All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.landawn.abacus.util.stream.DoubleStream Maven / Gradle / Ivy

There is a newer version: 1.10.1
Show newest version
/*
 * Copyright (C) 2016, 2017, 2018, 2019 HaiYang Li
 *
 * Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except
 * in compliance with the License. You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software distributed under the License
 * is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express
 * or implied. See the License for the specific language governing permissions and limitations under
 * the License.
 */

package com.landawn.abacus.util.stream;

import java.security.SecureRandom;
import java.util.ArrayList;
import java.util.Collection;
import java.util.Comparator;
import java.util.Iterator;
import java.util.List;
import java.util.Map;
import java.util.NoSuchElementException;
import java.util.PrimitiveIterator;
import java.util.Queue;
import java.util.Random;

import com.landawn.abacus.annotation.SequentialOnly;
import com.landawn.abacus.util.ContinuableFuture;
import com.landawn.abacus.util.DoubleIterator;
import com.landawn.abacus.util.DoubleList;
import com.landawn.abacus.util.DoubleMatrix;
import com.landawn.abacus.util.DoubleSummaryStatistics;
import com.landawn.abacus.util.Fn.Fnn;
import com.landawn.abacus.util.IOUtil;
import com.landawn.abacus.util.IndexedDouble;
import com.landawn.abacus.util.MutableInt;
import com.landawn.abacus.util.N;
import com.landawn.abacus.util.Nth;
import com.landawn.abacus.util.Pair;
import com.landawn.abacus.util.Percentage;
import com.landawn.abacus.util.Try;
import com.landawn.abacus.util.u.Holder;
import com.landawn.abacus.util.u.Optional;
import com.landawn.abacus.util.u.OptionalDouble;
import com.landawn.abacus.util.function.BiConsumer;
import com.landawn.abacus.util.function.BinaryOperator;
import com.landawn.abacus.util.function.BooleanSupplier;
import com.landawn.abacus.util.function.DoubleBiFunction;
import com.landawn.abacus.util.function.DoubleBiPredicate;
import com.landawn.abacus.util.function.DoubleBinaryOperator;
import com.landawn.abacus.util.function.DoubleConsumer;
import com.landawn.abacus.util.function.DoubleFunction;
import com.landawn.abacus.util.function.DoubleNFunction;
import com.landawn.abacus.util.function.DoublePredicate;
import com.landawn.abacus.util.function.DoubleSupplier;
import com.landawn.abacus.util.function.DoubleTernaryOperator;
import com.landawn.abacus.util.function.DoubleToFloatFunction;
import com.landawn.abacus.util.function.DoubleToIntFunction;
import com.landawn.abacus.util.function.DoubleToLongFunction;
import com.landawn.abacus.util.function.DoubleUnaryOperator;
import com.landawn.abacus.util.function.Function;
import com.landawn.abacus.util.function.ObjDoubleConsumer;
import com.landawn.abacus.util.function.Supplier;
import com.landawn.abacus.util.function.ToDoubleFunction;

/** 
 * The Stream will be automatically closed after execution(A terminal method is executed/triggered).
 * 
 * @see Stream 
 */
public abstract class DoubleStream
        extends StreamBase {

    static final Random RAND = new SecureRandom();

    DoubleStream(final boolean sorted, final Collection closeHandlers) {
        super(sorted, null, closeHandlers);
    }

    public abstract DoubleStream map(DoubleUnaryOperator mapper);

    public abstract IntStream mapToInt(DoubleToIntFunction mapper);

    public abstract LongStream mapToLong(DoubleToLongFunction mapper);

    public abstract FloatStream mapToFloat(DoubleToFloatFunction mapper);

    public abstract  Stream mapToObj(DoubleFunction mapper);

    public abstract DoubleStream flatMap(DoubleFunction mapper);

    public abstract DoubleStream flattMap(DoubleFunction mapper);

    public abstract IntStream flatMapToInt(DoubleFunction mapper);

    public abstract LongStream flatMapToLong(DoubleFunction mapper);

    public abstract FloatStream flatMapToFloat(DoubleFunction mapper);

    public abstract  Stream flatMapToObj(DoubleFunction> mapper);

    public abstract  Stream flattMapToObj(DoubleFunction> mapper);

    public abstract  Stream flatMappToObj(DoubleFunction mapper);

    /**
     * Note: copied from StreamEx: https://github.com/amaembo/streamex
     * 
     * 
* * Returns a stream consisting of results of applying the given function to * the ranges created from the source elements. * This is a quasi-intermediate * partial reduction operation. * * @param sameRange a non-interfering, stateless predicate to apply to * the leftmost and next elements which returns true for elements * which belong to the same range. * @param mapper a non-interfering, stateless function to apply to the * range borders and produce the resulting element. If value was * not merged to the interval, then mapper will receive the same * value twice, otherwise it will receive the leftmost and the * rightmost values which were merged to the range. * @return the new stream * @see #collapse(DoubleBiPredicate, DoubleBinaryOperator) * @see Stream#rangeMap(BiPredicate, BiFunction) */ @SequentialOnly public abstract DoubleStream rangeMap(final DoubleBiPredicate sameRange, final DoubleBinaryOperator mapper); /** * Note: copied from StreamEx: https://github.com/amaembo/streamex * *
* * Returns a stream consisting of results of applying the given function to * the ranges created from the source elements. * This is a quasi-intermediate * partial reduction operation. * * @param sameRange a non-interfering, stateless predicate to apply to * the leftmost and next elements which returns true for elements * which belong to the same range. * @param mapper a non-interfering, stateless function to apply to the * range borders and produce the resulting element. If value was * not merged to the interval, then mapper will receive the same * value twice, otherwise it will receive the leftmost and the * rightmost values which were merged to the range. * @return the new stream * @see Stream#rangeMap(BiPredicate, BiFunction) */ @SequentialOnly public abstract Stream rangeMapp(final DoubleBiPredicate sameRange, final DoubleBiFunction mapper); /** * Merge series of adjacent elements which satisfy the given predicate using * the merger function and return a new stream. * *
* This method only run sequentially, even in parallel stream. * * @param collapsible * @return */ @SequentialOnly public abstract Stream collapse(final DoubleBiPredicate collapsible); /** * Merge series of adjacent elements which satisfy the given predicate using * the merger function and return a new stream. * *
* This method only run sequentially, even in parallel stream. * * @param collapsible * @param mergeFunction * @return */ @SequentialOnly public abstract DoubleStream collapse(final DoubleBiPredicate collapsible, final DoubleBinaryOperator mergeFunction); /** * Returns a {@code Stream} produced by iterative application of a accumulation function * to an initial element {@code init} and next element of the current stream. * Produces a {@code Stream} consisting of {@code init}, {@code acc(init, value1)}, * {@code acc(acc(init, value1), value2)}, etc. * *

This is an intermediate operation. * *

Example: *

     * accumulator: (a, b) -> a + b
     * stream: [1, 2, 3, 4, 5]
     * result: [1, 3, 6, 10, 15]
     * 
* *
* This method only run sequentially, even in parallel stream. * * @param accumulator the accumulation function * @return the new stream which has the extract same size as this stream. */ @SequentialOnly public abstract DoubleStream scan(final DoubleBinaryOperator accumulator); /** * Returns a {@code Stream} produced by iterative application of a accumulation function * to an initial element {@code init} and next element of the current stream. * Produces a {@code Stream} consisting of {@code init}, {@code acc(init, value1)}, * {@code acc(acc(init, value1), value2)}, etc. * *

This is an intermediate operation. * *

Example: *

     * init:10
     * accumulator: (a, b) -> a + b
     * stream: [1, 2, 3, 4, 5]
     * result: [11, 13, 16, 20, 25]
     * 
* *
* This method only run sequentially, even in parallel stream. * * @param init the initial value. it's only used once by accumulator to calculate the fist element in the returned stream. * It will be ignored if this stream is empty and won't be the first element of the returned stream. * * @param accumulator the accumulation function * @return the new stream which has the extract same size as this stream. */ @SequentialOnly public abstract DoubleStream scan(final double init, final DoubleBinaryOperator accumulator); /** * * @param init * @param accumulator * @param initIncluded * @return */ @SequentialOnly public abstract DoubleStream scan(final double init, final DoubleBinaryOperator accumulator, final boolean initIncluded); /** *
* This method only run sequentially, even in parallel stream. * * @param n * @return */ @SequentialOnly public abstract DoubleStream top(int n); /** *
* This method only run sequentially, even in parallel stream. * * @param n * @param comparator * @return */ @SequentialOnly public abstract DoubleStream top(final int n, Comparator comparator); public abstract DoubleList toDoubleList(); /** * * @param keyMapper * @param valueMapper * @return * @see Collectors#toMap(Function, Function) */ public abstract Map toMap(DoubleFunction keyMapper, DoubleFunction valueMapper); /** * * @param keyMapper * @param valueMapper * @param mapFactory * @return * @see Collectors#toMap(Function, Function, Supplier) */ public abstract > M toMap(DoubleFunction keyMapper, DoubleFunction valueMapper, Supplier mapFactory); /** * * @param keyMapper * @param valueMapper * @param mergeFunction * @return * @see Collectors#toMap(Function, Function, BinaryOperator) */ public abstract Map toMap(DoubleFunction keyMapper, DoubleFunction valueMapper, BinaryOperator mergeFunction); /** * * @param keyMapper * @param valueMapper * @param mergeFunction * @param mapFactory * @return * @see Collectors#toMap(Function, Function, BinaryOperator, Supplier) */ public abstract > M toMap(DoubleFunction keyMapper, DoubleFunction valueMapper, BinaryOperator mergeFunction, Supplier mapFactory); /** * * @param keyMapper * @param downstream * @return * @see Collectors#groupingBy(Function, Collector) */ public abstract Map toMap(final DoubleFunction keyMapper, final Collector downstream); /** * * @param keyMapper * @param downstream * @param mapFactory * @return * @see Collectors#groupingBy(Function, Collector, Supplier) */ public abstract > M toMap(final DoubleFunction keyMapper, final Collector downstream, final Supplier mapFactory); public abstract DoubleMatrix toMatrix(); public abstract double reduce(double identity, DoubleBinaryOperator op); public abstract OptionalDouble reduce(DoubleBinaryOperator op); public abstract R collect(Supplier supplier, ObjDoubleConsumer accumulator, BiConsumer combiner); public abstract R collect(Supplier supplier, ObjDoubleConsumer accumulator); public abstract void forEach(final Try.DoubleConsumer action) throws E; public abstract boolean anyMatch(final Try.DoublePredicate predicate) throws E; public abstract boolean allMatch(final Try.DoublePredicate predicate) throws E; public abstract boolean noneMatch(final Try.DoublePredicate predicate) throws E; public abstract OptionalDouble findFirst(final Try.DoublePredicate predicate) throws E; public abstract OptionalDouble findLast(final Try.DoublePredicate predicate) throws E; public abstract OptionalDouble findFirstOrLast(Try.DoublePredicate predicateForFirst, Try.DoublePredicate predicateForLast) throws E, E2; public abstract OptionalDouble findAny(final Try.DoublePredicate predicate) throws E; public abstract OptionalDouble min(); public abstract OptionalDouble max(); /** * * @param k * @return OptionalByte.empty() if there is no element or count less than k, otherwise the kth largest element. */ public abstract OptionalDouble kthLargest(int k); public abstract double sum(); public abstract OptionalDouble average(); public abstract DoubleSummaryStatistics summarize(); public abstract Pair>> summarizeAndPercentiles(); /** * * @param b * @param nextSelector first parameter is selected if Nth.FIRST is returned, otherwise the second parameter is selected. * @return */ public abstract DoubleStream merge(final DoubleStream b, final DoubleBiFunction nextSelector); public abstract DoubleStream zipWith(DoubleStream b, DoubleBinaryOperator zipFunction); public abstract DoubleStream zipWith(DoubleStream b, DoubleStream c, DoubleTernaryOperator zipFunction); public abstract DoubleStream zipWith(DoubleStream b, double valueForNoneA, double valueForNoneB, DoubleBinaryOperator zipFunction); public abstract DoubleStream zipWith(DoubleStream b, DoubleStream c, double valueForNoneA, double valueForNoneB, double valueForNoneC, DoubleTernaryOperator zipFunction); public abstract java.util.stream.DoubleStream toJdkStream(); public abstract Stream boxed(); /** * Remember to close this Stream after the iteration is done, if required. * * @return */ @Override public DoubleIterator iterator() { return iteratorEx(); } abstract DoubleIteratorEx iteratorEx(); @Override public R __(Function transfer) { return transfer.apply(this); } public static DoubleStream empty() { return new ArrayDoubleStream(N.EMPTY_DOUBLE_ARRAY, true, null); } @SafeVarargs public static DoubleStream of(final double... a) { return N.isNullOrEmpty(a) ? empty() : new ArrayDoubleStream(a); } public static DoubleStream of(final double[] a, final int startIndex, final int endIndex) { return N.isNullOrEmpty(a) && (startIndex == 0 && endIndex == 0) ? empty() : new ArrayDoubleStream(a, startIndex, endIndex); } public static DoubleStream of(final Double[] a) { return Stream.of(a).mapToDouble(Fnn.unboxD()); } public static DoubleStream of(final Double[] a, final int startIndex, final int endIndex) { return Stream.of(a, startIndex, endIndex).mapToDouble(Fnn.unboxD()); } public static DoubleStream of(final Collection c) { return Stream.of(c).mapToDouble(Fnn.unboxD()); } public static DoubleStream of(final DoubleIterator iterator) { return iterator == null ? empty() : new IteratorDoubleStream(iterator); } /** * Lazy evaluation. * @param supplier * @return */ public static DoubleStream of(final Supplier supplier) { final DoubleIterator iter = new DoubleIteratorEx() { private DoubleIterator iterator = null; @Override public boolean hasNext() { if (iterator == null) { init(); } return iterator.hasNext(); } @Override public double nextDouble() { if (iterator == null) { init(); } return iterator.nextDouble(); } private void init() { final DoubleList c = supplier.get(); if (N.isNullOrEmpty(c)) { iterator = DoubleIterator.empty(); } else { iterator = c.iterator(); } } }; return of(iter); } private static final Function flatMapper = new Function() { @Override public DoubleStream apply(double[] t) { return DoubleStream.of(t); } }; private static final Function flatMappper = new Function() { @Override public DoubleStream apply(double[][] t) { return DoubleStream.flat(t); } }; public static DoubleStream of(final java.util.stream.DoubleStream stream) { return of(new DoubleIteratorEx() { private PrimitiveIterator.OfDouble iter = null; @Override public boolean hasNext() { if (iter == null) { iter = stream.iterator(); } return iter.hasNext(); } @Override public double nextDouble() { if (iter == null) { iter = stream.iterator(); } return iter.nextDouble(); } @Override public long count() { return iter == null ? stream.count() : super.count(); } @Override public void skip(long n) { if (iter == null) { iter = stream.skip(n).iterator(); } else { super.skip(n); } } @Override public double[] toArray() { return iter == null ? stream.toArray() : super.toArray(); } }).__(s -> stream.isParallel() ? s.parallel() : s.sequential()).onClose(new Runnable() { @Override public void run() { stream.close(); } }); } public static DoubleStream flat(final double[][] a) { return N.isNullOrEmpty(a) ? empty() : Stream.of(a).flatMapToDouble(flatMapper); } public static DoubleStream flat(final double[][] a, final boolean vertically) { if (N.isNullOrEmpty(a)) { return empty(); } else if (a.length == 1) { return of(a[0]); } else if (vertically == false) { return Stream.of(a).flatMapToDouble(flatMapper); } long n = 0; for (double[] e : a) { n += N.len(e); } if (n == 0) { return empty(); } final int rows = N.len(a); final long count = n; final DoubleIterator iter = new DoubleIteratorEx() { private int rowNum = 0; private int colNum = 0; private long cnt = 0; @Override public boolean hasNext() { return cnt < count; } @Override public double nextDouble() { if (cnt++ >= count) { throw new NoSuchElementException(); } if (rowNum == rows) { rowNum = 0; colNum++; } while (a[rowNum] == null || colNum >= a[rowNum].length) { if (rowNum < rows - 1) { rowNum++; } else { rowNum = 0; colNum++; } } return a[rowNum++][colNum]; } }; return of(iter); } public static DoubleStream flat(final double[][] a, final double valueForNone, final boolean vertically) { if (N.isNullOrEmpty(a)) { return empty(); } else if (a.length == 1) { return of(a[0]); } long n = 0; int maxLen = 0; for (double[] e : a) { n += N.len(e); maxLen = N.max(maxLen, N.len(e)); } if (n == 0) { return empty(); } final int rows = N.len(a); final int cols = maxLen; final long count = rows * cols; DoubleIterator iter = null; if (vertically) { iter = new DoubleIteratorEx() { private int rowNum = 0; private int colNum = 0; private long cnt = 0; @Override public boolean hasNext() { return cnt < count; } @Override public double nextDouble() { if (cnt++ >= count) { throw new NoSuchElementException(); } if (rowNum == rows) { rowNum = 0; colNum++; } if (a[rowNum] == null || colNum >= a[rowNum].length) { rowNum++; return valueForNone; } else { return a[rowNum++][colNum]; } } }; } else { iter = new DoubleIteratorEx() { private int rowNum = 0; private int colNum = 0; private long cnt = 0; @Override public boolean hasNext() { return cnt < count; } @Override public double nextDouble() { if (cnt++ >= count) { throw new NoSuchElementException(); } if (colNum >= cols) { colNum = 0; rowNum++; } if (a[rowNum] == null || colNum >= a[rowNum].length) { colNum++; return valueForNone; } else { return a[rowNum][colNum++]; } } }; } return of(iter); } public static DoubleStream flat(final double[][][] a) { return N.isNullOrEmpty(a) ? empty() : Stream.of(a).flatMapToDouble(flatMappper); } @SafeVarargs public static DoubleStream from(final float... a) { return N.isNullOrEmpty(a) ? empty() : from(a, 0, a.length); } public static DoubleStream from(final float[] a, final int fromIndex, final int toIndex) { N.checkFromToIndex(fromIndex, toIndex, N.len(a)); if (fromIndex == toIndex) { return empty(); } return new IteratorDoubleStream(new DoubleIteratorEx() { private int cursor = fromIndex; @Override public boolean hasNext() { return cursor < toIndex; } @Override public double nextDouble() { if (cursor >= toIndex) { throw new NoSuchElementException(); } return a[cursor++]; } @Override public long count() { return toIndex - cursor; } @Override public void skip(long n) { N.checkArgNotNegative(n, "n"); cursor = n < toIndex - cursor ? cursor + (int) n : toIndex; } @Override public double[] toArray() { final double[] result = new double[toIndex - cursor]; for (int i = cursor; i < toIndex; i++) { result[i - cursor] = a[i]; } return result; } }); } public static DoubleStream repeat(final double element, final long n) { N.checkArgNotNegative(n, "n"); if (n == 0) { return empty(); } return new IteratorDoubleStream(new DoubleIteratorEx() { private long cnt = n; @Override public boolean hasNext() { return cnt > 0; } @Override public double nextDouble() { if (cnt-- <= 0) { throw new NoSuchElementException(); } return element; } @Override public void skip(long n) { N.checkArgNotNegative(n, "n"); cnt = n >= cnt ? 0 : cnt - (int) n; } @Override public long count() { return cnt; } @Override public double[] toArray() { final double[] result = new double[(int) cnt]; for (int i = 0; i < cnt; i++) { result[i] = element; } cnt = 0; return result; } }); } public static DoubleStream random() { return generate(new DoubleSupplier() { @Override public double getAsDouble() { return RAND.nextDouble(); } }); } public static DoubleStream iterate(final BooleanSupplier hasNext, final DoubleSupplier next) { N.checkArgNotNull(hasNext); N.checkArgNotNull(next); return new IteratorDoubleStream(new DoubleIteratorEx() { private boolean hasNextVal = false; @Override public boolean hasNext() { if (hasNextVal == false) { hasNextVal = hasNext.getAsBoolean(); } return hasNextVal; } @Override public double nextDouble() { if (hasNextVal == false && hasNext() == false) { throw new NoSuchElementException(); } hasNextVal = false; return next.getAsDouble(); } }); } public static DoubleStream iterate(final double init, final BooleanSupplier hasNext, final DoubleUnaryOperator f) { N.checkArgNotNull(hasNext); N.checkArgNotNull(f); return new IteratorDoubleStream(new DoubleIteratorEx() { private double t = 0; private boolean isFirst = true; private boolean hasNextVal = false; @Override public boolean hasNext() { if (hasNextVal == false) { hasNextVal = hasNext.getAsBoolean(); } return hasNextVal; } @Override public double nextDouble() { if (hasNextVal == false && hasNext() == false) { throw new NoSuchElementException(); } hasNextVal = false; if (isFirst) { isFirst = false; t = init; } else { t = f.applyAsDouble(t); } return t; } }); } /** * * @param init * @param hasNext test if has next by hasNext.test(init) for first time and hasNext.test(f.apply(previous)) for remaining. * @param f * @return */ public static DoubleStream iterate(final double init, final DoublePredicate hasNext, final DoubleUnaryOperator f) { N.checkArgNotNull(hasNext); N.checkArgNotNull(f); return new IteratorDoubleStream(new DoubleIteratorEx() { private double t = 0; private double cur = 0; private boolean isFirst = true; private boolean hasMore = true; private boolean hasNextVal = false; @Override public boolean hasNext() { if (hasNextVal == false && hasMore) { if (isFirst) { isFirst = false; hasNextVal = hasNext.test(cur = init); } else { hasNextVal = hasNext.test(cur = f.applyAsDouble(t)); } if (hasNextVal == false) { hasMore = false; } } return hasNextVal; } @Override public double nextDouble() { if (hasNextVal == false && hasNext() == false) { throw new NoSuchElementException(); } t = cur; hasNextVal = false; return t; } }); } public static DoubleStream iterate(final double init, final DoubleUnaryOperator f) { N.checkArgNotNull(f); return new IteratorDoubleStream(new DoubleIteratorEx() { private double t = 0; private boolean isFirst = true; @Override public boolean hasNext() { return true; } @Override public double nextDouble() { if (isFirst) { isFirst = false; t = init; } else { t = f.applyAsDouble(t); } return t; } }); } public static DoubleStream generate(final DoubleSupplier s) { N.checkArgNotNull(s); return new IteratorDoubleStream(new DoubleIteratorEx() { @Override public boolean hasNext() { return true; } @Override public double nextDouble() { return s.getAsDouble(); } }); } @SafeVarargs public static DoubleStream concat(final double[]... a) { return N.isNullOrEmpty(a) ? empty() : new IteratorDoubleStream(new DoubleIteratorEx() { private final Iterator iter = N.asList(a).iterator(); private DoubleIterator cur; @Override public boolean hasNext() { while ((cur == null || cur.hasNext() == false) && iter.hasNext()) { cur = DoubleIteratorEx.of(iter.next()); } return cur != null && cur.hasNext(); } @Override public double nextDouble() { if ((cur == null || cur.hasNext() == false) && hasNext() == false) { throw new NoSuchElementException(); } return cur.nextDouble(); } }); } @SafeVarargs public static DoubleStream concat(final DoubleIterator... a) { return N.isNullOrEmpty(a) ? empty() : new IteratorDoubleStream(new DoubleIteratorEx() { private final Iterator iter = N.asList(a).iterator(); private DoubleIterator cur; @Override public boolean hasNext() { while ((cur == null || cur.hasNext() == false) && iter.hasNext()) { cur = iter.next(); } return cur != null && cur.hasNext(); } @Override public double nextDouble() { if ((cur == null || cur.hasNext() == false) && hasNext() == false) { throw new NoSuchElementException(); } return cur.nextDouble(); } }); } @SafeVarargs public static DoubleStream concat(final DoubleStream... a) { return N.isNullOrEmpty(a) ? empty() : concat(N.asList(a)); } public static DoubleStream concat(final Collection c) { return N.isNullOrEmpty(c) ? empty() : new IteratorDoubleStream(new DoubleIteratorEx() { private final Iterator iterators = c.iterator(); private DoubleStream cur; private DoubleIterator iter; @Override public boolean hasNext() { while ((iter == null || iter.hasNext() == false) && iterators.hasNext()) { if (cur != null) { cur.close(); } cur = iterators.next(); iter = cur.iterator(); } return iter != null && iter.hasNext(); } @Override public double nextDouble() { if ((iter == null || iter.hasNext() == false) && hasNext() == false) { throw new NoSuchElementException(); } return iter.nextDouble(); } }).onClose(newCloseHandler(c)); } /** * Zip together the "a" and "b" arrays until one of them runs out of values. * Each pair of values is combined into a single value using the supplied zipFunction function. * * @param a * @param b * @return */ public static DoubleStream zip(final double[] a, final double[] b, final DoubleBinaryOperator zipFunction) { if (N.isNullOrEmpty(a) || N.isNullOrEmpty(b)) { return empty(); } return new IteratorDoubleStream(new DoubleIteratorEx() { private final int len = N.min(N.len(a), N.len(b)); private int cursor = 0; @Override public boolean hasNext() { return cursor < len; } @Override public double nextDouble() { if (cursor >= len) { throw new NoSuchElementException(); } return zipFunction.applyAsDouble(a[cursor], b[cursor++]); } }); } /** * Zip together the "a", "b" and "c" arrays until one of them runs out of values. * Each triple of values is combined into a single value using the supplied zipFunction function. * * @param a * @param b * @param c * @return */ public static DoubleStream zip(final double[] a, final double[] b, final double[] c, final DoubleTernaryOperator zipFunction) { if (N.isNullOrEmpty(a) || N.isNullOrEmpty(b) || N.isNullOrEmpty(c)) { return empty(); } return new IteratorDoubleStream(new DoubleIteratorEx() { private final int len = N.min(N.len(a), N.len(b), N.len(c)); private int cursor = 0; @Override public boolean hasNext() { return cursor < len; } @Override public double nextDouble() { if (cursor >= len) { throw new NoSuchElementException(); } return zipFunction.applyAsDouble(a[cursor], b[cursor], c[cursor++]); } }); } /** * Zip together the "a" and "b" iterators until one of them runs out of values. * Each pair of values is combined into a single value using the supplied zipFunction function. * * @param a * @param b * @return */ public static DoubleStream zip(final DoubleIterator a, final DoubleIterator b, final DoubleBinaryOperator zipFunction) { return new IteratorDoubleStream(new DoubleIteratorEx() { @Override public boolean hasNext() { return a.hasNext() && b.hasNext(); } @Override public double nextDouble() { return zipFunction.applyAsDouble(a.nextDouble(), b.nextDouble()); } }); } /** * Zip together the "a", "b" and "c" iterators until one of them runs out of values. * Each triple of values is combined into a single value using the supplied zipFunction function. * * @param a * @param b * @return */ public static DoubleStream zip(final DoubleIterator a, final DoubleIterator b, final DoubleIterator c, final DoubleTernaryOperator zipFunction) { return new IteratorDoubleStream(new DoubleIteratorEx() { @Override public boolean hasNext() { return a.hasNext() && b.hasNext() && c.hasNext(); } @Override public double nextDouble() { return zipFunction.applyAsDouble(a.nextDouble(), b.nextDouble(), c.nextDouble()); } }); } /** * Zip together the "a" and "b" streams until one of them runs out of values. * Each pair of values is combined into a single value using the supplied zipFunction function. * * @param a * @param b * @return */ public static DoubleStream zip(final DoubleStream a, final DoubleStream b, final DoubleBinaryOperator zipFunction) { return zip(a.iteratorEx(), b.iteratorEx(), zipFunction).onClose(newCloseHandler(N.asList(a, b))); } /** * Zip together the "a", "b" and "c" streams until one of them runs out of values. * Each triple of values is combined into a single value using the supplied zipFunction function. * * @param a * @param b * @return */ public static DoubleStream zip(final DoubleStream a, final DoubleStream b, final DoubleStream c, final DoubleTernaryOperator zipFunction) { return zip(a.iteratorEx(), b.iteratorEx(), c.iteratorEx(), zipFunction).onClose(newCloseHandler(N.asList(a, b, c))); } /** * Zip together the iterators until one of them runs out of values. * Each array of values is combined into a single value using the supplied zipFunction function. * * @param c * @param zipFunction * @return */ public static DoubleStream zip(final Collection c, final DoubleNFunction zipFunction) { return Stream.zip(c, zipFunction).mapToDouble(ToDoubleFunction.UNBOX); } /** * Zip together the "a" and "b" iterators until all of them runs out of values. * Each pair of values is combined into a single value using the supplied zipFunction function. * * @param a * @param b * @param valueForNoneA value to fill if "a" runs out of values first. * @param valueForNoneB value to fill if "b" runs out of values first. * @param zipFunction * @return */ public static DoubleStream zip(final double[] a, final double[] b, final double valueForNoneA, final double valueForNoneB, final DoubleBinaryOperator zipFunction) { if (N.isNullOrEmpty(a) && N.isNullOrEmpty(b)) { return empty(); } return new IteratorDoubleStream(new DoubleIteratorEx() { private final int aLen = N.len(a), bLen = N.len(b), len = N.max(aLen, bLen); private int cursor = 0; private double ret = 0; @Override public boolean hasNext() { return cursor < len; } @Override public double nextDouble() { if (cursor >= len) { throw new NoSuchElementException(); } ret = zipFunction.applyAsDouble(cursor < aLen ? a[cursor] : valueForNoneA, cursor < bLen ? b[cursor] : valueForNoneB); cursor++; return ret; } }); } /** * Zip together the "a", "b" and "c" iterators until all of them runs out of values. * Each triple of values is combined into a single value using the supplied zipFunction function. * * @param a * @param b * @param c * @param valueForNoneA value to fill if "a" runs out of values. * @param valueForNoneB value to fill if "b" runs out of values. * @param valueForNoneC value to fill if "c" runs out of values. * @param zipFunction * @return */ public static DoubleStream zip(final double[] a, final double[] b, final double[] c, final double valueForNoneA, final double valueForNoneB, final double valueForNoneC, final DoubleTernaryOperator zipFunction) { if (N.isNullOrEmpty(a) && N.isNullOrEmpty(b) && N.isNullOrEmpty(c)) { return empty(); } return new IteratorDoubleStream(new DoubleIteratorEx() { private final int aLen = N.len(a), bLen = N.len(b), cLen = N.len(c), len = N.max(aLen, bLen, cLen); private int cursor = 0; private double ret = 0; @Override public boolean hasNext() { return cursor < len; } @Override public double nextDouble() { if (cursor >= len) { throw new NoSuchElementException(); } ret = zipFunction.applyAsDouble(cursor < aLen ? a[cursor] : valueForNoneA, cursor < bLen ? b[cursor] : valueForNoneB, cursor < cLen ? c[cursor] : valueForNoneC); cursor++; return ret; } }); } /** * Zip together the "a" and "b" iterators until all of them runs out of values. * Each pair of values is combined into a single value using the supplied zipFunction function. * * @param a * @param b * @param valueForNoneA value to fill if "a" runs out of values first. * @param valueForNoneB value to fill if "b" runs out of values first. * @param zipFunction * @return */ public static DoubleStream zip(final DoubleIterator a, final DoubleIterator b, final double valueForNoneA, final double valueForNoneB, final DoubleBinaryOperator zipFunction) { return new IteratorDoubleStream(new DoubleIteratorEx() { @Override public boolean hasNext() { return a.hasNext() || b.hasNext(); } @Override public double nextDouble() { if (a.hasNext()) { return zipFunction.applyAsDouble(a.nextDouble(), b.hasNext() ? b.nextDouble() : valueForNoneB); } else { return zipFunction.applyAsDouble(valueForNoneA, b.nextDouble()); } } }); } /** * Zip together the "a", "b" and "c" iterators until all of them runs out of values. * Each triple of values is combined into a single value using the supplied zipFunction function. * * @param a * @param b * @param c * @param valueForNoneA value to fill if "a" runs out of values. * @param valueForNoneB value to fill if "b" runs out of values. * @param valueForNoneC value to fill if "c" runs out of values. * @param zipFunction * @return */ public static DoubleStream zip(final DoubleIterator a, final DoubleIterator b, final DoubleIterator c, final double valueForNoneA, final double valueForNoneB, final double valueForNoneC, final DoubleTernaryOperator zipFunction) { return new IteratorDoubleStream(new DoubleIteratorEx() { @Override public boolean hasNext() { return a.hasNext() || b.hasNext() || c.hasNext(); } @Override public double nextDouble() { if (a.hasNext()) { return zipFunction.applyAsDouble(a.nextDouble(), b.hasNext() ? b.nextDouble() : valueForNoneB, c.hasNext() ? c.nextDouble() : valueForNoneC); } else if (b.hasNext()) { return zipFunction.applyAsDouble(valueForNoneA, b.nextDouble(), c.hasNext() ? c.nextDouble() : valueForNoneC); } else { return zipFunction.applyAsDouble(valueForNoneA, valueForNoneB, c.nextDouble()); } } }); } /** * Zip together the "a" and "b" iterators until all of them runs out of values. * Each pair of values is combined into a single value using the supplied zipFunction function. * * @param a * @param b * @param valueForNoneA value to fill if "a" runs out of values first. * @param valueForNoneB value to fill if "b" runs out of values first. * @param zipFunction * @return */ public static DoubleStream zip(final DoubleStream a, final DoubleStream b, final double valueForNoneA, final double valueForNoneB, final DoubleBinaryOperator zipFunction) { return zip(a.iteratorEx(), b.iteratorEx(), valueForNoneA, valueForNoneB, zipFunction).onClose(newCloseHandler(N.asList(a, b))); } /** * Zip together the "a", "b" and "c" iterators until all of them runs out of values. * Each triple of values is combined into a single value using the supplied zipFunction function. * * @param a * @param b * @param c * @param valueForNoneA value to fill if "a" runs out of values. * @param valueForNoneB value to fill if "b" runs out of values. * @param valueForNoneC value to fill if "c" runs out of values. * @param zipFunction * @return */ public static DoubleStream zip(final DoubleStream a, final DoubleStream b, final DoubleStream c, final double valueForNoneA, final double valueForNoneB, final double valueForNoneC, final DoubleTernaryOperator zipFunction) { return zip(a.iteratorEx(), b.iteratorEx(), c.iteratorEx(), valueForNoneA, valueForNoneB, valueForNoneC, zipFunction) .onClose(newCloseHandler(N.asList(a, b, c))); } /** * Zip together the iterators until all of them runs out of values. * Each array of values is combined into a single value using the supplied zipFunction function. * * @param c * @param valuesForNone value to fill for any iterator runs out of values. * @param zipFunction * @return */ public static DoubleStream zip(final Collection c, final double[] valuesForNone, final DoubleNFunction zipFunction) { return Stream.zip(c, valuesForNone, zipFunction).mapToDouble(ToDoubleFunction.UNBOX); } /** * * @param a * @param b * @param nextSelector first parameter is selected if Nth.FIRST is returned, otherwise the second parameter is selected. * @return */ public static DoubleStream merge(final double[] a, final double[] b, final DoubleBiFunction nextSelector) { if (N.isNullOrEmpty(a)) { return of(b); } else if (N.isNullOrEmpty(b)) { return of(a); } return new IteratorDoubleStream(new DoubleIteratorEx() { private final int lenA = a.length; private final int lenB = b.length; private int cursorA = 0; private int cursorB = 0; @Override public boolean hasNext() { return cursorA < lenA || cursorB < lenB; } @Override public double nextDouble() { if (cursorA < lenA) { if (cursorB < lenB) { if (nextSelector.apply(a[cursorA], b[cursorB]) == Nth.FIRST) { return a[cursorA++]; } else { return b[cursorB++]; } } else { return a[cursorA++]; } } else if (cursorB < lenB) { return b[cursorB++]; } else { throw new NoSuchElementException(); } } }); } /** * * @param a * @param b * @param c * @param nextSelector first parameter is selected if Nth.FIRST is returned, otherwise the second parameter is selected. * @return */ public static DoubleStream merge(final double[] a, final double[] b, final double[] c, final DoubleBiFunction nextSelector) { return merge(merge(a, b, nextSelector).iteratorEx(), DoubleStream.of(c).iteratorEx(), nextSelector); } /** * * @param a * @param b * @param nextSelector first parameter is selected if Nth.FIRST is returned, otherwise the second parameter is selected. * @return */ public static DoubleStream merge(final DoubleIterator a, final DoubleIterator b, final DoubleBiFunction nextSelector) { return new IteratorDoubleStream(new DoubleIteratorEx() { private double nextA = 0; private double nextB = 0; private boolean hasNextA = false; private boolean hasNextB = false; @Override public boolean hasNext() { return a.hasNext() || b.hasNext() || hasNextA || hasNextB; } @Override public double nextDouble() { if (hasNextA) { if (b.hasNext()) { if (nextSelector.apply(nextA, (nextB = b.nextDouble())) == Nth.FIRST) { hasNextA = false; hasNextB = true; return nextA; } else { return nextB; } } else { hasNextA = false; return nextA; } } else if (hasNextB) { if (a.hasNext()) { if (nextSelector.apply((nextA = a.nextDouble()), nextB) == Nth.FIRST) { return nextA; } else { hasNextA = true; hasNextB = false; return nextB; } } else { hasNextB = false; return nextB; } } else if (a.hasNext()) { if (b.hasNext()) { if (nextSelector.apply((nextA = a.nextDouble()), (nextB = b.nextDouble())) == Nth.FIRST) { hasNextB = true; return nextA; } else { hasNextA = true; return nextB; } } else { return a.nextDouble(); } } else if (b.hasNext()) { return b.nextDouble(); } else { throw new NoSuchElementException(); } } }); } /** * * @param a * @param b * @param c * @param nextSelector first parameter is selected if Nth.FIRST is returned, otherwise the second parameter is selected. * @return */ public static DoubleStream merge(final DoubleIterator a, final DoubleIterator b, final DoubleIterator c, final DoubleBiFunction nextSelector) { return merge(merge(a, b, nextSelector).iteratorEx(), c, nextSelector); } /** * * @param a * @param b * @param nextSelector first parameter is selected if Nth.FIRST is returned, otherwise the second parameter is selected. * @return */ public static DoubleStream merge(final DoubleStream a, final DoubleStream b, final DoubleBiFunction nextSelector) { return merge(a.iteratorEx(), b.iteratorEx(), nextSelector).onClose(newCloseHandler(N.asList(a, b))); } /** * * @param a * @param b * @param c * @param nextSelector first parameter is selected if Nth.FIRST is returned, otherwise the second parameter is selected. * @return */ public static DoubleStream merge(final DoubleStream a, final DoubleStream b, final DoubleStream c, final DoubleBiFunction nextSelector) { return merge(merge(a, b, nextSelector), c, nextSelector); } /** * * @param c * @param nextSelector first parameter is selected if Nth.FIRST is returned, otherwise the second parameter is selected. * @return */ public static DoubleStream merge(final Collection c, final DoubleBiFunction nextSelector) { if (N.isNullOrEmpty(c)) { return empty(); } else if (c.size() == 1) { return c.iterator().next(); } else if (c.size() == 2) { final Iterator iter = c.iterator(); return merge(iter.next(), iter.next(), nextSelector); } final Iterator iter = c.iterator(); DoubleStream result = merge(iter.next(), iter.next(), nextSelector); while (iter.hasNext()) { result = merge(result, iter.next(), nextSelector); } return result; } /** * * @param c * @param nextSelector first parameter is selected if Nth.FIRST is returned, otherwise the second parameter is selected. * @return */ public static DoubleStream parallelMerge(final Collection c, final DoubleBiFunction nextSelector) { return parallelMerge(c, nextSelector, DEFAULT_MAX_THREAD_NUM); } /** * * @param c * @param nextSelector first parameter is selected if Nth.FIRST is returned, otherwise the second parameter is selected. * @param maxThreadNum * @return */ public static DoubleStream parallelMerge(final Collection c, final DoubleBiFunction nextSelector, final int maxThreadNum) { N.checkArgument(maxThreadNum > 0, "'maxThreadNum' must not less than 1"); if (maxThreadNum <= 1) { return merge(c, nextSelector); } else if (N.isNullOrEmpty(c)) { return empty(); } else if (c.size() == 1) { return c.iterator().next(); } else if (c.size() == 2) { final Iterator iter = c.iterator(); return merge(iter.next(), iter.next(), nextSelector); } else if (c.size() == 3) { final Iterator iter = c.iterator(); return merge(iter.next(), iter.next(), iter.next(), nextSelector); } final Queue queue = N.newLinkedList(); for (DoubleStream e : c) { queue.add(e); } final Holder eHolder = new Holder<>(); final MutableInt cnt = MutableInt.of(c.size()); final List> futureList = new ArrayList<>(c.size() - 1); for (int i = 0, n = N.min(maxThreadNum, c.size() / 2 + 1); i < n; i++) { futureList.add(DEFAULT_ASYNC_EXECUTOR.execute(new Try.Runnable() { @Override public void run() { DoubleStream a = null; DoubleStream b = null; DoubleStream c = null; try { while (eHolder.value() == null) { synchronized (queue) { if (cnt.intValue() > 2 && queue.size() > 1) { a = queue.poll(); b = queue.poll(); cnt.decrement(); } else { break; } } c = DoubleStream.of(merge(a, b, nextSelector).toArray()); synchronized (queue) { queue.offer(c); } } } catch (Exception e) { setError(eHolder, e); } } })); } try { complete(futureList, eHolder); } finally { if (eHolder.value() != null) { IOUtil.closeAllQuietly(c); } } return merge(queue.poll(), queue.poll(), nextSelector); } public static abstract class DoubleStreamEx extends DoubleStream { private DoubleStreamEx(boolean sorted, Collection closeHandlers) { super(sorted, closeHandlers); // Factory class. } } }