All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.landawn.abacus.util.stream.CharStream Maven / Gradle / Ivy

There is a newer version: 1.10.1
Show newest version
/*
 * Copyright (C) 2016, 2017, 2018, 2019 HaiYang Li
 *
 * Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except
 * in compliance with the License. You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software distributed under the License
 * is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express
 * or implied. See the License for the specific language governing permissions and limitations under
 * the License.
 */

package com.landawn.abacus.util.stream;

import java.security.SecureRandom;
import java.util.ArrayList;
import java.util.Collection;
import java.util.Iterator;
import java.util.List;
import java.util.Map;
import java.util.NoSuchElementException;
import java.util.Queue;
import java.util.Random;

import com.landawn.abacus.annotation.SequentialOnly;
import com.landawn.abacus.util.CharIterator;
import com.landawn.abacus.util.CharList;
import com.landawn.abacus.util.CharMatrix;
import com.landawn.abacus.util.CharSummaryStatistics;
import com.landawn.abacus.util.ContinuableFuture;
import com.landawn.abacus.util.Fn.Fnn;
import com.landawn.abacus.util.IOUtil;
import com.landawn.abacus.util.IndexedChar;
import com.landawn.abacus.util.MutableInt;
import com.landawn.abacus.util.N;
import com.landawn.abacus.util.Nth;
import com.landawn.abacus.util.Pair;
import com.landawn.abacus.util.Percentage;
import com.landawn.abacus.util.StringUtil;
import com.landawn.abacus.util.Try;
import com.landawn.abacus.util.u.Holder;
import com.landawn.abacus.util.u.Optional;
import com.landawn.abacus.util.u.OptionalChar;
import com.landawn.abacus.util.u.OptionalDouble;
import com.landawn.abacus.util.function.BiConsumer;
import com.landawn.abacus.util.function.BinaryOperator;
import com.landawn.abacus.util.function.BooleanSupplier;
import com.landawn.abacus.util.function.CharBiFunction;
import com.landawn.abacus.util.function.CharBiPredicate;
import com.landawn.abacus.util.function.CharBinaryOperator;
import com.landawn.abacus.util.function.CharConsumer;
import com.landawn.abacus.util.function.CharFunction;
import com.landawn.abacus.util.function.CharNFunction;
import com.landawn.abacus.util.function.CharPredicate;
import com.landawn.abacus.util.function.CharSupplier;
import com.landawn.abacus.util.function.CharTernaryOperator;
import com.landawn.abacus.util.function.CharToIntFunction;
import com.landawn.abacus.util.function.CharUnaryOperator;
import com.landawn.abacus.util.function.Function;
import com.landawn.abacus.util.function.ObjCharConsumer;
import com.landawn.abacus.util.function.Supplier;
import com.landawn.abacus.util.function.ToCharFunction;

/**
 * The Stream will be automatically closed after execution(A terminal method is executed/triggered).
 * 
* * @see Stream */ public abstract class CharStream extends StreamBase { static final Random RAND = new SecureRandom(); CharStream(final boolean sorted, final Collection closeHandlers) { super(sorted, null, closeHandlers); } /** * Returns a stream consisting of the results of applying the given * function to the elements of this stream. * *

This is an intermediate * operation. * * @param mapper a non-interfering, * stateless * function to apply to each element * @return the new stream */ public abstract CharStream map(CharUnaryOperator mapper); /** * Returns a {@code IntStream} consisting of the results of applying the * given function to the elements of this stream. * *

This is an intermediate * operation. * * @param mapper a non-interfering, * stateless * function to apply to each element * @return the new stream */ public abstract IntStream mapToInt(CharToIntFunction mapper); /** * Returns an object-valued {@code Stream} consisting of the results of * applying the given function to the elements of this stream. * *

This is an * intermediate operation. * * @param the element type of the new stream * @param mapper a non-interfering, * stateless * function to apply to each element * @return the new stream */ public abstract Stream mapToObj(CharFunction mapper); /** * Returns a stream consisting of the results of replacing each element of * this stream with the contents of a mapped stream produced by applying * the provided mapping function to each element. * *

This is an intermediate * operation. * * @param mapper a non-interfering, * stateless * function to apply to each element which produces an * {@code CharStream} of new values * @return the new stream * @see Stream#flatMap(Function) */ public abstract CharStream flatMap(CharFunction mapper); public abstract CharStream flattMap(CharFunction mapper); public abstract IntStream flatMapToInt(CharFunction mapper); public abstract Stream flatMapToObj(CharFunction> mapper); public abstract Stream flattMapToObj(CharFunction> mapper); public abstract Stream flatMappToObj(CharFunction mapper); /** * Note: copied from StreamEx: https://github.com/amaembo/streamex * *
* * Returns a stream consisting of results of applying the given function to * the ranges created from the source elements. * This is a quasi-intermediate * partial reduction operation. * * @param sameRange a non-interfering, stateless predicate to apply to * the leftmost and next elements which returns true for elements * which belong to the same range. * @param mapper a non-interfering, stateless function to apply to the * range borders and produce the resulting element. If value was * not merged to the interval, then mapper will receive the same * value twice, otherwise it will receive the leftmost and the * rightmost values which were merged to the range. * @return the new stream * @see #collapse(CharBiPredicate, CharBinaryOperator) * @see Stream#rangeMap(BiPredicate, BiFunction) */ @SequentialOnly public abstract CharStream rangeMap(final CharBiPredicate sameRange, final CharBinaryOperator mapper); /** * Note: copied from StreamEx: https://github.com/amaembo/streamex * *
* * Returns a stream consisting of results of applying the given function to * the ranges created from the source elements. * This is a quasi-intermediate * partial reduction operation. * * @param sameRange a non-interfering, stateless predicate to apply to * the leftmost and next elements which returns true for elements * which belong to the same range. * @param mapper a non-interfering, stateless function to apply to the * range borders and produce the resulting element. If value was * not merged to the interval, then mapper will receive the same * value twice, otherwise it will receive the leftmost and the * rightmost values which were merged to the range. * @return the new stream * @see Stream#rangeMap(BiPredicate, BiFunction) */ @SequentialOnly public abstract Stream rangeMapp(final CharBiPredicate sameRange, final CharBiFunction mapper); /** * Merge series of adjacent elements which satisfy the given predicate using * the merger function and return a new stream. * *
* This method only run sequentially, even in parallel stream. * * @param collapsible * @return */ @SequentialOnly public abstract Stream collapse(final CharBiPredicate collapsible); /** * Merge series of adjacent elements which satisfy the given predicate using * the merger function and return a new stream. * *
* This method only run sequentially, even in parallel stream. * * @param collapsible * @param mergeFunction * @return */ @SequentialOnly public abstract CharStream collapse(final CharBiPredicate collapsible, final CharBinaryOperator mergeFunction); /** * Returns a {@code Stream} produced by iterative application of a accumulation function * to an initial element {@code init} and next element of the current stream. * Produces a {@code Stream} consisting of {@code init}, {@code acc(init, value1)}, * {@code acc(acc(init, value1), value2)}, etc. * *

This is an intermediate operation. * *

Example: *

     * accumulator: (a, b) -> a + b
     * stream: [1, 2, 3, 4, 5]
     * result: [1, 3, 6, 10, 15]
     * 
* *
* This method only run sequentially, even in parallel stream. * * @param accumulator the accumulation function * @return the new stream which has the extract same size as this stream. */ @SequentialOnly public abstract CharStream scan(final CharBinaryOperator accumulator); /** * Returns a {@code Stream} produced by iterative application of a accumulation function * to an initial element {@code init} and next element of the current stream. * Produces a {@code Stream} consisting of {@code init}, {@code acc(init, value1)}, * {@code acc(acc(init, value1), value2)}, etc. * *

This is an intermediate operation. * *

Example: *

     * init:10
     * accumulator: (a, b) -> a + b
     * stream: [1, 2, 3, 4, 5]
     * result: [11, 13, 16, 20, 25]
     * 
* *
* This method only run sequentially, even in parallel stream. * * @param init the initial value. it's only used once by accumulator to calculate the fist element in the returned stream. * It will be ignored if this stream is empty and won't be the first element of the returned stream. * * @param accumulator the accumulation function * @return the new stream which has the extract same size as this stream. */ @SequentialOnly public abstract CharStream scan(final char init, final CharBinaryOperator accumulator); /** * * @param init * @param accumulator * @param initIncluded * @return */ @SequentialOnly public abstract CharStream scan(final char init, final CharBinaryOperator accumulator, final boolean initIncluded); public abstract CharList toCharList(); /** * * @param keyMapper * @param valueMapper * @return * @see Collectors#toMap(Function, Function) */ public abstract Map toMap(CharFunction keyMapper, CharFunction valueMapper); /** * * @param keyMapper * @param valueMapper * @param mapFactory * @return * @see Collectors#toMap(Function, Function, Supplier) */ public abstract > M toMap(CharFunction keyMapper, CharFunction valueMapper, Supplier mapFactory); /** * * @param keyMapper * @param valueMapper * @param mergeFunction * @return * @see Collectors#toMap(Function, Function, BinaryOperator) */ public abstract Map toMap(CharFunction keyMapper, CharFunction valueMapper, BinaryOperator mergeFunction); /** * * @param keyMapper * @param valueMapper * @param mergeFunction * @param mapFactory * @return * @see Collectors#toMap(Function, Function, BinaryOperator, Supplier) */ public abstract > M toMap(CharFunction keyMapper, CharFunction valueMapper, BinaryOperator mergeFunction, Supplier mapFactory); /** * * @param keyMapper * @param downstream * @return * @see Collectors#groupingBy(Function, Collector) */ public abstract Map toMap(final CharFunction keyMapper, final Collector downstream); /** * * @param keyMapper * @param downstream * @param mapFactory * @return * @see Collectors#groupingBy(Function, Collector, Supplier) */ public abstract > M toMap(final CharFunction keyMapper, final Collector downstream, final Supplier mapFactory); public abstract CharMatrix toMatrix(); /** * Performs a reduction on the * elements of this stream, using the provided identity value and an * associative * accumulation function, and returns the reduced value. This is equivalent * to: *
{@code
     *     int result = identity;
     *     for (int element : this stream)
     *         result = accumulator.applyAsChar(result, element)
     *     return result;
     * }
* * but is not constrained to execute sequentially. * *

The {@code identity} value must be an identity for the accumulator * function. This means that for all {@code x}, * {@code accumulator.apply(identity, x)} is equal to {@code x}. * The {@code accumulator} function must be an * associative function. * *

This is a terminal * operation. * * @apiNote Sum, min, max, and average are all special cases of reduction. * Summing a stream of numbers can be expressed as: * *

{@code
     *     int sum = integers.reduce(0, (a, b) -> a+b);
     * }
* * or more compactly: * *
{@code
     *     int sum = integers.reduce(0, Chareger::sum);
     * }
* *

While this may seem a more roundabout way to perform an aggregation * compared to simply mutating a running total in a loop, reduction * operations parallelize more gracefully, without needing additional * synchronization and with greatly reduced risk of data races. * * @param identity the identity value for the accumulating function * @param op an associative, * non-interfering, * stateless * function for combining two values * @return the result of the reduction * @see #sum() * @see #min() * @see #max() * @see #average() */ public abstract char reduce(char identity, CharBinaryOperator op); /** * Performs a reduction on the * elements of this stream, using an * associative accumulation * function, and returns an {@code OptionalChar} describing the reduced value, * if any. This is equivalent to: *

{@code
     *     boolean foundAny = false;
     *     int result = null;
     *     for (int element : this stream) {
     *         if (!foundAny) {
     *             foundAny = true;
     *             result = element;
     *         }
     *         else
     *             result = accumulator.applyAsChar(result, element);
     *     }
     *     return foundAny ? OptionalChar.of(result) : OptionalChar.empty();
     * }
* * but is not constrained to execute sequentially. * *

The {@code accumulator} function must be an * associative function. * *

This is a terminal * operation. * * @param op an associative, * non-interfering, * stateless * function for combining two values * @return the result of the reduction * @see #reduce(int, CharBinaryOperator) */ public abstract OptionalChar reduce(CharBinaryOperator op); /** * Performs a mutable * reduction operation on the elements of this stream. A mutable * reduction is one in which the reduced value is a mutable result container, * such as an {@code ArrayList}, and elements are incorporated by updating * the state of the result rather than by replacing the result. This * produces a result equivalent to: *

{@code
     *     R result = supplier.get();
     *     for (int element : this stream)
     *         accumulator.accept(result, element);
     *     return result;
     * }
* *

Like {@link #reduce(int, CharBinaryOperator)}, {@code collect} operations * can be parallelized without requiring additional synchronization. * *

This is a terminal * operation. * * @param type of the result * @param supplier a function that creates a new result container. For a * parallel execution, this function may be called * multiple times and must return a fresh value each time. * @param accumulator an associative, * non-interfering, * stateless * function for incorporating an additional element into a result * @param combiner an associative, * non-interfering, * stateless * function for combining two values, which must be * compatible with the accumulator function * @return the result of the reduction * @see Stream#collect(Supplier, BiConsumer, BiConsumer) */ public abstract R collect(Supplier supplier, ObjCharConsumer accumulator, BiConsumer combiner); /** * * @param supplier * @param accumulator * @return */ public abstract R collect(Supplier supplier, ObjCharConsumer accumulator); public abstract void forEach(final Try.CharConsumer action) throws E; public abstract boolean anyMatch(final Try.CharPredicate predicate) throws E; public abstract boolean allMatch(final Try.CharPredicate predicate) throws E; public abstract boolean noneMatch(final Try.CharPredicate predicate) throws E; public abstract OptionalChar findFirst(final Try.CharPredicate predicate) throws E; public abstract OptionalChar findLast(final Try.CharPredicate predicate) throws E; public abstract OptionalChar findFirstOrLast(Try.CharPredicate predicateForFirst, Try.CharPredicate predicateForLast) throws E, E2; public abstract OptionalChar findAny(final Try.CharPredicate predicate) throws E; /** * Returns an {@code OptionalChar} describing the minimum element of this * stream, or an empty optional if this stream is empty. This is a special * case of a reduction * and is equivalent to: *

{@code
     *     return reduce(Chareger::min);
     * }
* *

This is a terminal operation. * * @return an {@code OptionalChar} containing the minimum element of this * stream, or an empty {@code OptionalChar} if the stream is empty */ public abstract OptionalChar min(); /** * Returns an {@code OptionalChar} describing the maximum element of this * stream, or an empty optional if this stream is empty. This is a special * case of a reduction * and is equivalent to: *

{@code
     *     return reduce(Chareger::max);
     * }
* *

This is a terminal * operation. * * @return an {@code OptionalChar} containing the maximum element of this * stream, or an empty {@code OptionalChar} if the stream is empty */ public abstract OptionalChar max(); /** * * @param k * @return OptionalByte.empty() if there is no element or count less than k, otherwise the kth largest element. */ public abstract OptionalChar kthLargest(int k); public abstract int sum(); public abstract OptionalDouble average(); public abstract CharSummaryStatistics summarize(); public abstract Pair>> summarizeAndPercentiles(); /** * * @param b * @param nextSelector first parameter is selected if Nth.FIRST is returned, otherwise the second parameter is selected. * @return */ public abstract CharStream merge(final CharStream b, final CharBiFunction nextSelector); public abstract CharStream zipWith(CharStream b, CharBinaryOperator zipFunction); public abstract CharStream zipWith(CharStream b, CharStream c, CharTernaryOperator zipFunction); public abstract CharStream zipWith(CharStream b, char valueForNoneA, char valueForNoneB, CharBinaryOperator zipFunction); public abstract CharStream zipWith(CharStream b, CharStream c, char valueForNoneA, char valueForNoneB, char valueForNoneC, CharTernaryOperator zipFunction); /** * Returns a {@code LongStream} consisting of the elements of this stream, * converted to {@code long}. * *

This is an intermediate * operation. * * @return a {@code LongStream} consisting of the elements of this stream, * converted to {@code long} */ public abstract IntStream asIntStream(); /** * Returns a {@code Stream} consisting of the elements of this stream, * each boxed to an {@code Chareger}. * *

This is an intermediate * operation. * * @return a {@code Stream} consistent of the elements of this stream, * each boxed to an {@code Chareger} */ public abstract Stream boxed(); /** * Remember to close this Stream after the iteration is done, if required. * * @return */ @SequentialOnly @Override public CharIterator iterator() { return iteratorEx(); } abstract CharIteratorEx iteratorEx(); @Override public R __(Function transfer) { return transfer.apply(this); } public static CharStream empty() { return new ArrayCharStream(N.EMPTY_CHAR_ARRAY, true, null); } @SafeVarargs public static CharStream of(final char... a) { return N.isNullOrEmpty(a) ? empty() : new ArrayCharStream(a); } public static CharStream of(final char[] a, final int startIndex, final int endIndex) { return N.isNullOrEmpty(a) && (startIndex == 0 && endIndex == 0) ? empty() : new ArrayCharStream(a, startIndex, endIndex); } /** * Takes the chars in the specified String as the elements of the Stream * * @param str * @return */ public static CharStream of(final CharSequence str) { return N.isNullOrEmpty(str) ? empty() : of(str, 0, str.length()); } /** * Takes the chars in the specified String as the elements of the Stream * * @param str * @param startIndex * @param endIndex * @return */ @SuppressWarnings("deprecation") public static CharStream of(final CharSequence str, final int startIndex, final int endIndex) { N.checkFromToIndex(startIndex, endIndex, N.len(str)); if (N.isNullOrEmpty(str)) { return empty(); } if (str instanceof String) { return of(StringUtil.getCharsForReadOnly((String) str), startIndex, endIndex); } final CharIteratorEx iter = new CharIteratorEx() { private int cursor = startIndex; @Override public boolean hasNext() { return cursor < endIndex; } @Override public char nextChar() { return str.charAt(cursor++); } @Override public long count() { return endIndex - cursor; } }; return new IteratorCharStream(iter); } public static CharStream of(final Character[] a) { return Stream.of(a).mapToChar(Fnn.unboxC()); } public static CharStream of(final Character[] a, final int startIndex, final int endIndex) { return Stream.of(a, startIndex, endIndex).mapToChar(Fnn.unboxC()); } public static CharStream of(final Collection c) { return Stream.of(c).mapToChar(Fnn.unboxC()); } public static CharStream of(final CharIterator iterator) { return iterator == null ? empty() : new IteratorCharStream(iterator); } /** * Lazy evaluation. * @param supplier * @return */ public static CharStream of(final Supplier supplier) { final CharIterator iter = new CharIteratorEx() { private CharIterator iterator = null; @Override public boolean hasNext() { if (iterator == null) { init(); } return iterator.hasNext(); } @Override public char nextChar() { if (iterator == null) { init(); } return iterator.nextChar(); } private void init() { final CharList c = supplier.get(); if (N.isNullOrEmpty(c)) { iterator = CharIterator.empty(); } else { iterator = c.iterator(); } } }; return of(iter); } private static final Function flatMapper = new Function() { @Override public CharStream apply(char[] t) { return CharStream.of(t); } }; private static final Function flatMappper = new Function() { @Override public CharStream apply(char[][] t) { return CharStream.flat(t); } }; public static CharStream flat(final char[][] a) { return N.isNullOrEmpty(a) ? empty() : Stream.of(a).flatMapToChar(flatMapper); } public static CharStream flat(final char[][] a, final boolean vertically) { if (N.isNullOrEmpty(a)) { return empty(); } else if (a.length == 1) { return of(a[0]); } else if (vertically == false) { return Stream.of(a).flatMapToChar(flatMapper); } long n = 0; for (char[] e : a) { n += N.len(e); } if (n == 0) { return empty(); } final int rows = N.len(a); final long count = n; final CharIterator iter = new CharIteratorEx() { private int rowNum = 0; private int colNum = 0; private long cnt = 0; @Override public boolean hasNext() { return cnt < count; } @Override public char nextChar() { if (cnt++ >= count) { throw new NoSuchElementException(); } if (rowNum == rows) { rowNum = 0; colNum++; } while (a[rowNum] == null || colNum >= a[rowNum].length) { if (rowNum < rows - 1) { rowNum++; } else { rowNum = 0; colNum++; } } return a[rowNum++][colNum]; } }; return of(iter); } public static CharStream flat(final char[][] a, final char valueForNone, final boolean vertically) { if (N.isNullOrEmpty(a)) { return empty(); } else if (a.length == 1) { return of(a[0]); } long n = 0; int maxLen = 0; for (char[] e : a) { n += N.len(e); maxLen = N.max(maxLen, N.len(e)); } if (n == 0) { return empty(); } final int rows = N.len(a); final int cols = maxLen; final long count = rows * cols; CharIterator iter = null; if (vertically) { iter = new CharIteratorEx() { private int rowNum = 0; private int colNum = 0; private long cnt = 0; @Override public boolean hasNext() { return cnt < count; } @Override public char nextChar() { if (cnt++ >= count) { throw new NoSuchElementException(); } if (rowNum == rows) { rowNum = 0; colNum++; } if (a[rowNum] == null || colNum >= a[rowNum].length) { rowNum++; return valueForNone; } else { return a[rowNum++][colNum]; } } }; } else { iter = new CharIteratorEx() { private int rowNum = 0; private int colNum = 0; private long cnt = 0; @Override public boolean hasNext() { return cnt < count; } @Override public char nextChar() { if (cnt++ >= count) { throw new NoSuchElementException(); } if (colNum >= cols) { colNum = 0; rowNum++; } if (a[rowNum] == null || colNum >= a[rowNum].length) { colNum++; return valueForNone; } else { return a[rowNum][colNum++]; } } }; } return of(iter); } public static CharStream flat(final char[][][] a) { return N.isNullOrEmpty(a) ? empty() : Stream.of(a).flatMapToChar(flatMappper); } public static CharStream range(final char startInclusive, final char endExclusive) { if (startInclusive >= endExclusive) { return empty(); } return new IteratorCharStream(new CharIteratorEx() { private char next = startInclusive; private int cnt = endExclusive * 1 - startInclusive; @Override public boolean hasNext() { return cnt > 0; } @Override public char nextChar() { if (cnt-- <= 0) { throw new NoSuchElementException(); } return next++; } @Override public void skip(long n) { N.checkArgNotNegative(n, "n"); cnt = n >= cnt ? 0 : cnt - (int) n; next += n; } @Override public long count() { return cnt; } @Override public char[] toArray() { final char[] result = new char[cnt]; for (int i = 0; i < cnt; i++) { result[i] = next++; } cnt = 0; return result; } }); } public static CharStream range(final char startInclusive, final char endExclusive, final int by) { if (by == 0) { throw new IllegalArgumentException("'by' can't be zero"); } if (endExclusive == startInclusive || endExclusive > startInclusive != by > 0) { return empty(); } return new IteratorCharStream(new CharIteratorEx() { private char next = startInclusive; private int cnt = (endExclusive * 1 - startInclusive) / by + ((endExclusive * 1 - startInclusive) % by == 0 ? 0 : 1); @Override public boolean hasNext() { return cnt > 0; } @Override public char nextChar() { if (cnt-- <= 0) { throw new NoSuchElementException(); } char result = next; next += by; return result; } @Override public void skip(long n) { N.checkArgNotNegative(n, "n"); cnt = n >= cnt ? 0 : cnt - (int) n; next += n * by; } @Override public long count() { return cnt; } @Override public char[] toArray() { final char[] result = new char[cnt]; for (int i = 0; i < cnt; i++, next += by) { result[i] = next; } cnt = 0; return result; } }); } public static CharStream rangeClosed(final char startInclusive, final char endInclusive) { if (startInclusive > endInclusive) { return empty(); } else if (startInclusive == endInclusive) { return of(startInclusive); } return new IteratorCharStream(new CharIteratorEx() { private char next = startInclusive; private int cnt = endInclusive * 1 - startInclusive + 1; @Override public boolean hasNext() { return cnt > 0; } @Override public char nextChar() { if (cnt-- <= 0) { throw new NoSuchElementException(); } return next++; } @Override public void skip(long n) { N.checkArgNotNegative(n, "n"); cnt = n >= cnt ? 0 : cnt - (int) n; next += n; } @Override public long count() { return cnt; } @Override public char[] toArray() { final char[] result = new char[cnt]; for (int i = 0; i < cnt; i++) { result[i] = next++; } cnt = 0; return result; } }); } public static CharStream rangeClosed(final char startInclusive, final char endInclusive, final int by) { if (by == 0) { throw new IllegalArgumentException("'by' can't be zero"); } if (endInclusive == startInclusive) { return of(startInclusive); } else if (endInclusive > startInclusive != by > 0) { return empty(); } return new IteratorCharStream(new CharIteratorEx() { private char next = startInclusive; private int cnt = (endInclusive * 1 - startInclusive) / by + 1; @Override public boolean hasNext() { return cnt > 0; } @Override public char nextChar() { if (cnt-- <= 0) { throw new NoSuchElementException(); } char result = next; next += by; return result; } @Override public void skip(long n) { N.checkArgNotNegative(n, "n"); cnt = n >= cnt ? 0 : cnt - (int) n; next += n * by; } @Override public long count() { return cnt; } @Override public char[] toArray() { final char[] result = new char[cnt]; for (int i = 0; i < cnt; i++, next += by) { result[i] = next; } cnt = 0; return result; } }); } public static CharStream repeat(final char element, final long n) { N.checkArgNotNegative(n, "n"); if (n == 0) { return empty(); } return new IteratorCharStream(new CharIteratorEx() { private long cnt = n; @Override public boolean hasNext() { return cnt > 0; } @Override public char nextChar() { if (cnt-- <= 0) { throw new NoSuchElementException(); } return element; } @Override public void skip(long n) { N.checkArgNotNegative(n, "n"); cnt = n >= cnt ? 0 : cnt - (int) n; } @Override public long count() { return cnt; } @Override public char[] toArray() { final char[] result = new char[(int) cnt]; for (int i = 0; i < cnt; i++) { result[i] = element; } cnt = 0; return result; } }); } public static CharStream random() { final int mod = Character.MAX_VALUE + 1; return generate(new CharSupplier() { @Override public char getAsChar() { return (char) RAND.nextInt(mod); } }); } public static CharStream random(final char startInclusive, final char endExclusive) { if (startInclusive >= endExclusive) { throw new IllegalArgumentException("'startInclusive' must be less than 'endExclusive'"); } final int mod = endExclusive - startInclusive; return generate(new CharSupplier() { @Override public char getAsChar() { return (char) (RAND.nextInt(mod) + startInclusive); } }); } public static CharStream random(final char[] candicates) { if (N.isNullOrEmpty(candicates)) { return empty(); } else if (candicates.length >= Integer.MAX_VALUE) { throw new IllegalArgumentException(); } final int n = candicates.length; return generate(new CharSupplier() { @Override public char getAsChar() { return candicates[RAND.nextInt(n)]; } }); } public static CharStream iterate(final BooleanSupplier hasNext, final CharSupplier next) { N.checkArgNotNull(hasNext); N.checkArgNotNull(next); return new IteratorCharStream(new CharIteratorEx() { private boolean hasNextVal = false; @Override public boolean hasNext() { if (hasNextVal == false) { hasNextVal = hasNext.getAsBoolean(); } return hasNextVal; } @Override public char nextChar() { if (hasNextVal == false && hasNext() == false) { throw new NoSuchElementException(); } hasNextVal = false; return next.getAsChar(); } }); } public static CharStream iterate(final char init, final BooleanSupplier hasNext, final CharUnaryOperator f) { N.checkArgNotNull(hasNext); N.checkArgNotNull(f); return new IteratorCharStream(new CharIteratorEx() { private char t = 0; private boolean isFirst = true; private boolean hasNextVal = false; @Override public boolean hasNext() { if (hasNextVal == false) { hasNextVal = hasNext.getAsBoolean(); } return hasNextVal; } @Override public char nextChar() { if (hasNextVal == false && hasNext() == false) { throw new NoSuchElementException(); } hasNextVal = false; if (isFirst) { isFirst = false; t = init; } else { t = f.applyAsChar(t); } return t; } }); } /** * * @param init * @param hasNext test if has next by hasNext.test(init) for first time and hasNext.test(f.apply(previous)) for remaining. * @param f * @return */ public static CharStream iterate(final char init, final CharPredicate hasNext, final CharUnaryOperator f) { N.checkArgNotNull(hasNext); N.checkArgNotNull(f); return new IteratorCharStream(new CharIteratorEx() { private char t = 0; private char cur = 0; private boolean isFirst = true; private boolean hasMore = true; private boolean hasNextVal = false; @Override public boolean hasNext() { if (hasNextVal == false && hasMore) { if (isFirst) { isFirst = false; hasNextVal = hasNext.test(cur = init); } else { hasNextVal = hasNext.test(cur = f.applyAsChar(t)); } if (hasNextVal == false) { hasMore = false; } } return hasNextVal; } @Override public char nextChar() { if (hasNextVal == false && hasNext() == false) { throw new NoSuchElementException(); } t = cur; hasNextVal = false; return t; } }); } public static CharStream iterate(final char init, final CharUnaryOperator f) { N.checkArgNotNull(f); return new IteratorCharStream(new CharIteratorEx() { private char t = 0; private boolean isFirst = true; @Override public boolean hasNext() { return true; } @Override public char nextChar() { if (isFirst) { isFirst = false; t = init; } else { t = f.applyAsChar(t); } return t; } }); } public static CharStream generate(final CharSupplier s) { N.checkArgNotNull(s); return new IteratorCharStream(new CharIteratorEx() { @Override public boolean hasNext() { return true; } @Override public char nextChar() { return s.getAsChar(); } }); } @SafeVarargs public static CharStream concat(final char[]... a) { return N.isNullOrEmpty(a) ? empty() : new IteratorCharStream(new CharIteratorEx() { private final Iterator iter = N.asList(a).iterator(); private CharIterator cur; @Override public boolean hasNext() { while ((cur == null || cur.hasNext() == false) && iter.hasNext()) { cur = CharIteratorEx.of(iter.next()); } return cur != null && cur.hasNext(); } @Override public char nextChar() { if ((cur == null || cur.hasNext() == false) && hasNext() == false) { throw new NoSuchElementException(); } return cur.nextChar(); } }); } @SafeVarargs public static CharStream concat(final CharIterator... a) { return N.isNullOrEmpty(a) ? empty() : new IteratorCharStream(new CharIteratorEx() { private final Iterator iter = N.asList(a).iterator(); private CharIterator cur; @Override public boolean hasNext() { while ((cur == null || cur.hasNext() == false) && iter.hasNext()) { cur = iter.next(); } return cur != null && cur.hasNext(); } @Override public char nextChar() { if ((cur == null || cur.hasNext() == false) && hasNext() == false) { throw new NoSuchElementException(); } return cur.nextChar(); } }); } @SafeVarargs public static CharStream concat(final CharStream... a) { return N.isNullOrEmpty(a) ? empty() : concat(N.asList(a)); } public static CharStream concat(final Collection c) { return N.isNullOrEmpty(c) ? empty() : new IteratorCharStream(new CharIteratorEx() { private final Iterator iterators = c.iterator(); private CharStream cur; private CharIterator iter; @Override public boolean hasNext() { while ((iter == null || iter.hasNext() == false) && iterators.hasNext()) { if (cur != null) { cur.close(); } cur = iterators.next(); iter = cur.iterator(); } return iter != null && iter.hasNext(); } @Override public char nextChar() { if ((iter == null || iter.hasNext() == false) && hasNext() == false) { throw new NoSuchElementException(); } return iter.nextChar(); } }).onClose(newCloseHandler(c)); } /** * Zip together the "a" and "b" arrays until one of them runs out of values. * Each pair of values is combined into a single value using the supplied zipFunction function. * * @param a * @param b * @return */ public static CharStream zip(final char[] a, final char[] b, final CharBinaryOperator zipFunction) { if (N.isNullOrEmpty(a) || N.isNullOrEmpty(b)) { return empty(); } return new IteratorCharStream(new CharIteratorEx() { private final int len = N.min(N.len(a), N.len(b)); private int cursor = 0; @Override public boolean hasNext() { return cursor < len; } @Override public char nextChar() { if (cursor >= len) { throw new NoSuchElementException(); } return zipFunction.applyAsChar(a[cursor], b[cursor++]); } }); } /** * Zip together the "a", "b" and "c" arrays until one of them runs out of values. * Each triple of values is combined into a single value using the supplied zipFunction function. * * @param a * @param b * @param c * @return */ public static CharStream zip(final char[] a, final char[] b, final char[] c, final CharTernaryOperator zipFunction) { if (N.isNullOrEmpty(a) || N.isNullOrEmpty(b) || N.isNullOrEmpty(c)) { return empty(); } return new IteratorCharStream(new CharIteratorEx() { private final int len = N.min(N.len(a), N.len(b), N.len(c)); private int cursor = 0; @Override public boolean hasNext() { return cursor < len; } @Override public char nextChar() { if (cursor >= len) { throw new NoSuchElementException(); } return zipFunction.applyAsChar(a[cursor], b[cursor], c[cursor++]); } }); } /** * Zip together the "a" and "b" iterators until one of them runs out of values. * Each pair of values is combined into a single value using the supplied zipFunction function. * * @param a * @param b * @return */ public static CharStream zip(final CharIterator a, final CharIterator b, final CharBinaryOperator zipFunction) { return new IteratorCharStream(new CharIteratorEx() { @Override public boolean hasNext() { return a.hasNext() && b.hasNext(); } @Override public char nextChar() { return zipFunction.applyAsChar(a.nextChar(), b.nextChar()); } }); } /** * Zip together the "a", "b" and "c" iterators until one of them runs out of values. * Each triple of values is combined into a single value using the supplied zipFunction function. * * @param a * @param b * @return */ public static CharStream zip(final CharIterator a, final CharIterator b, final CharIterator c, final CharTernaryOperator zipFunction) { return new IteratorCharStream(new CharIteratorEx() { @Override public boolean hasNext() { return a.hasNext() && b.hasNext() && c.hasNext(); } @Override public char nextChar() { return zipFunction.applyAsChar(a.nextChar(), b.nextChar(), c.nextChar()); } }); } /** * Zip together the "a" and "b" streams until one of them runs out of values. * Each pair of values is combined into a single value using the supplied zipFunction function. * * @param a * @param b * @return */ public static CharStream zip(final CharStream a, final CharStream b, final CharBinaryOperator zipFunction) { return zip(a.iteratorEx(), b.iteratorEx(), zipFunction).onClose(newCloseHandler(N.asList(a, b))); } /** * Zip together the "a", "b" and "c" streams until one of them runs out of values. * Each triple of values is combined into a single value using the supplied zipFunction function. * * @param a * @param b * @return */ public static CharStream zip(final CharStream a, final CharStream b, final CharStream c, final CharTernaryOperator zipFunction) { return zip(a.iteratorEx(), b.iteratorEx(), c.iteratorEx(), zipFunction).onClose(newCloseHandler(N.asList(a, b, c))); } /** * Zip together the iterators until one of them runs out of values. * Each array of values is combined into a single value using the supplied zipFunction function. * * @param c * @param zipFunction * @return */ public static CharStream zip(final Collection c, final CharNFunction zipFunction) { return Stream.zip(c, zipFunction).mapToChar(ToCharFunction.UNBOX); } /** * Zip together the "a" and "b" iterators until all of them runs out of values. * Each pair of values is combined into a single value using the supplied zipFunction function. * * @param a * @param b * @param valueForNoneA value to fill if "a" runs out of values first. * @param valueForNoneB value to fill if "b" runs out of values first. * @param zipFunction * @return */ public static CharStream zip(final char[] a, final char[] b, final char valueForNoneA, final char valueForNoneB, final CharBinaryOperator zipFunction) { if (N.isNullOrEmpty(a) && N.isNullOrEmpty(b)) { return empty(); } return new IteratorCharStream(new CharIteratorEx() { private final int aLen = N.len(a), bLen = N.len(b), len = N.max(aLen, bLen); private int cursor = 0; private char ret = 0; @Override public boolean hasNext() { return cursor < len; } @Override public char nextChar() { if (cursor >= len) { throw new NoSuchElementException(); } ret = zipFunction.applyAsChar(cursor < aLen ? a[cursor] : valueForNoneA, cursor < bLen ? b[cursor] : valueForNoneB); cursor++; return ret; } }); } /** * Zip together the "a", "b" and "c" iterators until all of them runs out of values. * Each triple of values is combined into a single value using the supplied zipFunction function. * * @param a * @param b * @param c * @param valueForNoneA value to fill if "a" runs out of values. * @param valueForNoneB value to fill if "b" runs out of values. * @param valueForNoneC value to fill if "c" runs out of values. * @param zipFunction * @return */ public static CharStream zip(final char[] a, final char[] b, final char[] c, final char valueForNoneA, final char valueForNoneB, final char valueForNoneC, final CharTernaryOperator zipFunction) { if (N.isNullOrEmpty(a) && N.isNullOrEmpty(b) && N.isNullOrEmpty(c)) { return empty(); } return new IteratorCharStream(new CharIteratorEx() { private final int aLen = N.len(a), bLen = N.len(b), cLen = N.len(c), len = N.max(aLen, bLen, cLen); private int cursor = 0; private char ret = 0; @Override public boolean hasNext() { return cursor < len; } @Override public char nextChar() { if (cursor >= len) { throw new NoSuchElementException(); } ret = zipFunction.applyAsChar(cursor < aLen ? a[cursor] : valueForNoneA, cursor < bLen ? b[cursor] : valueForNoneB, cursor < cLen ? c[cursor] : valueForNoneC); cursor++; return ret; } }); } /** * Zip together the "a" and "b" iterators until all of them runs out of values. * Each pair of values is combined into a single value using the supplied zipFunction function. * * @param a * @param b * @param valueForNoneA value to fill if "a" runs out of values first. * @param valueForNoneB value to fill if "b" runs out of values first. * @param zipFunction * @return */ public static CharStream zip(final CharIterator a, final CharIterator b, final char valueForNoneA, final char valueForNoneB, final CharBinaryOperator zipFunction) { return new IteratorCharStream(new CharIteratorEx() { @Override public boolean hasNext() { return a.hasNext() || b.hasNext(); } @Override public char nextChar() { if (a.hasNext()) { return zipFunction.applyAsChar(a.nextChar(), b.hasNext() ? b.nextChar() : valueForNoneB); } else { return zipFunction.applyAsChar(valueForNoneA, b.nextChar()); } } }); } /** * Zip together the "a", "b" and "c" iterators until all of them runs out of values. * Each triple of values is combined into a single value using the supplied zipFunction function. * * @param a * @param b * @param c * @param valueForNoneA value to fill if "a" runs out of values. * @param valueForNoneB value to fill if "b" runs out of values. * @param valueForNoneC value to fill if "c" runs out of values. * @param zipFunction * @return */ public static CharStream zip(final CharIterator a, final CharIterator b, final CharIterator c, final char valueForNoneA, final char valueForNoneB, final char valueForNoneC, final CharTernaryOperator zipFunction) { return new IteratorCharStream(new CharIteratorEx() { @Override public boolean hasNext() { return a.hasNext() || b.hasNext() || c.hasNext(); } @Override public char nextChar() { if (a.hasNext()) { return zipFunction.applyAsChar(a.nextChar(), b.hasNext() ? b.nextChar() : valueForNoneB, c.hasNext() ? c.nextChar() : valueForNoneC); } else if (b.hasNext()) { return zipFunction.applyAsChar(valueForNoneA, b.nextChar(), c.hasNext() ? c.nextChar() : valueForNoneC); } else { return zipFunction.applyAsChar(valueForNoneA, valueForNoneB, c.nextChar()); } } }); } /** * Zip together the "a" and "b" iterators until all of them runs out of values. * Each pair of values is combined into a single value using the supplied zipFunction function. * * @param a * @param b * @param valueForNoneA value to fill if "a" runs out of values first. * @param valueForNoneB value to fill if "b" runs out of values first. * @param zipFunction * @return */ public static CharStream zip(final CharStream a, final CharStream b, final char valueForNoneA, final char valueForNoneB, final CharBinaryOperator zipFunction) { return zip(a.iteratorEx(), b.iteratorEx(), valueForNoneA, valueForNoneB, zipFunction).onClose(newCloseHandler(N.asList(a, b))); } /** * Zip together the "a", "b" and "c" iterators until all of them runs out of values. * Each triple of values is combined into a single value using the supplied zipFunction function. * * @param a * @param b * @param c * @param valueForNoneA value to fill if "a" runs out of values. * @param valueForNoneB value to fill if "b" runs out of values. * @param valueForNoneC value to fill if "c" runs out of values. * @param zipFunction * @return */ public static CharStream zip(final CharStream a, final CharStream b, final CharStream c, final char valueForNoneA, final char valueForNoneB, final char valueForNoneC, final CharTernaryOperator zipFunction) { return zip(a.iteratorEx(), b.iteratorEx(), c.iteratorEx(), valueForNoneA, valueForNoneB, valueForNoneC, zipFunction) .onClose(newCloseHandler(N.asList(a, b, c))); } /** * Zip together the iterators until all of them runs out of values. * Each array of values is combined into a single value using the supplied zipFunction function. * * @param c * @param valuesForNone value to fill for any iterator runs out of values. * @param zipFunction * @return */ public static CharStream zip(final Collection c, final char[] valuesForNone, final CharNFunction zipFunction) { return Stream.zip(c, valuesForNone, zipFunction).mapToChar(ToCharFunction.UNBOX); } /** * * @param a * @param b * @param nextSelector first parameter is selected if Nth.FIRST is returned, otherwise the second parameter is selected. * @return */ public static CharStream merge(final char[] a, final char[] b, final CharBiFunction nextSelector) { if (N.isNullOrEmpty(a)) { return of(b); } else if (N.isNullOrEmpty(b)) { return of(a); } return new IteratorCharStream(new CharIteratorEx() { private final int lenA = a.length; private final int lenB = b.length; private int cursorA = 0; private int cursorB = 0; @Override public boolean hasNext() { return cursorA < lenA || cursorB < lenB; } @Override public char nextChar() { if (cursorA < lenA) { if (cursorB < lenB) { if (nextSelector.apply(a[cursorA], b[cursorB]) == Nth.FIRST) { return a[cursorA++]; } else { return b[cursorB++]; } } else { return a[cursorA++]; } } else if (cursorB < lenB) { return b[cursorB++]; } else { throw new NoSuchElementException(); } } }); } /** * * @param a * @param b * @param c * @param nextSelector first parameter is selected if Nth.FIRST is returned, otherwise the second parameter is selected. * @return */ public static CharStream merge(final char[] a, final char[] b, final char[] c, final CharBiFunction nextSelector) { return merge(merge(a, b, nextSelector).iteratorEx(), CharStream.of(c).iteratorEx(), nextSelector); } /** * * @param a * @param b * @param nextSelector first parameter is selected if Nth.FIRST is returned, otherwise the second parameter is selected. * @return */ public static CharStream merge(final CharIterator a, final CharIterator b, final CharBiFunction nextSelector) { return new IteratorCharStream(new CharIteratorEx() { private char nextA = 0; private char nextB = 0; private boolean hasNextA = false; private boolean hasNextB = false; @Override public boolean hasNext() { return a.hasNext() || b.hasNext() || hasNextA || hasNextB; } @Override public char nextChar() { if (hasNextA) { if (b.hasNext()) { if (nextSelector.apply(nextA, (nextB = b.nextChar())) == Nth.FIRST) { hasNextA = false; hasNextB = true; return nextA; } else { return nextB; } } else { hasNextA = false; return nextA; } } else if (hasNextB) { if (a.hasNext()) { if (nextSelector.apply((nextA = a.nextChar()), nextB) == Nth.FIRST) { return nextA; } else { hasNextA = true; hasNextB = false; return nextB; } } else { hasNextB = false; return nextB; } } else if (a.hasNext()) { if (b.hasNext()) { if (nextSelector.apply((nextA = a.nextChar()), (nextB = b.nextChar())) == Nth.FIRST) { hasNextB = true; return nextA; } else { hasNextA = true; return nextB; } } else { return a.nextChar(); } } else if (b.hasNext()) { return b.nextChar(); } else { throw new NoSuchElementException(); } } }); } /** * * @param a * @param b * @param c * @param nextSelector first parameter is selected if Nth.FIRST is returned, otherwise the second parameter is selected. * @return */ public static CharStream merge(final CharIterator a, final CharIterator b, final CharIterator c, final CharBiFunction nextSelector) { return merge(merge(a, b, nextSelector).iteratorEx(), c, nextSelector); } /** * * @param a * @param b * @param nextSelector first parameter is selected if Nth.FIRST is returned, otherwise the second parameter is selected. * @return */ public static CharStream merge(final CharStream a, final CharStream b, final CharBiFunction nextSelector) { return merge(a.iteratorEx(), b.iteratorEx(), nextSelector).onClose(newCloseHandler(N.asList(a, b))); } /** * * @param a * @param b * @param c * @param nextSelector first parameter is selected if Nth.FIRST is returned, otherwise the second parameter is selected. * @return */ public static CharStream merge(final CharStream a, final CharStream b, final CharStream c, final CharBiFunction nextSelector) { return merge(merge(a, b, nextSelector), c, nextSelector); } /** * * @param c * @param nextSelector first parameter is selected if Nth.FIRST is returned, otherwise the second parameter is selected. * @return */ public static CharStream merge(final Collection c, final CharBiFunction nextSelector) { if (N.isNullOrEmpty(c)) { return empty(); } else if (c.size() == 1) { return c.iterator().next(); } else if (c.size() == 2) { final Iterator iter = c.iterator(); return merge(iter.next(), iter.next(), nextSelector); } final Iterator iter = c.iterator(); CharStream result = merge(iter.next(), iter.next(), nextSelector); while (iter.hasNext()) { result = merge(result, iter.next(), nextSelector); } return result; } /** * * @param c * @param nextSelector first parameter is selected if Nth.FIRST is returned, otherwise the second parameter is selected. * @return */ public static CharStream parallelMerge(final Collection c, final CharBiFunction nextSelector) { return parallelMerge(c, nextSelector, DEFAULT_MAX_THREAD_NUM); } /** * * @param c * @param nextSelector first parameter is selected if Nth.FIRST is returned, otherwise the second parameter is selected. * @param maxThreadNum * @return */ public static CharStream parallelMerge(final Collection c, final CharBiFunction nextSelector, final int maxThreadNum) { N.checkArgument(maxThreadNum > 0, "'maxThreadNum' must not less than 1"); if (maxThreadNum <= 1) { return merge(c, nextSelector); } else if (N.isNullOrEmpty(c)) { return empty(); } else if (c.size() == 1) { return c.iterator().next(); } else if (c.size() == 2) { final Iterator iter = c.iterator(); return merge(iter.next(), iter.next(), nextSelector); } else if (c.size() == 3) { final Iterator iter = c.iterator(); return merge(iter.next(), iter.next(), iter.next(), nextSelector); } final Queue queue = N.newLinkedList(); for (CharStream e : c) { queue.add(e); } final Holder eHolder = new Holder<>(); final MutableInt cnt = MutableInt.of(c.size()); final List> futureList = new ArrayList<>(c.size() - 1); for (int i = 0, n = N.min(maxThreadNum, c.size() / 2 + 1); i < n; i++) { futureList.add(DEFAULT_ASYNC_EXECUTOR.execute(new Try.Runnable() { @Override public void run() { CharStream a = null; CharStream b = null; CharStream c = null; try { while (eHolder.value() == null) { synchronized (queue) { if (cnt.intValue() > 2 && queue.size() > 1) { a = queue.poll(); b = queue.poll(); cnt.decrement(); } else { break; } } c = CharStream.of(merge(a, b, nextSelector).toArray()); synchronized (queue) { queue.offer(c); } } } catch (Exception e) { setError(eHolder, e); } } })); } try { complete(futureList, eHolder); } finally { if (eHolder.value() != null) { IOUtil.closeAllQuietly(c); } } return merge(queue.poll(), queue.poll(), nextSelector); } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy