All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.landawn.abacus.util.stream.LongStream Maven / Gradle / Ivy

Go to download

A general programming library in Java/Android. It's easy to learn and simple to use with concise and powerful APIs.

The newest version!
/*
 * Copyright (C) 2016, 2017, 2018, 2019 HaiYang Li
 *
 * Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except
 * in compliance with the License. You may obtain a copy of the License at
 *
 * https://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software distributed under the License
 * is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express
 * or implied. See the License for the specific language governing permissions and limitations under
 * the License.
 */

package com.landawn.abacus.util.stream;

import java.math.BigInteger;
import java.nio.LongBuffer;
import java.security.SecureRandom;
import java.util.Arrays;
import java.util.Collection;
import java.util.Comparator;
import java.util.Iterator;
import java.util.List;
import java.util.LongSummaryStatistics;
import java.util.Map;
import java.util.NoSuchElementException;
import java.util.PrimitiveIterator;
import java.util.Random;
import java.util.concurrent.TimeUnit;
import java.util.function.BiConsumer;
import java.util.function.BiFunction;
import java.util.function.BiPredicate;
import java.util.function.BinaryOperator;
import java.util.function.BooleanSupplier;
import java.util.function.Function;
import java.util.function.LongBinaryOperator;
import java.util.function.LongConsumer;
import java.util.function.LongFunction;
import java.util.function.LongPredicate;
import java.util.function.LongSupplier;
import java.util.function.LongToDoubleFunction;
import java.util.function.LongToIntFunction;
import java.util.function.LongUnaryOperator;
import java.util.function.ObjLongConsumer;
import java.util.function.Supplier;
import java.util.stream.Collector;

import com.landawn.abacus.annotation.Beta;
import com.landawn.abacus.annotation.IntermediateOp;
import com.landawn.abacus.annotation.LazyEvaluation;
import com.landawn.abacus.annotation.ParallelSupported;
import com.landawn.abacus.annotation.SequentialOnly;
import com.landawn.abacus.annotation.TerminalOp;
import com.landawn.abacus.util.Array;
import com.landawn.abacus.util.Fn.BiConsumers;
import com.landawn.abacus.util.Fn.FL;
import com.landawn.abacus.util.IndexedLong;
import com.landawn.abacus.util.LongIterator;
import com.landawn.abacus.util.LongList;
import com.landawn.abacus.util.MergeResult;
import com.landawn.abacus.util.N;
import com.landawn.abacus.util.Pair;
import com.landawn.abacus.util.Percentage;
import com.landawn.abacus.util.Throwables;
import com.landawn.abacus.util.cs;
import com.landawn.abacus.util.u.Optional;
import com.landawn.abacus.util.u.OptionalDouble;
import com.landawn.abacus.util.u.OptionalLong;
import com.landawn.abacus.util.function.LongBiFunction;
import com.landawn.abacus.util.function.LongBiPredicate;
import com.landawn.abacus.util.function.LongMapMultiConsumer;
import com.landawn.abacus.util.function.LongNFunction;
import com.landawn.abacus.util.function.LongTernaryOperator;
import com.landawn.abacus.util.function.LongToFloatFunction;
import com.landawn.abacus.util.function.LongTriPredicate;
import com.landawn.abacus.util.function.ToLongFunction;
import com.landawn.abacus.util.function.TriFunction;

/**
 * The LongStream class is an abstract class that represents a stream of long elements and supports different kinds of computations. 
* The Stream operations are divided into intermediate and terminal operations, and are combined to form stream pipelines.
* *
* The Stream will be automatically closed after a terminal method is called/triggered. * *
*
* Refer to {@code com.landawn.abacus.util.stream.BaseStream} and {@code com.landawn.abacus.util.stream.Stream} for more APIs docs. * * @see com.landawn.abacus.util.stream.Stream * @see com.landawn.abacus.util.stream.BaseStream */ @com.landawn.abacus.annotation.Immutable @LazyEvaluation public abstract class LongStream extends StreamBase { static final Random RAND = new SecureRandom(); LongStream(final boolean sorted, final Collection closeHandlers) { super(sorted, null, closeHandlers); } /** * * @param mapper * @return */ @ParallelSupported @IntermediateOp public abstract LongStream map(LongUnaryOperator mapper); /** * * @param mapper * @return */ @ParallelSupported @IntermediateOp public abstract IntStream mapToInt(LongToIntFunction mapper); /** * * @param mapper * @return */ @ParallelSupported @IntermediateOp public abstract FloatStream mapToFloat(LongToFloatFunction mapper); /** * * @param mapper * @return */ @ParallelSupported @IntermediateOp public abstract DoubleStream mapToDouble(LongToDoubleFunction mapper); /** * * @param * @param mapper * @return */ @ParallelSupported @IntermediateOp public abstract Stream mapToObj(LongFunction mapper); /** * * @param mapper * @return */ @ParallelSupported @IntermediateOp public abstract LongStream flatMap(LongFunction mapper); // public abstract LongStream flatmap(LongFunction mapper); /** * * @param mapper * @return */ @ParallelSupported @IntermediateOp public abstract LongStream flatmap(LongFunction mapper); //NOSONAR /** * * @param mapper * @return * @deprecated should use {@code flatmapToObj(LongFunction> mapper)} instead * @see #flatmapToObj(LongFunction) */ @Deprecated @ParallelSupported @IntermediateOp LongStream flattMap(@SuppressWarnings("unused") final LongFunction> mapper) throws UnsupportedOperationException { // NOSONAR throw new UnsupportedOperationException(); } /** * * @param mapper * @return */ @Beta @ParallelSupported @IntermediateOp public abstract LongStream flattmap(LongFunction mapper); //NOSONAR /** * * @param mapper * @return */ @ParallelSupported @IntermediateOp public abstract IntStream flatMapToInt(LongFunction mapper); /** * * @param mapper * @return */ @ParallelSupported @IntermediateOp public abstract FloatStream flatMapToFloat(LongFunction mapper); /** * * @param mapper * @return */ @ParallelSupported @IntermediateOp public abstract DoubleStream flatMapToDouble(LongFunction mapper); /** * * @param * @param mapper * @return */ @ParallelSupported @IntermediateOp public abstract Stream flatMapToObj(LongFunction> mapper); /** * * @param * @param mapper * @return */ @ParallelSupported @IntermediateOp public abstract Stream flatmapToObj(LongFunction> mapper); //NOSONAR /** * * @param * @param mapper * @return */ @Beta @ParallelSupported @IntermediateOp public abstract Stream flattMapToObj(LongFunction mapper); /** * * @param mapper * @return */ @ParallelSupported @IntermediateOp public abstract LongStream mapMulti(LongMapMultiConsumer mapper); /** * Note: copied from StreamEx: StreamEx * * @param mapper * @return */ @Beta @ParallelSupported @IntermediateOp public abstract LongStream mapPartial(LongFunction mapper); /** * Note: copied from StreamEx: StreamEx * * @param mapper * @return */ @Beta @ParallelSupported @IntermediateOp public abstract LongStream mapPartialJdk(LongFunction mapper); /** * Note: copied from StreamEx: StreamEx *
* * Returns a stream consisting of results of applying the given function to * the ranges created from the source elements. * This is a quasi-intermediate * partial reduction operation. * * @param sameRange a non-interfering, stateless predicate to apply to * the leftmost and next elements which returns {@code true} for elements * which belong to the same range. * @param mapper a non-interfering, stateless function to apply to the * range borders and produce the resulting element. If the value was * not merged to the interval, then mapper will receive the same * value twice, otherwise it will receive the leftmost and the * rightmost values which were merged to the range. * @return * @see #collapse(LongBiPredicate, LongBinaryOperator) * @see Stream#rangeMap(BiPredicate, BiFunction) */ @SequentialOnly @IntermediateOp public abstract LongStream rangeMap(final LongBiPredicate sameRange, final LongBinaryOperator mapper); /** * Note: copied from StreamEx: StreamEx *
* * Returns a stream consisting of results of applying the given function to * the ranges created from the source elements. * This is a quasi-intermediate * partial reduction operation. * * @param * @param sameRange a non-interfering, stateless predicate to apply to * the leftmost and next elements which returns {@code true} for elements * which belong to the same range. * @param mapper a non-interfering, stateless function to apply to the * range borders and produce the resulting element. If the value was * not merged to the interval, then mapper will receive the same * value twice, otherwise it will receive the leftmost and the * rightmost values which were merged to the range. * @return * @see Stream#rangeMap(BiPredicate, BiFunction) */ @SequentialOnly @IntermediateOp public abstract Stream rangeMapToObj(final LongBiPredicate sameRange, final LongBiFunction mapper); /** * Merges a series of adjacent elements in the stream which satisfy the given predicate into a List. * The predicate takes two parameters: the previous element and the current element in the stream. * If the predicate returns {@code true}, the current element and its previous element are considered as a series of adjacent elements. * These elements are then collapsed into a List. * * This is an intermediate operation, meaning it's always lazy. It doesn't start processing the data until a terminal operation is invoked on the stream pipeline. * It's also a stateful operation since it needs to remember the previous element when processing the current element. * * This operation is not parallelizable and requires the stream to be ordered. * * @param collapsible a BiPredicate that takes two parameters: the previous element and the current element in the stream. * @return a new Stream where each element is a List of adjacent elements which satisfy the given predicate. * @see Stream#collapse(BiPredicate) */ @SequentialOnly @IntermediateOp public abstract Stream collapse(final LongBiPredicate collapsible); /** * Merges a series of adjacent elements in the stream which satisfy the given predicate using the merger function and returns a new stream. * The predicate takes two parameters: the previous element and the current element in the stream. * If the predicate returns {@code true}, the current element and its previous element are considered as a series of adjacent elements. * These elements are then merged using the provided BiFunction. * * This is an intermediate operation, meaning it's always lazy. It doesn't start processing the data until a terminal operation is invoked on the stream pipeline. * It's also a stateful operation since it needs to remember the previous element when processing the current element. * * This operation is not parallelizable and requires the stream to be ordered. * * @param collapsible a BiPredicate that takes two parameters: the previous element and the current element in the stream. * @param mergeFunction a BiFunction that takes two parameters: the result of the previous merge operation (or the first element if no merge has been performed yet) and the current element, and returns the result of the merge operation. * @return a new Stream where each element is the result of merging adjacent elements which satisfy the given predicate. * @see Stream#collapse(BiPredicate, BiFunction) */ @SequentialOnly @IntermediateOp public abstract LongStream collapse(final LongBiPredicate collapsible, final LongBinaryOperator mergeFunction); /** * Merges a series of adjacent elements in the stream which satisfy the given predicate into a single element and returns a new stream. * The predicate takes three parameters: the first element of the series, the previous element and the current element in the stream. * If the predicate returns {@code true}, the current element, its previous element and the first element of the series are considered as a series of adjacent elements. * These elements are then collapsed into a single element using the provided merge function. * * This is an intermediate operation, meaning it's always lazy. It doesn't start processing the data until a terminal operation is invoked on the stream pipeline. * It's also a stateful operation since it needs to remember the first and previous elements when processing the current element. * * This operation is not parallelizable and requires the stream to be ordered. * * @param collapsible a TriPredicate that takes three parameters: the first element of the series, the previous element and the current element in the stream. * @param mergeFunction a BiFunction that takes two parameters: the current element and its previous element. It returns a single element that represents the collapsed elements. * @return a new Stream where each element is the result of collapsing adjacent elements which satisfy the given predicate. * @see Stream#collapse(com.landawn.abacus.util.function.TriPredicate, BiFunction) */ @SequentialOnly @IntermediateOp public abstract LongStream collapse(final LongTriPredicate collapsible, final LongBinaryOperator mergeFunction); /** * Performs a scan (also known as prefix sum, cumulative sum, running total, or integral) operation on the elements of the stream. * The scan operation takes a binary operator (the accumulator) and applies it cumulatively on the stream elements, * successively combining each element in order from the start to produce a stream of accumulated results. * * For example, given a stream of numbers [1, 2, 3, 4], and an accumulator that performs addition, * the output would be a stream of numbers [1, 3, 6, 10]. * * This is an intermediate operation. * This operation is sequential only, even when called on a parallel stream. * * @param accumulator a {@code LongBinaryOperator} that takes two parameters: the current accumulated value and the current stream element, and returns a new accumulated value. * @return a new {@code LongStream} consisting of the results of the scan operation on the elements of the original stream. * @see Stream#scan(BiFunction) */ @SequentialOnly @IntermediateOp public abstract LongStream scan(final LongBinaryOperator accumulator); /** * Performs a scan (also known as prefix sum, cumulative sum, running total, or integral) operation on the elements of the stream. * The scan operation takes an initial value and a binary operator (the accumulator) and applies it cumulatively on the stream elements, * successively combining each element in order from the start to produce a stream of accumulated results. * * For example, given a stream of numbers [1, 2, 3, 4], an initial value of 10, and an accumulator that performs addition, * the output would be a stream of numbers [11, 13, 16, 20]. * This is an intermediate operation. * This operation is sequential only, even when called on a parallel stream. * * @param init the initial value. It's only used once by the accumulator to calculate the first element in the returned stream. * It will be ignored if this stream is empty and won't be the first element of the returned stream. * @param accumulator a {@code LongBinaryOperator} that takes two parameters: the current accumulated value and the current stream element, and returns a new accumulated value. * @return a new {@code LongStream} consisting of the results of the scan operation on the elements of the original stream. * @see Stream#scan(Object, BiFunction) */ @SequentialOnly @IntermediateOp public abstract LongStream scan(final long init, final LongBinaryOperator accumulator); /** * Performs a scan (also known as prefix sum, cumulative sum, running total, or integral) operation on the elements of the stream. * The scan operation takes an initial value and a binary operator (the accumulator) and applies it cumulatively on the stream elements, * successively combining each element in order from the start to produce a stream of accumulated results. * * This is an intermediate operation. * This operation is sequential only, even when called on a parallel stream. * * @param init the initial value. It's only used once by the accumulator to calculate the first element in the returned stream. * @param initIncluded a boolean value that determines if the initial value should be included as the first element in the returned stream. * @param accumulator a {@code LongBinaryOperator} that takes two parameters: the current accumulated value and the current stream element, and returns a new accumulated value. * @return a new {@code LongStream} consisting of the results of the scan operation on the elements of the original stream. * @see Stream#scan(Object, boolean, BiFunction) */ @SequentialOnly @IntermediateOp public abstract LongStream scan(final long init, final boolean initIncluded, final LongBinaryOperator accumulator); /** * * @param a * @return */ @SequentialOnly @IntermediateOp public abstract LongStream prepend(final long... a); /** * * @param a * @return */ @SequentialOnly @IntermediateOp public abstract LongStream append(final long... a); /** * * @param a * @return */ @SequentialOnly @IntermediateOp public abstract LongStream appendIfEmpty(final long... a); /** *
* This method only runs sequentially, even in parallel stream. * * @param n * @return */ @SequentialOnly @IntermediateOp public abstract LongStream top(int n); /** *
* This method only runs sequentially, even in parallel stream. * * @param n * @param comparator * @return */ @SequentialOnly @IntermediateOp public abstract LongStream top(final int n, Comparator comparator); @SequentialOnly @TerminalOp public abstract LongList toLongList(); /** * * @param * @param * @param * @param * @param keyMapper * @param valueMapper * @return * @throws E * @throws E2 * @see Collectors#toMap(Function, Function) */ @ParallelSupported @TerminalOp public abstract Map toMap(Throwables.LongFunction keyMapper, Throwables.LongFunction valueMapper) throws E, E2; /** * * @param * @param * @param * @param * @param * @param keyMapper * @param valueMapper * @param mapFactory * @return * @throws E * @throws E2 * @see Collectors#toMap(Function, Function, Supplier) */ @ParallelSupported @TerminalOp public abstract , E extends Exception, E2 extends Exception> M toMap(Throwables.LongFunction keyMapper, Throwables.LongFunction valueMapper, Supplier mapFactory) throws E, E2; /** * * @param * @param * @param * @param * @param keyMapper * @param valueMapper * @param mergeFunction * @return * @throws E * @throws E2 * @see Collectors#toMap(Function, Function, BinaryOperator) */ @ParallelSupported @TerminalOp public abstract Map toMap(Throwables.LongFunction keyMapper, Throwables.LongFunction valueMapper, BinaryOperator mergeFunction) throws E, E2; /** * * @param * @param * @param * @param * @param * @param keyMapper * @param valueMapper * @param mergeFunction * @param mapFactory * @return * @throws E * @throws E2 * @see Collectors#toMap(Function, Function, BinaryOperator, Supplier) */ @ParallelSupported @TerminalOp public abstract , E extends Exception, E2 extends Exception> M toMap(Throwables.LongFunction keyMapper, Throwables.LongFunction valueMapper, BinaryOperator mergeFunction, Supplier mapFactory) throws E, E2; /** * * @param * @param * @param * @param keyMapper * @param downstream * @return * @throws E * @see Collectors#groupingBy(Function, Collector) */ @ParallelSupported @TerminalOp public abstract Map groupTo(Throwables.LongFunction keyMapper, final Collector downstream) throws E; /** * * @param * @param * @param * @param * @param keyMapper * @param downstream * @param mapFactory * @return * @throws E * @see Collectors#groupingBy(Function, Collector, Supplier) */ @ParallelSupported @TerminalOp public abstract , E extends Exception> M groupTo(Throwables.LongFunction keyMapper, final Collector downstream, final Supplier mapFactory) throws E; /** * Performs a reduction on the elements of this stream, using the provided accumulator function, and returns the reduced value. * The accumulator function takes two parameters: the current reduced value (or the initial value for the first element), and the current stream element. * * @param identity the initial value of the reduction operation * @param op the function for combining the current reduced value and the current stream element * @return the result of the reduction * @see Stream#reduce(Object, BinaryOperator) */ @ParallelSupported @TerminalOp public abstract long reduce(long identity, LongBinaryOperator op); /** * Performs a reduction on the elements of this stream, using the provided accumulator function, and returns the reduced value. * The accumulator function takes two parameters: the current reduced value and the current stream element. * * @param op the function for combining the current reduced value and the current stream element * @return an OptionalLong describing the result of the reduction. If the stream is empty, an empty OptionalLong is returned. * @see Stream#reduce(BinaryOperator) */ @ParallelSupported @TerminalOp public abstract OptionalLong reduce(LongBinaryOperator op); /** * Performs a mutable reduction operation on the elements of this stream using a Collector. * * @param The type of the result * @param supplier a function that creates a new result container. For a parallel execution, this function may be called multiple times and must return a fresh value each time. * @param accumulator an associative, non-interfering, stateless function for incorporating an additional element into a result * @param combiner an associative, non-interfering, stateless function for combining two values, which must be compatible with the accumulator function. * It's unnecessary to specify {@code combiner} if {@code R} is a {@code Map/Collection/StringBuilder/Multiset/LongMultiset/Multimap/BooleanList/IntList/.../DoubleList}. * @return the result of the reduction * @see Stream#collect(Supplier, BiConsumer, BiConsumer) * @see BiConsumers#ofAddAll() * @see BiConsumers#ofPutAll() */ @ParallelSupported @TerminalOp public abstract R collect(Supplier supplier, ObjLongConsumer accumulator, BiConsumer combiner); /** * Performs a mutable reduction operation on the elements of this stream using a Collector. * *
* Only call this method when the returned type {@code R} is one types: {@code Collection/Map/StringBuilder/Multiset/LongMultiset/Multimap/BooleanList/IntList/.../DoubleList}. * Otherwise, please call {@link #collect(Supplier, ObjLongConsumer, BiConsumer)}. * * @param The type of the result. It must be {@code Collection/Map/StringBuilder/Multiset/LongMultiset/Multimap/BooleanList/IntList/.../DoubleList}. * @param supplier A function that creates a new result container. For a parallel execution, this function may be called multiple times and must return a fresh value each time. * @param accumulator An associative, non-interfering, stateless function for incorporating an additional element into a result. * @throws IllegalArgumentException if the returned type {@code R} is not one of the types: {@code Collection/Map/StringBuilder/Multiset/LongMultiset/Multimap/BooleanList/IntList/.../DoubleList}. * @return the result of the reduction * @see #collect(Supplier, ObjLongConsumer, BiConsumer) * @see Stream#collect(Supplier, BiConsumer) * @see Stream#collect(Supplier, BiConsumer, BiConsumer) */ @ParallelSupported @TerminalOp public abstract R collect(Supplier supplier, ObjLongConsumer accumulator); /** * * @param action */ @ParallelSupported @TerminalOp public void foreach(final LongConsumer action) { // NOSONAR forEach(action::accept); } /** * * @param * @param action * @throws E */ @ParallelSupported @TerminalOp public abstract void forEach(final Throwables.LongConsumer action) throws E; //NOSONAR /** * * @param * @param action * @throws E */ @ParallelSupported @TerminalOp public abstract void forEachIndexed(Throwables.IntLongConsumer action) throws E; /** * * @param * @param predicate * @return * @throws E */ @ParallelSupported @TerminalOp public abstract boolean anyMatch(final Throwables.LongPredicate predicate) throws E; /** * * @param * @param predicate * @return * @throws E */ @ParallelSupported @TerminalOp public abstract boolean allMatch(final Throwables.LongPredicate predicate) throws E; /** * * @param * @param predicate * @return * @throws E */ @ParallelSupported @TerminalOp public abstract boolean noneMatch(final Throwables.LongPredicate predicate) throws E; /** * * @param * @param predicate * @return * @throws E */ @ParallelSupported @TerminalOp public abstract OptionalLong findFirst(final Throwables.LongPredicate predicate) throws E; /** * * @param * @param predicate * @return * @throws E */ @ParallelSupported @TerminalOp public abstract OptionalLong findAny(final Throwables.LongPredicate predicate) throws E; /** * Consider using: {@code stream.reversed().findFirst(predicate)} for better performance if possible. * * @param * @param predicate * @return * @throws E */ @Beta @ParallelSupported @TerminalOp public abstract OptionalLong findLast(final Throwables.LongPredicate predicate) throws E; // /** // * Returns the first element matched by {@code predicateForFirst} if found or the first element if this stream is not empty. // * Otherwise, an empty {@code OptionalLong} will be returned. // * // * @param // * @param predicateForFirst // * @return // * @throws E // */ // @ParallelSupported // @TerminalOp // public abstract OptionalLong findFirstOrElseAny(Throwables.LongPredicate predicateForFirst) throws E; // // /** // * Returns the first element matched by {@code predicateForFirst} if found or the last element if this stream is not empty. // * Otherwise, an empty {@code OptionalLong} will be returned. // * // * @param // * @param predicateForFirst // * @return // * @throws E // */ // @ParallelSupported // @TerminalOp // public abstract OptionalLong findFirstOrElseLast(Throwables.LongPredicate predicateForFirst) throws E; @SequentialOnly @TerminalOp public abstract OptionalLong min(); @SequentialOnly @TerminalOp public abstract OptionalLong max(); /** * Returns the k-th largest element in the stream. * If the stream is empty or the count of elements is less than k, an empty OptionalLong is returned. * * @param k the position (1-based) of the largest element to retrieve * @return an OptionalLong containing the k-th largest element, or an empty OptionalLong if the stream is empty or the count of elements is less than k */ @SequentialOnly @TerminalOp public abstract OptionalLong kthLargest(int k); @SequentialOnly @TerminalOp public abstract long sum(); @SequentialOnly @TerminalOp public abstract OptionalDouble average(); @SequentialOnly @TerminalOp public abstract LongSummaryStatistics summarize(); @SequentialOnly @TerminalOp public abstract Pair>> summarizeAndPercentiles(); // /** // * // * @param b // * @param nextSelector a function to determine which element should be selected as the next element. // * The first parameter is selected if {@code MergeResult.TAKE_FIRST} is returned, otherwise the second parameter is selected. // * @return // * @deprecated replaced by {@code mergeWith(LongStream, LongBiFunction)} // * @see #mergeWith(LongStream, LongBiFunction) // */ // @SequentialOnly // @IntermediateOp // @Deprecated // public LongStream merge(final LongStream b, final LongBiFunction nextSelector) { // return mergeWith(b, nextSelector); // } /** * * @param b * @param nextSelector a function to determine which element should be selected as the next element. * The first parameter is selected if {@code MergeResult.TAKE_FIRST} is returned, otherwise the second parameter is selected. * @return */ @SequentialOnly @IntermediateOp public abstract LongStream mergeWith(final LongStream b, final LongBiFunction nextSelector); /** * * @param b * @param zipFunction * @return */ @ParallelSupported @IntermediateOp public abstract LongStream zipWith(LongStream b, LongBinaryOperator zipFunction); /** * * @param b * @param c * @param zipFunction * @return */ @ParallelSupported @IntermediateOp public abstract LongStream zipWith(LongStream b, LongStream c, LongTernaryOperator zipFunction); /** * * @param b * @param valueForNoneA * @param valueForNoneB * @param zipFunction * @return */ @ParallelSupported @IntermediateOp public abstract LongStream zipWith(LongStream b, long valueForNoneA, long valueForNoneB, LongBinaryOperator zipFunction); /** * * @param b * @param c * @param valueForNoneA * @param valueForNoneB * @param valueForNoneC * @param zipFunction * @return */ @ParallelSupported @IntermediateOp public abstract LongStream zipWith(LongStream b, LongStream c, long valueForNoneA, long valueForNoneB, long valueForNoneC, LongTernaryOperator zipFunction); /** * Converts this LongStream to a FloatStream. * * @return a FloatStream representation of this LongStream. * @deprecated uncertain. */ @SequentialOnly @IntermediateOp @Deprecated public abstract FloatStream asFloatStream(); @SequentialOnly @IntermediateOp public abstract DoubleStream asDoubleStream(); // No performance improvement. // /** // * Temporarily switch the stream to Jdk parallel stream for operation {@code ops} and then switch back to sequence stream. // *
// * {@code stream.(switchToJdkStream).parallel().ops(map/filter/...).(switchBack).sequence()} // * // * @param // * @param op // * @return // */ // @Beta // @IntermediateOp // public LongStream sjps(Function op) { // if (this.isParallel()) { // return of(op.apply(this.toJdkStream())).sequential(); // } else { // return of(op.apply(this.toJdkStream().parallel())); // } // } @SequentialOnly @IntermediateOp public abstract Stream boxed(); @SequentialOnly @IntermediateOp public abstract java.util.stream.LongStream toJdkStream(); /** * * @param transfer * @return */ @Beta @SequentialOnly @IntermediateOp public LongStream transformB(final Function transfer) { return transformB(transfer, false); } /** * * @param transfer * @param deferred * @return * @throws IllegalArgumentException */ @Beta @SequentialOnly @IntermediateOp public LongStream transformB(final Function transfer, final boolean deferred) throws IllegalArgumentException { assertNotClosed(); checkArgNotNull(transfer, cs.transfer); if (deferred) { final Supplier delayInitializer = () -> LongStream.from(transfer.apply(toJdkStream())); return LongStream.defer(delayInitializer); } else { return LongStream.from(transfer.apply(toJdkStream())); } } abstract LongIteratorEx iteratorEx(); // private static final LongStream EMPTY_STREAM = new ArrayLongStream(N.EMPTY_LONG_ARRAY, true, null); /** * Returns an empty LongStream. * * @return an empty LongStream */ public static LongStream empty() { return new ArrayLongStream(N.EMPTY_LONG_ARRAY, true, null); } /** * Creates a new LongStream that is supplied by the given supplier. * The supplier is only invoked when the stream is actually used. * This allows for lazy evaluation of the stream. * * @implNote it's equivalent to {@code Stream.just(supplier).flatMapToLong(it -> it.get())}. * * @param supplier the supplier that provides the LongStream * @return a new LongStream supplied by the given supplier * @throws IllegalArgumentException if the supplier is null * @see Stream#defer(Supplier) */ public static LongStream defer(final Supplier supplier) throws IllegalArgumentException { N.checkArgNotNull(supplier, cs.supplier); //noinspection resource return Stream.just(supplier).flatMapToLong(Supplier::get); } /** * * @param stream * @return */ public static LongStream from(final java.util.stream.LongStream stream) { if (stream == null) { return empty(); } return of(new LongIteratorEx() { private PrimitiveIterator.OfLong iter = null; @Override public boolean hasNext() { if (iter == null) { iter = stream.iterator(); } return iter.hasNext(); } @Override public long nextLong() { if (iter == null) { iter = stream.iterator(); } return iter.nextLong(); } @Override public long count() { return iter == null ? stream.count() : super.count(); } @Override public void advance(final long n) { if (iter == null) { iter = stream.skip(n).iterator(); } else { super.advance(n); } } @Override public long[] toArray() { return iter == null ? stream.toArray() : super.toArray(); } }).transform(s -> stream.isParallel() ? s.parallel() : s.sequential()).onClose(stream::close); } /** * * @param e * @return */ public static LongStream ofNullable(final Long e) { return e == null ? empty() : of(e); } /** * * @param a * @return */ public static LongStream of(final long... a) { return N.isEmpty(a) ? empty() : new ArrayLongStream(a); } /** * * @param a * @param startIndex * @param endIndex * @return */ public static LongStream of(final long[] a, final int startIndex, final int endIndex) { return N.isEmpty(a) && (startIndex == 0 && endIndex == 0) ? empty() : new ArrayLongStream(a, startIndex, endIndex); } /** * * @param a * @return */ public static LongStream of(final Long[] a) { //noinspection resource return Stream.of(a).mapToLong(FL.unbox()); } /** * * @param a * @param startIndex * @param endIndex * @return */ public static LongStream of(final Long[] a, final int startIndex, final int endIndex) { //noinspection resource return Stream.of(a, startIndex, endIndex).mapToLong(FL.unbox()); } /** * * @param c * @return */ public static LongStream of(final Collection c) { //noinspection resource return Stream.of(c).mapToLong(FL.unbox()); } /** * * @param iterator * @return */ public static LongStream of(final LongIterator iterator) { return iterator == null ? empty() : new IteratorLongStream(iterator); } /** * * @param stream * @return * @deprecated Use {@link #from(java.util.stream.LongStream)} instead */ // Should the name be from? @Deprecated public static LongStream of(final java.util.stream.LongStream stream) { return from(stream); } /** * * @param buf * @return */ public static LongStream of(final LongBuffer buf) { if (buf == null) { return empty(); } //noinspection resource return IntStream.range(buf.position(), buf.limit()).mapToLong(buf::get); } /** * * @param op * @return */ public static LongStream of(final OptionalLong op) { return op == null || op.isEmpty() ? LongStream.empty() : LongStream.of(op.get()); } /** * * @param op * @return */ public static LongStream of(final java.util.OptionalLong op) { return op == null || op.isEmpty() ? LongStream.empty() : LongStream.of(op.getAsLong()); } private static final Function flatMapper = LongStream::of; private static final Function flattMapper = LongStream::flatten; /** * * @param a * @return */ public static LongStream flatten(final long[][] a) { //noinspection resource return N.isEmpty(a) ? empty() : Stream.of(a).flatMapToLong(flatMapper); } /** * * @param a * @param vertically * @return */ public static LongStream flatten(final long[][] a, final boolean vertically) { if (N.isEmpty(a)) { return empty(); } else if (a.length == 1) { return of(a[0]); } else if (!vertically) { //noinspection resource return Stream.of(a).flatMapToLong(flatMapper); } long n = 0; for (final long[] e : a) { n += N.len(e); } if (n == 0) { return empty(); } final int rows = N.len(a); final long count = n; final LongIterator iter = new LongIteratorEx() { private int rowNum = 0; private int colNum = 0; private long cnt = 0; @Override public boolean hasNext() { return cnt < count; } @Override public long nextLong() { if (cnt++ >= count) { throw new NoSuchElementException(ERROR_MSG_FOR_NO_SUCH_EX); } if (rowNum == rows) { rowNum = 0; colNum++; } while (a[rowNum] == null || colNum >= a[rowNum].length) { if (rowNum < rows - 1) { rowNum++; } else { rowNum = 0; colNum++; } } return a[rowNum++][colNum]; } }; return of(iter); } /** * * @param a * @param valueForAlignment element to append, so there is the same size of elements in all rows/columns * @param vertically * @return */ public static LongStream flatten(final long[][] a, final long valueForAlignment, final boolean vertically) { if (N.isEmpty(a)) { return empty(); } else if (a.length == 1) { return of(a[0]); } long n = 0; int maxLen = 0; for (final long[] e : a) { n += N.len(e); maxLen = N.max(maxLen, N.len(e)); } if (n == 0) { return empty(); } final int rows = N.len(a); final int cols = maxLen; final long count = ((long) rows) * cols; LongIterator iter = null; if (vertically) { iter = new LongIteratorEx() { private int rowNum = 0; private int colNum = 0; private long cnt = 0; @Override public boolean hasNext() { return cnt < count; } @Override public long nextLong() { if (cnt++ >= count) { throw new NoSuchElementException(ERROR_MSG_FOR_NO_SUCH_EX); } if (rowNum == rows) { rowNum = 0; colNum++; } if (a[rowNum] == null || colNum >= a[rowNum].length) { rowNum++; return valueForAlignment; } else { return a[rowNum++][colNum]; } } }; } else { iter = new LongIteratorEx() { private int rowNum = 0; private int colNum = 0; private long cnt = 0; @Override public boolean hasNext() { return cnt < count; } @Override public long nextLong() { if (cnt++ >= count) { throw new NoSuchElementException(ERROR_MSG_FOR_NO_SUCH_EX); } if (colNum >= cols) { colNum = 0; rowNum++; } if (a[rowNum] == null || colNum >= a[rowNum].length) { colNum++; return valueForAlignment; } else { return a[rowNum][colNum++]; } } }; } return of(iter); } /** * * @param a * @return */ public static LongStream flatten(final long[][][] a) { //noinspection resource return N.isEmpty(a) ? empty() : Stream.of(a).flatMapToLong(flattMapper); } /** * * @param startInclusive * @param endExclusive * @return */ public static LongStream range(final long startInclusive, final long endExclusive) { if (startInclusive >= endExclusive) { return empty(); } else if (endExclusive - startInclusive < 0) { final long m = BigInteger.valueOf(endExclusive).subtract(BigInteger.valueOf(startInclusive)).divide(BigInteger.valueOf(3)).longValue(); return concat(range(startInclusive, startInclusive + m), range(startInclusive + m, (startInclusive + m) + m), range((startInclusive + m) + m, endExclusive)); } return new IteratorLongStream(new LongIteratorEx() { private long next = startInclusive; private long cnt = endExclusive - startInclusive; @Override public boolean hasNext() { return cnt > 0; } @Override public long nextLong() { if (cnt-- <= 0) { throw new NoSuchElementException(ERROR_MSG_FOR_NO_SUCH_EX); } return next++; } @Override public void advance(final long n) { cnt = n >= cnt ? 0 : cnt - n; next += n; } @Override public long count() { return cnt; } @Override public long[] toArray() { final long[] result = new long[(int) cnt]; for (int i = 0; i < cnt; i++) { result[i] = next++; } cnt = 0; return result; } }); } /** * * @param startInclusive * @param endExclusive * @param by * @return */ public static LongStream range(final long startInclusive, final long endExclusive, final long by) { if (by == 0) { throw new IllegalArgumentException("'by' can't be zero"); } if (endExclusive == startInclusive || endExclusive > startInclusive != by > 0) { return empty(); } if ((by > 0 && endExclusive - startInclusive < 0) || (by < 0 && startInclusive - endExclusive < 0)) { long m = BigInteger.valueOf(endExclusive).subtract(BigInteger.valueOf(startInclusive)).divide(BigInteger.valueOf(3)).longValue(); if ((by > 0 && by > m) || (by < 0 && by < m)) { return concat(range(startInclusive, startInclusive + by), range(startInclusive + by, endExclusive)); } else { m = m > 0 ? m - m % by : m + m % by; return concat(range(startInclusive, startInclusive + m, by), range(startInclusive + m, (startInclusive + m) + m, by), range((startInclusive + m) + m, endExclusive, by)); } } return new IteratorLongStream(new LongIteratorEx() { private long next = startInclusive; private long cnt = (endExclusive - startInclusive) / by + ((endExclusive - startInclusive) % by == 0 ? 0 : 1); @Override public boolean hasNext() { return cnt > 0; } @Override public long nextLong() { if (cnt-- <= 0) { throw new NoSuchElementException(ERROR_MSG_FOR_NO_SUCH_EX); } final long result = next; next += by; return result; } @Override public void advance(final long n) { cnt = n >= cnt ? 0 : cnt - n; next += n * by; } @Override public long count() { return cnt; } @Override public long[] toArray() { final long[] result = new long[(int) cnt]; for (int i = 0; i < cnt; i++, next += by) { result[i] = next; } cnt = 0; return result; } }); } /** * * @param startInclusive * @param endInclusive * @return */ public static LongStream rangeClosed(final long startInclusive, final long endInclusive) { if (startInclusive > endInclusive) { return empty(); } else if (startInclusive == endInclusive) { return of(startInclusive); } else if (endInclusive - startInclusive + 1 <= 0) { final long m = BigInteger.valueOf(endInclusive).subtract(BigInteger.valueOf(startInclusive)).divide(BigInteger.valueOf(3)).longValue(); return concat(range(startInclusive, startInclusive + m), range(startInclusive + m, (startInclusive + m) + m), rangeClosed((startInclusive + m) + m, endInclusive)); } return new IteratorLongStream(new LongIteratorEx() { private long next = startInclusive; private long cnt = endInclusive - startInclusive + 1; @Override public boolean hasNext() { return cnt > 0; } @Override public long nextLong() { if (cnt-- <= 0) { throw new NoSuchElementException(ERROR_MSG_FOR_NO_SUCH_EX); } return next++; } @Override public void advance(final long n) { cnt = n >= cnt ? 0 : cnt - n; next += n; } @Override public long count() { return cnt; } @Override public long[] toArray() { final long[] result = new long[(int) cnt]; for (int i = 0; i < cnt; i++) { result[i] = next++; } cnt = 0; return result; } }); } /** * * @param startInclusive * @param endInclusive * @param by * @return */ public static LongStream rangeClosed(final long startInclusive, final long endInclusive, final long by) { if (by == 0) { throw new IllegalArgumentException("'by' can't be zero"); } if (endInclusive == startInclusive) { return of(startInclusive); } else if (endInclusive > startInclusive != by > 0) { return empty(); } if ((by > 0 && endInclusive - startInclusive < 0) || (by < 0 && startInclusive - endInclusive < 0) || ((endInclusive - startInclusive) / by + 1 <= 0)) { long m = BigInteger.valueOf(endInclusive).subtract(BigInteger.valueOf(startInclusive)).divide(BigInteger.valueOf(3)).longValue(); if ((by > 0 && by > m) || (by < 0 && by < m)) { return concat(range(startInclusive, startInclusive + by), rangeClosed(startInclusive + by, endInclusive)); } else { m = m > 0 ? m - m % by : m + m % by; return concat(range(startInclusive, startInclusive + m, by), range(startInclusive + m, (startInclusive + m) + m, by), rangeClosed((startInclusive + m) + m, endInclusive, by)); } } return new IteratorLongStream(new LongIteratorEx() { private long next = startInclusive; private long cnt = (endInclusive - startInclusive) / by + 1; @Override public boolean hasNext() { return cnt > 0; } @Override public long nextLong() { if (cnt-- <= 0) { throw new NoSuchElementException(ERROR_MSG_FOR_NO_SUCH_EX); } final long result = next; next += by; return result; } @Override public void advance(final long n) { cnt = n >= cnt ? 0 : cnt - n; next += n * by; } @Override public long count() { return cnt; } @Override public long[] toArray() { final long[] result = new long[(int) cnt]; for (int i = 0; i < cnt; i++, next += by) { result[i] = next; } cnt = 0; return result; } }); } /** * * @param element * @param n * @return * @throws IllegalArgumentException */ public static LongStream repeat(final long element, final long n) throws IllegalArgumentException { N.checkArgNotNegative(n, cs.n); if (n == 0) { return empty(); } else if (n < 10) { return of(Array.repeat(element, (int) n)); } return new IteratorLongStream(new LongIteratorEx() { private long cnt = n; @Override public boolean hasNext() { return cnt > 0; } @Override public long nextLong() { if (cnt-- <= 0) { throw new NoSuchElementException(ERROR_MSG_FOR_NO_SUCH_EX); } return element; } @Override public void advance(final long n) { cnt = n >= cnt ? 0 : cnt - (int) n; } @Override public long count() { return cnt; } @Override public long[] toArray() { final long[] result = new long[(int) cnt]; for (int i = 0; i < cnt; i++) { result[i] = element; } cnt = 0; return result; } }); } public static LongStream random() { return generate(RAND::nextLong); } /** * Generates a LongStream that emits elements([0, 1, 2, 3...]) at a fixed interval. * * @param intervalInMillis the interval between elements in milliseconds * @return a LongStream that emits elements at the specified interval */ @Beta public static LongStream interval(final long intervalInMillis) { return interval(0, intervalInMillis); } /** * Generates a LongStream that emits elements([0, 1, 2, 3...]) at a fixed interval after an initial delay. * * @param delayInMillis the initial delay before the first element is emitted, in milliseconds * @param intervalInMillis the interval between subsequent elements, in milliseconds * @return a LongStream that emits elements at the specified interval after the initial delay */ @Beta public static LongStream interval(final long delayInMillis, final long intervalInMillis) { return interval(delayInMillis, intervalInMillis, TimeUnit.MILLISECONDS); } /** * Generates a LongStream that emits elements([0, 1, 2, 3...]) at a fixed interval after an initial delay. * * @param delay the initial delay before the first element is emitted * @param interval the interval between subsequent elements * @param unit the time unit of the delay and interval * @return a LongStream that emits elements at the specified interval after the initial delay */ @Beta public static LongStream interval(final long delay, final long interval, final TimeUnit unit) { return of(new LongIteratorEx() { private final long intervalInMillis = unit.toMillis(interval); private long nextTime = System.currentTimeMillis() + unit.toMillis(delay); private long val = 0; @Override public boolean hasNext() { return true; } @Override public long nextLong() { final long now = System.currentTimeMillis(); if (now < nextTime) { N.sleepUninterruptibly(nextTime - now); } nextTime += intervalInMillis; return val++; } }); } /** * Creates a stream that iterates using the given hasNext and next suppliers. * * @param hasNext a BooleanSupplier that returns {@code true} if the iteration should continue * @param next a LongSupplier that provides the next long in the iteration * @return a LongStream of elements generated by the iteration * @throws IllegalArgumentException if hasNext or next is null * @see Stream#iterate(BooleanSupplier, Supplier) */ public static LongStream iterate(final BooleanSupplier hasNext, final LongSupplier next) throws IllegalArgumentException { N.checkArgNotNull(hasNext); N.checkArgNotNull(next); return new IteratorLongStream(new LongIteratorEx() { private boolean hasNextVal = false; @Override public boolean hasNext() { if (!hasNextVal) { hasNextVal = hasNext.getAsBoolean(); } return hasNextVal; } @Override public long nextLong() { if (!hasNextVal && !hasNext()) { throw new NoSuchElementException(ERROR_MSG_FOR_NO_SUCH_EX); } hasNextVal = false; return next.getAsLong(); } }); } /** * Creates a stream that iterates from an initial value, applying a function to generate subsequent values, * and continues as long as a predicate is satisfied. * * @param init the initial value * @param hasNext a BooleanSupplier that returns {@code true} if the iteration should continue * @param f a function to apply to the previous element to generate the next element * @return a LongStream of elements generated by the iteration * @throws IllegalArgumentException if hasNext or f is null * @see Stream#iterate(Object, BooleanSupplier, java.util.function.UnaryOperator) */ public static LongStream iterate(final long init, final BooleanSupplier hasNext, final LongUnaryOperator f) throws IllegalArgumentException { N.checkArgNotNull(hasNext); N.checkArgNotNull(f); return new IteratorLongStream(new LongIteratorEx() { private long cur = 0; private boolean isFirst = true; private boolean hasNextVal = false; @Override public boolean hasNext() { if (!hasNextVal) { hasNextVal = hasNext.getAsBoolean(); } return hasNextVal; } @Override public long nextLong() { if (!hasNextVal && !hasNext()) { throw new NoSuchElementException(ERROR_MSG_FOR_NO_SUCH_EX); } hasNextVal = false; if (isFirst) { isFirst = false; cur = init; } else { cur = f.applyAsLong(cur); } return cur; } }); } /** * Creates a stream that iterates from an initial value, applying a function to generate subsequent values, * and continues as long as a predicate is satisfied. * * @param init the initial value * @param hasNext determinate if the returned stream has next by hasNext.test(init) for the first time and hasNext.test(f.apply(previous)) for remaining. * @param f a function to apply to the previous element to generate the next element * @return a LongStream of elements generated by the iteration * @throws IllegalArgumentException if hasNext or f is null * @see Stream#iterate(Object, java.util.function.Predicate, java.util.function.UnaryOperator) */ public static LongStream iterate(final long init, final LongPredicate hasNext, final LongUnaryOperator f) throws IllegalArgumentException { N.checkArgNotNull(hasNext); N.checkArgNotNull(f); return new IteratorLongStream(new LongIteratorEx() { private long cur = 0; private boolean isFirst = true; private boolean hasMore = true; private boolean hasNextVal = false; @Override public boolean hasNext() { if (!hasNextVal && hasMore) { if (isFirst) { isFirst = false; hasNextVal = hasNext.test(cur = init); } else { hasNextVal = hasNext.test(cur = f.applyAsLong(cur)); } if (!hasNextVal) { hasMore = false; } } return hasNextVal; } @Override public long nextLong() { if (!hasNextVal && !hasNext()) { throw new NoSuchElementException(ERROR_MSG_FOR_NO_SUCH_EX); } hasNextVal = false; return cur; } }); } /** * Creates a stream that iterates from an initial value, applying a function to generate subsequent values. * * @param init the initial value * @param f a function to apply to the previous element to generate the next element * @return a LongStream of elements generated by the iteration * @throws IllegalArgumentException if f is null * @see Stream#iterate(Object, java.util.function.UnaryOperator) */ public static LongStream iterate(final long init, final LongUnaryOperator f) throws IllegalArgumentException { N.checkArgNotNull(f); return new IteratorLongStream(new LongIteratorEx() { private long cur = 0; private boolean isFirst = true; @Override public boolean hasNext() { return true; } @Override public long nextLong() { if (isFirst) { isFirst = false; cur = init; } else { cur = f.applyAsLong(cur); } return cur; } }); } /** * Generates a LongStream using the provided LongSupplier. * The supplier is used to generate each element of the stream. * * @param s the LongSupplier that provides the elements of the stream * @return a LongStream generated by the given supplier * @throws IllegalArgumentException if the supplier is null * @see Stream#generate(Supplier) */ public static LongStream generate(final LongSupplier s) throws IllegalArgumentException { N.checkArgNotNull(s); return new IteratorLongStream(new LongIteratorEx() { @Override public boolean hasNext() { return true; } @Override public long nextLong() { return s.getAsLong(); } }); } /** * Concatenates multiple arrays of longs into a single LongStream. * * @param a the arrays of longs to concatenate * @return a LongStream containing all the longs from the input arrays * @see Stream#concat(Object[][]) */ public static LongStream concat(final long[]... a) { if (N.isEmpty(a)) { return empty(); } return concat(Arrays.asList(a)); } /** * Concatenates multiple LongIterators into a single LongStream. * * @param a the arrays of LongIterator to concatenate * @return a LongStream containing all the longs from the input LongIterators * @see Stream#concat(Iterator[]) */ public static LongStream concat(final LongIterator... a) { if (N.isEmpty(a)) { return empty(); } return concatIterators(Array.asList(a)); } /** * Concatenates multiple LongStreams into a single LongStream. * * @param a the arrays of LongStream to concatenate * @return a LongStream containing all the longs from the input LongStreams * @see Stream#concat(Stream[]) */ public static LongStream concat(final LongStream... a) { if (N.isEmpty(a)) { return empty(); } return concat(Array.asList(a)); } /** * Concatenates a list of long array into a single LongStream. * * @param c the list of long array to concatenate * @return a LongStream containing all the longs from the input list of a long array * @see Stream#concat(Object[][]) */ @Beta public static LongStream concat(final List c) { if (N.isEmpty(c)) { return empty(); } return of(new LongIteratorEx() { private final Iterator iter = c.iterator(); private long[] cur; private int cursor = 0; @Override public boolean hasNext() { while ((N.isEmpty(cur) || cursor >= cur.length) && iter.hasNext()) { cur = iter.next(); cursor = 0; } return cur != null && cursor < cur.length; } @Override public long nextLong() { if ((cur == null || cursor >= cur.length) && !hasNext()) { throw new NoSuchElementException(ERROR_MSG_FOR_NO_SUCH_EX); } return cur[cursor++]; } }); } /** * Concatenates a collection of LongStream into a single LongStream. * * @param streams the collection of LongStream to concatenate * @return a LongStream containing all the longs from the input collection of LongStream * @see Stream#concat(Collection) */ public static LongStream concat(final Collection streams) { return N.isEmpty(streams) ? empty() : new IteratorLongStream(new LongIteratorEx() { //NOSONAR private final Iterator iterators = streams.iterator(); private LongStream cur; private LongIterator iter; @Override public boolean hasNext() { while ((iter == null || !iter.hasNext()) && iterators.hasNext()) { if (cur != null) { cur.close(); } cur = iterators.next(); iter = cur == null ? null : cur.iteratorEx(); } return iter != null && iter.hasNext(); } @Override public long nextLong() { if ((iter == null || !iter.hasNext()) && !hasNext()) { throw new NoSuchElementException(ERROR_MSG_FOR_NO_SUCH_EX); } return iter.nextLong(); } }).onClose(newCloseHandler(streams)); } /** * Concatenates a collection of LongIterator into a single LongStream. * * @param longIterators the collection of LongIterator to concatenate * @return a LongStream containing all the longs from the input collection of LongIterator * @see Stream#concatIterators(Collection) */ @Beta public static LongStream concatIterators(final Collection longIterators) { if (N.isEmpty(longIterators)) { return empty(); } return new IteratorLongStream(new LongIteratorEx() { private final Iterator iter = longIterators.iterator(); private LongIterator cur; @Override public boolean hasNext() { while ((cur == null || !cur.hasNext()) && iter.hasNext()) { cur = iter.next(); } return cur != null && cur.hasNext(); } @Override public long nextLong() { if ((cur == null || !cur.hasNext()) && !hasNext()) { throw new NoSuchElementException(ERROR_MSG_FOR_NO_SUCH_EX); } return cur.nextLong(); } }); } /** * Zips two long arrays into a single LongStream until one of them runs out of values. * Each pair of values is combined into a single value using the supplied zipFunction. * * @param a the first long array * @param b the second long array * @param zipFunction the function to combine elements from both arrays * @return a LongStream containing the results of applying the zip function to the elements of the input arrays * @see Stream#zip(Object[], Object[], BiFunction) */ public static LongStream zip(final long[] a, final long[] b, final LongBinaryOperator zipFunction) { if (N.isEmpty(a) || N.isEmpty(b)) { return empty(); } return new IteratorLongStream(new LongIteratorEx() { private final int len = N.min(N.len(a), N.len(b)); private int cursor = 0; @Override public boolean hasNext() { return cursor < len; } @Override public long nextLong() { if (cursor >= len) { throw new NoSuchElementException(ERROR_MSG_FOR_NO_SUCH_EX); } return zipFunction.applyAsLong(a[cursor], b[cursor++]); } }); } /** * Zips three long arrays into a single LongStream until one of them runs out of values. * Each triple of values is combined into a single value using the supplied zipFunction. * * @param a the first long array * @param b the second long array * @param c the third long array * @param zipFunction the function to combine elements from all three arrays * @return a LongStream containing the results of applying the zip function to the elements of the input arrays * @see Stream#zip(Object[], Object[], Object[], TriFunction) */ public static LongStream zip(final long[] a, final long[] b, final long[] c, final LongTernaryOperator zipFunction) { if (N.isEmpty(a) || N.isEmpty(b) || N.isEmpty(c)) { return empty(); } return new IteratorLongStream(new LongIteratorEx() { private final int len = N.min(N.len(a), N.len(b), N.len(c)); private int cursor = 0; @Override public boolean hasNext() { return cursor < len; } @Override public long nextLong() { if (cursor >= len) { throw new NoSuchElementException(ERROR_MSG_FOR_NO_SUCH_EX); } return zipFunction.applyAsLong(a[cursor], b[cursor], c[cursor++]); } }); } /** * Zips two LongIterators into a single LongStream until one of them runs out of values. * Each pair of values is combined into a single value using the supplied zipFunction. * * @param a the first LongIterator * @param b the second LongIterator * @param zipFunction the function to combine elements from both iterators * @return a LongStream containing the results of applying the zip function to the elements of the input iterators * @see Stream#zip(Iterator, Iterator, BiFunction) */ public static LongStream zip(final LongIterator a, final LongIterator b, final LongBinaryOperator zipFunction) { return new IteratorLongStream(new LongIteratorEx() { private final LongIterator iterA = a == null ? LongIterator.empty() : a; private final LongIterator iterB = b == null ? LongIterator.empty() : b; @Override public boolean hasNext() { return iterA.hasNext() && iterB.hasNext(); } @Override public long nextLong() { return zipFunction.applyAsLong(iterA.nextLong(), iterB.nextLong()); } }); } /** * Zips three LongIterators into a single LongStream until one of them runs out of values. * Each triple of values is combined into a single value using the supplied zipFunction. * * @param a the first LongIterator * @param b the second LongIterator * @param c the third LongIterator * @param zipFunction the function to combine elements from all three iterators * @return a LongStream containing the results of applying the zip function to the elements of the input iterators * @see Stream#zip(Iterator, Iterator, Iterator, TriFunction) */ public static LongStream zip(final LongIterator a, final LongIterator b, final LongIterator c, final LongTernaryOperator zipFunction) { return new IteratorLongStream(new LongIteratorEx() { private final LongIterator iterA = a == null ? LongIterator.empty() : a; private final LongIterator iterB = b == null ? LongIterator.empty() : b; private final LongIterator iterC = c == null ? LongIterator.empty() : c; @Override public boolean hasNext() { return iterA.hasNext() && iterB.hasNext() && iterC.hasNext(); } @Override public long nextLong() { return zipFunction.applyAsLong(iterA.nextLong(), iterB.nextLong(), iterC.nextLong()); } }); } /** * Zips two LongStreams into a single LongStream until one of them runs out of values. * Each pair of values is combined into a single value using the supplied zipFunction. * * @param a the first LongStream * @param b the second LongStream * @param zipFunction the function to combine elements from both streams * @return a LongStream containing the results of applying the zip function to the elements of the input streams * @see Stream#zip(Stream, Stream, BiFunction) */ public static LongStream zip(final LongStream a, final LongStream b, final LongBinaryOperator zipFunction) { return zip(iterate(a), iterate(b), zipFunction).onClose(newCloseHandler(a, b)); } /** * Zips three LongStreams into a single LongStream until one of them runs out of values. * Each triple of values is combined into a single value using the supplied zipFunction. * * @param a the first LongStream * @param b the second LongStream * @param c the third LongStream * @param zipFunction the function to combine elements from all three streams * @return a LongStream containing the results of applying the zip function to the elements of the input streams * @see Stream#zip(Stream, Stream, Stream, TriFunction) */ public static LongStream zip(final LongStream a, final LongStream b, final LongStream c, final LongTernaryOperator zipFunction) { return zip(iterate(a), iterate(b), iterate(c), zipFunction).onClose(newCloseHandler(Array.asList(a, b, c))); } /** * Zips multiple LongStreams into a single LongStream until one of them runs out of values. * Each list of values is combined into a single value using the supplied zipFunction. * * @param streams the collection of LongStream to zip * @param zipFunction the function to combine elements from all the streams * @return a LongStream containing the results of applying the zip function to the elements of the input streams * @see Stream#zip(Collection, Function) */ public static LongStream zip(final Collection streams, final LongNFunction zipFunction) { //noinspection resource return Stream.zip(streams, zipFunction).mapToLong(ToLongFunction.UNBOX); } /** * Zips two long arrays into a single LongStream until all of them runs out of values. * Each pair of values is combined into a single value using the supplied zipFunction. * If one array runs out of values before the other, the specified valueForNoneA or valueForNoneB is used. * * @param a the first long array * @param b the second long array * @param valueForNoneA the default value to use if the first array is shorter * @param valueForNoneB the default value to use if the second array is shorter * @param zipFunction the function to combine elements from both arrays * @return a LongStream containing the results of applying the zip function to the elements of the input arrays * @see Stream#zip(Object[], Object[], Object, Object, BiFunction) */ public static LongStream zip(final long[] a, final long[] b, final long valueForNoneA, final long valueForNoneB, final LongBinaryOperator zipFunction) { if (N.isEmpty(a) && N.isEmpty(b)) { return empty(); } return new IteratorLongStream(new LongIteratorEx() { private final int aLen = N.len(a), bLen = N.len(b), len = N.max(aLen, bLen); private int cursor = 0; private long ret = 0; @Override public boolean hasNext() { return cursor < len; } @Override public long nextLong() { if (cursor >= len) { throw new NoSuchElementException(ERROR_MSG_FOR_NO_SUCH_EX); } ret = zipFunction.applyAsLong(cursor < aLen ? a[cursor] : valueForNoneA, cursor < bLen ? b[cursor] : valueForNoneB); cursor++; return ret; } }); } /** * Zips three long arrays into a single LongStream until all of them runs out of values. * Each triple of values is combined into a single value using the supplied zipFunction. * If one array runs out of values before the other, the specified valueForNoneA, valueForNoneB or valueForNoneC is used. * * @param a the first long array * @param b the second long array * @param c the third long array * @param valueForNoneA the default value to use if the first array is shorter * @param valueForNoneB the default value to use if the second array is shorter * @param valueForNoneC the default value to use if the third array is shorter * @param zipFunction the function to combine elements from all three arrays * @return a LongStream containing the results of applying the zip function to the elements of the input arrays * @see Stream#zip(Object[], Object[], Object[], Object, Object, Object, TriFunction) */ public static LongStream zip(final long[] a, final long[] b, final long[] c, final long valueForNoneA, final long valueForNoneB, final long valueForNoneC, final LongTernaryOperator zipFunction) { if (N.isEmpty(a) && N.isEmpty(b) && N.isEmpty(c)) { return empty(); } return new IteratorLongStream(new LongIteratorEx() { private final int aLen = N.len(a), bLen = N.len(b), cLen = N.len(c), len = N.max(aLen, bLen, cLen); private int cursor = 0; private long ret = 0; @Override public boolean hasNext() { return cursor < len; } @Override public long nextLong() { if (cursor >= len) { throw new NoSuchElementException(ERROR_MSG_FOR_NO_SUCH_EX); } ret = zipFunction.applyAsLong(cursor < aLen ? a[cursor] : valueForNoneA, cursor < bLen ? b[cursor] : valueForNoneB, cursor < cLen ? c[cursor] : valueForNoneC); cursor++; return ret; } }); } /** * Zips two LongIterators into a single LongStream until all of them runs out of values. * Each pair of values is combined into a single value using the supplied zipFunction. * If one iterator runs out of values before the other, the specified valueForNoneA or valueForNoneB is used. * * @param a the first LongIterator * @param b the second LongIterator * @param valueForNoneA the default value to use if the first iterator is shorter * @param valueForNoneB the default value to use if the second iterator is shorter * @param zipFunction the function to combine elements from both iterators * @return a LongStream containing the results of applying the zip function to the elements of the input iterators * @see Stream#zip(Iterator, Iterator, Object, Object, BiFunction) */ public static LongStream zip(final LongIterator a, final LongIterator b, final long valueForNoneA, final long valueForNoneB, final LongBinaryOperator zipFunction) { return new IteratorLongStream(new LongIteratorEx() { private final LongIterator iterA = a == null ? LongIterator.empty() : a; private final LongIterator iterB = b == null ? LongIterator.empty() : b; @Override public boolean hasNext() { return iterA.hasNext() || iterB.hasNext(); } @Override public long nextLong() { if (iterA.hasNext()) { return zipFunction.applyAsLong(iterA.nextLong(), iterB.hasNext() ? iterB.nextLong() : valueForNoneB); } else { return zipFunction.applyAsLong(valueForNoneA, iterB.nextLong()); } } }); } /** * Zips three LongIterators into a single LongStream until all of them runs out of values. * Each triple of values is combined into a single value using the supplied zipFunction. * If one iterator runs out of values before the other, the specified valueForNoneA, valueForNoneB or valueForNoneC is used. * * @param a the first LongIterator * @param b the second LongIterator * @param c the third LongIterator * @param valueForNoneA the default value to use if the first iterator is shorter * @param valueForNoneB the default value to use if the second iterator is shorter * @param valueForNoneC the default value to use if the third iterator is shorter * @param zipFunction the function to combine elements from all three iterators * @return a LongStream containing the results of applying the zip function to the elements of the input iterators * @see Stream#zip(Iterator, Iterator, Iterator, Object, Object, Object, TriFunction) */ public static LongStream zip(final LongIterator a, final LongIterator b, final LongIterator c, final long valueForNoneA, final long valueForNoneB, final long valueForNoneC, final LongTernaryOperator zipFunction) { return new IteratorLongStream(new LongIteratorEx() { private final LongIterator iterA = a == null ? LongIterator.empty() : a; private final LongIterator iterB = b == null ? LongIterator.empty() : b; private final LongIterator iterC = c == null ? LongIterator.empty() : c; @Override public boolean hasNext() { return iterA.hasNext() || iterB.hasNext() || iterC.hasNext(); } @Override public long nextLong() { if (iterA.hasNext()) { return zipFunction.applyAsLong(iterA.nextLong(), iterB.hasNext() ? iterB.nextLong() : valueForNoneB, iterC.hasNext() ? iterC.nextLong() : valueForNoneC); } else if (iterB.hasNext()) { return zipFunction.applyAsLong(valueForNoneA, iterB.nextLong(), iterC.hasNext() ? iterC.nextLong() : valueForNoneC); } else { return zipFunction.applyAsLong(valueForNoneA, valueForNoneB, iterC.nextLong()); } } }); } /** * Zips two LongStreams into a single LongStream until all of them runs out of values. * Each pair of values is combined into a single value using the supplied zipFunction. * If one stream runs out of values before the other, the specified valueForNoneA or valueForNoneB is used. * * @param a the first LongStream * @param b the second LongStream * @param valueForNoneA the default value to use if the first stream is shorter * @param valueForNoneB the default value to use if the second stream is shorter * @param zipFunction the function to combine elements from both streams * @return a LongStream containing the results of applying the zip function to the elements of the input streams * @see Stream#zip(Stream, Stream, Object, Object, BiFunction) */ public static LongStream zip(final LongStream a, final LongStream b, final long valueForNoneA, final long valueForNoneB, final LongBinaryOperator zipFunction) { return zip(iterate(a), iterate(b), valueForNoneA, valueForNoneB, zipFunction).onClose(newCloseHandler(a, b)); } /** * Zips three LongStreams into a single LongStream until all of them runs out of values. * Each triple of values is combined into a single value using the supplied zipFunction. * If one stream runs out of values before the other, the specified valueForNoneA, valueForNoneB or valueForNoneC is used. * * @param a the first LongStream * @param b the second LongStream * @param c the third LongStream * @param valueForNoneA the default value to use if the first stream is shorter * @param valueForNoneB the default value to use if the second stream is shorter * @param valueForNoneC the default value to use if the third stream is shorter * @param zipFunction the function to combine elements from all three streams * @return a LongStream containing the results of applying the zip function to the elements of the input streams * @see Stream#zip(Stream, Stream, Stream, Object, Object, Object, TriFunction) */ public static LongStream zip(final LongStream a, final LongStream b, final LongStream c, final long valueForNoneA, final long valueForNoneB, final long valueForNoneC, final LongTernaryOperator zipFunction) { return zip(iterate(a), iterate(b), iterate(c), valueForNoneA, valueForNoneB, valueForNoneC, zipFunction) .onClose(newCloseHandler(Array.asList(a, b, c))); } /** * Zips multiple LongStreams into a single LongStream until all of them runs out of values. * Each list of values is combined into a single value using the supplied zipFunction. * If one stream runs out of values before the other, the specified valuesForNone is used. * * @param streams the collection of LongStream instances to zip * @param valuesForNone the default value to use if the corresponding stream is shorter * @param zipFunction the function to combine elements from all the streams * @return a LongStream containing the results of applying the zip function to the elements of the input streams * @see Stream#zip(Collection, List, Function) */ public static LongStream zip(final Collection streams, final long[] valuesForNone, final LongNFunction zipFunction) { //noinspection resource return Stream.zip(streams, valuesForNone, zipFunction).mapToLong(ToLongFunction.UNBOX); } /** * Merges two long arrays into a single LongStream based on the provided nextSelector function. * The nextSelector function determines which element to take next from the two arrays. * * @param a the first long array * @param b the second long array * @param nextSelector a function to determine which element should be selected as the next element. * The first parameter is selected if {@code MergeResult.TAKE_FIRST} is returned, otherwise the second parameter is selected. * @return a LongStream containing the merged elements from the two input arrays * @see Stream#merge(Object[], Object[], BiFunction) */ public static LongStream merge(final long[] a, final long[] b, final LongBiFunction nextSelector) { if (N.isEmpty(a)) { return of(b); } else if (N.isEmpty(b)) { return of(a); } return new IteratorLongStream(new LongIteratorEx() { private final int lenA = a.length; private final int lenB = b.length; private int cursorA = 0; private int cursorB = 0; @Override public boolean hasNext() { return cursorA < lenA || cursorB < lenB; } @Override public long nextLong() { if (cursorA < lenA) { if ((cursorB >= lenB) || (nextSelector.apply(a[cursorA], b[cursorB]) == MergeResult.TAKE_FIRST)) { return a[cursorA++]; } else { return b[cursorB++]; } } else if (cursorB < lenB) { return b[cursorB++]; } else { throw new NoSuchElementException(ERROR_MSG_FOR_NO_SUCH_EX); } } }); } /** * Merges three long arrays into a single LongStream based on the provided nextSelector function. * The nextSelector function determines which element to take next from the three arrays. * * @param a the first long array * @param b the second long array * @param c the third long array * @param nextSelector a function to determine which element should be selected as the next element. * The first parameter is selected if {@code MergeResult.TAKE_FIRST} is returned, otherwise the second parameter is selected. * @return a LongStream containing the merged elements from the three input arrays * @see Stream#merge(Object[], Object[], Object[], BiFunction) */ public static LongStream merge(final long[] a, final long[] b, final long[] c, final LongBiFunction nextSelector) { //noinspection resource return merge(merge(a, b, nextSelector).iteratorEx(), LongStream.of(c).iteratorEx(), nextSelector); } /** * Merges two LongIterators into a single LongStream based on the provided nextSelector function. * The nextSelector function determines which element to take next from the two iterators. * * @param a the first LongIterator * @param b the second LongIterator * @param nextSelector a function to determine which element should be selected as the next element. * The first parameter is selected if {@code MergeResult.TAKE_FIRST} is returned, otherwise the second parameter is selected. * @return a LongStream containing the merged elements from the two input iterators * @see Stream#merge(Iterator, Iterator, BiFunction) */ public static LongStream merge(final LongIterator a, final LongIterator b, final LongBiFunction nextSelector) { return new IteratorLongStream(new LongIteratorEx() { private final LongIterator iterA = a == null ? LongIterator.empty() : a; private final LongIterator iterB = b == null ? LongIterator.empty() : b; private long nextA = 0; private long nextB = 0; private boolean hasNextA = false; private boolean hasNextB = false; @Override public boolean hasNext() { return iterA.hasNext() || iterB.hasNext() || hasNextA || hasNextB; } @Override public long nextLong() { if (hasNextA) { if (iterB.hasNext()) { if (nextSelector.apply(nextA, (nextB = iterB.nextLong())) == MergeResult.TAKE_FIRST) { hasNextA = false; hasNextB = true; return nextA; } else { return nextB; } } else { hasNextA = false; return nextA; } } else if (hasNextB) { if (iterA.hasNext()) { if (nextSelector.apply((nextA = iterA.nextLong()), nextB) == MergeResult.TAKE_FIRST) { return nextA; } else { hasNextA = true; hasNextB = false; return nextB; } } else { hasNextB = false; return nextB; } } else if (iterA.hasNext()) { if (iterB.hasNext()) { if (nextSelector.apply((nextA = iterA.nextLong()), (nextB = iterB.nextLong())) == MergeResult.TAKE_FIRST) { hasNextB = true; return nextA; } else { hasNextA = true; return nextB; } } else { return iterA.nextLong(); } } else if (iterB.hasNext()) { return iterB.nextLong(); } else { throw new NoSuchElementException(ERROR_MSG_FOR_NO_SUCH_EX); } } }); } /** * Merges three LongIterators into a single LongStream based on the provided nextSelector function. * The nextSelector function determines which element to take next from the three iterators. * * @param a the first LongIterator * @param b the second LongIterator * @param c the third LongIterator * @param nextSelector a function to determine which element should be selected as the next element. * The first parameter is selected if {@code MergeResult.TAKE_FIRST} is returned, otherwise the second parameter is selected. * @return a LongStream containing the merged elements from the three input iterators * @see Stream#merge(Iterator, Iterator, Iterator, BiFunction) */ public static LongStream merge(final LongIterator a, final LongIterator b, final LongIterator c, final LongBiFunction nextSelector) { //noinspection resource return merge(merge(a, b, nextSelector).iteratorEx(), c, nextSelector); } /** * Merges two LongStreams into a single LongStream based on the provided nextSelector function. * The nextSelector function determines which element to take next from the two streams. * * @param a the first LongStream * @param b the second LongStream * @param nextSelector a function to determine which element should be selected as the next element. * The first parameter is selected if {@code MergeResult.TAKE_FIRST} is returned, otherwise the second parameter is selected. * @return a LongStream containing the merged elements from the two input streams * @see Stream#merge(Stream, Stream, BiFunction) */ public static LongStream merge(final LongStream a, final LongStream b, final LongBiFunction nextSelector) { return merge(iterate(a), iterate(b), nextSelector).onClose(newCloseHandler(a, b)); } /** * Merges three LongStreams into a single LongStream based on the provided nextSelector function. * The nextSelector function determines which element to take next from the three streams. * * @param a the first LongStream * @param b the second LongStream * @param c the third LongStream * @param nextSelector a function to determine which element should be selected as the next element. * The first parameter is selected if {@code MergeResult.TAKE_FIRST} is returned, otherwise the second parameter is selected. * @return a LongStream containing the merged elements from the three input streams * @see Stream#merge(Stream, Stream, Stream, BiFunction) */ public static LongStream merge(final LongStream a, final LongStream b, final LongStream c, final LongBiFunction nextSelector) { return merge(merge(a, b, nextSelector), c, nextSelector); } /** * Merges a collection of LongStream into a single LongStream based on the provided nextSelector function. * The nextSelector function determines which element to take next from the multiple streams. * * @param streams the collection of LongStream instances to merge * @param nextSelector a function to determine which element should be selected as the next element. * The first parameter is selected if {@code MergeResult.TAKE_FIRST} is returned, otherwise the second parameter is selected. * @return a LongStream containing the merged elements from the input LongStreams * @see Stream#merge(Collection, BiFunction) */ public static LongStream merge(final Collection streams, final LongBiFunction nextSelector) { if (N.isEmpty(streams)) { return empty(); } else if (streams.size() == 1) { return streams.iterator().next(); } else if (streams.size() == 2) { final Iterator iter = streams.iterator(); return merge(iter.next(), iter.next(), nextSelector); } final Iterator iter = streams.iterator(); LongStream result = merge(iter.next(), iter.next(), nextSelector); while (iter.hasNext()) { result = merge(result, iter.next(), nextSelector); } return result; } // /** // * Merges a collection of LongStream into a single LongStream in parallel. // * All the elements from each input LongStream will be merged into two queues by multiple threads first. // * Then these two new queues will be merged into one LongStream in the current thread. // * This method is not totally lazy evaluation and may cause {@code OutOfMemoryError} if there are too many elements merged into the two new queues. // * Consider using {@code merge}, which is totally lazy evaluation. // * // * @param streams the collection of LongStream to be merged // * @param nextSelector a function to determine which element should be selected as the next element. // * @return a LongStream containing the merged elements from the input LongStreams // * @see Stream#parallelMerge(Collection, BiFunction) // */ // public static LongStream parallelMerge(final Collection streams, final LongBiFunction nextSelector) { // return parallelMerge(streams, nextSelector, DEFAULT_MAX_THREAD_NUM); // } // // /** // * Merges a collection of LongStream into a single LongStream in parallel. // * All the elements from each input LongStream will be merged into two queues by multiple threads first. // * Then these two new queues will be merged into one LongStream in the current thread. // * This method is not totally lazy evaluation and may cause {@code OutOfMemoryError} if there are too many elements merged into the two new queues. // * Consider using {@code merge}, which is totally lazy evaluation. // * // * @param streams the collection of LongStream to be merged // * @param nextSelector a function to determine which element should be selected as the next element. // * @param maxThreadNum is the max thread number for the parallel merge. // * @return a LongStream containing the merged elements from the input LongStreams // * @see Stream#parallelMerge(Collection, BiFunction, int) // */ // public static LongStream parallelMerge(final Collection streams, final LongBiFunction nextSelector, // final int maxThreadNum) throws IllegalArgumentException { // N.checkArgument(maxThreadNum > 0, "'maxThreadNum' must not be less than 1"); // // if (maxThreadNum <= 1) { // return merge(streams, nextSelector); // } else if (N.isEmpty(streams)) { // return empty(); // } else if (streams.size() == 1) { // return streams.iterator().next(); // } else if (streams.size() == 2) { // final Iterator iter = streams.iterator(); // return merge(iter.next(), iter.next(), nextSelector); // } else if (streams.size() == 3) { // final Iterator iter = streams.iterator(); // return merge(iter.next(), iter.next(), iter.next(), nextSelector); // } // // final Supplier supplier = () -> { // final Queue queue = N.newLinkedList(); // // queue.addAll(streams); // // final Holder eHolder = new Holder<>(); // final MutableInt cnt = MutableInt.of(streams.size()); // final List> futureList = new ArrayList<>(streams.size() - 1); // // final int threadNum = N.min(maxThreadNum, streams.size() / 2 + 1); // // AsyncExecutor asyncExecutorToUse = checkAsyncExecutor(DEFAULT_ASYNC_EXECUTOR, threadNum, 0); // // for (int i = 0; i < threadNum; i++) { // asyncExecutorToUse = execute(asyncExecutorToUse, threadNum, 0, i, futureList, () -> { // LongStream a = null; // LongStream b = null; // LongStream c1 = null; // // try { // while (eHolder.value() == null) { // synchronized (queue) { // if (cnt.value() > 2 && queue.size() > 1) { // a = queue.poll(); // b = queue.poll(); // // cnt.decrement(); // } else { // break; // } // } // // c1 = LongStream.of(merge(a, b, nextSelector).toArray()); // // synchronized (queue) { // queue.offer(c1); // } // } // } catch (final Throwable e) { // NOSONAR // setError(eHolder, e); // } // }); // } // // completeAndShutdownTempExecutor(futureList, eHolder, streams, asyncExecutorToUse); // // return merge(queue.poll(), queue.poll(), nextSelector); // }; // // return Stream.just(supplier).flatMapToLong(Supplier::get); // } public abstract static class LongStreamEx extends LongStream { private LongStreamEx(final boolean sorted, final Collection closeHandlers) { //NOSONAR super(sorted, closeHandlers); // Factory class. } } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy