All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.landawn.abacus.util.stream.FloatStream Maven / Gradle / Ivy

/*
 * Copyright (C) 2016, 2017, 2018, 2019 HaiYang Li
 *
 * Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except
 * in compliance with the License. You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software distributed under the License
 * is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express
 * or implied. See the License for the specific language governing permissions and limitations under
 * the License.
 */

package com.landawn.abacus.util.stream;

import java.nio.FloatBuffer;
import java.security.SecureRandom;
import java.util.Arrays;
import java.util.Collection;
import java.util.Comparator;
import java.util.Iterator;
import java.util.List;
import java.util.Map;
import java.util.NoSuchElementException;
import java.util.Random;
import java.util.function.BiConsumer;
import java.util.function.BiFunction;
import java.util.function.BiPredicate;
import java.util.function.BinaryOperator;
import java.util.function.BooleanSupplier;
import java.util.function.Function;
import java.util.function.Supplier;
import java.util.stream.Collector;

import com.landawn.abacus.annotation.Beta;
import com.landawn.abacus.annotation.IntermediateOp;
import com.landawn.abacus.annotation.LazyEvaluation;
import com.landawn.abacus.annotation.ParallelSupported;
import com.landawn.abacus.annotation.SequentialOnly;
import com.landawn.abacus.annotation.TerminalOp;
import com.landawn.abacus.util.Array;
import com.landawn.abacus.util.FloatIterator;
import com.landawn.abacus.util.FloatList;
import com.landawn.abacus.util.FloatSummaryStatistics;
import com.landawn.abacus.util.Fn.BiConsumers;
import com.landawn.abacus.util.Fn.FF;
import com.landawn.abacus.util.IndexedFloat;
import com.landawn.abacus.util.MergeResult;
import com.landawn.abacus.util.N;
import com.landawn.abacus.util.Pair;
import com.landawn.abacus.util.Percentage;
import com.landawn.abacus.util.Throwables;
import com.landawn.abacus.util.cs;
import com.landawn.abacus.util.u.Optional;
import com.landawn.abacus.util.u.OptionalDouble;
import com.landawn.abacus.util.u.OptionalFloat;
import com.landawn.abacus.util.function.FloatBiFunction;
import com.landawn.abacus.util.function.FloatBiPredicate;
import com.landawn.abacus.util.function.FloatBinaryOperator;
import com.landawn.abacus.util.function.FloatConsumer;
import com.landawn.abacus.util.function.FloatFunction;
import com.landawn.abacus.util.function.FloatNFunction;
import com.landawn.abacus.util.function.FloatPredicate;
import com.landawn.abacus.util.function.FloatSupplier;
import com.landawn.abacus.util.function.FloatTernaryOperator;
import com.landawn.abacus.util.function.FloatToDoubleFunction;
import com.landawn.abacus.util.function.FloatToIntFunction;
import com.landawn.abacus.util.function.FloatToLongFunction;
import com.landawn.abacus.util.function.FloatTriPredicate;
import com.landawn.abacus.util.function.FloatUnaryOperator;
import com.landawn.abacus.util.function.ObjFloatConsumer;
import com.landawn.abacus.util.function.ToFloatFunction;
import com.landawn.abacus.util.function.TriFunction;

/**
 * The FloatStream class is an abstract class that represents a stream of float elements and supports different kinds of computations. 
* The Stream operations are divided into intermediate and terminal operations, and are combined to form stream pipelines.
* *
* The Stream will be automatically closed after a terminal method is called/triggered. * *
*
* Refer to {@code com.landawn.abacus.util.stream.BaseStream} and {@code com.landawn.abacus.util.stream.Stream} for more APIs docs. * * @see com.landawn.abacus.util.stream.Stream * @see com.landawn.abacus.util.stream.BaseStream */ @com.landawn.abacus.annotation.Immutable @LazyEvaluation public abstract class FloatStream extends StreamBase { static final Random RAND = new SecureRandom(); FloatStream(final boolean sorted, final Collection closeHandlers) { super(sorted, null, closeHandlers); } /** * * @param mapper * @return */ @ParallelSupported @IntermediateOp public abstract FloatStream map(FloatUnaryOperator mapper); /** * * @param mapper * @return */ @ParallelSupported @IntermediateOp public abstract IntStream mapToInt(FloatToIntFunction mapper); /** * * @param mapper * @return */ @ParallelSupported @IntermediateOp public abstract LongStream mapToLong(FloatToLongFunction mapper); /** * * @param mapper * @return */ @ParallelSupported @IntermediateOp public abstract DoubleStream mapToDouble(FloatToDoubleFunction mapper); /** * * @param * @param mapper * @return */ @ParallelSupported @IntermediateOp public abstract Stream mapToObj(FloatFunction mapper); /** * * @param mapper * @return */ @ParallelSupported @IntermediateOp public abstract FloatStream flatMap(FloatFunction mapper); // public abstract FloatStream flatmap(FloatFunction mapper); /** * * @param mapper * @return */ @ParallelSupported @IntermediateOp public abstract FloatStream flatmap(FloatFunction mapper); //NOSONAR /** * * @param mapper * @return */ @ParallelSupported @IntermediateOp public abstract IntStream flatMapToInt(FloatFunction mapper); /** * * @param mapper * @return */ @ParallelSupported @IntermediateOp public abstract LongStream flatMapToLong(FloatFunction mapper); /** * * @param mapper * @return */ @ParallelSupported @IntermediateOp public abstract DoubleStream flatMapToDouble(FloatFunction mapper); /** * * @param * @param mapper * @return */ @ParallelSupported @IntermediateOp public abstract Stream flatMapToObj(FloatFunction> mapper); //NOSONAR /** * * @param * @param mapper * @return */ @ParallelSupported @IntermediateOp public abstract Stream flatmapToObj(FloatFunction> mapper); //NOSONAR /** * * @param * @param mapper * @return */ @Beta @ParallelSupported @IntermediateOp public abstract Stream flattMapToObj(FloatFunction mapper); /** * Note: copied from StreamEx: StreamEx * * @param mapper * @return */ @Beta @ParallelSupported @IntermediateOp public abstract FloatStream mapPartial(FloatFunction mapper); /** * Note: copied from StreamEx: StreamEx *
* * Returns a stream consisting of results of applying the given function to * the ranges created from the source elements. * This is a quasi-intermediate * partial reduction operation. * * @param sameRange a non-interfering, stateless predicate to apply to * the leftmost and next elements which returns {@code true} for elements * which belong to the same range. * @param mapper a non-interfering, stateless function to apply to the * range borders and produce the resulting element. If value was * not merged to the interval, then mapper will receive the same * value twice, otherwise it will receive the leftmost and the * rightmost values which were merged to the range. * @return * @see #collapse(FloatBiPredicate, FloatBinaryOperator) * @see Stream#rangeMap(BiPredicate, BiFunction) */ @SequentialOnly @IntermediateOp public abstract FloatStream rangeMap(final FloatBiPredicate sameRange, final FloatBinaryOperator mapper); /** * Note: copied from StreamEx: StreamEx *
* * Returns a stream consisting of results of applying the given function to * the ranges created from the source elements. * This is a quasi-intermediate * partial reduction operation. * * @param * @param sameRange a non-interfering, stateless predicate to apply to * the leftmost and next elements which returns {@code true} for elements * which belong to the same range. * @param mapper a non-interfering, stateless function to apply to the * range borders and produce the resulting element. If value was * not merged to the interval, then mapper will receive the same * value twice, otherwise it will receive the leftmost and the * rightmost values which were merged to the range. * @return * @see Stream#rangeMap(BiPredicate, BiFunction) */ @SequentialOnly @IntermediateOp public abstract Stream rangeMapToObj(final FloatBiPredicate sameRange, final FloatBiFunction mapper); /** * Merges a series of adjacent elements in the stream which satisfy the given predicate into a List. * The predicate takes two parameters: the previous element and the current element in the stream. * If the predicate returns {@code true}, the current element and its previous element are considered as a series of adjacent elements. * These elements are then collapsed into a List. * * This is an intermediate operation, meaning it's always lazy. It doesn't start processing the data until a terminal operation is invoked on the stream pipeline. * It's also a stateful operation since it needs to remember the previous element when processing the current element. * * This operation is not parallelizable and requires the stream to be ordered. * * @param collapsible a BiPredicate that takes two parameters: the previous element and the current element in the stream. * @return a new Stream where each element is a List of adjacent elements which satisfy the given predicate. * @see Stream#collapse(BiPredicate) */ @SequentialOnly @IntermediateOp public abstract Stream collapse(final FloatBiPredicate collapsible); /** * Merges a series of adjacent elements in the stream which satisfy the given predicate using the merger function and returns a new stream. * The predicate takes two parameters: the previous element and the current element in the stream. * If the predicate returns {@code true}, the current element and its previous element are considered as a series of adjacent elements. * These elements are then merged using the provided BiFunction. * * This is an intermediate operation, meaning it's always lazy. It doesn't start processing the data until a terminal operation is invoked on the stream pipeline. * It's also a stateful operation since it needs to remember the previous element when processing the current element. * * This operation is not parallelizable and requires the stream to be ordered. * * @param collapsible a BiPredicate that takes two parameters: the previous element and the current element in the stream. * @param mergeFunction a BiFunction that takes two parameters: the result of the previous merge operation (or the first element if no merge has been performed yet) and the current element, and returns the result of the merge operation. * @return a new Stream where each element is the result of merging adjacent elements which satisfy the given predicate. * @see Stream#collapse(BiPredicate, BiFunction) */ @SequentialOnly @IntermediateOp public abstract FloatStream collapse(final FloatBiPredicate collapsible, final FloatBinaryOperator mergeFunction); /** * Merges a series of adjacent elements in the stream which satisfy the given predicate into a single element and returns a new stream. * The predicate takes three parameters: the first element of the series, the previous element and the current element in the stream. * If the predicate returns {@code true}, the current element, its previous element and the first element of the series are considered as a series of adjacent elements. * These elements are then collapsed into a single element using the provided merge function. * * This is an intermediate operation, meaning it's always lazy. It doesn't start processing the data until a terminal operation is invoked on the stream pipeline. * It's also a stateful operation since it needs to remember the first and previous elements when processing the current element. * * This operation is not parallelizable and requires the stream to be ordered. * * @param collapsible a TriPredicate that takes three parameters: the first element of the series, the previous element and the current element in the stream. * @param mergeFunction a BiFunction that takes two parameters: the current element and its previous element. It returns a single element that represents the collapsed elements. * @return a new Stream where each element is the result of collapsing adjacent elements which satisfy the given predicate. * @see Stream#collapse(com.landawn.abacus.util.function.TriPredicate, BiFunction) */ @SequentialOnly @IntermediateOp public abstract FloatStream collapse(final FloatTriPredicate collapsible, final FloatBinaryOperator mergeFunction); /** * Performs a scan (also known as prefix sum, cumulative sum, running total, or integral) operation on the elements of the stream. * The scan operation takes a binary operator (the accumulator) and applies it cumulatively on the stream elements, * successively combining each element in order from the start to produce a stream of accumulated results. * * For example, given a stream of numbers [1, 2, 3, 4], and an accumulator that performs addition, * the output would be a stream of numbers [1, 3, 6, 10]. * * This is an intermediate operation. * This operation is sequential only, even when called on a parallel stream. * * @param accumulator a {@code FloatBinaryOperator} that takes two parameters: the current accumulated value and the current stream element, and returns a new accumulated value. * @return a new {@code FloatStream} consisting of the results of the scan operation on the elements of the original stream. * @see Stream#scan(BiFunction) */ @SequentialOnly @IntermediateOp public abstract FloatStream scan(final FloatBinaryOperator accumulator); /** * Performs a scan (also known as prefix sum, cumulative sum, running total, or integral) operation on the elements of the stream. * The scan operation takes an initial value and a binary operator (the accumulator) and applies it cumulatively on the stream elements, * successively combining each element in order from the start to produce a stream of accumulated results. * * For example, given a stream of numbers [1, 2, 3, 4], an initial value of 10, and an accumulator that performs addition, * the output would be a stream of numbers [11, 13, 16, 20]. * This is an intermediate operation. * This operation is sequential only, even when called on a parallel stream. * * @param init the initial value. It's only used once by the accumulator to calculate the first element in the returned stream. * It will be ignored if this stream is empty and won't be the first element of the returned stream. * @param accumulator a {@code FloatBinaryOperator} that takes two parameters: the current accumulated value and the current stream element, and returns a new accumulated value. * @return a new {@code FloatStream} consisting of the results of the scan operation on the elements of the original stream. * @see Stream#scan(Object, BiFunction) */ @SequentialOnly @IntermediateOp public abstract FloatStream scan(final float init, final FloatBinaryOperator accumulator); /** * Performs a scan (also known as prefix sum, cumulative sum, running total, or integral) operation on the elements of the stream. * The scan operation takes an initial value and a binary operator (the accumulator) and applies it cumulatively on the stream elements, * successively combining each element in order from the start to produce a stream of accumulated results. * * This is an intermediate operation. * This operation is sequential only, even when called on a parallel stream. * * @param init the initial value. It's only used once by the accumulator to calculate the first element in the returned stream. * @param initIncluded a boolean value that determines if the initial value should be included as the first element in the returned stream. * @param accumulator a {@code FloatBinaryOperator} that takes two parameters: the current accumulated value and the current stream element, and returns a new accumulated value. * @return a new {@code FloatStream} consisting of the results of the scan operation on the elements of the original stream. * @see Stream#scan(Object, boolean, BiFunction) */ @SequentialOnly @IntermediateOp public abstract FloatStream scan(final float init, final boolean initIncluded, final FloatBinaryOperator accumulator); /** * * @param a * @return */ @SequentialOnly @IntermediateOp public abstract FloatStream prepend(final float... a); /** * * @param a * @return */ @SequentialOnly @IntermediateOp public abstract FloatStream append(final float... a); /** * * @param a * @return */ @SequentialOnly @IntermediateOp public abstract FloatStream appendIfEmpty(final float... a); /** *
* This method only runs sequentially, even in parallel stream. * * @param n * @return */ @SequentialOnly @IntermediateOp public abstract FloatStream top(int n); /** *
* This method only runs sequentially, even in parallel stream. * * @param n * @param comparator * @return */ @SequentialOnly @IntermediateOp public abstract FloatStream top(final int n, Comparator comparator); @SequentialOnly @TerminalOp public abstract FloatList toFloatList(); /** * * @param * @param * @param * @param * @param keyMapper * @param valueMapper * @return * @throws E * @throws E2 * @see Collectors#toMap(Function, Function) */ @ParallelSupported @TerminalOp public abstract Map toMap(Throwables.FloatFunction keyMapper, Throwables.FloatFunction valueMapper) throws E, E2; /** * * @param * @param * @param * @param * @param * @param keyMapper * @param valueMapper * @param mapFactory * @return * @throws E * @throws E2 * @see Collectors#toMap(Function, Function, Supplier) */ @ParallelSupported @TerminalOp public abstract , E extends Exception, E2 extends Exception> M toMap(Throwables.FloatFunction keyMapper, Throwables.FloatFunction valueMapper, Supplier mapFactory) throws E, E2; /** * * @param * @param * @param * @param * @param keyMapper * @param valueMapper * @param mergeFunction * @return * @throws E * @throws E2 * @see Collectors#toMap(Function, Function, BinaryOperator) */ @ParallelSupported @TerminalOp public abstract Map toMap(Throwables.FloatFunction keyMapper, Throwables.FloatFunction valueMapper, BinaryOperator mergeFunction) throws E, E2; /** * * @param * @param * @param * @param * @param * @param keyMapper * @param valueMapper * @param mergeFunction * @param mapFactory * @return * @throws E * @throws E2 * @see Collectors#toMap(Function, Function, BinaryOperator, Supplier) */ @ParallelSupported @TerminalOp public abstract , E extends Exception, E2 extends Exception> M toMap(Throwables.FloatFunction keyMapper, Throwables.FloatFunction valueMapper, BinaryOperator mergeFunction, Supplier mapFactory) throws E, E2; /** * * @param * @param * @param * @param keyMapper * @param downstream * @return * @throws E * @see Collectors#groupingBy(Function, Collector) */ @ParallelSupported @TerminalOp public abstract Map groupTo(Throwables.FloatFunction keyMapper, final Collector downstream) throws E; /** * * @param * @param * @param * @param * @param keyMapper * @param downstream * @param mapFactory * @return * @throws E * @see Collectors#groupingBy(Function, Collector, Supplier) */ @ParallelSupported @TerminalOp public abstract , E extends Exception> M groupTo(Throwables.FloatFunction keyMapper, final Collector downstream, final Supplier mapFactory) throws E; /** * Performs a reduction on the elements of this stream, using the provided accumulator function, and returns the reduced value. * The accumulator function takes two parameters: the current reduced value (or the initial value for the first element), and the current stream element. * * @param identity the initial value of the reduction operation * @param op the function for combining the current reduced value and the current stream element * @return the result of the reduction * @see Stream#reduce(Object, BinaryOperator) */ @ParallelSupported @TerminalOp public abstract float reduce(float identity, FloatBinaryOperator op); /** * Performs a reduction on the elements of this stream, using the provided accumulator function, and returns the reduced value. * The accumulator function takes two parameters: the current reduced value and the current stream element. * * @param op the function for combining the current reduced value and the current stream element * @return an OptionalFloat describing the result of the reduction. If the stream is empty, an empty OptionalFloat is returned. * @see Stream#reduce(BinaryOperator) */ @ParallelSupported @TerminalOp public abstract OptionalFloat reduce(FloatBinaryOperator op); /** * Performs a mutable reduction operation on the elements of this stream using a Collector. * * @param The type of the result * @param supplier a function that creates a new result container. For a parallel execution, this function may be called multiple times and must return a fresh value each time. * @param accumulator an associative, non-interfering, stateless function for incorporating an additional element into a result * @param combiner an associative, non-interfering, stateless function for combining two values, which must be compatible with the accumulator function. * It's unnecessary to specify {@code combiner} if {@code R} is a {@code Map/Collection/StringBuilder/Multiset/LongMultiset/Multimap/BooleanList/IntList/.../DoubleList}. * @return the result of the reduction * @see Stream#collect(Supplier, BiConsumer, BiConsumer) * @see BiConsumers#ofAddAll() * @see BiConsumers#ofPutAll() */ @ParallelSupported @TerminalOp public abstract R collect(Supplier supplier, ObjFloatConsumer accumulator, BiConsumer combiner); /** * Performs a mutable reduction operation on the elements of this stream using a Collector. * *
* Only call this method when the returned type {@code R} is one types: {@code Collection/Map/StringBuilder/Multiset/LongMultiset/Multimap/BooleanList/IntList/.../DoubleList}. * Otherwise, please call {@link #collect(Supplier, ObjFloatConsumer, BiConsumer)}. * * @param The type of the result. It must be {@code Collection/Map/StringBuilder/Multiset/LongMultiset/Multimap/BooleanList/IntList/.../DoubleList}. * @param supplier A function that creates a new result container. For a parallel execution, this function may be called multiple times and must return a fresh value each time. * @param accumulator An associative, non-interfering, stateless function for incorporating an additional element into a result. * @throws IllegalArgumentException if the returned type {@code R} is not one of the types: {@code Collection/Map/StringBuilder/Multiset/LongMultiset/Multimap/BooleanList/IntList/.../DoubleList}. * @return the result of the reduction * @see #collect(Supplier, ObjFloatConsumer, BiConsumer) * @see Stream#collect(Supplier, BiConsumer) * @see Stream#collect(Supplier, BiConsumer, BiConsumer) */ @ParallelSupported @TerminalOp public abstract R collect(Supplier supplier, ObjFloatConsumer accumulator); /** * * @param * @param action * @throws E */ @ParallelSupported @TerminalOp public abstract void forEach(final Throwables.FloatConsumer action) throws E; /** * * @param * @param action * @throws E */ @ParallelSupported @TerminalOp public abstract void forEachIndexed(Throwables.IntFloatConsumer action) throws E; /** * * @param * @param predicate * @return * @throws E */ @ParallelSupported @TerminalOp public abstract boolean anyMatch(final Throwables.FloatPredicate predicate) throws E; /** * * @param * @param predicate * @return * @throws E */ @ParallelSupported @TerminalOp public abstract boolean allMatch(final Throwables.FloatPredicate predicate) throws E; /** * * @param * @param predicate * @return * @throws E */ @ParallelSupported @TerminalOp public abstract boolean noneMatch(final Throwables.FloatPredicate predicate) throws E; /** * * @param * @param predicate * @return * @throws E */ @ParallelSupported @TerminalOp public abstract OptionalFloat findFirst(final Throwables.FloatPredicate predicate) throws E; /** * * @param * @param predicate * @return * @throws E */ @ParallelSupported @TerminalOp public abstract OptionalFloat findAny(final Throwables.FloatPredicate predicate) throws E; /** * Consider using: {@code stream.reversed().findFirst(predicate)} for better performance if possible. * * @param * @param predicate * @return * @throws E */ @Beta @ParallelSupported @TerminalOp public abstract OptionalFloat findLast(final Throwables.FloatPredicate predicate) throws E; // /** // * Returns the first element matched by {@code predicateForFirst} if found or the first element if this stream is not empty // * Otherwise an empty {@code OptionalFloat} will be returned. // * // * @param // * @param predicateForFirst // * @return // * @throws E // */ // @ParallelSupported // @TerminalOp // public abstract OptionalFloat findFirstOrElseAny(Throwables.FloatPredicate predicateForFirst) throws E; // // /** // * Returns the first element matched by {@code predicateForFirst} if found or the last element if this stream is not empty // * Otherwise an empty {@code OptionalFloat} will be returned. // * // * @param // * @param predicateForFirst // * @return // * @throws E // */ // @ParallelSupported // @TerminalOp // public abstract OptionalFloat findFirstOrElseLast(Throwables.FloatPredicate predicateForFirst) throws E; @SequentialOnly @TerminalOp public abstract OptionalFloat min(); @SequentialOnly @TerminalOp public abstract OptionalFloat max(); /** * Returns the k-th largest element in the stream. * If the stream is empty or the count of elements is less than k, an empty OptionalFloat is returned. * * @param k the position (1-based) of the largest element to retrieve * @return an OptionalFloat containing the k-th largest element, or an empty OptionalFloat if the stream is empty or the count of elements is less than k */ @SequentialOnly @TerminalOp public abstract OptionalFloat kthLargest(int k); @SequentialOnly @TerminalOp public abstract double sum(); @SequentialOnly @TerminalOp public abstract OptionalDouble average(); @SequentialOnly @TerminalOp public abstract FloatSummaryStatistics summarize(); @SequentialOnly @TerminalOp public abstract Pair>> summarizeAndPercentiles(); // /** // * // * @param b // * @param nextSelector a function to determine which element should be selected as next element. // * The first parameter is selected if {@code MergeResult.TAKE_FIRST} is returned, otherwise the second parameter is selected. // * @return // * @deprecated replaced by {@code mergeWith(FloatStream, FloatBiFunction)} // * @see #mergeWith(FloatStream, FloatBiFunction) // */ // @SequentialOnly // @IntermediateOp // @Deprecated // public FloatStream merge(final FloatStream b, final FloatBiFunction nextSelector) { // return mergeWith(b, nextSelector); // } /** * * @param b * @param nextSelector a function to determine which element should be selected as next element. * The first parameter is selected if {@code MergeResult.TAKE_FIRST} is returned, otherwise the second parameter is selected. * @return */ @SequentialOnly @IntermediateOp public abstract FloatStream mergeWith(final FloatStream b, final FloatBiFunction nextSelector); /** * * @param b * @param zipFunction * @return */ @ParallelSupported @IntermediateOp public abstract FloatStream zipWith(FloatStream b, FloatBinaryOperator zipFunction); /** * * @param b * @param c * @param zipFunction * @return */ @ParallelSupported @IntermediateOp public abstract FloatStream zipWith(FloatStream b, FloatStream c, FloatTernaryOperator zipFunction); /** * * @param b * @param valueForNoneA * @param valueForNoneB * @param zipFunction * @return */ @ParallelSupported @IntermediateOp public abstract FloatStream zipWith(FloatStream b, float valueForNoneA, float valueForNoneB, FloatBinaryOperator zipFunction); /** * * @param b * @param c * @param valueForNoneA * @param valueForNoneB * @param valueForNoneC * @param zipFunction * @return */ @ParallelSupported @IntermediateOp public abstract FloatStream zipWith(FloatStream b, FloatStream c, float valueForNoneA, float valueForNoneB, float valueForNoneC, FloatTernaryOperator zipFunction); @SequentialOnly @IntermediateOp public abstract DoubleStream asDoubleStream(); @SequentialOnly @IntermediateOp public abstract Stream boxed(); abstract FloatIteratorEx iteratorEx(); // private static final FloatStream EMPTY_STREAM = new ArrayFloatStream(N.EMPTY_FLOAT_ARRAY, true, null); /** * Returns an empty FloatStream. * * @return an empty FloatStream */ public static FloatStream empty() { return new ArrayFloatStream(N.EMPTY_FLOAT_ARRAY, true, null); } /** * Creates a new FloatStream that is supplied by the given supplier. * The supplier is only invoked when the stream is actually used. * This allows for lazy evaluation of the stream. * * @implNote it's equivalent to {@code Stream.just(supplier).flatMapToFloat(it -> it.get())}. * * @param supplier the supplier that provides the FloatStream * @return a new FloatStream supplied by the given supplier * @throws IllegalArgumentException if the supplier is null * @see Stream#defer(Supplier) */ public static FloatStream defer(final Supplier supplier) throws IllegalArgumentException { N.checkArgNotNull(supplier, cs.supplier); //noinspection resource return Stream.just(supplier).flatMapToFloat(Supplier::get); } /** * * @param e * @return */ public static FloatStream ofNullable(final Float e) { return e == null ? empty() : of(e); } /** * * @param a * @return */ @SafeVarargs public static FloatStream of(final float... a) { return N.isEmpty(a) ? empty() : new ArrayFloatStream(a); } /** * * @param a * @param startIndex * @param endIndex * @return */ public static FloatStream of(final float[] a, final int startIndex, final int endIndex) { return N.isEmpty(a) && (startIndex == 0 && endIndex == 0) ? empty() : new ArrayFloatStream(a, startIndex, endIndex); } /** * * @param a * @return */ public static FloatStream of(final Float[] a) { //noinspection resource return Stream.of(a).mapToFloat(FF.unbox()); } /** * * @param a * @param startIndex * @param endIndex * @return */ public static FloatStream of(final Float[] a, final int startIndex, final int endIndex) { //noinspection resource return Stream.of(a, startIndex, endIndex).mapToFloat(FF.unbox()); } /** * * @param c * @return */ public static FloatStream of(final Collection c) { //noinspection resource return Stream.of(c).mapToFloat(FF.unbox()); } /** * * @param iterator * @return */ public static FloatStream of(final FloatIterator iterator) { return iterator == null ? empty() : new IteratorFloatStream(iterator); } /** * * @param buf * @return */ public static FloatStream of(final FloatBuffer buf) { if (buf == null) { return empty(); } //noinspection resource return IntStream.range(buf.position(), buf.limit()).mapToFloat(buf::get); } private static final Function flatMapper = FloatStream::of; private static final Function flattMapper = FloatStream::flatten; /** * * @param a * @return */ public static FloatStream flatten(final float[][] a) { //noinspection resource return N.isEmpty(a) ? empty() : Stream.of(a).flatMapToFloat(flatMapper); } /** * * @param a * @param vertically * @return */ public static FloatStream flatten(final float[][] a, final boolean vertically) { if (N.isEmpty(a)) { return empty(); } else if (a.length == 1) { return of(a[0]); } else if (!vertically) { //noinspection resource return Stream.of(a).flatMapToFloat(flatMapper); } long n = 0; for (final float[] e : a) { n += N.len(e); } if (n == 0) { return empty(); } final int rows = N.len(a); final long count = n; final FloatIterator iter = new FloatIteratorEx() { private int rowNum = 0; private int colNum = 0; private long cnt = 0; @Override public boolean hasNext() { return cnt < count; } @Override public float nextFloat() { if (cnt++ >= count) { throw new NoSuchElementException(ERROR_MSG_FOR_NO_SUCH_EX); } if (rowNum == rows) { rowNum = 0; colNum++; } while (a[rowNum] == null || colNum >= a[rowNum].length) { if (rowNum < rows - 1) { rowNum++; } else { rowNum = 0; colNum++; } } return a[rowNum++][colNum]; } }; return of(iter); } /** * * @param a * @param valueForAlignment element to append so there are same size of elements in all rows/columns * @param vertically * @return */ public static FloatStream flatten(final float[][] a, final float valueForAlignment, final boolean vertically) { if (N.isEmpty(a)) { return empty(); } else if (a.length == 1) { return of(a[0]); } long n = 0; int maxLen = 0; for (final float[] e : a) { n += N.len(e); maxLen = N.max(maxLen, N.len(e)); } if (n == 0) { return empty(); } final int rows = N.len(a); final int cols = maxLen; final long count = (long) rows * cols; FloatIterator iter = null; if (vertically) { iter = new FloatIteratorEx() { private int rowNum = 0; private int colNum = 0; private long cnt = 0; @Override public boolean hasNext() { return cnt < count; } @Override public float nextFloat() { if (cnt++ >= count) { throw new NoSuchElementException(ERROR_MSG_FOR_NO_SUCH_EX); } if (rowNum == rows) { rowNum = 0; colNum++; } if (a[rowNum] == null || colNum >= a[rowNum].length) { rowNum++; return valueForAlignment; } else { return a[rowNum++][colNum]; } } }; } else { iter = new FloatIteratorEx() { private int rowNum = 0; private int colNum = 0; private long cnt = 0; @Override public boolean hasNext() { return cnt < count; } @Override public float nextFloat() { if (cnt++ >= count) { throw new NoSuchElementException(ERROR_MSG_FOR_NO_SUCH_EX); } if (colNum >= cols) { colNum = 0; rowNum++; } if (a[rowNum] == null || colNum >= a[rowNum].length) { colNum++; return valueForAlignment; } else { return a[rowNum][colNum++]; } } }; } return of(iter); } /** * * @param a * @return */ public static FloatStream flatten(final float[][][] a) { //noinspection resource return N.isEmpty(a) ? empty() : Stream.of(a).flatMapToFloat(flattMapper); } /** * * @param element * @param n * @return * @throws IllegalArgumentException */ public static FloatStream repeat(final float element, final long n) throws IllegalArgumentException { N.checkArgNotNegative(n, cs.n); if (n == 0) { return empty(); } else if (n < 10) { return of(Array.repeat(element, (int) n)); } return new IteratorFloatStream(new FloatIteratorEx() { private long cnt = n; @Override public boolean hasNext() { return cnt > 0; } @Override public float nextFloat() { if (cnt-- <= 0) { throw new NoSuchElementException(ERROR_MSG_FOR_NO_SUCH_EX); } return element; } @Override public void advance(final long n) { cnt = n >= cnt ? 0 : cnt - (int) n; } @Override public long count() { return cnt; } @Override public float[] toArray() { final float[] result = new float[(int) cnt]; for (int i = 0; i < cnt; i++) { result[i] = element; } cnt = 0; return result; } }); } public static FloatStream random() { return generate(RAND::nextFloat); } /** * Creates a stream that iterates using the given hasNext and next suppliers. * * @param hasNext a BooleanSupplier that returns {@code true} if the iteration should continue * @param next a FloatSupplier that provides the next float in the iteration * @return a FloatStream of elements generated by the iteration * @throws IllegalArgumentException if hasNext or next is null * @see Stream#iterate(BooleanSupplier, Supplier) */ public static FloatStream iterate(final BooleanSupplier hasNext, final FloatSupplier next) throws IllegalArgumentException { N.checkArgNotNull(hasNext); N.checkArgNotNull(next); return new IteratorFloatStream(new FloatIteratorEx() { private boolean hasNextVal = false; @Override public boolean hasNext() { if (!hasNextVal) { hasNextVal = hasNext.getAsBoolean(); } return hasNextVal; } @Override public float nextFloat() { if (!hasNextVal && !hasNext()) { throw new NoSuchElementException(ERROR_MSG_FOR_NO_SUCH_EX); } hasNextVal = false; return next.getAsFloat(); } }); } /** * Creates a stream that iterates from an initial value, applying a function to generate subsequent values, * and continues as long as a predicate is satisfied. * * @param init the initial value * @param hasNext a BooleanSupplier that returns {@code true} if the iteration should continue * @param f a function to apply to the previous element to generate the next element * @return a FloatStream of elements generated by the iteration * @throws IllegalArgumentException if hasNext or f is null * @see Stream#iterate(Object, BooleanSupplier, java.util.function.UnaryOperator) */ public static FloatStream iterate(final float init, final BooleanSupplier hasNext, final FloatUnaryOperator f) throws IllegalArgumentException { N.checkArgNotNull(hasNext); N.checkArgNotNull(f); return new IteratorFloatStream(new FloatIteratorEx() { private float cur = 0; private boolean isFirst = true; private boolean hasNextVal = false; @Override public boolean hasNext() { if (!hasNextVal) { hasNextVal = hasNext.getAsBoolean(); } return hasNextVal; } @Override public float nextFloat() { if (!hasNextVal && !hasNext()) { throw new NoSuchElementException(ERROR_MSG_FOR_NO_SUCH_EX); } hasNextVal = false; if (isFirst) { isFirst = false; cur = init; } else { cur = f.applyAsFloat(cur); } return cur; } }); } /** * Creates a stream that iterates from an initial value, applying a function to generate subsequent values, * and continues as long as a predicate is satisfied. * * @param init the initial value * @param hasNext determinate if the returned stream has next by hasNext.test(init) for first time and hasNext.test(f.apply(previous)) for remaining. * @param f a function to apply to the previous element to generate the next element * @return a FloatStream of elements generated by the iteration * @throws IllegalArgumentException if hasNext or f is null * @see Stream#iterate(Object, java.util.function.Predicate, java.util.function.UnaryOperator) */ public static FloatStream iterate(final float init, final FloatPredicate hasNext, final FloatUnaryOperator f) throws IllegalArgumentException { N.checkArgNotNull(hasNext); N.checkArgNotNull(f); return new IteratorFloatStream(new FloatIteratorEx() { private float cur = 0; private boolean isFirst = true; private boolean hasMore = true; private boolean hasNextVal = false; @Override public boolean hasNext() { if (!hasNextVal && hasMore) { if (isFirst) { isFirst = false; hasNextVal = hasNext.test(cur = init); } else { hasNextVal = hasNext.test(cur = f.applyAsFloat(cur)); } if (!hasNextVal) { hasMore = false; } } return hasNextVal; } @Override public float nextFloat() { if (!hasNextVal && !hasNext()) { throw new NoSuchElementException(ERROR_MSG_FOR_NO_SUCH_EX); } hasNextVal = false; return cur; } }); } /** * Creates a stream that iterates from an initial value, applying a function to generate subsequent values. * * @param init the initial value * @param f a function to apply to the previous element to generate the next element * @return a FloatStream of elements generated by the iteration * @throws IllegalArgumentException if f is null * @see Stream#iterate(Object, java.util.function.UnaryOperator) */ public static FloatStream iterate(final float init, final FloatUnaryOperator f) throws IllegalArgumentException { N.checkArgNotNull(f); return new IteratorFloatStream(new FloatIteratorEx() { private float cur = 0; private boolean isFirst = true; @Override public boolean hasNext() { return true; } @Override public float nextFloat() { if (isFirst) { isFirst = false; cur = init; } else { cur = f.applyAsFloat(cur); } return cur; } }); } /** * Generates a FloatStream using the provided FloatSupplier. * The supplier is used to generate each element of the stream. * * @param s the FloatSupplier that provides the elements of the stream * @return a FloatStream generated by the given supplier * @throws IllegalArgumentException if the supplier is null * @see Stream#generate(Supplier) */ public static FloatStream generate(final FloatSupplier s) throws IllegalArgumentException { N.checkArgNotNull(s); return new IteratorFloatStream(new FloatIteratorEx() { @Override public boolean hasNext() { return true; } @Override public float nextFloat() { return s.getAsFloat(); } }); } /** * Concatenates multiple arrays of floats into a single FloatStream. * * @param a the arrays of floats to concatenate * @return a FloatStream containing all the floats from the input arrays * @see Stream#concat(Object[][]) */ @SafeVarargs public static FloatStream concat(final float[]... a) { if (N.isEmpty(a)) { return empty(); } return concat(Arrays.asList(a)); } /** * Concatenates multiple FloatIterators into a single FloatStream. * * @param a the arrays of FloatIterator to concatenate * @return a FloatStream containing all the floats from the input FloatIterators * @see Stream#concat(Iterator[]) */ @SafeVarargs public static FloatStream concat(final FloatIterator... a) { if (N.isEmpty(a)) { return empty(); } return concatIterators(Array.asList(a)); } /** * Concatenates multiple FloatStreams into a single FloatStream. * * @param a the arrays of FloatStream to concatenate * @return a FloatStream containing all the floats from the input FloatStreams * @see Stream#concat(Stream[]) */ @SafeVarargs public static FloatStream concat(final FloatStream... a) { if (N.isEmpty(a)) { return empty(); } return concat(Array.asList(a)); } /** * Concatenates a list of float array into a single FloatStream. * * @param c the list of float array to concatenate * @return a FloatStream containing all the floats from the input list of float array * @see Stream#concat(Object[][]) */ @Beta public static FloatStream concat(final List c) { if (N.isEmpty(c)) { return empty(); } return of(new FloatIteratorEx() { private final Iterator iter = c.iterator(); private float[] cur; private int cursor = 0; @Override public boolean hasNext() { while ((N.isEmpty(cur) || cursor >= cur.length) && iter.hasNext()) { cur = iter.next(); cursor = 0; } return cur != null && cursor < cur.length; } @Override public float nextFloat() { if ((cur == null || cursor >= cur.length) && !hasNext()) { throw new NoSuchElementException(ERROR_MSG_FOR_NO_SUCH_EX); } return cur[cursor++]; } }); } /** * Concatenates a collection of FloatStream into a single FloatStream. * * @param streams the collection of FloatStream to concatenate * @return a FloatStream containing all the floats from the input collection of FloatStream * @see Stream#concat(Collection) */ public static FloatStream concat(final Collection streams) { return N.isEmpty(streams) ? empty() : new IteratorFloatStream(new FloatIteratorEx() { //NOSONAR private final Iterator iterators = streams.iterator(); private FloatStream cur; private FloatIterator iter; @Override public boolean hasNext() { while ((iter == null || !iter.hasNext()) && iterators.hasNext()) { if (cur != null) { cur.close(); } cur = iterators.next(); iter = cur == null ? null : cur.iteratorEx(); } return iter != null && iter.hasNext(); } @Override public float nextFloat() { if ((iter == null || !iter.hasNext()) && !hasNext()) { throw new NoSuchElementException(ERROR_MSG_FOR_NO_SUCH_EX); } return iter.nextFloat(); } }).onClose(newCloseHandler(streams)); } /** * Concatenates a collection of FloatIterator into a single FloatStream. * * @param floatIterators the collection of FloatIterator to concatenate * @return a FloatStream containing all the floats from the input collection of FloatIterator * @see Stream#concatIterators(Collection) */ @Beta public static FloatStream concatIterators(final Collection floatIterators) { if (N.isEmpty(floatIterators)) { return empty(); } return new IteratorFloatStream(new FloatIteratorEx() { private final Iterator iter = floatIterators.iterator(); private FloatIterator cur; @Override public boolean hasNext() { while ((cur == null || !cur.hasNext()) && iter.hasNext()) { cur = iter.next(); } return cur != null && cur.hasNext(); } @Override public float nextFloat() { if ((cur == null || !cur.hasNext()) && !hasNext()) { throw new NoSuchElementException(ERROR_MSG_FOR_NO_SUCH_EX); } return cur.nextFloat(); } }); } /** * Zips two float arrays into a single FloatStream until one of them runs out of values. * Each pair of values is combined into a single value using the supplied zipFunction. * * @param a the first float array * @param b the second float array * @param zipFunction the function to combine elements from both arrays * @return a FloatStream containing the results of applying the zip function to the elements of the input arrays * @see Stream#zip(Object[], Object[], BiFunction) */ public static FloatStream zip(final float[] a, final float[] b, final FloatBinaryOperator zipFunction) { if (N.isEmpty(a) || N.isEmpty(b)) { return empty(); } return new IteratorFloatStream(new FloatIteratorEx() { private final int len = N.min(N.len(a), N.len(b)); private int cursor = 0; @Override public boolean hasNext() { return cursor < len; } @Override public float nextFloat() { if (cursor >= len) { throw new NoSuchElementException(ERROR_MSG_FOR_NO_SUCH_EX); } return zipFunction.applyAsFloat(a[cursor], b[cursor++]); } }); } /** * Zips three float arrays into a single FloatStream until one of them runs out of values. * Each triple of values is combined into a single value using the supplied zipFunction. * * @param a the first float array * @param b the second float array * @param c the third float array * @param zipFunction the function to combine elements from all three arrays * @return a FloatStream containing the results of applying the zip function to the elements of the input arrays * @see Stream#zip(Object[], Object[], Object[], TriFunction) */ public static FloatStream zip(final float[] a, final float[] b, final float[] c, final FloatTernaryOperator zipFunction) { if (N.isEmpty(a) || N.isEmpty(b) || N.isEmpty(c)) { return empty(); } return new IteratorFloatStream(new FloatIteratorEx() { private final int len = N.min(N.len(a), N.len(b), N.len(c)); private int cursor = 0; @Override public boolean hasNext() { return cursor < len; } @Override public float nextFloat() { if (cursor >= len) { throw new NoSuchElementException(ERROR_MSG_FOR_NO_SUCH_EX); } return zipFunction.applyAsFloat(a[cursor], b[cursor], c[cursor++]); } }); } /** * Zips two FloatIterators into a single FloatStream until one of them runs out of values. * Each pair of values is combined into a single value using the supplied zipFunction. * * @param a the first FloatIterator * @param b the second FloatIterator * @param zipFunction the function to combine elements from both iterators * @return a FloatStream containing the results of applying the zip function to the elements of the input iterators * @see Stream#zip(Iterator, Iterator, BiFunction) */ public static FloatStream zip(final FloatIterator a, final FloatIterator b, final FloatBinaryOperator zipFunction) { return new IteratorFloatStream(new FloatIteratorEx() { private final FloatIterator iterA = a == null ? FloatIterator.empty() : a; private final FloatIterator iterB = b == null ? FloatIterator.empty() : b; @Override public boolean hasNext() { return iterA.hasNext() && iterB.hasNext(); } @Override public float nextFloat() { return zipFunction.applyAsFloat(iterA.nextFloat(), iterB.nextFloat()); } }); } /** * Zips three FloatIterators into a single FloatStream until one of them runs out of values. * Each triple of values is combined into a single value using the supplied zipFunction. * * @param a the first FloatIterator * @param b the second FloatIterator * @param c the third FloatIterator * @param zipFunction the function to combine elements from all three iterators * @return a FloatStream containing the results of applying the zip function to the elements of the input iterators * @see Stream#zip(Iterator, Iterator, Iterator, TriFunction) */ public static FloatStream zip(final FloatIterator a, final FloatIterator b, final FloatIterator c, final FloatTernaryOperator zipFunction) { return new IteratorFloatStream(new FloatIteratorEx() { private final FloatIterator iterA = a == null ? FloatIterator.empty() : a; private final FloatIterator iterB = b == null ? FloatIterator.empty() : b; private final FloatIterator iterC = c == null ? FloatIterator.empty() : c; @Override public boolean hasNext() { return iterA.hasNext() && iterB.hasNext() && iterC.hasNext(); } @Override public float nextFloat() { return zipFunction.applyAsFloat(iterA.nextFloat(), iterB.nextFloat(), iterC.nextFloat()); } }); } /** * Zips two FloatStreams into a single FloatStream until one of them runs out of values. * Each pair of values is combined into a single value using the supplied zipFunction. * * @param a the first FloatStream * @param b the second FloatStream * @param zipFunction the function to combine elements from both streams * @return a FloatStream containing the results of applying the zip function to the elements of the input streams * @see Stream#zip(Stream, Stream, BiFunction) */ public static FloatStream zip(final FloatStream a, final FloatStream b, final FloatBinaryOperator zipFunction) { return zip(iterate(a), iterate(b), zipFunction).onClose(newCloseHandler(a, b)); } /** * Zips three FloatStreams into a single FloatStream until one of them runs out of values. * Each triple of values is combined into a single value using the supplied zipFunction. * * @param a the first FloatStream * @param b the second FloatStream * @param c the third FloatStream * @param zipFunction the function to combine elements from all three streams * @return a FloatStream containing the results of applying the zip function to the elements of the input streams * @see Stream#zip(Stream, Stream, Stream, TriFunction) */ public static FloatStream zip(final FloatStream a, final FloatStream b, final FloatStream c, final FloatTernaryOperator zipFunction) { return zip(iterate(a), iterate(b), iterate(c), zipFunction).onClose(newCloseHandler(Array.asList(a, b, c))); } /** * Zips multiple FloatStreams into a single FloatStream until one of them runs out of values. * Each list of values is combined into a single value using the supplied zipFunction. * * @param streams the collection of FloatStream to zip * @param zipFunction the function to combine elements from all the streams * @return a FloatStream containing the results of applying the zip function to the elements of the input streams * @see Stream#zip(Collection, Function) */ public static FloatStream zip(final Collection streams, final FloatNFunction zipFunction) { //noinspection resource return Stream.zip(streams, zipFunction).mapToFloat(ToFloatFunction.UNBOX); } /** * Zips two float arrays into a single FloatStream until all of them runs out of values. * Each pair of values is combined into a single value using the supplied zipFunction. * If one array runs out of values before the other, the specified valueForNoneA or valueForNoneB is used. * * @param a the first float array * @param b the second float array * @param valueForNoneA the default value to use if the first array is shorter * @param valueForNoneB the default value to use if the second array is shorter * @param zipFunction the function to combine elements from both arrays * @return a FloatStream containing the results of applying the zip function to the elements of the input arrays * @see Stream#zip(Object[], Object[], Object, Object, BiFunction) */ public static FloatStream zip(final float[] a, final float[] b, final float valueForNoneA, final float valueForNoneB, final FloatBinaryOperator zipFunction) { if (N.isEmpty(a) && N.isEmpty(b)) { return empty(); } return new IteratorFloatStream(new FloatIteratorEx() { private final int aLen = N.len(a), bLen = N.len(b), len = N.max(aLen, bLen); private int cursor = 0; private float ret = 0; @Override public boolean hasNext() { return cursor < len; } @Override public float nextFloat() { if (cursor >= len) { throw new NoSuchElementException(ERROR_MSG_FOR_NO_SUCH_EX); } ret = zipFunction.applyAsFloat(cursor < aLen ? a[cursor] : valueForNoneA, cursor < bLen ? b[cursor] : valueForNoneB); cursor++; return ret; } }); } /** * Zips three float arrays into a single FloatStream until all of them runs out of values. * Each triple of values is combined into a single value using the supplied zipFunction. * If one array runs out of values before the other, the specified valueForNoneA, valueForNoneB or valueForNoneC is used. * * @param a the first float array * @param b the second float array * @param c the third float array * @param valueForNoneA the default value to use if the first array is shorter * @param valueForNoneB the default value to use if the second array is shorter * @param valueForNoneC the default value to use if the third array is shorter * @param zipFunction the function to combine elements from all three arrays * @return a FloatStream containing the results of applying the zip function to the elements of the input arrays * @see Stream#zip(Object[], Object[], Object[], Object, Object, Object, TriFunction) */ public static FloatStream zip(final float[] a, final float[] b, final float[] c, final float valueForNoneA, final float valueForNoneB, final float valueForNoneC, final FloatTernaryOperator zipFunction) { if (N.isEmpty(a) && N.isEmpty(b) && N.isEmpty(c)) { return empty(); } return new IteratorFloatStream(new FloatIteratorEx() { private final int aLen = N.len(a), bLen = N.len(b), cLen = N.len(c), len = N.max(aLen, bLen, cLen); private int cursor = 0; private float ret = 0; @Override public boolean hasNext() { return cursor < len; } @Override public float nextFloat() { if (cursor >= len) { throw new NoSuchElementException(ERROR_MSG_FOR_NO_SUCH_EX); } ret = zipFunction.applyAsFloat(cursor < aLen ? a[cursor] : valueForNoneA, cursor < bLen ? b[cursor] : valueForNoneB, cursor < cLen ? c[cursor] : valueForNoneC); cursor++; return ret; } }); } /** * Zips two FloatIterators into a single FloatStream until all of them runs out of values. * Each pair of values is combined into a single value using the supplied zipFunction. * If one iterator runs out of values before the other, the specified valueForNoneA or valueForNoneB is used. * * @param a the first FloatIterator * @param b the second FloatIterator * @param valueForNoneA the default value to use if the first iterator is shorter * @param valueForNoneB the default value to use if the second iterator is shorter * @param zipFunction the function to combine elements from both iterators * @return a FloatStream containing the results of applying the zip function to the elements of the input iterators * @see Stream#zip(Iterator, Iterator, Object, Object, BiFunction) */ public static FloatStream zip(final FloatIterator a, final FloatIterator b, final float valueForNoneA, final float valueForNoneB, final FloatBinaryOperator zipFunction) { return new IteratorFloatStream(new FloatIteratorEx() { private final FloatIterator iterA = a == null ? FloatIterator.empty() : a; private final FloatIterator iterB = b == null ? FloatIterator.empty() : b; @Override public boolean hasNext() { return iterA.hasNext() || iterB.hasNext(); } @Override public float nextFloat() { if (iterA.hasNext()) { return zipFunction.applyAsFloat(iterA.nextFloat(), iterB.hasNext() ? iterB.nextFloat() : valueForNoneB); } else { return zipFunction.applyAsFloat(valueForNoneA, iterB.nextFloat()); } } }); } /** * Zips three FloatIterators into a single FloatStream until all of them runs out of values. * Each triple of values is combined into a single value using the supplied zipFunction. * If one iterator runs out of values before the other, the specified valueForNoneA, valueForNoneB or valueForNoneC is used. * * @param a the first FloatIterator * @param b the second FloatIterator * @param c the third FloatIterator * @param valueForNoneA the default value to use if the first iterator is shorter * @param valueForNoneB the default value to use if the second iterator is shorter * @param valueForNoneC the default value to use if the third iterator is shorter * @param zipFunction the function to combine elements from all three iterators * @return a FloatStream containing the results of applying the zip function to the elements of the input iterators * @see Stream#zip(Iterator, Iterator, Iterator, Object, Object, Object, TriFunction) */ public static FloatStream zip(final FloatIterator a, final FloatIterator b, final FloatIterator c, final float valueForNoneA, final float valueForNoneB, final float valueForNoneC, final FloatTernaryOperator zipFunction) { return new IteratorFloatStream(new FloatIteratorEx() { private final FloatIterator iterA = a == null ? FloatIterator.empty() : a; private final FloatIterator iterB = b == null ? FloatIterator.empty() : b; private final FloatIterator iterC = c == null ? FloatIterator.empty() : c; @Override public boolean hasNext() { return iterA.hasNext() || iterB.hasNext() || iterC.hasNext(); } @Override public float nextFloat() { if (iterA.hasNext()) { return zipFunction.applyAsFloat(iterA.nextFloat(), iterB.hasNext() ? iterB.nextFloat() : valueForNoneB, iterC.hasNext() ? iterC.nextFloat() : valueForNoneC); } else if (iterB.hasNext()) { return zipFunction.applyAsFloat(valueForNoneA, iterB.nextFloat(), iterC.hasNext() ? iterC.nextFloat() : valueForNoneC); } else { return zipFunction.applyAsFloat(valueForNoneA, valueForNoneB, iterC.nextFloat()); } } }); } /** * Zips two FloatStreams into a single FloatStream until all of them runs out of values. * Each pair of values is combined into a single value using the supplied zipFunction. * If one stream runs out of values before the other, the specified valueForNoneA or valueForNoneB is used. * * @param a the first FloatStream * @param b the second FloatStream * @param valueForNoneA the default value to use if the first stream is shorter * @param valueForNoneB the default value to use if the second stream is shorter * @param zipFunction the function to combine elements from both streams * @return a FloatStream containing the results of applying the zip function to the elements of the input streams * @see Stream#zip(Stream, Stream, Object, Object, BiFunction) */ public static FloatStream zip(final FloatStream a, final FloatStream b, final float valueForNoneA, final float valueForNoneB, final FloatBinaryOperator zipFunction) { return zip(iterate(a), iterate(b), valueForNoneA, valueForNoneB, zipFunction).onClose(newCloseHandler(a, b)); } /** * Zips three FloatStreams into a single FloatStream until all of them runs out of values. * Each triple of values is combined into a single value using the supplied zipFunction. * If one stream runs out of values before the other, the specified valueForNoneA, valueForNoneB or valueForNoneC is used. * * @param a the first FloatStream * @param b the second FloatStream * @param c the third FloatStream * @param valueForNoneA the default value to use if the first stream is shorter * @param valueForNoneB the default value to use if the second stream is shorter * @param valueForNoneC the default value to use if the third stream is shorter * @param zipFunction the function to combine elements from all three streams * @return a FloatStream containing the results of applying the zip function to the elements of the input streams * @see Stream#zip(Stream, Stream, Stream, Object, Object, Object, TriFunction) */ public static FloatStream zip(final FloatStream a, final FloatStream b, final FloatStream c, final float valueForNoneA, final float valueForNoneB, final float valueForNoneC, final FloatTernaryOperator zipFunction) { return zip(iterate(a), iterate(b), iterate(c), valueForNoneA, valueForNoneB, valueForNoneC, zipFunction) .onClose(newCloseHandler(Array.asList(a, b, c))); } /** * Zips multiple FloatStreams into a single FloatStream until all of them runs out of values. * Each list of values is combined into a single value using the supplied zipFunction. * If one stream runs out of values before the other, the specified valuesForNone is used. * * @param streams the collection of FloatStream instances to zip * @param valuesForNone the default value to use if the corresponding stream is shorter * @param zipFunction the function to combine elements from all the streams * @return a FloatStream containing the results of applying the zip function to the elements of the input streams * @see Stream#zip(Collection, List, Function) */ public static FloatStream zip(final Collection streams, final float[] valuesForNone, final FloatNFunction zipFunction) { //noinspection resource return Stream.zip(streams, valuesForNone, zipFunction).mapToFloat(ToFloatFunction.UNBOX); } /** * Merges two float arrays into a single FloatStream based on the provided nextSelector function. * The nextSelector function determines which element to take next from the two arrays. * * @param a the first float array * @param b the second float array * @param nextSelector a function to determine which element should be selected as the next element. * The first parameter is selected if {@code MergeResult.TAKE_FIRST} is returned, otherwise the second parameter is selected. * @return a FloatStream containing the merged elements from the two input arrays * @see Stream#merge(Object[], Object[], BiFunction) */ public static FloatStream merge(final float[] a, final float[] b, final FloatBiFunction nextSelector) { if (N.isEmpty(a)) { return of(b); } else if (N.isEmpty(b)) { return of(a); } return new IteratorFloatStream(new FloatIteratorEx() { private final int lenA = a.length; private final int lenB = b.length; private int cursorA = 0; private int cursorB = 0; @Override public boolean hasNext() { return cursorA < lenA || cursorB < lenB; } @Override public float nextFloat() { if (cursorA < lenA) { if ((cursorB >= lenB) || (nextSelector.apply(a[cursorA], b[cursorB]) == MergeResult.TAKE_FIRST)) { return a[cursorA++]; } else { return b[cursorB++]; } } else if (cursorB < lenB) { return b[cursorB++]; } else { throw new NoSuchElementException(ERROR_MSG_FOR_NO_SUCH_EX); } } }); } /** * Merges three float arrays into a single FloatStream based on the provided nextSelector function. * The nextSelector function determines which element to take next from the three arrays. * * @param a the first float array * @param b the second float array * @param c the third float array * @param nextSelector a function to determine which element should be selected as the next element. * The first parameter is selected if {@code MergeResult.TAKE_FIRST} is returned, otherwise the second parameter is selected. * @return a FloatStream containing the merged elements from the three input arrays * @see Stream#merge(Object[], Object[], Object[], BiFunction) */ public static FloatStream merge(final float[] a, final float[] b, final float[] c, final FloatBiFunction nextSelector) { //noinspection resource return merge(merge(a, b, nextSelector).iteratorEx(), FloatStream.of(c).iteratorEx(), nextSelector); } /** * Merges two FloatIterators into a single FloatStream based on the provided nextSelector function. * The nextSelector function determines which element to take next from the two iterators. * * @param a the first FloatIterator * @param b the second FloatIterator * @param nextSelector a function to determine which element should be selected as the next element. * The first parameter is selected if {@code MergeResult.TAKE_FIRST} is returned, otherwise the second parameter is selected. * @return a FloatStream containing the merged elements from the two input iterators * @see Stream#merge(Iterator, Iterator, BiFunction) */ public static FloatStream merge(final FloatIterator a, final FloatIterator b, final FloatBiFunction nextSelector) { return new IteratorFloatStream(new FloatIteratorEx() { private final FloatIterator iterA = a == null ? FloatIterator.empty() : a; private final FloatIterator iterB = b == null ? FloatIterator.empty() : b; private float nextA = 0; private float nextB = 0; private boolean hasNextA = false; private boolean hasNextB = false; @Override public boolean hasNext() { return iterA.hasNext() || iterB.hasNext() || hasNextA || hasNextB; } @Override public float nextFloat() { if (hasNextA) { if (iterB.hasNext()) { if (nextSelector.apply(nextA, (nextB = iterB.nextFloat())) == MergeResult.TAKE_FIRST) { hasNextA = false; hasNextB = true; return nextA; } else { return nextB; } } else { hasNextA = false; return nextA; } } else if (hasNextB) { if (iterA.hasNext()) { if (nextSelector.apply((nextA = iterA.nextFloat()), nextB) == MergeResult.TAKE_FIRST) { return nextA; } else { hasNextA = true; hasNextB = false; return nextB; } } else { hasNextB = false; return nextB; } } else if (iterA.hasNext()) { if (iterB.hasNext()) { if (nextSelector.apply((nextA = iterA.nextFloat()), (nextB = iterB.nextFloat())) == MergeResult.TAKE_FIRST) { hasNextB = true; return nextA; } else { hasNextA = true; return nextB; } } else { return iterA.nextFloat(); } } else if (iterB.hasNext()) { return iterB.nextFloat(); } else { throw new NoSuchElementException(ERROR_MSG_FOR_NO_SUCH_EX); } } }); } /** * Merges three FloatIterators into a single FloatStream based on the provided nextSelector function. * The nextSelector function determines which element to take next from the three iterators. * * @param a the first FloatIterator * @param b the second FloatIterator * @param c the third FloatIterator * @param nextSelector a function to determine which element should be selected as the next element. * The first parameter is selected if {@code MergeResult.TAKE_FIRST} is returned, otherwise the second parameter is selected. * @return a FloatStream containing the merged elements from the three input iterators * @see Stream#merge(Iterator, Iterator, Iterator, BiFunction) */ public static FloatStream merge(final FloatIterator a, final FloatIterator b, final FloatIterator c, final FloatBiFunction nextSelector) { //noinspection resource return merge(merge(a, b, nextSelector).iteratorEx(), c, nextSelector); } /** * Merges two FloatStreams into a single FloatStream based on the provided nextSelector function. * The nextSelector function determines which element to take next from the two streams. * * @param a the first FloatStream * @param b the second FloatStream * @param nextSelector a function to determine which element should be selected as the next element. * The first parameter is selected if {@code MergeResult.TAKE_FIRST} is returned, otherwise the second parameter is selected. * @return a FloatStream containing the merged elements from the two input streams * @see Stream#merge(Stream, Stream, BiFunction) */ public static FloatStream merge(final FloatStream a, final FloatStream b, final FloatBiFunction nextSelector) { return merge(iterate(a), iterate(b), nextSelector).onClose(newCloseHandler(a, b)); } /** * Merges three FloatStreams into a single FloatStream based on the provided nextSelector function. * The nextSelector function determines which element to take next from the three streams. * * @param a the first FloatStream * @param b the second FloatStream * @param c the third FloatStream * @param nextSelector a function to determine which element should be selected as the next element. * The first parameter is selected if {@code MergeResult.TAKE_FIRST} is returned, otherwise the second parameter is selected. * @return a FloatStream containing the merged elements from the three input streams * @see Stream#merge(Stream, Stream, Stream, BiFunction) */ public static FloatStream merge(final FloatStream a, final FloatStream b, final FloatStream c, final FloatBiFunction nextSelector) { return merge(merge(a, b, nextSelector), c, nextSelector); } /** * Merges a collection of FloatStream into a single FloatStream based on the provided nextSelector function. * The nextSelector function determines which element to take next from the multiple streams. * * @param streams the collection of FloatStream instances to merge * @param nextSelector a function to determine which element should be selected as the next element. * The first parameter is selected if {@code MergeResult.TAKE_FIRST} is returned, otherwise the second parameter is selected. * @return a FloatStream containing the merged elements from the input FloatStreams * @see Stream#merge(Collection, BiFunction) */ public static FloatStream merge(final Collection streams, final FloatBiFunction nextSelector) { if (N.isEmpty(streams)) { return empty(); } else if (streams.size() == 1) { return streams.iterator().next(); } else if (streams.size() == 2) { final Iterator iter = streams.iterator(); return merge(iter.next(), iter.next(), nextSelector); } final Iterator iter = streams.iterator(); FloatStream result = merge(iter.next(), iter.next(), nextSelector); while (iter.hasNext()) { result = merge(result, iter.next(), nextSelector); } return result; } // /** // * Merges a collection of FloatStream into a single FloatStream in parallel. // * All the elements from each input FloatStream will be merged into two queues by multiple threads first. // * Then these two new queues will be merged into one FloatStream in current thread. // * This method is not totally lazy evaluation and may cause out of memory error if there are too many elements merged into the two new queues. // * Consider using {@code merge}, which is totally lazy evaluation. // * // * @param streams the collection of FloatStream to be merged // * @param nextSelector a function to determine which element should be selected as next element. // * @return a FloatStream containing the merged elements from the input FloatStreams // * @see Stream#parallelMerge(Collection, BiFunction) // */ // public static FloatStream parallelMerge(final Collection streams, final FloatBiFunction nextSelector) { // return parallelMerge(streams, nextSelector, DEFAULT_MAX_THREAD_NUM); // } // // /** // * Merges a collection of FloatStream into a single FloatStream in parallel. // * All the elements from each input FloatStream will be merged into two queues by multiple threads first. // * Then these two new queues will be merged into one FloatStream in current thread. // * This method is not totally lazy evaluation and may cause out of memory error if there are too many elements merged into the two new queues. // * Consider using {@code merge}, which is totally lazy evaluation. // * // * @param streams the collection of FloatStream to be merged // * @param nextSelector a function to determine which element should be selected as next element. // * @param maxThreadNum the max thread number for the parallel merge. // * @return a FloatStream containing the merged elements from the input FloatStreams // * @see Stream#parallelMerge(Collection, BiFunction, int) // */ // public static FloatStream parallelMerge(final Collection streams, final FloatBiFunction nextSelector, // final int maxThreadNum) throws IllegalArgumentException { // N.checkArgument(maxThreadNum > 0, "'maxThreadNum' must not less than 1"); // // if (maxThreadNum <= 1) { // return merge(streams, nextSelector); // } else if (N.isEmpty(streams)) { // return empty(); // } else if (streams.size() == 1) { // return streams.iterator().next(); // } else if (streams.size() == 2) { // final Iterator iter = streams.iterator(); // return merge(iter.next(), iter.next(), nextSelector); // } else if (streams.size() == 3) { // final Iterator iter = streams.iterator(); // return merge(iter.next(), iter.next(), iter.next(), nextSelector); // } // // final Supplier supplier = () -> { // final Queue queue = N.newLinkedList(); // // queue.addAll(streams); // // final Holder eHolder = new Holder<>(); // final MutableInt cnt = MutableInt.of(streams.size()); // final List> futureList = new ArrayList<>(streams.size() - 1); // // final int threadNum = N.min(maxThreadNum, streams.size() / 2 + 1); // // AsyncExecutor asyncExecutorToUse = checkAsyncExecutor(DEFAULT_ASYNC_EXECUTOR, threadNum, 0); // // for (int i = 0; i < threadNum; i++) { // asyncExecutorToUse = execute(asyncExecutorToUse, threadNum, 0, i, futureList, () -> { // FloatStream a = null; // FloatStream b = null; // FloatStream c1 = null; // // try { // while (eHolder.value() == null) { // synchronized (queue) { // if (cnt.value() > 2 && queue.size() > 1) { // a = queue.poll(); // b = queue.poll(); // // cnt.decrement(); // } else { // break; // } // } // // c1 = FloatStream.of(merge(a, b, nextSelector).toArray()); // // synchronized (queue) { // queue.offer(c1); // } // } // } catch (final Throwable e) { // NOSONAR // setError(eHolder, e); // } // }); // } // // completeAndShutdownTempExecutor(futureList, eHolder, streams, asyncExecutorToUse); // // return merge(queue.poll(), queue.poll(), nextSelector); // }; // // return Stream.just(supplier).flatMapToFloat(Supplier::get); // } public abstract static class FloatStreamEx extends FloatStream { private FloatStreamEx(final boolean sorted, final Collection closeHandlers) { //NOSONAR super(sorted, closeHandlers); } } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy