
com.landawn.abacus.util.stream.DoubleStream Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of abacus-common Show documentation
Show all versions of abacus-common Show documentation
A general programming library in Java/Android. It's easy to learn and simple to use with concise and powerful APIs.
The newest version!
/*
* Copyright (C) 2016, 2017, 2018, 2019 HaiYang Li
*
* Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except
* in compliance with the License. You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software distributed under the License
* is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express
* or implied. See the License for the specific language governing permissions and limitations under
* the License.
*/
package com.landawn.abacus.util.stream;
import java.nio.DoubleBuffer;
import java.security.SecureRandom;
import java.util.Arrays;
import java.util.Collection;
import java.util.Comparator;
import java.util.DoubleSummaryStatistics;
import java.util.Iterator;
import java.util.List;
import java.util.Map;
import java.util.NoSuchElementException;
import java.util.PrimitiveIterator;
import java.util.Random;
import java.util.function.BiConsumer;
import java.util.function.BiFunction;
import java.util.function.BiPredicate;
import java.util.function.BinaryOperator;
import java.util.function.BooleanSupplier;
import java.util.function.DoubleBinaryOperator;
import java.util.function.DoubleConsumer;
import java.util.function.DoubleFunction;
import java.util.function.DoublePredicate;
import java.util.function.DoubleSupplier;
import java.util.function.DoubleToIntFunction;
import java.util.function.DoubleToLongFunction;
import java.util.function.DoubleUnaryOperator;
import java.util.function.Function;
import java.util.function.ObjDoubleConsumer;
import java.util.function.Supplier;
import java.util.stream.Collector;
import com.landawn.abacus.annotation.*;
import com.landawn.abacus.util.Array;
import com.landawn.abacus.util.DoubleIterator;
import com.landawn.abacus.util.DoubleList;
import com.landawn.abacus.util.Fn.BiConsumers;
import com.landawn.abacus.util.Fn.FD;
import com.landawn.abacus.util.IndexedDouble;
import com.landawn.abacus.util.MergeResult;
import com.landawn.abacus.util.N;
import com.landawn.abacus.util.Pair;
import com.landawn.abacus.util.Percentage;
import com.landawn.abacus.util.Throwables;
import com.landawn.abacus.util.cs;
import com.landawn.abacus.util.function.*;
import com.landawn.abacus.util.u.Optional;
import com.landawn.abacus.util.u.OptionalDouble;
/**
* The DoubleStream class is an abstract class that represents a stream of double elements and supports different kinds of computations.
* The Stream operations are divided into intermediate and terminal operations, and are combined to form stream pipelines.
*
*
* The Stream will be automatically closed after a terminal method is called/triggered.
*
*
*
* Refer to {@code com.landawn.abacus.util.stream.BaseStream} and {@code com.landawn.abacus.util.stream.Stream} for more APIs docs.
*
* @see Stream
* @see BaseStream
*/
@Immutable
@LazyEvaluation
public abstract class DoubleStream
extends StreamBase {
static final Random RAND = new SecureRandom();
DoubleStream(final boolean sorted, final Collection closeHandlers) {
super(sorted, null, closeHandlers);
}
/**
*
* @param mapper
* @return
*/
@ParallelSupported
@IntermediateOp
public abstract DoubleStream map(DoubleUnaryOperator mapper);
/**
*
* @param mapper
* @return
*/
@ParallelSupported
@IntermediateOp
public abstract IntStream mapToInt(DoubleToIntFunction mapper);
/**
*
* @param mapper
* @return
*/
@ParallelSupported
@IntermediateOp
public abstract LongStream mapToLong(DoubleToLongFunction mapper);
/**
*
* @param mapper
* @return
*/
@ParallelSupported
@IntermediateOp
public abstract FloatStream mapToFloat(DoubleToFloatFunction mapper);
/**
*
* @param
* @param mapper
* @return
*/
@ParallelSupported
@IntermediateOp
public abstract Stream mapToObj(DoubleFunction extends T> mapper);
/**
*
* @param mapper
* @return
*/
@ParallelSupported
@IntermediateOp
public abstract DoubleStream flatMap(DoubleFunction extends DoubleStream> mapper);
// public abstract DoubleStream flatmap(DoubleFunction mapper);
/**
*
* @param mapper
* @return
*/
@ParallelSupported
@IntermediateOp
public abstract DoubleStream flatmap(DoubleFunction mapper); //NOSONAR
/**
*
* @param mapper
* @return
* @deprecated should use {@code flatmapToObj(DoubleFunction extends Collection extends T>> mapper)} instead
* @see #flatmapToObj(DoubleFunction)
*/
@Deprecated
@ParallelSupported
@IntermediateOp
DoubleStream flattMap(@SuppressWarnings("unused") final DoubleFunction extends Collection> mapper) throws UnsupportedOperationException { // NOSONAR
throw new UnsupportedOperationException();
}
/**
*
* @param mapper
* @return
*/
@Beta
@ParallelSupported
@IntermediateOp
public abstract DoubleStream flattmap(DoubleFunction extends java.util.stream.DoubleStream> mapper); //NOSONAR
/**
*
* @param mapper
* @return
*/
@ParallelSupported
@IntermediateOp
public abstract IntStream flatMapToInt(DoubleFunction extends IntStream> mapper);
/**
*
* @param mapper
* @return
*/
@ParallelSupported
@IntermediateOp
public abstract LongStream flatMapToLong(DoubleFunction extends LongStream> mapper);
/**
*
* @param mapper
* @return
*/
@ParallelSupported
@IntermediateOp
public abstract FloatStream flatMapToFloat(DoubleFunction extends FloatStream> mapper);
/**
*
* @param
* @param mapper
* @return
*/
@ParallelSupported
@IntermediateOp
public abstract Stream flatMapToObj(DoubleFunction extends Stream extends T>> mapper);
/**
*
* @param
* @param mapper
* @return
*/
@ParallelSupported
@IntermediateOp
public abstract Stream flatmapToObj(DoubleFunction extends Collection extends T>> mapper); //NOSONAR
/**
*
* @param
* @param mapper
* @return
*/
@Beta
@ParallelSupported
@IntermediateOp
public abstract Stream flattMapToObj(DoubleFunction mapper);
/**
*
* @param mapper
* @return
*/
@ParallelSupported
@IntermediateOp
public abstract DoubleStream mapMulti(DoubleMapMultiConsumer mapper);
/**
* Note: copied from StreamEx: StreamEx
*
* @param mapper
* @return
*/
@Beta
@ParallelSupported
@IntermediateOp
public abstract DoubleStream mapPartial(DoubleFunction mapper);
/**
* Note: copied from StreamEx: StreamEx
*
* @param mapper
* @return
*/
@Beta
@ParallelSupported
@IntermediateOp
public abstract DoubleStream mapPartialJdk(DoubleFunction mapper);
/**
* Note: copied from StreamEx: StreamEx
*
*
* Returns a stream consisting of results of applying the given function to
* the ranges created from the source elements.
* This is a quasi-intermediate
* partial reduction operation.
*
* @param sameRange a non-interfering, stateless predicate to apply to
* the leftmost and next elements which returns {@code true} for elements
* which belong to the same range.
* @param mapper a non-interfering, stateless function to apply to the
* range borders and produce the resulting element. If the value was
* not merged to the interval, then mapper will receive the same
* value twice, otherwise it will receive the leftmost and the
* rightmost values which were merged to the range.
* @return
* @see #collapse(DoubleBiPredicate, DoubleBinaryOperator)
* @see Stream#rangeMap(BiPredicate, BiFunction)
*/
@SequentialOnly
@IntermediateOp
public abstract DoubleStream rangeMap(final DoubleBiPredicate sameRange, final DoubleBinaryOperator mapper);
/**
* Note: copied from StreamEx: StreamEx
*
*
* Returns a stream consisting of results of applying the given function to
* the ranges created from the source elements.
* This is a quasi-intermediate
* partial reduction operation.
*
* @param
* @param sameRange a non-interfering, stateless predicate to apply to
* the leftmost and next elements which returns {@code true} for elements
* which belong to the same range.
* @param mapper a non-interfering, stateless function to apply to the
* range borders and produce the resulting element. If the value was
* not merged to the interval, then mapper will receive the same
* value twice, otherwise it will receive the leftmost and the
* rightmost values which were merged to the range.
* @return
* @see Stream#rangeMap(BiPredicate, BiFunction)
*/
@SequentialOnly
@IntermediateOp
public abstract Stream rangeMapToObj(final DoubleBiPredicate sameRange, final DoubleBiFunction extends T> mapper);
/**
* Merges a series of adjacent elements in the stream which satisfy the given predicate into a List.
* The predicate takes two parameters: the previous element and the current element in the stream.
* If the predicate returns {@code true}, the current element and its previous element are considered as a series of adjacent elements.
* These elements are then collapsed into a List.
*
* This is an intermediate operation, meaning it's always lazy. It doesn't start processing the data until a terminal operation is invoked on the stream pipeline.
* It's also a stateful operation since it needs to remember the previous element when processing the current element.
*
* This operation is not parallelizable and requires the stream to be ordered.
*
* @param collapsible a BiPredicate that takes two parameters: the previous element and the current element in the stream.
* @return a new Stream where each element is a List of adjacent elements which satisfy the given predicate.
* @see Stream#collapse(BiPredicate)
*/
@SequentialOnly
@IntermediateOp
public abstract Stream collapse(final DoubleBiPredicate collapsible);
/**
* Merges a series of adjacent elements in the stream which satisfy the given predicate using the merger function and returns a new stream.
* The predicate takes two parameters: the previous element and the current element in the stream.
* If the predicate returns {@code true}, the current element and its previous element are considered as a series of adjacent elements.
* These elements are then merged using the provided BiFunction.
*
* This is an intermediate operation, meaning it's always lazy. It doesn't start processing the data until a terminal operation is invoked on the stream pipeline.
* It's also a stateful operation since it needs to remember the previous element when processing the current element.
*
* This operation is not parallelizable and requires the stream to be ordered.
*
* @param collapsible a BiPredicate that takes two parameters: the previous element and the current element in the stream.
* @param mergeFunction a BiFunction that takes two parameters: the result of the previous merge operation (or the first element if no merge has been performed yet) and the current element, and returns the result of the merge operation.
* @return a new Stream where each element is the result of merging adjacent elements which satisfy the given predicate.
* @see Stream#collapse(BiPredicate, BiFunction)
*/
@SequentialOnly
@IntermediateOp
public abstract DoubleStream collapse(final DoubleBiPredicate collapsible, final DoubleBinaryOperator mergeFunction);
/**
* Merges a series of adjacent elements in the stream which satisfy the given predicate into a single element and returns a new stream.
* The predicate takes three parameters: the first element of the series, the previous element and the current element in the stream.
* If the predicate returns {@code true}, the current element, its previous element and the first element of the series are considered as a series of adjacent elements.
* These elements are then collapsed into a single element using the provided merge function.
*
* This is an intermediate operation, meaning it's always lazy. It doesn't start processing the data until a terminal operation is invoked on the stream pipeline.
* It's also a stateful operation since it needs to remember the first and previous elements when processing the current element.
*
* This operation is not parallelizable and requires the stream to be ordered.
*
* @param collapsible a TriPredicate that takes three parameters: the first element of the series, the previous element and the current element in the stream.
* @param mergeFunction a BiFunction that takes two parameters: the current element and its previous element. It returns a single element that represents the collapsed elements.
* @return a new Stream where each element is the result of collapsing adjacent elements which satisfy the given predicate.
* @see Stream#collapse(TriPredicate, BiFunction)
*/
@SequentialOnly
@IntermediateOp
public abstract DoubleStream collapse(final DoubleTriPredicate collapsible, final DoubleBinaryOperator mergeFunction);
/**
* Performs a scan (also known as prefix sum, cumulative sum, running total, or integral) operation on the elements of the stream.
* The scan operation takes a binary operator (the accumulator) and applies it cumulatively on the stream elements,
* successively combining each element in order from the start to produce a stream of accumulated results.
*
* For example, given a stream of numbers [1, 2, 3, 4], and an accumulator that performs addition,
* the output would be a stream of numbers [1, 3, 6, 10].
*
* This is an intermediate operation.
* This operation is sequential only, even when called on a parallel stream.
*
* @param accumulator a {@code DoubleBinaryOperator} that takes two parameters: the current accumulated value and the current stream element, and returns a new accumulated value.
* @return a new {@code DoubleStream} consisting of the results of the scan operation on the elements of the original stream.
* @see Stream#scan(BiFunction)
*/
@SequentialOnly
@IntermediateOp
public abstract DoubleStream scan(final DoubleBinaryOperator accumulator);
/**
* Performs a scan (also known as prefix sum, cumulative sum, running total, or integral) operation on the elements of the stream.
* The scan operation takes an initial value and a binary operator (the accumulator) and applies it cumulatively on the stream elements,
* successively combining each element in order from the start to produce a stream of accumulated results.
*
* For example, given a stream of numbers [1, 2, 3, 4], an initial value of 10, and an accumulator that performs addition,
* the output would be a stream of numbers [11, 13, 16, 20].
* This is an intermediate operation.
* This operation is sequential only, even when called on a parallel stream.
*
* @param init the initial value. It's only used once by the accumulator to calculate the first element in the returned stream.
* It will be ignored if this stream is empty and won't be the first element of the returned stream.
* @param accumulator a {@code DoubleBinaryOperator} that takes two parameters: the current accumulated value and the current stream element, and returns a new accumulated value.
* @return a new {@code DoubleStream} consisting of the results of the scan operation on the elements of the original stream.
* @see Stream#scan(Object, BiFunction)
*/
@SequentialOnly
@IntermediateOp
public abstract DoubleStream scan(final double init, final DoubleBinaryOperator accumulator);
/**
* Performs a scan (also known as prefix sum, cumulative sum, running total, or integral) operation on the elements of the stream.
* The scan operation takes an initial value and a binary operator (the accumulator) and applies it cumulatively on the stream elements,
* successively combining each element in order from the start to produce a stream of accumulated results.
*
* This is an intermediate operation.
* This operation is sequential only, even when called on a parallel stream.
*
* @param init the initial value. It's only used once by the accumulator to calculate the first element in the returned stream.
* @param initIncluded a boolean value that determines if the initial value should be included as the first element in the returned stream.
* @param accumulator a {@code DoubleBinaryOperator} that takes two parameters: the current accumulated value and the current stream element, and returns a new accumulated value.
* @return a new {@code DoubleStream} consisting of the results of the scan operation on the elements of the original stream.
* @see Stream#scan(Object, boolean, BiFunction)
*/
@SequentialOnly
@IntermediateOp
public abstract DoubleStream scan(final double init, final boolean initIncluded, final DoubleBinaryOperator accumulator);
/**
*
* @param a
* @return
*/
@SequentialOnly
@IntermediateOp
public abstract DoubleStream prepend(final double... a);
/**
*
* @param a
* @return
*/
@SequentialOnly
@IntermediateOp
public abstract DoubleStream append(final double... a);
/**
*
* @param a
* @return
*/
@SequentialOnly
@IntermediateOp
public abstract DoubleStream appendIfEmpty(final double... a);
/**
*
* This method only runs sequentially, even in parallel stream.
*
* @param n
* @return
*/
@SequentialOnly
@IntermediateOp
public abstract DoubleStream top(int n);
/**
*
* This method only runs sequentially, even in parallel stream.
*
* @param n
* @param comparator
* @return
*/
@SequentialOnly
@IntermediateOp
public abstract DoubleStream top(final int n, Comparator super Double> comparator);
@SequentialOnly
@TerminalOp
public abstract DoubleList toDoubleList();
/**
*
* @param
* @param
* @param
* @param
* @param keyMapper
* @param valueMapper
* @return
* @throws E
* @throws E2
* @see Collectors#toMap(Function, Function)
*/
@ParallelSupported
@TerminalOp
public abstract Map toMap(Throwables.DoubleFunction extends K, E> keyMapper,
Throwables.DoubleFunction extends V, E2> valueMapper) throws E, E2;
/**
*
* @param
* @param
* @param
* @param
* @param
* @param keyMapper
* @param valueMapper
* @param mapFactory
* @return
* @throws E
* @throws E2
* @see Collectors#toMap(Function, Function, Supplier)
*/
@ParallelSupported
@TerminalOp
public abstract , E extends Exception, E2 extends Exception> M toMap(Throwables.DoubleFunction extends K, E> keyMapper,
Throwables.DoubleFunction extends V, E2> valueMapper, Supplier extends M> mapFactory) throws E, E2;
/**
*
* @param
* @param
* @param
* @param
* @param keyMapper
* @param valueMapper
* @param mergeFunction
* @return
* @throws E
* @throws E2
* @see Collectors#toMap(Function, Function, BinaryOperator)
*/
@ParallelSupported
@TerminalOp
public abstract Map toMap(Throwables.DoubleFunction extends K, E> keyMapper,
Throwables.DoubleFunction extends V, E2> valueMapper, BinaryOperator mergeFunction) throws E, E2;
/**
*
* @param
* @param
* @param
* @param
* @param
* @param keyMapper
* @param valueMapper
* @param mergeFunction
* @param mapFactory
* @return
* @throws E
* @throws E2
* @see Collectors#toMap(Function, Function, BinaryOperator, Supplier)
*/
@ParallelSupported
@TerminalOp
public abstract , E extends Exception, E2 extends Exception> M toMap(Throwables.DoubleFunction extends K, E> keyMapper,
Throwables.DoubleFunction extends V, E2> valueMapper, BinaryOperator mergeFunction, Supplier extends M> mapFactory) throws E, E2;
/**
*
* @param
* @param
* @param
* @param keyMapper
* @param downstream
* @return
* @throws E
* @see Collectors#groupingBy(Function, Collector)
*/
@ParallelSupported
@TerminalOp
public abstract Map groupTo(Throwables.DoubleFunction extends K, E> keyMapper,
final Collector super Double, ?, D> downstream) throws E;
/**
*
* @param
* @param
* @param
* @param
* @param keyMapper
* @param downstream
* @param mapFactory
* @return
* @throws E
* @see Collectors#groupingBy(Function, Collector, Supplier)
*/
@ParallelSupported
@TerminalOp
public abstract , E extends Exception> M groupTo(Throwables.DoubleFunction extends K, E> keyMapper,
final Collector super Double, ?, D> downstream, final Supplier extends M> mapFactory) throws E;
/**
* Performs a reduction on the elements of this stream, using the provided accumulator function, and returns the reduced value.
* The accumulator function takes two parameters: the current reduced value (or the initial value for the first element), and the current stream element.
*
* @param identity the initial value of the reduction operation
* @param op the function for combining the current reduced value and the current stream element
* @return the result of the reduction
* @see Stream#reduce(Object, BinaryOperator)
*/
@ParallelSupported
@TerminalOp
public abstract double reduce(double identity, DoubleBinaryOperator op);
/**
* Performs a reduction on the elements of this stream, using the provided accumulator function, and returns the reduced value.
* The accumulator function takes two parameters: the current reduced value and the current stream element.
*
* @param op the function for combining the current reduced value and the current stream element
* @return an OptionalDouble describing the result of the reduction. If the stream is empty, an empty OptionalDouble is returned.
* @see Stream#reduce(BinaryOperator)
*/
@ParallelSupported
@TerminalOp
public abstract OptionalDouble reduce(DoubleBinaryOperator op);
/**
* Performs a mutable reduction operation on the elements of this stream using a Collector.
*
* @param The type of the result
* @param supplier a function that creates a new result container. For a parallel execution, this function may be called multiple times and must return a fresh value each time.
* @param accumulator an associative, non-interfering, stateless function for incorporating an additional element into a result
* @param combiner an associative, non-interfering, stateless function for combining two values, which must be compatible with the accumulator function.
* It's unnecessary to specify {@code combiner} if {@code R} is a {@code Map/Collection/StringBuilder/Multiset/LongMultiset/Multimap/BooleanList/IntList/.../DoubleList}.
* @return the result of the reduction
* @see Stream#collect(Supplier, BiConsumer, BiConsumer)
* @see BiConsumers#ofAddAll()
* @see BiConsumers#ofPutAll()
*/
@ParallelSupported
@TerminalOp
public abstract R collect(Supplier supplier, ObjDoubleConsumer super R> accumulator, BiConsumer combiner);
/**
* Performs a mutable reduction operation on the elements of this stream using a Collector.
*
*
* Only call this method when the returned type {@code R} is one types: {@code Collection/Map/StringBuilder/Multiset/LongMultiset/Multimap/BooleanList/IntList/.../DoubleList}.
* Otherwise, please call {@link #collect(Supplier, ObjDoubleConsumer, BiConsumer)}.
*
* @param The type of the result. It must be {@code Collection/Map/StringBuilder/Multiset/LongMultiset/Multimap/BooleanList/IntList/.../DoubleList}.
* @param supplier A function that creates a new result container. For a parallel execution, this function may be called multiple times and must return a fresh value each time.
* @param accumulator An associative, non-interfering, stateless function for incorporating an additional element into a result.
* @throws IllegalArgumentException if the returned type {@code R} is not one of the types: {@code Collection/Map/StringBuilder/Multiset/LongMultiset/Multimap/BooleanList/IntList/.../DoubleList}.
* @return the result of the reduction
* @see #collect(Supplier, ObjDoubleConsumer, BiConsumer)
* @see Stream#collect(Supplier, BiConsumer)
* @see Stream#collect(Supplier, BiConsumer, BiConsumer)
*/
@ParallelSupported
@TerminalOp
public abstract R collect(Supplier supplier, ObjDoubleConsumer super R> accumulator);
/**
*
* @param action
*/
@ParallelSupported
@TerminalOp
public void foreach(final DoubleConsumer action) { // NOSONAR
forEach(action::accept);
}
/**
*
* @param
* @param action
* @throws E
*/
@ParallelSupported
@TerminalOp
public abstract void forEach(final Throwables.DoubleConsumer action) throws E; //NOSONAR
/**
*
* @param
* @param action
* @throws E
*/
@ParallelSupported
@TerminalOp
public abstract void forEachIndexed(Throwables.IntDoubleConsumer action) throws E;
/**
*
* @param
* @param predicate
* @return
* @throws E
*/
@ParallelSupported
@TerminalOp
public abstract boolean anyMatch(final Throwables.DoublePredicate predicate) throws E;
/**
*
* @param
* @param predicate
* @return
* @throws E
*/
@ParallelSupported
@TerminalOp
public abstract boolean allMatch(final Throwables.DoublePredicate predicate) throws E;
/**
*
* @param
* @param predicate
* @return
* @throws E
*/
@ParallelSupported
@TerminalOp
public abstract boolean noneMatch(final Throwables.DoublePredicate predicate) throws E;
/**
*
* @param
* @param predicate
* @return
* @throws E
*/
@ParallelSupported
@TerminalOp
public abstract OptionalDouble findFirst(final Throwables.DoublePredicate predicate) throws E;
/**
*
* @param
* @param predicate
* @return
* @throws E
*/
@ParallelSupported
@TerminalOp
public abstract OptionalDouble findAny(final Throwables.DoublePredicate predicate) throws E;
/**
* Consider using: {@code stream.reversed().findFirst(predicate)} for better performance if possible.
*
* @param
* @param predicate
* @return
* @throws E
*/
@Beta
@ParallelSupported
@TerminalOp
public abstract OptionalDouble findLast(final Throwables.DoublePredicate predicate) throws E;
// /**
// * Returns the first element matched by {@code predicateForFirst} if found or the first element if this stream is not empty.
// * Otherwise, an empty {@code OptionalDouble} will be returned.
// *
// * @param
// * @param predicateForFirst
// * @return
// * @throws E
// */
// @ParallelSupported
// @TerminalOp
// public abstract OptionalDouble findFirstOrElseAny(Throwables.DoublePredicate predicateForFirst) throws E;
//
// /**
// * Returns the first element matched by {@code predicateForFirst} if found or the last element if this stream is not empty.
// * Otherwise, an empty {@code OptionalDouble} will be returned.
// *
// * @param
// * @param predicateForFirst
// * @return
// * @throws E
// */
// @ParallelSupported
// @TerminalOp
// public abstract OptionalDouble findFirstOrElseLast(Throwables.DoublePredicate predicateForFirst) throws E;
@SequentialOnly
@TerminalOp
public abstract OptionalDouble min();
@SequentialOnly
@TerminalOp
public abstract OptionalDouble max();
/**
* Returns the k-th largest element in the stream.
* If the stream is empty or the count of elements is less than k, an empty OptionalDouble is returned.
*
* @param k the position (1-based) of the largest element to retrieve
* @return an OptionalDouble containing the k-th largest element, or an empty OptionalDouble if the stream is empty or the count of elements is less than k
*/
@SequentialOnly
@TerminalOp
public abstract OptionalDouble kthLargest(int k);
@SequentialOnly
@TerminalOp
public abstract double sum();
@SequentialOnly
@TerminalOp
public abstract OptionalDouble average();
@SequentialOnly
@TerminalOp
public abstract DoubleSummaryStatistics summarize();
@SequentialOnly
@TerminalOp
public abstract Pair>> summarizeAndPercentiles();
// /**
// *
// * @param b
// * @param nextSelector a function to determine which element should be selected as the next element.
// * The first parameter is selected if {@code MergeResult.TAKE_FIRST} is returned, otherwise the second parameter is selected.
// * @return
// * @deprecated replaced by {@code mergeWith(DoubleStream, DoubleBiFunction)}
// * @see #mergeWith(DoubleStream, DoubleBiFunction)
// */
// @SequentialOnly
// @IntermediateOp
// @Deprecated
// public DoubleStream merge(final DoubleStream b, final DoubleBiFunction nextSelector) {
// return mergeWith(b, nextSelector);
// }
/**
*
* @param b
* @param nextSelector a function to determine which element should be selected as the next element.
* The first parameter is selected if {@code MergeResult.TAKE_FIRST} is returned, otherwise the second parameter is selected.
* @return
*/
@SequentialOnly
@IntermediateOp
public abstract DoubleStream mergeWith(final DoubleStream b, final DoubleBiFunction nextSelector);
/**
*
* @param b
* @param zipFunction
* @return
*/
@ParallelSupported
@IntermediateOp
public abstract DoubleStream zipWith(DoubleStream b, DoubleBinaryOperator zipFunction);
/**
*
* @param b
* @param c
* @param zipFunction
* @return
*/
@ParallelSupported
@IntermediateOp
public abstract DoubleStream zipWith(DoubleStream b, DoubleStream c, DoubleTernaryOperator zipFunction);
/**
*
* @param b
* @param valueForNoneA
* @param valueForNoneB
* @param zipFunction
* @return
*/
@ParallelSupported
@IntermediateOp
public abstract DoubleStream zipWith(DoubleStream b, double valueForNoneA, double valueForNoneB, DoubleBinaryOperator zipFunction);
/**
*
* @param b
* @param c
* @param valueForNoneA
* @param valueForNoneB
* @param valueForNoneC
* @param zipFunction
* @return
*/
@ParallelSupported
@IntermediateOp
public abstract DoubleStream zipWith(DoubleStream b, DoubleStream c, double valueForNoneA, double valueForNoneB, double valueForNoneC,
DoubleTernaryOperator zipFunction);
// No performance improvement.
// /**
// * Temporarily switch the stream to Jdk parallel stream for operation {@code ops} and then switch back to sequence stream.
// *
// * {@code stream.(switchToJdkStream).parallel().ops(map/filter/...).(switchBack).sequence()}
// *
// * @param
// * @param op
// * @return
// */
// @Beta
// @IntermediateOp
// public DoubleStream sjps(Function super java.util.stream.DoubleStream, ? extends java.util.stream.DoubleStream> op) {
// if (this.isParallel()) {
// return of(op.apply(this.toJdkStream())).sequential();
// } else {
// return of(op.apply(this.toJdkStream().parallel()));
// }
// }
@SequentialOnly
@IntermediateOp
public abstract Stream boxed();
@SequentialOnly
@IntermediateOp
public abstract java.util.stream.DoubleStream toJdkStream();
/**
*
* @param transfer
* @return
*/
@Beta
@SequentialOnly
@IntermediateOp
public DoubleStream transformB(final Function super java.util.stream.DoubleStream, ? extends java.util.stream.DoubleStream> transfer) {
return transformB(transfer, false);
}
/**
*
* @param transfer
* @param deferred
* @return
* @throws IllegalStateException
* @throws IllegalArgumentException
*/
@Beta
@SequentialOnly
@IntermediateOp
public DoubleStream transformB(final Function super java.util.stream.DoubleStream, ? extends java.util.stream.DoubleStream> transfer,
final boolean deferred) throws IllegalStateException, IllegalArgumentException {
assertNotClosed();
checkArgNotNull(transfer, cs.transfer);
if (deferred) {
final Supplier delayInitializer = () -> DoubleStream.from(transfer.apply(toJdkStream()));
return DoubleStream.defer(delayInitializer);
} else {
return DoubleStream.from(transfer.apply(toJdkStream()));
}
}
abstract DoubleIteratorEx iteratorEx();
// private static final DoubleStream EMPTY_STREAM = new ArrayDoubleStream(N.EMPTY_DOUBLE_ARRAY, true, null);
/**
* Returns an empty DoubleStream.
*
* @return an empty DoubleStream
*/
public static DoubleStream empty() {
return new ArrayDoubleStream(N.EMPTY_DOUBLE_ARRAY, true, null);
}
/**
* Creates a new DoubleStream that is supplied by the given supplier.
* The supplier is only invoked when the stream is actually used.
* This allows for lazy evaluation of the stream.
*
* @implNote it's equivalent to {@code Stream.just(supplier).flatMapToDouble(it -> it.get())}.
*
* @param supplier the supplier that provides the DoubleStream
* @return a new DoubleStream supplied by the given supplier
* @throws IllegalArgumentException if the supplier is null
* @see Stream#defer(Supplier)
*/
public static DoubleStream defer(final Supplier supplier) throws IllegalArgumentException {
N.checkArgNotNull(supplier, cs.supplier);
//noinspection resource
return Stream.just(supplier).flatMapToDouble(Supplier::get);
}
/**
*
* @param stream
* @return
*/
public static DoubleStream from(final java.util.stream.DoubleStream stream) {
if (stream == null) {
return empty();
}
return of(new DoubleIteratorEx() {
private PrimitiveIterator.OfDouble iter = null;
@Override
public boolean hasNext() {
if (iter == null) {
iter = stream.iterator();
}
return iter.hasNext();
}
@Override
public double nextDouble() {
if (iter == null) {
iter = stream.iterator();
}
return iter.nextDouble();
}
@Override
public long count() {
return iter == null ? stream.count() : super.count();
}
@Override
public void advance(final long n) {
if (iter == null) {
iter = stream.skip(n).iterator();
} else {
super.advance(n);
}
}
@Override
public double[] toArray() {
return iter == null ? stream.toArray() : super.toArray();
}
}).transform(s -> stream.isParallel() ? s.parallel() : s.sequential()).onClose(stream::close);
}
/**
*
* @param e
* @return
*/
public static DoubleStream ofNullable(final Double e) {
return e == null ? empty() : of(e);
}
/**
*
* @param a
* @return
*/
public static DoubleStream of(final double... a) {
return N.isEmpty(a) ? empty() : new ArrayDoubleStream(a);
}
/**
*
* @param a
* @param startIndex
* @param endIndex
* @return
*/
public static DoubleStream of(final double[] a, final int startIndex, final int endIndex) {
return N.isEmpty(a) && (startIndex == 0 && endIndex == 0) ? empty() : new ArrayDoubleStream(a, startIndex, endIndex);
}
/**
*
* @param a
* @return
*/
public static DoubleStream of(final Double[] a) {
//noinspection resource
return Stream.of(a).mapToDouble(FD.unbox());
}
/**
*
* @param a
* @param startIndex
* @param endIndex
* @return
*/
public static DoubleStream of(final Double[] a, final int startIndex, final int endIndex) {
//noinspection resource
return Stream.of(a, startIndex, endIndex).mapToDouble(FD.unbox());
}
/**
*
* @param c
* @return
*/
public static DoubleStream of(final Collection c) {
//noinspection resource
return Stream.of(c).mapToDouble(FD.unbox());
}
/**
*
* @param iterator
* @return
*/
public static DoubleStream of(final DoubleIterator iterator) {
return iterator == null ? empty() : new IteratorDoubleStream(iterator);
}
/**
*
* @param stream
* @return
* @deprecated Use {@link #from(java.util.stream.DoubleStream)} instead
*/
// Should the name be from?
@Deprecated
public static DoubleStream of(final java.util.stream.DoubleStream stream) {
return from(stream);
}
/**
*
* @param buf
* @return
*/
public static DoubleStream of(final DoubleBuffer buf) {
if (buf == null) {
return empty();
}
//noinspection resource
return IntStream.range(buf.position(), buf.limit()).mapToDouble(buf::get);
}
/**
*
* @param op
* @return
*/
public static DoubleStream of(final OptionalDouble op) {
return op == null || op.isEmpty() ? DoubleStream.empty() : DoubleStream.of(op.get());
}
/**
*
* @param op
* @return
*/
public static DoubleStream of(final java.util.OptionalDouble op) {
return op == null || op.isEmpty() ? DoubleStream.empty() : DoubleStream.of(op.getAsDouble());
}
private static final Function flatMapper = DoubleStream::of;
private static final Function flattMapper = DoubleStream::flatten;
/**
*
* @param a
* @return
*/
public static DoubleStream flatten(final double[][] a) {
//noinspection resource
return N.isEmpty(a) ? empty() : Stream.of(a).flatMapToDouble(flatMapper);
}
/**
*
* @param a
* @param vertically
* @return
*/
public static DoubleStream flatten(final double[][] a, final boolean vertically) {
if (N.isEmpty(a)) {
return empty();
} else if (a.length == 1) {
return of(a[0]);
} else if (!vertically) {
//noinspection resource
return Stream.of(a).flatMapToDouble(flatMapper);
}
long n = 0;
for (final double[] e : a) {
n += N.len(e);
}
if (n == 0) {
return empty();
}
final int rows = N.len(a);
final long count = n;
final DoubleIterator iter = new DoubleIteratorEx() {
private int rowNum = 0;
private int colNum = 0;
private long cnt = 0;
@Override
public boolean hasNext() {
return cnt < count;
}
@Override
public double nextDouble() {
if (cnt++ >= count) {
throw new NoSuchElementException(ERROR_MSG_FOR_NO_SUCH_EX);
}
if (rowNum == rows) {
rowNum = 0;
colNum++;
}
while (a[rowNum] == null || colNum >= a[rowNum].length) {
if (rowNum < rows - 1) {
rowNum++;
} else {
rowNum = 0;
colNum++;
}
}
return a[rowNum++][colNum];
}
};
return of(iter);
}
/**
*
* @param a
* @param valueForAlignment element to append, so there is the same size of elements in all rows/columns
* @param vertically
* @return
*/
public static DoubleStream flatten(final double[][] a, final double valueForAlignment, final boolean vertically) {
if (N.isEmpty(a)) {
return empty();
} else if (a.length == 1) {
return of(a[0]);
}
long n = 0;
int maxLen = 0;
for (final double[] e : a) {
n += N.len(e);
maxLen = N.max(maxLen, N.len(e));
}
if (n == 0) {
return empty();
}
final int rows = N.len(a);
final int cols = maxLen;
final long count = (long) rows * cols;
DoubleIterator iter = null;
if (vertically) {
iter = new DoubleIteratorEx() {
private int rowNum = 0;
private int colNum = 0;
private long cnt = 0;
@Override
public boolean hasNext() {
return cnt < count;
}
@Override
public double nextDouble() {
if (cnt++ >= count) {
throw new NoSuchElementException(ERROR_MSG_FOR_NO_SUCH_EX);
}
if (rowNum == rows) {
rowNum = 0;
colNum++;
}
if (a[rowNum] == null || colNum >= a[rowNum].length) {
rowNum++;
return valueForAlignment;
} else {
return a[rowNum++][colNum];
}
}
};
} else {
iter = new DoubleIteratorEx() {
private int rowNum = 0;
private int colNum = 0;
private long cnt = 0;
@Override
public boolean hasNext() {
return cnt < count;
}
@Override
public double nextDouble() {
if (cnt++ >= count) {
throw new NoSuchElementException(ERROR_MSG_FOR_NO_SUCH_EX);
}
if (colNum >= cols) {
colNum = 0;
rowNum++;
}
if (a[rowNum] == null || colNum >= a[rowNum].length) {
colNum++;
return valueForAlignment;
} else {
return a[rowNum][colNum++];
}
}
};
}
return of(iter);
}
/**
*
* @param a
* @return
*/
public static DoubleStream flatten(final double[][][] a) {
//noinspection resource
return N.isEmpty(a) ? empty() : Stream.of(a).flatMapToDouble(flattMapper);
}
/**
*
* @param element
* @param n
* @return
* @throws IllegalArgumentException
*/
public static DoubleStream repeat(final double element, final long n) throws IllegalArgumentException {
N.checkArgNotNegative(n, cs.n);
if (n == 0) {
return empty();
} else if (n < 10) {
return of(Array.repeat(element, (int) n));
}
return new IteratorDoubleStream(new DoubleIteratorEx() {
private long cnt = n;
@Override
public boolean hasNext() {
return cnt > 0;
}
@Override
public double nextDouble() {
if (cnt-- <= 0) {
throw new NoSuchElementException(ERROR_MSG_FOR_NO_SUCH_EX);
}
return element;
}
@Override
public void advance(final long n) {
cnt = n >= cnt ? 0 : cnt - (int) n;
}
@Override
public long count() {
return cnt;
}
@Override
public double[] toArray() {
final double[] result = new double[(int) cnt];
for (int i = 0; i < cnt; i++) {
result[i] = element;
}
cnt = 0;
return result;
}
});
}
public static DoubleStream random() {
return generate(RAND::nextDouble);
}
/**
* Creates a stream that iterates using the given hasNext and next suppliers.
*
* @param hasNext a BooleanSupplier that returns {@code true} if the iteration should continue
* @param next a DoubleSupplier that provides the next double in the iteration
* @return a DoubleStream of elements generated by the iteration
* @throws IllegalArgumentException if hasNext or next is null
* @see Stream#iterate(BooleanSupplier, Supplier)
*/
public static DoubleStream iterate(final BooleanSupplier hasNext, final DoubleSupplier next) throws IllegalArgumentException {
N.checkArgNotNull(hasNext);
N.checkArgNotNull(next);
return new IteratorDoubleStream(new DoubleIteratorEx() {
private boolean hasNextVal = false;
@Override
public boolean hasNext() {
if (!hasNextVal) {
hasNextVal = hasNext.getAsBoolean();
}
return hasNextVal;
}
@Override
public double nextDouble() {
if (!hasNextVal && !hasNext()) {
throw new NoSuchElementException(ERROR_MSG_FOR_NO_SUCH_EX);
}
hasNextVal = false;
return next.getAsDouble();
}
});
}
/**
* Creates a stream that iterates from an initial value, applying a function to generate subsequent values,
* and continues as long as a predicate is satisfied.
*
* @param init the initial value
* @param hasNext a BooleanSupplier that returns {@code true} if the iteration should continue
* @param f a function to apply to the previous element to generate the next element
* @return a DoubleStream of elements generated by the iteration
* @throws IllegalArgumentException if hasNext or f is null
* @see Stream#iterate(Object, BooleanSupplier, java.util.function.UnaryOperator)
*/
public static DoubleStream iterate(final double init, final BooleanSupplier hasNext, final DoubleUnaryOperator f) throws IllegalArgumentException {
N.checkArgNotNull(hasNext);
N.checkArgNotNull(f);
return new IteratorDoubleStream(new DoubleIteratorEx() {
private double cur = 0;
private boolean isFirst = true;
private boolean hasNextVal = false;
@Override
public boolean hasNext() {
if (!hasNextVal) {
hasNextVal = hasNext.getAsBoolean();
}
return hasNextVal;
}
@Override
public double nextDouble() {
if (!hasNextVal && !hasNext()) {
throw new NoSuchElementException(ERROR_MSG_FOR_NO_SUCH_EX);
}
hasNextVal = false;
if (isFirst) {
isFirst = false;
cur = init;
} else {
cur = f.applyAsDouble(cur);
}
return cur;
}
});
}
/**
* Creates a stream that iterates from an initial value, applying a function to generate subsequent values,
* and continues as long as a predicate is satisfied.
*
* @param init the initial value
* @param hasNext determinate if the returned stream has next by hasNext.test(init) for the first time and hasNext.test(f.apply(previous)) for remaining.
* @param f a function to apply to the previous element to generate the next element
* @return a DoubleStream of elements generated by the iteration
* @throws IllegalArgumentException if hasNext or f is null
* @see Stream#iterate(Object, java.util.function.Predicate, java.util.function.UnaryOperator)
*/
public static DoubleStream iterate(final double init, final DoublePredicate hasNext, final DoubleUnaryOperator f) throws IllegalArgumentException {
N.checkArgNotNull(hasNext);
N.checkArgNotNull(f);
return new IteratorDoubleStream(new DoubleIteratorEx() {
private double cur = 0;
private boolean isFirst = true;
private boolean hasMore = true;
private boolean hasNextVal = false;
@Override
public boolean hasNext() {
if (!hasNextVal && hasMore) {
if (isFirst) {
isFirst = false;
hasNextVal = hasNext.test(cur = init);
} else {
hasNextVal = hasNext.test(cur = f.applyAsDouble(cur));
}
if (!hasNextVal) {
hasMore = false;
}
}
return hasNextVal;
}
@Override
public double nextDouble() {
if (!hasNextVal && !hasNext()) {
throw new NoSuchElementException(ERROR_MSG_FOR_NO_SUCH_EX);
}
hasNextVal = false;
return cur;
}
});
}
/**
* Creates a stream that iterates from an initial value, applying a function to generate subsequent values.
*
* @param init the initial value
* @param f a function to apply to the previous element to generate the next element
* @return a DoubleStream of elements generated by the iteration
* @throws IllegalArgumentException if f is null
* @see Stream#iterate(Object, java.util.function.UnaryOperator)
*/
public static DoubleStream iterate(final double init, final DoubleUnaryOperator f) throws IllegalArgumentException {
N.checkArgNotNull(f);
return new IteratorDoubleStream(new DoubleIteratorEx() {
private double cur = 0;
private boolean isFirst = true;
@Override
public boolean hasNext() {
return true;
}
@Override
public double nextDouble() {
if (isFirst) {
isFirst = false;
cur = init;
} else {
cur = f.applyAsDouble(cur);
}
return cur;
}
});
}
/**
* Generates a DoubleStream using the provided DoubleSupplier.
* The supplier is used to generate each element of the stream.
*
* @param s the DoubleSupplier that provides the elements of the stream
* @return a DoubleStream generated by the given supplier
* @throws IllegalArgumentException if the supplier is null
* @see Stream#generate(Supplier)
*/
public static DoubleStream generate(final DoubleSupplier s) throws IllegalArgumentException {
N.checkArgNotNull(s);
return new IteratorDoubleStream(new DoubleIteratorEx() {
@Override
public boolean hasNext() {
return true;
}
@Override
public double nextDouble() {
return s.getAsDouble();
}
});
}
/**
* Concatenates multiple arrays of doubles into a single DoubleStream.
*
* @param a the arrays of doubles to concatenate
* @return a DoubleStream containing all the doubles from the input arrays
* @see Stream#concat(Object[][])
*/
public static DoubleStream concat(final double[]... a) {
if (N.isEmpty(a)) {
return empty();
}
return concat(Arrays.asList(a));
}
/**
* Concatenates multiple DoubleIterators into a single DoubleStream.
*
* @param a the arrays of DoubleIterator to concatenate
* @return a DoubleStream containing all the doubles from the input DoubleIterators
* @see Stream#concat(Iterator[])
*/
public static DoubleStream concat(final DoubleIterator... a) {
if (N.isEmpty(a)) {
return empty();
}
return concatIterators(Array.asList(a));
}
/**
* Concatenates multiple DoubleStreams into a single DoubleStream.
*
* @param a the arrays of DoubleStream to concatenate
* @return a DoubleStream containing all the doubles from the input DoubleStreams
* @see Stream#concat(Stream[])
*/
public static DoubleStream concat(final DoubleStream... a) {
if (N.isEmpty(a)) {
return empty();
}
return concat(Array.asList(a));
}
/**
* Concatenates a list of double array into a single DoubleStream.
*
* @param c the list of double array to concatenate
* @return a DoubleStream containing all the doubles from the input list of a double array
* @see Stream#concat(Object[][])
*/
@Beta
public static DoubleStream concat(final List c) {
if (N.isEmpty(c)) {
return empty();
}
return of(new DoubleIteratorEx() {
private final Iterator iter = c.iterator();
private double[] cur;
private int cursor = 0;
@Override
public boolean hasNext() {
while ((N.isEmpty(cur) || cursor >= cur.length) && iter.hasNext()) {
cur = iter.next();
cursor = 0;
}
return cur != null && cursor < cur.length;
}
@Override
public double nextDouble() {
if ((cur == null || cursor >= cur.length) && !hasNext()) {
throw new NoSuchElementException(ERROR_MSG_FOR_NO_SUCH_EX);
}
return cur[cursor++];
}
});
}
/**
* Concatenates a collection of DoubleStream into a single DoubleStream.
*
* @param streams the collection of DoubleStream to concatenate
* @return a DoubleStream containing all the doubles from the input collection of DoubleStream
* @see Stream#concat(Collection)
*/
public static DoubleStream concat(final Collection extends DoubleStream> streams) {
return N.isEmpty(streams) ? empty() : new IteratorDoubleStream(new DoubleIteratorEx() { //NOSONAR
private final Iterator extends DoubleStream> iterators = streams.iterator();
private DoubleStream cur;
private DoubleIterator iter;
@Override
public boolean hasNext() {
while ((iter == null || !iter.hasNext()) && iterators.hasNext()) {
if (cur != null) {
cur.close();
}
cur = iterators.next();
iter = cur == null ? null : cur.iteratorEx();
}
return iter != null && iter.hasNext();
}
@Override
public double nextDouble() {
if ((iter == null || !iter.hasNext()) && !hasNext()) {
throw new NoSuchElementException(ERROR_MSG_FOR_NO_SUCH_EX);
}
return iter.nextDouble();
}
}).onClose(newCloseHandler(streams));
}
/**
* Concatenates a collection of DoubleIterator into a single DoubleStream.
*
* @param doubleIterators the collection of DoubleIterator to concatenate
* @return a DoubleStream containing all the doubles from the input collection of DoubleIterator
* @see Stream#concatIterators(Collection)
*/
@Beta
public static DoubleStream concatIterators(final Collection extends DoubleIterator> doubleIterators) {
if (N.isEmpty(doubleIterators)) {
return empty();
}
return new IteratorDoubleStream(new DoubleIteratorEx() {
private final Iterator extends DoubleIterator> iter = doubleIterators.iterator();
private DoubleIterator cur;
@Override
public boolean hasNext() {
while ((cur == null || !cur.hasNext()) && iter.hasNext()) {
cur = iter.next();
}
return cur != null && cur.hasNext();
}
@Override
public double nextDouble() {
if ((cur == null || !cur.hasNext()) && !hasNext()) {
throw new NoSuchElementException(ERROR_MSG_FOR_NO_SUCH_EX);
}
return cur.nextDouble();
}
});
}
/**
* Zips two double arrays into a single DoubleStream until one of them runs out of values.
* Each pair of values is combined into a single value using the supplied zipFunction.
*
* @param a the first double array
* @param b the second double array
* @param zipFunction the function to combine elements from both arrays
* @return a DoubleStream containing the results of applying the zip function to the elements of the input arrays
* @see Stream#zip(Object[], Object[], BiFunction)
*/
public static DoubleStream zip(final double[] a, final double[] b, final DoubleBinaryOperator zipFunction) {
if (N.isEmpty(a) || N.isEmpty(b)) {
return empty();
}
return new IteratorDoubleStream(new DoubleIteratorEx() {
private final int len = N.min(N.len(a), N.len(b));
private int cursor = 0;
@Override
public boolean hasNext() {
return cursor < len;
}
@Override
public double nextDouble() {
if (cursor >= len) {
throw new NoSuchElementException(ERROR_MSG_FOR_NO_SUCH_EX);
}
return zipFunction.applyAsDouble(a[cursor], b[cursor++]);
}
});
}
/**
* Zips three double arrays into a single DoubleStream until one of them runs out of values.
* Each triple of values is combined into a single value using the supplied zipFunction.
*
* @param a the first double array
* @param b the second double array
* @param c the third double array
* @param zipFunction the function to combine elements from all three arrays
* @return a DoubleStream containing the results of applying the zip function to the elements of the input arrays
* @see Stream#zip(Object[], Object[], Object[], TriFunction)
*/
public static DoubleStream zip(final double[] a, final double[] b, final double[] c, final DoubleTernaryOperator zipFunction) {
if (N.isEmpty(a) || N.isEmpty(b) || N.isEmpty(c)) {
return empty();
}
return new IteratorDoubleStream(new DoubleIteratorEx() {
private final int len = N.min(N.len(a), N.len(b), N.len(c));
private int cursor = 0;
@Override
public boolean hasNext() {
return cursor < len;
}
@Override
public double nextDouble() {
if (cursor >= len) {
throw new NoSuchElementException(ERROR_MSG_FOR_NO_SUCH_EX);
}
return zipFunction.applyAsDouble(a[cursor], b[cursor], c[cursor++]);
}
});
}
/**
* Zips two DoubleIterators into a single DoubleStream until one of them runs out of values.
* Each pair of values is combined into a single value using the supplied zipFunction.
*
* @param a the first DoubleIterator
* @param b the second DoubleIterator
* @param zipFunction the function to combine elements from both iterators
* @return a DoubleStream containing the results of applying the zip function to the elements of the input iterators
* @see Stream#zip(Iterator, Iterator, BiFunction)
*/
public static DoubleStream zip(final DoubleIterator a, final DoubleIterator b, final DoubleBinaryOperator zipFunction) {
return new IteratorDoubleStream(new DoubleIteratorEx() {
private final DoubleIterator iterA = a == null ? DoubleIterator.empty() : a;
private final DoubleIterator iterB = b == null ? DoubleIterator.empty() : b;
@Override
public boolean hasNext() {
return iterA.hasNext() && iterB.hasNext();
}
@Override
public double nextDouble() {
return zipFunction.applyAsDouble(iterA.nextDouble(), iterB.nextDouble());
}
});
}
/**
* Zips three DoubleIterators into a single DoubleStream until one of them runs out of values.
* Each triple of values is combined into a single value using the supplied zipFunction.
*
* @param a the first DoubleIterator
* @param b the second DoubleIterator
* @param c the third DoubleIterator
* @param zipFunction the function to combine elements from all three iterators
* @return a DoubleStream containing the results of applying the zip function to the elements of the input iterators
* @see Stream#zip(Iterator, Iterator, Iterator, TriFunction)
*/
public static DoubleStream zip(final DoubleIterator a, final DoubleIterator b, final DoubleIterator c, final DoubleTernaryOperator zipFunction) {
return new IteratorDoubleStream(new DoubleIteratorEx() {
private final DoubleIterator iterA = a == null ? DoubleIterator.empty() : a;
private final DoubleIterator iterB = b == null ? DoubleIterator.empty() : b;
private final DoubleIterator iterC = c == null ? DoubleIterator.empty() : c;
@Override
public boolean hasNext() {
return iterA.hasNext() && iterB.hasNext() && iterC.hasNext();
}
@Override
public double nextDouble() {
return zipFunction.applyAsDouble(iterA.nextDouble(), iterB.nextDouble(), iterC.nextDouble());
}
});
}
/**
* Zips two DoubleStreams into a single DoubleStream until one of them runs out of values.
* Each pair of values is combined into a single value using the supplied zipFunction.
*
* @param a the first DoubleStream
* @param b the second DoubleStream
* @param zipFunction the function to combine elements from both streams
* @return a DoubleStream containing the results of applying the zip function to the elements of the input streams
* @see Stream#zip(Stream, Stream, BiFunction)
*/
public static DoubleStream zip(final DoubleStream a, final DoubleStream b, final DoubleBinaryOperator zipFunction) {
return zip(iterate(a), iterate(b), zipFunction).onClose(newCloseHandler(a, b));
}
/**
* Zips three DoubleStreams into a single DoubleStream until one of them runs out of values.
* Each triple of values is combined into a single value using the supplied zipFunction.
*
* @param a the first DoubleStream
* @param b the second DoubleStream
* @param c the third DoubleStream
* @param zipFunction the function to combine elements from all three streams
* @return a DoubleStream containing the results of applying the zip function to the elements of the input streams
* @see Stream#zip(Stream, Stream, Stream, TriFunction)
*/
public static DoubleStream zip(final DoubleStream a, final DoubleStream b, final DoubleStream c, final DoubleTernaryOperator zipFunction) {
return zip(iterate(a), iterate(b), iterate(c), zipFunction).onClose(newCloseHandler(Array.asList(a, b, c)));
}
/**
* Zips multiple DoubleStreams into a single DoubleStream until one of them runs out of values.
* Each list of values is combined into a single value using the supplied zipFunction.
*
* @param streams the collection of DoubleStream to zip
* @param zipFunction the function to combine elements from all the streams
* @return a DoubleStream containing the results of applying the zip function to the elements of the input streams
* @see Stream#zip(Collection, Function)
*/
public static DoubleStream zip(final Collection extends DoubleStream> streams, final DoubleNFunction zipFunction) {
//noinspection resource
return Stream.zip(streams, zipFunction).mapToDouble(ToDoubleFunction.UNBOX);
}
/**
* Zips two double arrays into a single DoubleStream until all of them runs out of values.
* Each pair of values is combined into a single value using the supplied zipFunction.
* If one array runs out of values before the other, the specified valueForNoneA or valueForNoneB is used.
*
* @param a the first double array
* @param b the second double array
* @param valueForNoneA the default value to use if the first array is shorter
* @param valueForNoneB the default value to use if the second array is shorter
* @param zipFunction the function to combine elements from both arrays
* @return a DoubleStream containing the results of applying the zip function to the elements of the input arrays
* @see Stream#zip(Object[], Object[], Object, Object, BiFunction)
*/
public static DoubleStream zip(final double[] a, final double[] b, final double valueForNoneA, final double valueForNoneB,
final DoubleBinaryOperator zipFunction) {
if (N.isEmpty(a) && N.isEmpty(b)) {
return empty();
}
return new IteratorDoubleStream(new DoubleIteratorEx() {
private final int aLen = N.len(a), bLen = N.len(b), len = N.max(aLen, bLen);
private int cursor = 0;
private double ret = 0;
@Override
public boolean hasNext() {
return cursor < len;
}
@Override
public double nextDouble() {
if (cursor >= len) {
throw new NoSuchElementException(ERROR_MSG_FOR_NO_SUCH_EX);
}
ret = zipFunction.applyAsDouble(cursor < aLen ? a[cursor] : valueForNoneA, cursor < bLen ? b[cursor] : valueForNoneB);
cursor++;
return ret;
}
});
}
/**
* Zips three double arrays into a single DoubleStream until all of them runs out of values.
* Each triple of values is combined into a single value using the supplied zipFunction.
* If one array runs out of values before the other, the specified valueForNoneA, valueForNoneB or valueForNoneC is used.
*
* @param a the first double array
* @param b the second double array
* @param c the third double array
* @param valueForNoneA the default value to use if the first array is shorter
* @param valueForNoneB the default value to use if the second array is shorter
* @param valueForNoneC the default value to use if the third array is shorter
* @param zipFunction the function to combine elements from all three arrays
* @return a DoubleStream containing the results of applying the zip function to the elements of the input arrays
* @see Stream#zip(Object[], Object[], Object[], Object, Object, Object, TriFunction)
*/
public static DoubleStream zip(final double[] a, final double[] b, final double[] c, final double valueForNoneA, final double valueForNoneB,
final double valueForNoneC, final DoubleTernaryOperator zipFunction) {
if (N.isEmpty(a) && N.isEmpty(b) && N.isEmpty(c)) {
return empty();
}
return new IteratorDoubleStream(new DoubleIteratorEx() {
private final int aLen = N.len(a), bLen = N.len(b), cLen = N.len(c), len = N.max(aLen, bLen, cLen);
private int cursor = 0;
private double ret = 0;
@Override
public boolean hasNext() {
return cursor < len;
}
@Override
public double nextDouble() {
if (cursor >= len) {
throw new NoSuchElementException(ERROR_MSG_FOR_NO_SUCH_EX);
}
ret = zipFunction.applyAsDouble(cursor < aLen ? a[cursor] : valueForNoneA, cursor < bLen ? b[cursor] : valueForNoneB,
cursor < cLen ? c[cursor] : valueForNoneC);
cursor++;
return ret;
}
});
}
/**
* Zips two DoubleIterators into a single DoubleStream until all of them runs out of values.
* Each pair of values is combined into a single value using the supplied zipFunction.
* If one iterator runs out of values before the other, the specified valueForNoneA or valueForNoneB is used.
*
* @param a the first DoubleIterator
* @param b the second DoubleIterator
* @param valueForNoneA the default value to use if the first iterator is shorter
* @param valueForNoneB the default value to use if the second iterator is shorter
* @param zipFunction the function to combine elements from both iterators
* @return a DoubleStream containing the results of applying the zip function to the elements of the input iterators
* @see Stream#zip(Iterator, Iterator, Object, Object, BiFunction)
*/
public static DoubleStream zip(final DoubleIterator a, final DoubleIterator b, final double valueForNoneA, final double valueForNoneB,
final DoubleBinaryOperator zipFunction) {
return new IteratorDoubleStream(new DoubleIteratorEx() {
private final DoubleIterator iterA = a == null ? DoubleIterator.empty() : a;
private final DoubleIterator iterB = b == null ? DoubleIterator.empty() : b;
@Override
public boolean hasNext() {
return iterA.hasNext() || iterB.hasNext();
}
@Override
public double nextDouble() {
if (iterA.hasNext()) {
return zipFunction.applyAsDouble(iterA.nextDouble(), iterB.hasNext() ? iterB.nextDouble() : valueForNoneB);
} else {
return zipFunction.applyAsDouble(valueForNoneA, iterB.nextDouble());
}
}
});
}
/**
* Zips three DoubleIterators into a single DoubleStream until all of them runs out of values.
* Each triple of values is combined into a single value using the supplied zipFunction.
* If one iterator runs out of values before the other, the specified valueForNoneA, valueForNoneB or valueForNoneC is used.
*
* @param a the first DoubleIterator
* @param b the second DoubleIterator
* @param c the third DoubleIterator
* @param valueForNoneA the default value to use if the first iterator is shorter
* @param valueForNoneB the default value to use if the second iterator is shorter
* @param valueForNoneC the default value to use if the third iterator is shorter
* @param zipFunction the function to combine elements from all three iterators
* @return a DoubleStream containing the results of applying the zip function to the elements of the input iterators
* @see Stream#zip(Iterator, Iterator, Iterator, Object, Object, Object, TriFunction)
*/
public static DoubleStream zip(final DoubleIterator a, final DoubleIterator b, final DoubleIterator c, final double valueForNoneA,
final double valueForNoneB, final double valueForNoneC, final DoubleTernaryOperator zipFunction) {
return new IteratorDoubleStream(new DoubleIteratorEx() {
private final DoubleIterator iterA = a == null ? DoubleIterator.empty() : a;
private final DoubleIterator iterB = b == null ? DoubleIterator.empty() : b;
private final DoubleIterator iterC = c == null ? DoubleIterator.empty() : c;
@Override
public boolean hasNext() {
return iterA.hasNext() || iterB.hasNext() || iterC.hasNext();
}
@Override
public double nextDouble() {
if (iterA.hasNext()) {
return zipFunction.applyAsDouble(iterA.nextDouble(), iterB.hasNext() ? iterB.nextDouble() : valueForNoneB,
iterC.hasNext() ? iterC.nextDouble() : valueForNoneC);
} else if (iterB.hasNext()) {
return zipFunction.applyAsDouble(valueForNoneA, iterB.nextDouble(), iterC.hasNext() ? iterC.nextDouble() : valueForNoneC);
} else {
return zipFunction.applyAsDouble(valueForNoneA, valueForNoneB, iterC.nextDouble());
}
}
});
}
/**
* Zips two DoubleStreams into a single DoubleStream until all of them runs out of values.
* Each pair of values is combined into a single value using the supplied zipFunction.
* If one stream runs out of values before the other, the specified valueForNoneA or valueForNoneB is used.
*
* @param a the first DoubleStream
* @param b the second DoubleStream
* @param valueForNoneA the default value to use if the first stream is shorter
* @param valueForNoneB the default value to use if the second stream is shorter
* @param zipFunction the function to combine elements from both streams
* @return a DoubleStream containing the results of applying the zip function to the elements of the input streams
* @see Stream#zip(Stream, Stream, Object, Object, BiFunction)
*/
public static DoubleStream zip(final DoubleStream a, final DoubleStream b, final double valueForNoneA, final double valueForNoneB,
final DoubleBinaryOperator zipFunction) {
return zip(iterate(a), iterate(b), valueForNoneA, valueForNoneB, zipFunction).onClose(newCloseHandler(a, b));
}
/**
* Zips three DoubleStreams into a single DoubleStream until all of them runs out of values.
* Each triple of values is combined into a single value using the supplied zipFunction.
* If one stream runs out of values before the other, the specified valueForNoneA, valueForNoneB or valueForNoneC is used.
*
* @param a the first DoubleStream
* @param b the second DoubleStream
* @param c the third DoubleStream
* @param valueForNoneA the default value to use if the first stream is shorter
* @param valueForNoneB the default value to use if the second stream is shorter
* @param valueForNoneC the default value to use if the third stream is shorter
* @param zipFunction the function to combine elements from all three streams
* @return a DoubleStream containing the results of applying the zip function to the elements of the input streams
* @see Stream#zip(Stream, Stream, Stream, Object, Object, Object, TriFunction)
*/
public static DoubleStream zip(final DoubleStream a, final DoubleStream b, final DoubleStream c, final double valueForNoneA, final double valueForNoneB,
final double valueForNoneC, final DoubleTernaryOperator zipFunction) {
return zip(iterate(a), iterate(b), iterate(c), valueForNoneA, valueForNoneB, valueForNoneC, zipFunction)
.onClose(newCloseHandler(Array.asList(a, b, c)));
}
/**
* Zips multiple DoubleStreams into a single DoubleStream until all of them runs out of values.
* Each list of values is combined into a single value using the supplied zipFunction.
* If one stream runs out of values before the other, the specified valuesForNone is used.
*
* @param streams the collection of DoubleStream instances to zip
* @param valuesForNone the default value to use if the corresponding stream is shorter
* @param zipFunction the function to combine elements from all the streams
* @return a DoubleStream containing the results of applying the zip function to the elements of the input streams
* @see Stream#zip(Collection, List, Function)
*/
public static DoubleStream zip(final Collection extends DoubleStream> streams, final double[] valuesForNone, final DoubleNFunction zipFunction) {
//noinspection resource
return Stream.zip(streams, valuesForNone, zipFunction).mapToDouble(ToDoubleFunction.UNBOX);
}
/**
* Merges two double arrays into a single DoubleStream based on the provided nextSelector function.
* The nextSelector function determines which element to take next from the two arrays.
*
* @param a the first double array
* @param b the second double array
* @param nextSelector a function to determine which element should be selected as the next element.
* The first parameter is selected if {@code MergeResult.TAKE_FIRST} is returned, otherwise the second parameter is selected.
* @return a DoubleStream containing the merged elements from the two input arrays
* @see Stream#merge(Object[], Object[], BiFunction)
*/
public static DoubleStream merge(final double[] a, final double[] b, final DoubleBiFunction nextSelector) {
if (N.isEmpty(a)) {
return of(b);
} else if (N.isEmpty(b)) {
return of(a);
}
return new IteratorDoubleStream(new DoubleIteratorEx() {
private final int lenA = a.length;
private final int lenB = b.length;
private int cursorA = 0;
private int cursorB = 0;
@Override
public boolean hasNext() {
return cursorA < lenA || cursorB < lenB;
}
@Override
public double nextDouble() {
if (cursorA < lenA) {
if ((cursorB >= lenB) || (nextSelector.apply(a[cursorA], b[cursorB]) == MergeResult.TAKE_FIRST)) {
return a[cursorA++];
} else {
return b[cursorB++];
}
} else if (cursorB < lenB) {
return b[cursorB++];
} else {
throw new NoSuchElementException(ERROR_MSG_FOR_NO_SUCH_EX);
}
}
});
}
/**
* Merges three double arrays into a single DoubleStream based on the provided nextSelector function.
* The nextSelector function determines which element to take next from the three arrays.
*
* @param a the first double array
* @param b the second double array
* @param c the third double array
* @param nextSelector a function to determine which element should be selected as the next element.
* The first parameter is selected if {@code MergeResult.TAKE_FIRST} is returned, otherwise the second parameter is selected.
* @return a DoubleStream containing the merged elements from the three input arrays
* @see Stream#merge(Object[], Object[], Object[], BiFunction)
*/
public static DoubleStream merge(final double[] a, final double[] b, final double[] c, final DoubleBiFunction nextSelector) {
//noinspection resource
return merge(merge(a, b, nextSelector).iteratorEx(), DoubleStream.of(c).iteratorEx(), nextSelector);
}
/**
* Merges two DoubleIterators into a single DoubleStream based on the provided nextSelector function.
* The nextSelector function determines which element to take next from the two iterators.
*
* @param a the first DoubleIterator
* @param b the second DoubleIterator
* @param nextSelector a function to determine which element should be selected as the next element.
* The first parameter is selected if {@code MergeResult.TAKE_FIRST} is returned, otherwise the second parameter is selected.
* @return a DoubleStream containing the merged elements from the two input iterators
* @see Stream#merge(Iterator, Iterator, BiFunction)
*/
public static DoubleStream merge(final DoubleIterator a, final DoubleIterator b, final DoubleBiFunction nextSelector) {
return new IteratorDoubleStream(new DoubleIteratorEx() {
private final DoubleIterator iterA = a == null ? DoubleIterator.empty() : a;
private final DoubleIterator iterB = b == null ? DoubleIterator.empty() : b;
private double nextA = 0;
private double nextB = 0;
private boolean hasNextA = false;
private boolean hasNextB = false;
@Override
public boolean hasNext() {
return iterA.hasNext() || iterB.hasNext() || hasNextA || hasNextB;
}
@Override
public double nextDouble() {
if (hasNextA) {
if (iterB.hasNext()) {
if (nextSelector.apply(nextA, (nextB = iterB.nextDouble())) == MergeResult.TAKE_FIRST) {
hasNextA = false;
hasNextB = true;
return nextA;
} else {
return nextB;
}
} else {
hasNextA = false;
return nextA;
}
} else if (hasNextB) {
if (iterA.hasNext()) {
if (nextSelector.apply((nextA = iterA.nextDouble()), nextB) == MergeResult.TAKE_FIRST) {
return nextA;
} else {
hasNextA = true;
hasNextB = false;
return nextB;
}
} else {
hasNextB = false;
return nextB;
}
} else if (iterA.hasNext()) {
if (iterB.hasNext()) {
if (nextSelector.apply((nextA = iterA.nextDouble()), (nextB = iterB.nextDouble())) == MergeResult.TAKE_FIRST) {
hasNextB = true;
return nextA;
} else {
hasNextA = true;
return nextB;
}
} else {
return iterA.nextDouble();
}
} else if (iterB.hasNext()) {
return iterB.nextDouble();
} else {
throw new NoSuchElementException(ERROR_MSG_FOR_NO_SUCH_EX);
}
}
});
}
/**
* Merges three DoubleIterators into a single DoubleStream based on the provided nextSelector function.
* The nextSelector function determines which element to take next from the three iterators.
*
* @param a the first DoubleIterator
* @param b the second DoubleIterator
* @param c the third DoubleIterator
* @param nextSelector a function to determine which element should be selected as the next element.
* The first parameter is selected if {@code MergeResult.TAKE_FIRST} is returned, otherwise the second parameter is selected.
* @return a DoubleStream containing the merged elements from the three input iterators
* @see Stream#merge(Iterator, Iterator, Iterator, BiFunction)
*/
public static DoubleStream merge(final DoubleIterator a, final DoubleIterator b, final DoubleIterator c, final DoubleBiFunction nextSelector) {
//noinspection resource
return merge(merge(a, b, nextSelector).iteratorEx(), c, nextSelector);
}
/**
* Merges two DoubleStreams into a single DoubleStream based on the provided nextSelector function.
* The nextSelector function determines which element to take next from the two streams.
*
* @param a the first DoubleStream
* @param b the second DoubleStream
* @param nextSelector a function to determine which element should be selected as the next element.
* The first parameter is selected if {@code MergeResult.TAKE_FIRST} is returned, otherwise the second parameter is selected.
* @return a DoubleStream containing the merged elements from the two input streams
* @see Stream#merge(Stream, Stream, BiFunction)
*/
public static DoubleStream merge(final DoubleStream a, final DoubleStream b, final DoubleBiFunction nextSelector) {
return merge(iterate(a), iterate(b), nextSelector).onClose(newCloseHandler(a, b));
}
/**
* Merges three DoubleStreams into a single DoubleStream based on the provided nextSelector function.
* The nextSelector function determines which element to take next from the three streams.
*
* @param a the first DoubleStream
* @param b the second DoubleStream
* @param c the third DoubleStream
* @param nextSelector a function to determine which element should be selected as the next element.
* The first parameter is selected if {@code MergeResult.TAKE_FIRST} is returned, otherwise the second parameter is selected.
* @return a DoubleStream containing the merged elements from the three input streams
* @see Stream#merge(Stream, Stream, Stream, BiFunction)
*/
public static DoubleStream merge(final DoubleStream a, final DoubleStream b, final DoubleStream c, final DoubleBiFunction nextSelector) {
return merge(merge(a, b, nextSelector), c, nextSelector);
}
/**
* Merges a collection of DoubleStream into a single DoubleStream based on the provided nextSelector function.
* The nextSelector function determines which element to take next from the multiple streams.
*
* @param streams the collection of DoubleStream instances to merge
* @param nextSelector a function to determine which element should be selected as the next element.
* The first parameter is selected if {@code MergeResult.TAKE_FIRST} is returned, otherwise the second parameter is selected.
* @return a DoubleStream containing the merged elements from the input DoubleStreams
* @see Stream#merge(Collection, BiFunction)
*/
public static DoubleStream merge(final Collection extends DoubleStream> streams, final DoubleBiFunction nextSelector) {
if (N.isEmpty(streams)) {
return empty();
} else if (streams.size() == 1) {
return streams.iterator().next();
} else if (streams.size() == 2) {
final Iterator extends DoubleStream> iter = streams.iterator();
return merge(iter.next(), iter.next(), nextSelector);
}
final Iterator extends DoubleStream> iter = streams.iterator();
DoubleStream result = merge(iter.next(), iter.next(), nextSelector);
while (iter.hasNext()) {
result = merge(result, iter.next(), nextSelector);
}
return result;
}
// /**
// * Merges a collection of DoubleStream into a single DoubleStream in parallel.
// * All the elements from each input DoubleStream will be merged into two queues by multiple threads first.
// * Then these two new queues will be merged into one DoubleStream in the current thread.
// * This method is not totally lazy evaluation and may cause {@code OutOfMemoryError} if there are too many elements merged into the two new queues.
// * Consider using {@code merge}, which is totally lazy evaluation.
// *
// * @param streams the collection of DoubleStream to be merged
// * @param nextSelector a function to determine which element should be selected as the next element.
// * @return a DoubleStream containing the merged elements from the input DoubleStreams
// * @see Stream#parallelMerge(Collection, BiFunction)
// */
// public static DoubleStream parallelMerge(final Collection extends DoubleStream> streams, final DoubleBiFunction nextSelector) {
// return parallelMerge(streams, nextSelector, DEFAULT_MAX_THREAD_NUM);
// }
//
// /**
// * Merges a collection of DoubleStream into a single DoubleStream in parallel.
// * All the elements from each input DoubleStream will be merged into two queues by multiple threads first.
// * Then these two new queues will be merged into one DoubleStream in the current thread.
// * This method is not totally lazy evaluation and may cause {@code OutOfMemoryError} if there are too many elements merged into the two new queues.
// * Consider using {@code merge}, which is totally lazy evaluation.
// *
// * @param streams the collection of DoubleStream to be merged
// * @param nextSelector a function to determine which element should be selected as the next element.
// * @param maxThreadNum is the max thread number for the parallel merge.
// * @return a DoubleStream containing the merged elements from the input DoubleStreams
// * @see Stream#parallelMerge(Collection, BiFunction, int)
// */
// public static DoubleStream parallelMerge(final Collection extends DoubleStream> streams, final DoubleBiFunction nextSelector,
// final int maxThreadNum) throws IllegalArgumentException {
// N.checkArgument(maxThreadNum > 0, "'maxThreadNum' must not be less than 1");
//
// if (maxThreadNum <= 1) {
// return merge(streams, nextSelector);
// } else if (N.isEmpty(streams)) {
// return empty();
// } else if (streams.size() == 1) {
// return streams.iterator().next();
// } else if (streams.size() == 2) {
// final Iterator Extends DoubleStream> iter = streams.iterator();
// return merge(iter.next(), iter.next(), nextSelector);
// } else if (streams.size() == 3) {
// final Iterator extends DoubleStream> iter = streams.iterator();
// return merge(iter.next(), iter.next(), iter.next(), nextSelector);
// }
//
// final Supplier supplier = () -> {
// final Queue queue = N.newLinkedList();
//
// queue.addAll(streams);
//
// final Holder eHolder = new Holder<>();
// final MutableInt cnt = MutableInt.of(streams.size());
// final List> futureList = new ArrayList<>(streams.size() - 1);
//
// final int threadNum = N.min(maxThreadNum, streams.size() / 2 + 1);
//
// AsyncExecutor asyncExecutorToUse = checkAsyncExecutor(DEFAULT_ASYNC_EXECUTOR, threadNum, 0);
//
// for (int i = 0; i < threadNum; i++) {
// asyncExecutorToUse = execute(asyncExecutorToUse, threadNum, 0, i, futureList, () -> {
// DoubleStream a = null;
// DoubleStream b = null;
// DoubleStream c1 = null;
//
// try {
// while (eHolder.value() == null) {
// synchronized (queue) {
// if (cnt.value() > 2 && queue.size() > 1) {
// a = queue.poll();
// b = queue.poll();
//
// cnt.decrement();
// } else {
// break;
// }
// }
//
// c1 = DoubleStream.of(merge(a, b, nextSelector).toArray());
//
// synchronized (queue) {
// queue.offer(c1);
// }
// }
// } catch (final Throwable e) { // NOSONAR
// setError(eHolder, e);
// }
// });
// }
//
// completeAndShutdownTempExecutor(futureList, eHolder, streams, asyncExecutorToUse);
//
// return merge(queue.poll(), queue.poll(), nextSelector);
// };
//
// return Stream.just(supplier).flatMapToDouble(Supplier::get);
// }
public abstract static class DoubleStreamEx extends DoubleStream {
private DoubleStreamEx(final boolean sorted, final Collection closeHandlers) { //NOSONAR
super(sorted, closeHandlers);
// Factory class.
}
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy