
return a[i][j];
}
public float get(final IntPair point) {
return a[point._1][point._2];
}
public void set(final int i, final int j, final float val) {
a[i][j] = val;
}
public void set(final IntPair point, final float val) {
a[point._1][point._2] = val;
}
public OptionalFloat upOf(final int i, final int j) {
return i == 0 ? OptionalFloat.empty() : OptionalFloat.of(a[i - 1][j]);
}
public OptionalFloat downOf(final int i, final int j) {
return i == rows - 1 ? OptionalFloat.empty() : OptionalFloat.of(a[i + 1][j]);
}
public OptionalFloat leftOf(final int i, final int j) {
return j == 0 ? OptionalFloat.empty() : OptionalFloat.of(a[i][j - 1]);
}
public OptionalFloat rightOf(final int i, final int j) {
return j == cols - 1 ? OptionalFloat.empty() : OptionalFloat.of(a[i][j + 1]);
}
/**
* Returns the four adjacencies with order: up, right, down, left. null
is set if the adjacency doesn't exist.
*
* @param i
* @param j
* @return
*/
public Stream adjacent4Points(final int i, final int j) {
final IntPair up = i == 0 ? null : IntPair.of(i - 1, j);
final IntPair right = j == cols - 1 ? null : IntPair.of(i, j + 1);
final IntPair down = i == rows - 1 ? null : IntPair.of(i + 1, j);
final IntPair left = j == 0 ? null : IntPair.of(i, j - 1);
return Stream.of(up, right, down, left);
}
/**
* Returns the eight adjacencies with order: left-up, up, right-up, right, right-down, down, left-down, left. null
is set if the adjacency doesn't exist.
*
* @param i
* @param j
* @return
*/
public Stream adjacent8Points(final int i, final int j) {
final IntPair up = i == 0 ? null : IntPair.of(i - 1, j);
final IntPair right = j == cols - 1 ? null : IntPair.of(i, j + 1);
final IntPair down = i == rows - 1 ? null : IntPair.of(i + 1, j);
final IntPair left = j == 0 ? null : IntPair.of(i, j - 1);
final IntPair leftUp = i > 0 && j > 0 ? IntPair.of(i - 1, j - 1) : null;
final IntPair rightUp = i > 0 && j < cols - 1 ? IntPair.of(i - 1, j + 1) : null;
final IntPair rightDown = i < rows - 1 && j < cols - 1 ? IntPair.of(j + 1, j + 1) : null;
final IntPair leftDown = i < rows - 1 && j > 0 ? IntPair.of(i + 1, j - 1) : null;
return Stream.of(leftUp, up, rightUp, right, rightDown, down, leftDown, left);
}
public float[] row(final int rowIndex) {
N.checkArgument(rowIndex >= 0 && rowIndex < rows, "Invalid row Index: %s", rowIndex);
return a[rowIndex];
}
public float[] column(final int columnIndex) {
N.checkArgument(columnIndex >= 0 && columnIndex < cols, "Invalid column Index: %s", columnIndex);
final float[] c = new float[rows];
for (int i = 0; i < rows; i++) {
c[i] = a[i][columnIndex];
}
return c;
}
public void setRow(int rowIndex, float[] row) {
N.checkArgument(row.length == cols, "The size of the specified row doesn't match the length of column");
N.copy(row, 0, a[rowIndex], 0, cols);
}
public void setColumn(int columnIndex, float[] column) {
N.checkArgument(column.length == rows, "The size of the specified column doesn't match the length of row");
for (int i = 0; i < rows; i++) {
a[i][columnIndex] = column[i];
}
}
public void updateRow(int rowIndex, Try.FloatUnaryOperator func) throws E {
for (int i = 0; i < cols; i++) {
a[rowIndex][i] = func.applyAsFloat(a[rowIndex][i]);
}
}
public void updateColumn(int columnIndex, Try.FloatUnaryOperator func) throws E {
for (int i = 0; i < rows; i++) {
a[i][columnIndex] = func.applyAsFloat(a[i][columnIndex]);
}
}
public float[] getLU2RD() {
N.checkState(rows == cols, "'rows' and 'cols' must be same to get diagonals: rows=%s, cols=%s", rows, cols);
final float[] res = new float[rows];
for (int i = 0; i < rows; i++) {
res[i] = a[i][i];
}
return res;
}
public void setLU2RD(final float[] diagonal) {
N.checkState(rows == cols, "'rows' and 'cols' must be same to get diagonals: rows=%s, cols=%s", rows, cols);
N.checkArgument(diagonal.length >= rows, "The length of specified array is less than rows=%s", rows);
for (int i = 0; i < rows; i++) {
a[i][i] = diagonal[i];
}
}
public void updateLU2RD(final Try.FloatUnaryOperator func) throws E {
N.checkState(rows == cols, "'rows' and 'cols' must be same to get diagonals: rows=%s, cols=%s", rows, cols);
for (int i = 0; i < rows; i++) {
a[i][i] = func.applyAsFloat(a[i][i]);
}
}
public float[] getRU2LD() {
N.checkState(rows == cols, "'rows' and 'cols' must be same to get diagonals: rows=%s, cols=%s", rows, cols);
final float[] res = new float[rows];
for (int i = 0; i < rows; i++) {
res[i] = a[i][cols - i - 1];
}
return res;
}
public void setRU2LD(final float[] diagonal) {
N.checkState(rows == cols, "'rows' and 'cols' must be same to get diagonals: rows=%s, cols=%s", rows, cols);
N.checkArgument(diagonal.length >= rows, "The length of specified array is less than rows=%s", rows);
for (int i = 0; i < rows; i++) {
a[i][cols - i - 1] = diagonal[i];
}
}
public void updateRU2LD(final Try.FloatUnaryOperator func) throws E {
N.checkState(rows == cols, "'rows' and 'cols' must be same to get diagonals: rows=%s, cols=%s", rows, cols);
for (int i = 0; i < rows; i++) {
a[i][cols - i - 1] = func.applyAsFloat(a[i][cols - i - 1]);
}
}
public void updateAll(final Try.FloatUnaryOperator func) throws E {
if (isParallelable()) {
if (rows <= cols) {
IntStream.range(0, rows).parallel().forEach(new Try.IntConsumer() {
@Override
public void accept(final int i) throws E {
for (int j = 0; j < cols; j++) {
a[i][j] = func.applyAsFloat(a[i][j]);
}
}
});
} else {
IntStream.range(0, cols).parallel().forEach(new Try.IntConsumer() {
@Override
public void accept(final int j) throws E {
for (int i = 0; i < rows; i++) {
a[i][j] = func.applyAsFloat(a[i][j]);
}
}
});
}
} else {
if (rows <= cols) {
for (int i = 0; i < rows; i++) {
for (int j = 0; j < cols; j++) {
a[i][j] = func.applyAsFloat(a[i][j]);
}
}
} else {
for (int j = 0; j < cols; j++) {
for (int i = 0; i < rows; i++) {
a[i][j] = func.applyAsFloat(a[i][j]);
}
}
}
}
}
/**
* Update all elements based on points
*
* @param func
*/
public void updateAll(final Try.IntBiFunction func) throws E {
if (isParallelable()) {
if (rows <= cols) {
IntStream.range(0, rows).parallel().forEach(new Try.IntConsumer() {
@Override
public void accept(final int i) throws E {
for (int j = 0; j < cols; j++) {
a[i][j] = func.apply(i, j);
}
}
});
} else {
IntStream.range(0, cols).parallel().forEach(new Try.IntConsumer() {
@Override
public void accept(final int j) throws E {
for (int i = 0; i < rows; i++) {
a[i][j] = func.apply(i, j);
}
}
});
}
} else {
if (rows <= cols) {
for (int i = 0; i < rows; i++) {
for (int j = 0; j < cols; j++) {
a[i][j] = func.apply(i, j);
}
}
} else {
for (int j = 0; j < cols; j++) {
for (int i = 0; i < rows; i++) {
a[i][j] = func.apply(i, j);
}
}
}
}
}
public void replaceIf(final Try.FloatPredicate predicate, final float newValue) throws E {
if (isParallelable()) {
if (rows <= cols) {
IntStream.range(0, rows).parallel().forEach(new Try.IntConsumer() {
@Override
public void accept(final int i) throws E {
for (int j = 0; j < cols; j++) {
a[i][j] = predicate.test(a[i][j]) ? newValue : a[i][j];
}
}
});
} else {
IntStream.range(0, cols).parallel().forEach(new Try.IntConsumer() {
@Override
public void accept(final int j) throws E {
for (int i = 0; i < rows; i++) {
a[i][j] = predicate.test(a[i][j]) ? newValue : a[i][j];
}
}
});
}
} else {
if (rows <= cols) {
for (int i = 0; i < rows; i++) {
for (int j = 0; j < cols; j++) {
a[i][j] = predicate.test(a[i][j]) ? newValue : a[i][j];
}
}
} else {
for (int j = 0; j < cols; j++) {
for (int i = 0; i < rows; i++) {
a[i][j] = predicate.test(a[i][j]) ? newValue : a[i][j];
}
}
}
}
}
/**
* Replace elements by Predicate.test(i, j)
based on points
*
* @param predicate
* @param newValue
*/
public void replaceIf(final Try.IntBiPredicate predicate, final float newValue) throws E {
if (isParallelable()) {
if (rows <= cols) {
IntStream.range(0, rows).parallel().forEach(new Try.IntConsumer() {
@Override
public void accept(final int i) throws E {
for (int j = 0; j < cols; j++) {
a[i][j] = predicate.test(i, j) ? newValue : a[i][j];
}
}
});
} else {
IntStream.range(0, cols).parallel().forEach(new Try.IntConsumer() {
@Override
public void accept(final int j) throws E {
for (int i = 0; i < rows; i++) {
a[i][j] = predicate.test(i, j) ? newValue : a[i][j];
}
}
});
}
} else {
if (rows <= cols) {
for (int i = 0; i < rows; i++) {
for (int j = 0; j < cols; j++) {
a[i][j] = predicate.test(i, j) ? newValue : a[i][j];
}
}
} else {
for (int j = 0; j < cols; j++) {
for (int i = 0; i < rows; i++) {
a[i][j] = predicate.test(i, j) ? newValue : a[i][j];
}
}
}
}
}
public FloatMatrix map(final Try.FloatUnaryOperator func) throws E {
final float[][] c = new float[rows][cols];
if (isParallelable()) {
if (rows <= cols) {
IntStream.range(0, rows).parallel().forEach(new Try.IntConsumer() {
@Override
public void accept(final int i) throws E {
for (int j = 0; j < cols; j++) {
c[i][j] = func.applyAsFloat(a[i][j]);
}
}
});
} else {
IntStream.range(0, cols).parallel().forEach(new Try.IntConsumer() {
@Override
public void accept(final int j) throws E {
for (int i = 0; i < rows; i++) {
c[i][j] = func.applyAsFloat(a[i][j]);
}
}
});
}
} else {
if (rows <= cols) {
for (int i = 0; i < rows; i++) {
for (int j = 0; j < cols; j++) {
c[i][j] = func.applyAsFloat(a[i][j]);
}
}
} else {
for (int j = 0; j < cols; j++) {
for (int i = 0; i < rows; i++) {
c[i][j] = func.applyAsFloat(a[i][j]);
}
}
}
}
return FloatMatrix.of(c);
}
public Matrix mapToObj(final Class cls, final Try.FloatFunction extends T, E> func) throws E {
final T[][] c = N.newArray(N.newArray(cls, 0).getClass(), rows);
for (int i = 0; i < rows; i++) {
c[i] = N.newArray(cls, cols);
}
if (isParallelable()) {
if (rows <= cols) {
IntStream.range(0, rows).parallel().forEach(new Try.IntConsumer() {
@Override
public void accept(final int i) throws E {
for (int j = 0; j < cols; j++) {
c[i][j] = func.apply(a[i][j]);
}
}
});
} else {
IntStream.range(0, cols).parallel().forEach(new Try.IntConsumer() {
@Override
public void accept(final int j) throws E {
for (int i = 0; i < rows; i++) {
c[i][j] = func.apply(a[i][j]);
}
}
});
}
} else {
if (rows <= cols) {
for (int i = 0; i < rows; i++) {
for (int j = 0; j < cols; j++) {
c[i][j] = func.apply(a[i][j]);
}
}
} else {
for (int j = 0; j < cols; j++) {
for (int i = 0; i < rows; i++) {
c[i][j] = func.apply(a[i][j]);
}
}
}
}
return Matrix.of(c);
}
public void fill(final float val) {
for (int i = 0; i < rows; i++) {
N.fill(a[i], val);
}
}
public void fill(final float[][] b) {
fill(0, 0, b);
}
public void fill(final int fromRowIndex, final int fromColumnIndex, final float[][] b) {
N.checkFromToIndex(fromRowIndex, rows, rows);
N.checkFromToIndex(fromColumnIndex, cols, cols);
for (int i = 0, minLen = N.min(rows - fromRowIndex, b.length); i < minLen; i++) {
N.copy(b[i], 0, a[i + fromRowIndex], fromColumnIndex, N.min(b[i].length, cols - fromColumnIndex));
}
}
@Override
public FloatMatrix copy() {
final float[][] c = new float[rows][];
for (int i = 0; i < rows; i++) {
c[i] = a[i].clone();
}
return new FloatMatrix(c);
}
@Override
public FloatMatrix copy(final int fromRowIndex, final int toRowIndex) {
N.checkFromToIndex(fromRowIndex, toRowIndex, rows);
final float[][] c = new float[toRowIndex - fromRowIndex][];
for (int i = fromRowIndex; i < toRowIndex; i++) {
c[i - fromRowIndex] = a[i].clone();
}
return new FloatMatrix(c);
}
@Override
public FloatMatrix copy(final int fromRowIndex, final int toRowIndex, final int fromColumnIndex, final int toColumnIndex) {
N.checkFromToIndex(fromRowIndex, toRowIndex, rows);
N.checkFromToIndex(fromColumnIndex, toColumnIndex, cols);
final float[][] c = new float[toRowIndex - fromRowIndex][];
for (int i = fromRowIndex; i < toRowIndex; i++) {
c[i - fromRowIndex] = N.copyOfRange(a[i], fromColumnIndex, toColumnIndex);
}
return new FloatMatrix(c);
}
public FloatMatrix extend(final int newRows, final int newCols) {
return extend(newRows, newCols, 0);
}
public FloatMatrix extend(final int newRows, final int newCols, final float defaultValueForNewCell) {
N.checkArgument(newRows >= 0, "The 'newRows' can't be negative %s", newRows);
N.checkArgument(newCols >= 0, "The 'newCols' can't be negative %s", newCols);
if (newRows <= rows && newCols <= cols) {
return copy(0, newRows, 0, newCols);
} else {
final boolean fillDefaultValue = defaultValueForNewCell != 0;
final float[][] b = new float[newRows][];
for (int i = 0; i < newRows; i++) {
b[i] = i < rows ? N.copyOf(a[i], newCols) : new float[newCols];
if (fillDefaultValue) {
if (i >= rows) {
N.fill(b[i], defaultValueForNewCell);
} else if (cols < newCols) {
N.fill(b[i], cols, newCols, defaultValueForNewCell);
}
}
}
return new FloatMatrix(b);
}
}
public FloatMatrix extend(final int toUp, final int toDown, final int toLeft, final int toRight) {
return extend(toUp, toDown, toLeft, toRight, 0);
}
public FloatMatrix extend(final int toUp, final int toDown, final int toLeft, final int toRight, final float defaultValueForNewCell) {
N.checkArgument(toUp >= 0, "The 'toUp' can't be negative %s", toUp);
N.checkArgument(toDown >= 0, "The 'toDown' can't be negative %s", toDown);
N.checkArgument(toLeft >= 0, "The 'toLeft' can't be negative %s", toLeft);
N.checkArgument(toRight >= 0, "The 'toRight' can't be negative %s", toRight);
if (toUp == 0 && toDown == 0 && toLeft == 0 && toRight == 0) {
return copy();
} else {
final int newRows = toUp + rows + toDown;
final int newCols = toLeft + cols + toRight;
final boolean fillDefaultValue = defaultValueForNewCell != 0;
final float[][] b = new float[newRows][newCols];
for (int i = 0; i < newRows; i++) {
if (i >= toUp && i < toUp + rows) {
N.copy(a[i - toUp], 0, b[i], toLeft, cols);
}
if (fillDefaultValue) {
if (i < toUp || i >= toUp + rows) {
N.fill(b[i], defaultValueForNewCell);
} else if (cols < newCols) {
if (toLeft > 0) {
N.fill(b[i], 0, toLeft, defaultValueForNewCell);
}
if (toRight > 0) {
N.fill(b[i], cols + toLeft, newCols, defaultValueForNewCell);
}
}
}
}
return new FloatMatrix(b);
}
}
public void reverseH() {
for (int i = 0; i < rows; i++) {
N.reverse(a[i]);
}
}
public void reverseV() {
for (int j = 0; j < cols; j++) {
float tmp = 0;
for (int l = 0, h = rows - 1; l < h;) {
tmp = a[l][j];
a[l++][j] = a[h][j];
a[h--][j] = tmp;
}
}
}
/**
*
* @return
* @see IntMatrix#flipH()
*/
public FloatMatrix flipH() {
final FloatMatrix res = this.copy();
res.reverseH();
return res;
}
/**
*
* @return
* @see IntMatrix#flipV()
*/
public FloatMatrix flipV() {
final FloatMatrix res = this.copy();
res.reverseV();
return res;
}
@Override
public FloatMatrix rotate90() {
final float[][] c = new float[cols][rows];
if (rows <= cols) {
for (int j = 0; j < rows; j++) {
for (int i = 0; i < cols; i++) {
c[i][j] = a[rows - j - 1][i];
}
}
} else {
for (int i = 0; i < cols; i++) {
for (int j = 0; j < rows; j++) {
c[i][j] = a[rows - j - 1][i];
}
}
}
return new FloatMatrix(c);
}
@Override
public FloatMatrix rotate180() {
final float[][] c = new float[rows][];
for (int i = 0; i < rows; i++) {
c[i] = a[rows - i - 1].clone();
N.reverse(c[i]);
}
return new FloatMatrix(c);
}
@Override
public FloatMatrix rotate270() {
final float[][] c = new float[cols][rows];
if (rows <= cols) {
for (int j = 0; j < rows; j++) {
for (int i = 0; i < cols; i++) {
c[i][j] = a[j][cols - i - 1];
}
}
} else {
for (int i = 0; i < cols; i++) {
for (int j = 0; j < rows; j++) {
c[i][j] = a[j][cols - i - 1];
}
}
}
return new FloatMatrix(c);
}
@Override
public FloatMatrix transpose() {
final float[][] c = new float[cols][rows];
if (rows <= cols) {
for (int j = 0; j < rows; j++) {
for (int i = 0; i < cols; i++) {
c[i][j] = a[j][i];
}
}
} else {
for (int i = 0; i < cols; i++) {
for (int j = 0; j < rows; j++) {
c[i][j] = a[j][i];
}
}
}
return new FloatMatrix(c);
}
@Override
public FloatMatrix reshape(final int newRows, final int newCols) {
final float[][] c = new float[newRows][newCols];
if (newRows == 0 || newCols == 0 || N.isNullOrEmpty(a)) {
return new FloatMatrix(c);
}
if (a.length == 1) {
final float[] a0 = a[0];
for (int i = 0, len = (int) N.min(newRows, count % newCols == 0 ? count / newCols : count / newCols + 1); i < len; i++) {
N.copy(a0, i * newCols, c[i], 0, (int) N.min(newCols, count - i * newCols));
}
} else {
long cnt = 0;
for (int i = 0, len = (int) N.min(newRows, count % newCols == 0 ? count / newCols : count / newCols + 1); i < len; i++) {
for (int j = 0, col = (int) N.min(newCols, count - i * newCols); j < col; j++, cnt++) {
c[i][j] = a[(int) (cnt / this.cols)][(int) (cnt % this.cols)];
}
}
}
return new FloatMatrix(c);
}
/**
* Repeat elements rowRepeats
times in row direction and colRepeats
times in column direction.
*
* @param rowRepeats
* @param colRepeats
* @return a new matrix
* @see IntMatrix#repelem(int, int)
*/
@Override
public FloatMatrix repelem(final int rowRepeats, final int colRepeats) {
N.checkArgument(rowRepeats > 0 && colRepeats > 0, "rowRepeats=%s and colRepeats=%s must be bigger than 0", rowRepeats, colRepeats);
final float[][] c = new float[rows * rowRepeats][cols * colRepeats];
for (int i = 0; i < rows; i++) {
final float[] fr = c[i * rowRepeats];
for (int j = 0; j < cols; j++) {
N.copy(Array.repeat(a[i][j], colRepeats), 0, fr, j * colRepeats, colRepeats);
}
for (int k = 1; k < rowRepeats; k++) {
N.copy(fr, 0, c[i * rowRepeats + k], 0, fr.length);
}
}
return new FloatMatrix(c);
}
/**
* Repeat this matrix rowRepeats
times in row direction and colRepeats
times in column direction.
*
* @param rowRepeats
* @param colRepeats
* @return a new matrix
* @see IntMatrix#repmat(int, int)
*/
@Override
public FloatMatrix repmat(final int rowRepeats, final int colRepeats) {
N.checkArgument(rowRepeats > 0 && colRepeats > 0, "rowRepeats=%s and colRepeats=%s must be bigger than 0", rowRepeats, colRepeats);
final float[][] c = new float[rows * rowRepeats][cols * colRepeats];
for (int i = 0; i < rows; i++) {
for (int j = 0; j < colRepeats; j++) {
N.copy(a[i], 0, c[i], j * cols, cols);
}
}
for (int i = 1; i < rowRepeats; i++) {
for (int j = 0; j < rows; j++) {
N.copy(c[j], 0, c[i * rows + j], 0, c[j].length);
}
}
return new FloatMatrix(c);
}
@Override
public FloatList flatten() {
final float[] c = new float[rows * cols];
for (int i = 0; i < rows; i++) {
N.copy(a[i], 0, c, i * cols, cols);
}
return FloatList.of(c);
}
@Override
public void flatOp(Consumer op) throws E {
f.flatOp(a, op);
}
/**
*
* @param b
* @return
* @see IntMatrix#vstack(IntMatrix)
*/
public FloatMatrix vstack(final FloatMatrix b) {
N.checkArgument(this.cols == b.cols, "The count of column in this matrix and the specified matrix are not equals");
final float[][] c = new float[this.rows + b.rows][];
int j = 0;
for (int i = 0; i < rows; i++) {
c[j++] = a[i].clone();
}
for (int i = 0; i < b.rows; i++) {
c[j++] = b.a[i].clone();
}
return FloatMatrix.of(c);
}
/**
*
* @param b
* @return
* @see IntMatrix#hstack(IntMatrix)
*/
public FloatMatrix hstack(final FloatMatrix b) {
N.checkArgument(this.rows == b.rows, "The count of row in this matrix and the specified matrix are not equals");
final float[][] c = new float[rows][cols + b.cols];
for (int i = 0; i < rows; i++) {
N.copy(a[i], 0, c[i], 0, cols);
N.copy(b.a[i], 0, c[i], cols, b.cols);
}
return FloatMatrix.of(c);
}
public FloatMatrix add(final FloatMatrix b) {
N.checkArgument(this.rows == b.rows && this.cols == b.cols, "The 'n' and length are not equal");
final float[][] c = new float[rows][cols];
if (isParallelable()) {
if (rows <= cols) {
IntStream.range(0, rows).parallel().forEach(new IntConsumer() {
@Override
public void accept(final int i) {
for (int j = 0; j < cols; j++) {
c[i][j] = a[i][j] + b.a[i][j];
}
}
});
} else {
IntStream.range(0, cols).parallel().forEach(new IntConsumer() {
@Override
public void accept(final int j) {
for (int i = 0; i < rows; i++) {
c[i][j] = a[i][j] + b.a[i][j];
}
}
});
}
} else {
if (rows <= cols) {
for (int i = 0; i < rows; i++) {
for (int j = 0; j < cols; j++) {
c[i][j] = a[i][j] + b.a[i][j];
}
}
} else {
for (int j = 0; j < cols; j++) {
for (int i = 0; i < rows; i++) {
c[i][j] = a[i][j] + b.a[i][j];
}
}
}
}
return new FloatMatrix(c);
}
public FloatMatrix subtract(final FloatMatrix b) {
N.checkArgument(this.rows == b.rows && this.cols == b.cols, "The 'n' and length are not equal");
final float[][] c = new float[rows][cols];
if (isParallelable()) {
if (rows <= cols) {
IntStream.range(0, rows).parallel().forEach(new IntConsumer() {
@Override
public void accept(final int i) {
for (int j = 0; j < cols; j++) {
c[i][j] = a[i][j] - b.a[i][j];
}
}
});
} else {
IntStream.range(0, cols).parallel().forEach(new IntConsumer() {
@Override
public void accept(final int j) {
for (int i = 0; i < rows; i++) {
c[i][j] = a[i][j] - b.a[i][j];
}
}
});
}
} else {
if (rows <= cols) {
for (int i = 0; i < rows; i++) {
for (int j = 0; j < cols; j++) {
c[i][j] = a[i][j] - b.a[i][j];
}
}
} else {
for (int j = 0; j < cols; j++) {
for (int i = 0; i < rows; i++) {
c[i][j] = a[i][j] - b.a[i][j];
}
}
}
}
return new FloatMatrix(c);
}
public FloatMatrix multiply(final FloatMatrix b) {
N.checkArgument(this.cols == b.rows, "Illegal matrix dimensions");
final float[][] c = new float[rows][b.cols];
final float[][] a2 = b.a;
if (isParallelable(b.cols)) {
if (N.min(rows, cols, b.cols) == rows) {
if (N.min(cols, b.cols) == cols) {
IntStream.range(0, rows).parallel().forEach(new IntConsumer() {
@Override
public void accept(final int i) {
for (int k = 0; k < cols; k++) {
for (int j = 0; j < b.cols; j++) {
c[i][j] += a[i][k] * a2[k][j];
}
}
}
});
} else {
IntStream.range(0, rows).parallel().forEach(new IntConsumer() {
@Override
public void accept(final int i) {
for (int j = 0; j < b.cols; j++) {
for (int k = 0; k < cols; k++) {
c[i][j] += a[i][k] * a2[k][j];
}
}
}
});
}
} else if (N.min(rows, cols, b.cols) == cols) {
if (N.min(rows, b.cols) == rows) {
IntStream.range(0, cols).parallel().forEach(new IntConsumer() {
@Override
public void accept(final int k) {
for (int i = 0; i < rows; i++) {
for (int j = 0; j < b.cols; j++) {
c[i][j] += a[i][k] * a2[k][j];
}
}
}
});
} else {
IntStream.range(0, cols).parallel().forEach(new IntConsumer() {
@Override
public void accept(final int k) {
for (int j = 0; j < b.cols; j++) {
for (int i = 0; i < rows; i++) {
c[i][j] += a[i][k] * a2[k][j];
}
}
}
});
}
} else {
if (N.min(rows, cols) == rows) {
IntStream.range(0, b.cols).parallel().forEach(new IntConsumer() {
@Override
public void accept(final int j) {
for (int i = 0; i < rows; i++) {
for (int k = 0; k < cols; k++) {
c[i][j] += a[i][k] * a2[k][j];
}
}
}
});
} else {
IntStream.range(0, b.cols).parallel().forEach(new IntConsumer() {
@Override
public void accept(final int j) {
for (int k = 0; k < cols; k++) {
for (int i = 0; i < rows; i++) {
c[i][j] += a[i][k] * a2[k][j];
}
}
}
});
}
}
} else {
if (N.min(rows, cols, b.cols) == rows) {
if (N.min(cols, b.cols) == cols) {
for (int i = 0; i < rows; i++) {
for (int k = 0; k < cols; k++) {
for (int j = 0; j < b.cols; j++) {
c[i][j] += a[i][k] * a2[k][j];
}
}
}
} else {
for (int i = 0; i < rows; i++) {
for (int j = 0; j < b.cols; j++) {
for (int k = 0; k < cols; k++) {
c[i][j] += a[i][k] * a2[k][j];
}
}
}
}
} else if (N.min(rows, cols, b.cols) == cols) {
if (N.min(rows, b.cols) == rows) {
for (int k = 0; k < cols; k++) {
for (int i = 0; i < rows; i++) {
for (int j = 0; j < b.cols; j++) {
c[i][j] += a[i][k] * a2[k][j];
}
}
}
} else {
for (int k = 0; k < cols; k++) {
for (int j = 0; j < b.cols; j++) {
for (int i = 0; i < rows; i++) {
c[i][j] += a[i][k] * a2[k][j];
}
}
}
}
} else {
if (N.min(rows, cols) == rows) {
for (int j = 0; j < b.cols; j++) {
for (int i = 0; i < rows; i++) {
for (int k = 0; k < cols; k++) {
c[i][j] += a[i][k] * a2[k][j];
}
}
}
} else {
for (int j = 0; j < b.cols; j++) {
for (int k = 0; k < cols; k++) {
for (int i = 0; i < rows; i++) {
c[i][j] += a[i][k] * a2[k][j];
}
}
}
}
}
}
return new FloatMatrix(c);
}
public Matrix boxed() {
final Float[][] c = new Float[rows][cols];
if (rows <= cols) {
for (int i = 0; i < rows; i++) {
for (int j = 0; j < cols; j++) {
c[i][j] = a[i][j];
}
}
} else {
for (int j = 0; j < cols; j++) {
for (int i = 0; i < rows; i++) {
c[i][j] = a[i][j];
}
}
}
return new Matrix<>(c);
}
public DoubleMatrix toDoubleMatrix() {
return DoubleMatrix.from(a);
}
public FloatMatrix zipWith(final FloatMatrix matrixB, final Try.FloatBiFunction zipFunction) throws E {
N.checkArgument(isSameShape(matrixB), "Can't zip two matrices which have different shape.");
final float[][] result = new float[rows][cols];
final float[][] b = matrixB.a;
if (isParallelable()) {
if (rows <= cols) {
IntStream.range(0, rows).parallel().forEach(new Try.IntConsumer() {
@Override
public void accept(final int i) throws E {
for (int j = 0; j < cols; j++) {
result[i][j] = zipFunction.apply(a[i][j], b[i][j]);
}
}
});
} else {
IntStream.range(0, cols).parallel().forEach(new Try.IntConsumer() {
@Override
public void accept(final int j) throws E {
for (int i = 0; i < rows; i++) {
result[i][j] = zipFunction.apply(a[i][j], b[i][j]);
}
}
});
}
} else {
if (rows <= cols) {
for (int i = 0; i < rows; i++) {
for (int j = 0; j < cols; j++) {
result[i][j] = zipFunction.apply(a[i][j], b[i][j]);
}
}
} else {
for (int j = 0; j < cols; j++) {
for (int i = 0; i < rows; i++) {
result[i][j] = zipFunction.apply(a[i][j], b[i][j]);
}
}
}
}
return new FloatMatrix(result);
}
public FloatMatrix zipWith(final FloatMatrix matrixB, final FloatMatrix matrixC, final Try.FloatTriFunction zipFunction)
throws E {
N.checkArgument(isSameShape(matrixB) && isSameShape(matrixC), "Can't zip three matrices which have different shape.");
final float[][] result = new float[rows][cols];
final float[][] b = matrixB.a;
final float[][] c = matrixC.a;
if (isParallelable()) {
if (rows <= cols) {
IntStream.range(0, rows).parallel().forEach(new Try.IntConsumer() {
@Override
public void accept(final int i) throws E {
for (int j = 0; j < cols; j++) {
result[i][j] = zipFunction.apply(a[i][j], b[i][j], c[i][j]);
}
}
});
} else {
IntStream.range(0, cols).parallel().forEach(new Try.IntConsumer() {
@Override
public void accept(final int j) throws E {
for (int i = 0; i < rows; i++) {
result[i][j] = zipFunction.apply(a[i][j], b[i][j], c[i][j]);
}
}
});
}
} else {
if (rows <= cols) {
for (int i = 0; i < rows; i++) {
for (int j = 0; j < cols; j++) {
result[i][j] = zipFunction.apply(a[i][j], b[i][j], c[i][j]);
}
}
} else {
for (int j = 0; j < cols; j++) {
for (int i = 0; i < rows; i++) {
result[i][j] = zipFunction.apply(a[i][j], b[i][j], c[i][j]);
}
}
}
}
return new FloatMatrix(result);
}
/**
*
* @return a stream composed by elements on the diagonal line from left up to right down.
*/
@Override
public FloatStream streamLU2RD() {
N.checkState(rows == cols, "'rows' and 'cols' must be same to get diagonals: rows=%s, cols=%s", rows, cols);
if (isEmpty()) {
return FloatStream.empty();
}
return FloatStream.of(new FloatIteratorEx() {
private final int toIndex = rows;
private int cursor = 0;
@Override
public boolean hasNext() {
return cursor < toIndex;
}
@Override
public float nextFloat() {
if (cursor >= toIndex) {
throw new NoSuchElementException();
}
return a[cursor][cursor++];
}
@Override
public void skip(long n) {
N.checkArgNotNegative(n, "n");
cursor = n < toIndex - cursor ? cursor + (int) n : toIndex;
}
@Override
public long count() {
return toIndex - cursor;
}
});
}
/**
*
* @return a stream composed by elements on the diagonal line from right up to left down.
*/
@Override
public FloatStream streamRU2LD() {
N.checkState(rows == cols, "'rows' and 'cols' must be same to get diagonals: rows=%s, cols=%s", rows, cols);
if (isEmpty()) {
return FloatStream.empty();
}
return FloatStream.of(new FloatIteratorEx() {
private final int toIndex = rows;
private int cursor = 0;
@Override
public boolean hasNext() {
return cursor < toIndex;
}
@Override
public float nextFloat() {
if (cursor >= toIndex) {
throw new NoSuchElementException();
}
return a[cursor][rows - ++cursor];
}
@Override
public void skip(long n) {
N.checkArgNotNegative(n, "n");
cursor = n < toIndex - cursor ? cursor + (int) n : toIndex;
}
@Override
public long count() {
return toIndex - cursor;
}
});
}
/**
*
* @return a stream based on the order of row.
*/
@Override
public FloatStream streamH() {
return streamH(0, rows);
}
@Override
public FloatStream streamH(final int rowIndex) {
return streamH(rowIndex, rowIndex + 1);
}
/**
*
* @param fromRowIndex
* @param toRowIndex
* @return a stream based on the order of row.
*/
@Override
public FloatStream streamH(final int fromRowIndex, final int toRowIndex) {
N.checkFromToIndex(fromRowIndex, toRowIndex, rows);
if (isEmpty()) {
return FloatStream.empty();
}
return FloatStream.of(new FloatIteratorEx() {
private int i = fromRowIndex;
private int j = 0;
@Override
public boolean hasNext() {
return i < toRowIndex;
}
@Override
public float nextFloat() {
if (i >= toRowIndex) {
throw new NoSuchElementException();
}
final float result = a[i][j++];
if (j >= cols) {
i++;
j = 0;
}
return result;
}
@Override
public void skip(long n) {
N.checkArgNotNegative(n, "n");
if (n >= (toRowIndex - i) * cols * 1L - j) {
i = toRowIndex;
j = 0;
} else {
i += (n + j) / cols;
j += (n + j) % cols;
}
}
@Override
public long count() {
return (toRowIndex - i) * cols * 1L - j;
}
@Override
public float[] toArray() {
final int len = (int) count();
final float[] c = new float[len];
for (int k = 0; k < len; k++) {
c[k] = a[i][j++];
if (j >= cols) {
i++;
j = 0;
}
}
return c;
}
});
}
/**
*
* @return a stream based on the order of column.
*/
@Override
@Beta
public FloatStream streamV() {
return streamV(0, cols);
}
@Override
public FloatStream streamV(final int columnIndex) {
return streamV(columnIndex, columnIndex + 1);
}
/**
*
* @param fromColumnIndex
* @param toColumnIndex
* @return a stream based on the order of column.
*/
@Override
@Beta
public FloatStream streamV(final int fromColumnIndex, final int toColumnIndex) {
N.checkFromToIndex(fromColumnIndex, toColumnIndex, cols);
if (isEmpty()) {
return FloatStream.empty();
}
return FloatStream.of(new FloatIteratorEx() {
private int i = 0;
private int j = fromColumnIndex;
@Override
public boolean hasNext() {
return j < toColumnIndex;
}
@Override
public float nextFloat() {
if (j >= toColumnIndex) {
throw new NoSuchElementException();
}
final float result = a[i++][j];
if (i >= rows) {
i = 0;
j++;
}
return result;
}
@Override
public void skip(long n) {
N.checkArgNotNegative(n, "n");
if (n >= (toColumnIndex - j) * FloatMatrix.this.rows * 1L - i) {
i = 0;
j = toColumnIndex;
} else {
i += (n + i) % FloatMatrix.this.rows;
j += (n + i) / FloatMatrix.this.rows;
}
}
@Override
public long count() {
return (toColumnIndex - j) * rows - i;
}
@Override
public float[] toArray() {
final int len = (int) count();
final float[] c = new float[len];
for (int k = 0; k < len; k++) {
c[k] = a[i++][j];
if (i >= rows) {
i = 0;
j++;
}
}
return c;
}
});
}
/**
*
* @return a row stream based on the order of row.
*/
@Override
public Stream streamR() {
return streamR(0, rows);
}
/**
*
* @param fromRowIndex
* @param toRowIndex
* @return a row stream based on the order of row.
*/
@Override
public Stream streamR(final int fromRowIndex, final int toRowIndex) {
N.checkFromToIndex(fromRowIndex, toRowIndex, rows);
if (isEmpty()) {
return Stream.empty();
}
return Stream.of(new ObjIteratorEx() {
private final int toIndex = toRowIndex;
private int cursor = fromRowIndex;
@Override
public boolean hasNext() {
return cursor < toIndex;
}
@Override
public FloatStream next() {
if (cursor >= toIndex) {
throw new NoSuchElementException();
}
return FloatStream.of(a[cursor++]);
}
@Override
public void skip(long n) {
N.checkArgNotNegative(n, "n");
cursor = n < toIndex - cursor ? cursor + (int) n : toIndex;
}
@Override
public long count() {
return toIndex - cursor;
}
});
}
/**
*
* @return a column stream based on the order of column.
*/
@Override
@Beta
public Stream streamC() {
return streamC(0, cols);
}
/**
*
* @param fromColumnIndex
* @param toColumnIndex
* @return a column stream based on the order of column.
*/
@Override
@Beta
public Stream streamC(final int fromColumnIndex, final int toColumnIndex) {
N.checkFromToIndex(fromColumnIndex, toColumnIndex, cols);
if (isEmpty()) {
return Stream.empty();
}
return Stream.of(new ObjIteratorEx() {
private final int toIndex = toColumnIndex;
private volatile int cursor = fromColumnIndex;
@Override
public boolean hasNext() {
return cursor < toIndex;
}
@Override
public FloatStream next() {
if (cursor >= toIndex) {
throw new NoSuchElementException();
}
return FloatStream.of(new FloatIteratorEx() {
private final int columnIndex = cursor++;
private final int toIndex2 = rows;
private int cursor2 = 0;
@Override
public boolean hasNext() {
return cursor2 < toIndex2;
}
@Override
public float nextFloat() {
if (cursor2 >= toIndex2) {
throw new NoSuchElementException();
}
return a[cursor2++][columnIndex];
}
@Override
public void skip(long n) {
N.checkArgNotNegative(n, "n");
cursor2 = n < toIndex2 - cursor2 ? cursor2 + (int) n : toIndex2;
}
@Override
public long count() {
return toIndex2 - cursor2;
}
});
}
@Override
public void skip(long n) {
N.checkArgNotNegative(n, "n");
cursor = n < toIndex - cursor ? cursor + (int) n : toIndex;
}
@Override
public long count() {
return toIndex - cursor;
}
});
}
@Override
protected int length(float[] a) {
return a == null ? 0 : a.length;
}
public void forEach(final Try.FloatConsumer action) throws E {
forEach(0, rows, 0, cols, action);
}
public void forEach(final int fromRowIndex, final int toRowIndex, final int fromColumnIndex, final int toColumnIndex,
final Try.FloatConsumer action) throws E {
N.checkFromToIndex(fromRowIndex, toRowIndex, rows);
N.checkFromToIndex(fromColumnIndex, toColumnIndex, cols);
for (int i = fromRowIndex; i < toRowIndex; i++) {
for (int j = fromColumnIndex; j < toColumnIndex; j++) {
action.accept(a[i][j]);
}
}
}
@Override
public void println() {
f.println(a);
}
@Override
public int hashCode() {
return N.deepHashCode(a);
}
@Override
public boolean equals(Object obj) {
if (this == obj) {
return true;
}
if (obj instanceof FloatMatrix) {
final FloatMatrix another = (FloatMatrix) obj;
return N.deepEquals(this.a, another.a);
}
return false;
}
@Override
public String toString() {
return N.deepToString(a);
}
}