All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.landawn.abacus.util.stream.ParallelArrayDoubleStream Maven / Gradle / Ivy

There is a newer version: 1.2.9
Show newest version
/*
 * Copyright (C) 2016 HaiYang Li
 *
 * Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except
 * in compliance with the License. You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software distributed under the License
 * is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express
 * or implied. See the License for the specific language governing permissions and limitations under
 * the License.
 */

package com.landawn.abacus.util.stream;

import java.util.ArrayList;
import java.util.Collection;
import java.util.Comparator;
import java.util.HashSet;
import java.util.List;
import java.util.Map;
import java.util.Set;
import java.util.concurrent.Callable;

import com.landawn.abacus.util.CompletableFuture;
import com.landawn.abacus.util.DoubleList;
import com.landawn.abacus.util.DoubleSummaryStatistics;
import com.landawn.abacus.util.Holder;
import com.landawn.abacus.util.IndexedDouble;
import com.landawn.abacus.util.LongMultiset;
import com.landawn.abacus.util.Multiset;
import com.landawn.abacus.util.MutableBoolean;
import com.landawn.abacus.util.MutableInt;
import com.landawn.abacus.util.N;
import com.landawn.abacus.util.Nth;
import com.landawn.abacus.util.NullabLe;
import com.landawn.abacus.util.OptionalDouble;
import com.landawn.abacus.util.Pair;
import com.landawn.abacus.util.function.BiConsumer;
import com.landawn.abacus.util.function.BiFunction;
import com.landawn.abacus.util.function.BinaryOperator;
import com.landawn.abacus.util.function.Consumer;
import com.landawn.abacus.util.function.DoubleBiFunction;
import com.landawn.abacus.util.function.DoubleBinaryOperator;
import com.landawn.abacus.util.function.DoubleConsumer;
import com.landawn.abacus.util.function.DoubleFunction;
import com.landawn.abacus.util.function.DoublePredicate;
import com.landawn.abacus.util.function.DoubleToFloatFunction;
import com.landawn.abacus.util.function.DoubleToIntFunction;
import com.landawn.abacus.util.function.DoubleToLongFunction;
import com.landawn.abacus.util.function.DoubleTriFunction;
import com.landawn.abacus.util.function.DoubleUnaryOperator;
import com.landawn.abacus.util.function.Function;
import com.landawn.abacus.util.function.ObjDoubleConsumer;
import com.landawn.abacus.util.function.Predicate;
import com.landawn.abacus.util.function.Supplier;
import com.landawn.abacus.util.function.ToDoubleFunction;
import com.landawn.abacus.util.function.ToFloatFunction;
import com.landawn.abacus.util.function.ToIntFunction;
import com.landawn.abacus.util.function.ToLongFunction;

/**
 * This class is a sequential, stateful and immutable stream implementation.
 *
 * @since 0.8
 * 
 * @author Haiyang Li
 */
final class ParallelArrayDoubleStream extends ArrayDoubleStream {
    private final int maxThreadNum;
    private final Splitor splitor;
    private volatile ArrayDoubleStream sequential;
    private volatile Stream boxed;

    ParallelArrayDoubleStream(final double[] values, final int fromIndex, final int toIndex, final Collection closeHandlers, final boolean sorted,
            int maxThreadNum, Splitor splitor) {
        super(values, fromIndex, toIndex, closeHandlers, sorted);

        this.maxThreadNum = fromIndex >= toIndex ? 1 : N.min(maxThreadNum, MAX_THREAD_NUM_PER_OPERATION, toIndex - fromIndex);
        this.splitor = splitor == null ? DEFAULT_SPLITOR : splitor;
    }

    @Override
    public DoubleStream filter(final DoublePredicate predicate) {
        if (maxThreadNum <= 1) {
            return new ParallelIteratorDoubleStream(sequential().filter(predicate).exIterator(), closeHandlers, sorted, maxThreadNum, splitor);
        }

        final Stream stream = boxed().filter(new Predicate() {
            @Override
            public boolean test(Double value) {
                return predicate.test(value);
            }
        });

        return new ParallelIteratorDoubleStream(stream, closeHandlers, false, maxThreadNum, splitor);
    }

    @Override
    public DoubleStream takeWhile(final DoublePredicate predicate) {
        if (maxThreadNum <= 1) {
            return new ParallelIteratorDoubleStream(sequential().takeWhile(predicate).exIterator(), closeHandlers, sorted, maxThreadNum, splitor);
        }

        final Stream stream = boxed().takeWhile(new Predicate() {
            @Override
            public boolean test(Double value) {
                return predicate.test(value);
            }
        });

        return new ParallelIteratorDoubleStream(stream, closeHandlers, false, maxThreadNum, splitor);
    }

    @Override
    public DoubleStream dropWhile(final DoublePredicate predicate) {
        if (maxThreadNum <= 1) {
            return new ParallelIteratorDoubleStream(sequential().dropWhile(predicate).exIterator(), closeHandlers, sorted, maxThreadNum, splitor);
        }

        final Stream stream = boxed().dropWhile(new Predicate() {
            @Override
            public boolean test(Double value) {
                return predicate.test(value);
            }
        });

        return new ParallelIteratorDoubleStream(stream, closeHandlers, false, maxThreadNum, splitor);
    }

    @Override
    public DoubleStream map(final DoubleUnaryOperator mapper) {
        if (maxThreadNum <= 1) {
            return new ParallelIteratorDoubleStream(sequential().map(mapper).exIterator(), closeHandlers, false, maxThreadNum, splitor);
        }

        final DoubleStream stream = boxed().mapToDouble(new ToDoubleFunction() {
            @Override
            public double applyAsDouble(Double value) {
                return mapper.applyAsDouble(value);
            }
        });

        return new ParallelIteratorDoubleStream(stream, closeHandlers, false, maxThreadNum, splitor);
    }

    @Override
    public IntStream mapToInt(final DoubleToIntFunction mapper) {
        if (maxThreadNum <= 1) {
            return new ParallelIteratorIntStream(sequential().mapToInt(mapper).exIterator(), closeHandlers, false, maxThreadNum, splitor);
        }

        final IntStream stream = boxed().mapToInt(new ToIntFunction() {
            @Override
            public int applyAsInt(Double value) {
                return mapper.applyAsInt(value);
            }
        });

        return new ParallelIteratorIntStream(stream, closeHandlers, false, maxThreadNum, splitor);
    }

    @Override
    public LongStream mapToLong(final DoubleToLongFunction mapper) {
        if (maxThreadNum <= 1) {
            return new ParallelIteratorLongStream(sequential().mapToLong(mapper).exIterator(), closeHandlers, false, maxThreadNum, splitor);
        }

        final LongStream stream = boxed().mapToLong(new ToLongFunction() {
            @Override
            public long applyAsLong(Double value) {
                return mapper.applyAsLong(value);
            }
        });

        return new ParallelIteratorLongStream(stream, closeHandlers, false, maxThreadNum, splitor);
    }

    @Override
    public FloatStream mapToFloat(final DoubleToFloatFunction mapper) {
        if (maxThreadNum <= 1) {
            return new ParallelIteratorFloatStream(sequential().mapToFloat(mapper).exIterator(), closeHandlers, false, maxThreadNum, splitor);
        }

        final FloatStream stream = boxed().mapToFloat(new ToFloatFunction() {
            @Override
            public float applyAsFloat(Double value) {
                return mapper.applyAsFloat(value);
            }
        });

        return new ParallelIteratorFloatStream(stream, closeHandlers, false, maxThreadNum, splitor);
    }

    @Override
    public  Stream mapToObj(final DoubleFunction mapper) {
        if (maxThreadNum <= 1) {
            return new ParallelIteratorStream(sequential().mapToObj(mapper).iterator(), closeHandlers, false, null, maxThreadNum, splitor);
        }

        return boxed().map(new Function() {
            @Override
            public U apply(Double value) {
                return mapper.apply(value);
            }
        });
    }

    @Override
    public DoubleStream flatMap(final DoubleFunction mapper) {
        if (maxThreadNum <= 1) {
            return new ParallelIteratorDoubleStream(sequential().flatMap(mapper).exIterator(), closeHandlers, false, maxThreadNum, splitor);
        }

        final DoubleStream stream = boxed().flatMapToDouble(new Function() {
            @Override
            public DoubleStream apply(Double value) {
                return mapper.apply(value);
            }
        });

        return new ParallelIteratorDoubleStream(stream, closeHandlers, false, maxThreadNum, splitor);
    }

    @Override
    public IntStream flatMapToInt(final DoubleFunction mapper) {
        if (maxThreadNum <= 1) {
            return new ParallelIteratorIntStream(sequential().flatMapToInt(mapper).exIterator(), closeHandlers, false, maxThreadNum, splitor);
        }

        final IntStream stream = boxed().flatMapToInt(new Function() {
            @Override
            public IntStream apply(Double value) {
                return mapper.apply(value);
            }
        });

        return new ParallelIteratorIntStream(stream, closeHandlers, false, maxThreadNum, splitor);
    }

    @Override
    public LongStream flatMapToLong(final DoubleFunction mapper) {
        if (maxThreadNum <= 1) {
            return new ParallelIteratorLongStream(sequential().flatMapToLong(mapper).exIterator(), closeHandlers, false, maxThreadNum, splitor);
        }

        final LongStream stream = boxed().flatMapToLong(new Function() {
            @Override
            public LongStream apply(Double value) {
                return mapper.apply(value);
            }
        });

        return new ParallelIteratorLongStream(stream, closeHandlers, false, maxThreadNum, splitor);
    }

    @Override
    public FloatStream flatMapToFloat(final DoubleFunction mapper) {
        if (maxThreadNum <= 1) {
            return new ParallelIteratorFloatStream(sequential().flatMapToFloat(mapper).exIterator(), closeHandlers, false, maxThreadNum, splitor);
        }

        final FloatStream stream = boxed().flatMapToFloat(new Function() {
            @Override
            public FloatStream apply(Double value) {
                return mapper.apply(value);
            }
        });

        return new ParallelIteratorFloatStream(stream, closeHandlers, false, maxThreadNum, splitor);
    }

    @Override
    public  Stream flatMapToObj(final DoubleFunction> mapper) {
        if (maxThreadNum <= 1) {
            return new ParallelIteratorStream<>(sequential().flatMapToObj(mapper).iterator(), closeHandlers, false, null, maxThreadNum, splitor);
        }

        return boxed().flatMap(new Function>() {
            @Override
            public Stream apply(Double value) {
                return mapper.apply(value);
            }
        });
    }

    @Override
    public Stream split(final int size) {
        return new ParallelIteratorStream(sequential().split(size).iterator(), closeHandlers, false, null, maxThreadNum, splitor);
    }

    @Override
    public Stream splitToList(final int size) {
        return new ParallelIteratorStream(sequential().splitToList(size).iterator(), closeHandlers, false, null, maxThreadNum, splitor);
    }

    @Override
    public  Stream split(final U identity, final BiFunction predicate,
            final Consumer identityUpdate) {
        return new ParallelIteratorStream(sequential().split(identity, predicate, identityUpdate).iterator(), closeHandlers, false, null,
                maxThreadNum, splitor);
    }

    @Override
    public  Stream splitToList(final U identity, final BiFunction predicate,
            final Consumer identityUpdate) {
        return new ParallelIteratorStream(sequential().splitToList(identity, predicate, identityUpdate).iterator(), closeHandlers, false, null,
                maxThreadNum, splitor);
    }

    @Override
    public Stream splitAt(final int n) {
        if (n < 0) {
            throw new IllegalArgumentException("'n' can't be negative");
        }

        final DoubleStream[] a = new DoubleStream[2];
        final int middleIndex = n < toIndex - fromIndex ? fromIndex + n : toIndex;
        a[0] = middleIndex == fromIndex ? DoubleStream.empty() : new ArrayDoubleStream(elements, fromIndex, middleIndex, null, sorted);
        a[1] = middleIndex == toIndex ? DoubleStream.empty() : new ArrayDoubleStream(elements, middleIndex, toIndex, null, sorted);

        return new ParallelArrayStream<>(a, 0, a.length, closeHandlers, false, null, maxThreadNum, splitor);
    }

    @Override
    public Stream splitBy(final DoublePredicate where) {
        N.requireNonNull(where);

        final NullabLe first = indexed().findFirst(new Predicate() {
            @Override
            public boolean test(IndexedDouble indexed) {
                return !where.test(indexed.value());
            }
        });

        return splitAt(first.isPresent() ? (int) first.get().index() : toIndex - fromIndex);
    }

    @Override
    public Stream sliding(final int windowSize, final int increment) {
        return new ParallelIteratorStream(sequential().sliding(windowSize, increment).iterator(), closeHandlers, false, null, maxThreadNum,
                splitor);
    }

    @Override
    public Stream slidingToList(final int windowSize, final int increment) {
        return new ParallelIteratorStream(sequential().slidingToList(windowSize, increment).iterator(), closeHandlers, false, null, maxThreadNum,
                splitor);
    }

    @Override
    public DoubleStream top(int n) {
        return top(n, DOUBLE_COMPARATOR);
    }

    @Override
    public DoubleStream top(int n, Comparator comparator) {
        N.checkArgument(n > 0, "'n' must be bigger than 0");

        if (n >= toIndex - fromIndex) {
            return this;
        } else if (sorted && isSameComparator(comparator, DOUBLE_COMPARATOR)) {
            return new ParallelArrayDoubleStream(elements, toIndex - n, toIndex, closeHandlers, sorted, maxThreadNum, splitor);
        } else {
            final double[] a = N.top(elements, fromIndex, toIndex, n, comparator);
            return new ParallelArrayDoubleStream(a, 0, a.length, closeHandlers, sorted, maxThreadNum, splitor);
        }
    }

    @Override
    public DoubleStream sorted() {
        if (sorted) {
            return this;
        }

        final double[] a = N.copyOfRange(elements, fromIndex, toIndex);
        N.parallelSort(a);
        return new ParallelArrayDoubleStream(a, 0, a.length, closeHandlers, true, maxThreadNum, splitor);
    }

    @Override
    public DoubleStream peek(final DoubleConsumer action) {
        if (maxThreadNum <= 1) {
            return new ParallelIteratorDoubleStream(sequential().peek(action).exIterator(), closeHandlers, false, maxThreadNum, splitor);
        }

        final DoubleStream stream = boxed().peek(new Consumer() {
            @Override
            public void accept(Double t) {
                action.accept(t);
            }
        }).sequential().mapToDouble(ToDoubleFunction.UNBOX);

        return new ParallelIteratorDoubleStream(stream, closeHandlers, false, maxThreadNum, splitor);
    }

    @Override
    public DoubleStream limit(long maxSize) {
        if (maxSize < 0) {
            throw new IllegalArgumentException("'maxSize' can't be negative: " + maxSize);
        } else if (maxSize >= toIndex - fromIndex) {
            return this;
        }

        return new ParallelArrayDoubleStream(elements, fromIndex, (int) (fromIndex + maxSize), closeHandlers, sorted, maxThreadNum, splitor);
    }

    @Override
    public DoubleStream skip(long n) {
        if (n < 0) {
            throw new IllegalArgumentException("The skipped number can't be negative: " + n);
        } else if (n == 0) {
            return this;
        }

        if (n >= toIndex - fromIndex) {
            return new ParallelArrayDoubleStream(elements, toIndex, toIndex, closeHandlers, sorted, maxThreadNum, splitor);
        } else {
            return new ParallelArrayDoubleStream(elements, (int) (fromIndex + n), toIndex, closeHandlers, sorted, maxThreadNum, splitor);
        }
    }

    @Override
    public void forEach(final DoubleConsumer action) {
        if (maxThreadNum <= 1) {
            sequential().forEach(action);
            return;
        }

        final List> futureList = new ArrayList<>(maxThreadNum);
        final Holder eHolder = new Holder<>();

        if (splitor == Splitor.ARRAY) {
            final int sliceSize = (toIndex - fromIndex) / maxThreadNum + ((toIndex - fromIndex) % maxThreadNum == 0 ? 0 : 1);

            for (int i = 0; i < maxThreadNum; i++) {
                final int sliceIndex = i;

                futureList.add(asyncExecutor.execute(new Runnable() {
                    @Override
                    public void run() {
                        int cursor = fromIndex + sliceIndex * sliceSize;
                        final int to = toIndex - cursor > sliceSize ? cursor + sliceSize : toIndex;

                        try {
                            while (cursor < to && eHolder.value() == null) {
                                action.accept(elements[cursor++]);
                            }
                        } catch (Throwable e) {
                            setError(eHolder, e);
                        }
                    }
                }));
            }
        } else {
            final MutableInt cursor = MutableInt.of(fromIndex);

            for (int i = 0; i < maxThreadNum; i++) {
                futureList.add(asyncExecutor.execute(new Runnable() {
                    @Override
                    public void run() {
                        double next = 0;

                        try {
                            while (eHolder.value() == null) {
                                synchronized (elements) {
                                    if (cursor.intValue() < toIndex) {
                                        next = elements[cursor.getAndIncrement()];
                                    } else {
                                        break;
                                    }
                                }

                                action.accept(next);
                            }
                        } catch (Throwable e) {
                            setError(eHolder, e);
                        }
                    }
                }));
            }
        }

        complete(futureList, eHolder);
    }

    @Override
    public double[] toArray() {
        return N.copyOfRange(elements, fromIndex, toIndex);
    }

    @Override
    public DoubleList toDoubleList() {
        return DoubleList.of(N.copyOfRange(elements, fromIndex, toIndex));
    }

    @Override
    public List toList() {
        final List result = new ArrayList<>(toIndex - fromIndex);

        for (int i = fromIndex; i < toIndex; i++) {
            result.add(elements[i]);
        }

        return result;
    }

    @Override
    public > R toList(Supplier supplier) {
        final R result = supplier.get();

        for (int i = fromIndex; i < toIndex; i++) {
            result.add(elements[i]);
        }

        return result;
    }

    @Override
    public Set toSet() {
        final Set result = new HashSet<>(N.min(9, N.initHashCapacity(toIndex - fromIndex)));

        for (int i = fromIndex; i < toIndex; i++) {
            result.add(elements[i]);
        }

        return result;
    }

    @Override
    public > R toSet(Supplier supplier) {
        final R result = supplier.get();

        for (int i = fromIndex; i < toIndex; i++) {
            result.add(elements[i]);
        }

        return result;
    }

    @Override
    public Multiset toMultiset() {
        final Multiset result = new Multiset<>(N.min(9, N.initHashCapacity(toIndex - fromIndex)));

        for (int i = fromIndex; i < toIndex; i++) {
            result.add(elements[i]);
        }

        return result;
    }

    @Override
    public Multiset toMultiset(Supplier> supplier) {
        final Multiset result = supplier.get();

        for (int i = fromIndex; i < toIndex; i++) {
            result.add(elements[i]);
        }

        return result;
    }

    @Override
    public LongMultiset toLongMultiset() {
        final LongMultiset result = new LongMultiset<>(N.min(9, N.initHashCapacity(toIndex - fromIndex)));

        for (int i = fromIndex; i < toIndex; i++) {
            result.add(elements[i]);
        }

        return result;
    }

    @Override
    public LongMultiset toLongMultiset(Supplier> supplier) {
        final LongMultiset result = supplier.get();

        for (int i = fromIndex; i < toIndex; i++) {
            result.add(elements[i]);
        }

        return result;
    }

    @Override
    public > M toMap(final DoubleFunction keyExtractor, final DoubleFunction valueMapper,
            final BinaryOperator mergeFunction, final Supplier mapFactory) {
        if (maxThreadNum <= 1) {
            return sequential().toMap(keyExtractor, valueMapper, mergeFunction, mapFactory);
        }

        final Function keyExtractor2 = new Function() {
            @Override
            public K apply(Double value) {
                return keyExtractor.apply(value);
            }
        };

        final Function valueMapper2 = new Function() {
            @Override
            public U apply(Double value) {
                return valueMapper.apply(value);
            }
        };

        return boxed().toMap(keyExtractor2, valueMapper2, mergeFunction, mapFactory);
    }

    @Override
    public > M toMap(final DoubleFunction classifier, final Collector downstream,
            final Supplier mapFactory) {
        if (maxThreadNum <= 1) {
            return sequential().toMap(classifier, downstream, mapFactory);
        }

        final Function classifier2 = new Function() {
            @Override
            public K apply(Double value) {
                return classifier.apply(value);
            }
        };

        return boxed().toMap(classifier2, downstream, mapFactory);
    }

    @Override
    public OptionalDouble first() {
        return fromIndex < toIndex ? OptionalDouble.of(elements[fromIndex]) : OptionalDouble.empty();
    }

    @Override
    public OptionalDouble last() {
        return fromIndex < toIndex ? OptionalDouble.of(elements[toIndex - 1]) : OptionalDouble.empty();
    }

    @Override
    public double reduce(final double identity, final DoubleBinaryOperator op) {
        if (maxThreadNum <= 1) {
            return sequential().reduce(identity, op);
        }

        final List> futureList = new ArrayList<>(maxThreadNum);
        final Holder eHolder = new Holder<>();

        if (splitor == Splitor.ARRAY) {
            final int sliceSize = (toIndex - fromIndex) / maxThreadNum + ((toIndex - fromIndex) % maxThreadNum == 0 ? 0 : 1);

            for (int i = 0; i < maxThreadNum; i++) {
                final int sliceIndex = i;

                futureList.add(asyncExecutor.execute(new Callable() {
                    @Override
                    public Double call() {
                        int cursor = fromIndex + sliceIndex * sliceSize;
                        final int to = toIndex - cursor > sliceSize ? cursor + sliceSize : toIndex;

                        double result = identity;

                        try {
                            while (cursor < to && eHolder.value() == null) {
                                result = op.applyAsDouble(result, elements[cursor++]);
                            }
                        } catch (Throwable e) {
                            setError(eHolder, e);
                        }

                        return result;
                    }
                }));
            }
        } else {
            final MutableInt cursor = MutableInt.of(fromIndex);

            for (int i = 0; i < maxThreadNum; i++) {
                futureList.add(asyncExecutor.execute(new Callable() {
                    @Override
                    public Double call() {
                        double result = identity;
                        double next = 0;

                        try {
                            while (eHolder.value() == null) {
                                synchronized (elements) {
                                    if (cursor.intValue() < toIndex) {
                                        next = elements[cursor.getAndIncrement()];
                                    } else {
                                        break;
                                    }
                                }

                                result = op.applyAsDouble(result, next);
                            }
                        } catch (Throwable e) {
                            setError(eHolder, e);
                        }

                        return result;
                    }
                }));
            }
        }

        if (eHolder.value() != null) {
            throw N.toRuntimeException(eHolder.value());
        }

        Double result = null;

        try {
            for (CompletableFuture future : futureList) {
                if (result == null) {
                    result = future.get();
                } else {
                    result = op.applyAsDouble(result, future.get());
                }
            }
        } catch (Exception e) {
            throw N.toRuntimeException(e);
        }

        return result == null ? identity : result;
    }

    @Override
    public OptionalDouble reduce(final DoubleBinaryOperator accumulator) {
        if (maxThreadNum <= 1) {
            return sequential().reduce(accumulator);
        }

        final List> futureList = new ArrayList<>(maxThreadNum);
        final Holder eHolder = new Holder<>();

        if (splitor == Splitor.ARRAY) {
            final int sliceSize = (toIndex - fromIndex) / maxThreadNum + ((toIndex - fromIndex) % maxThreadNum == 0 ? 0 : 1);

            for (int i = 0; i < maxThreadNum; i++) {
                final int sliceIndex = i;

                futureList.add(asyncExecutor.execute(new Callable() {
                    @Override
                    public Double call() {
                        int cursor = fromIndex + sliceIndex * sliceSize;
                        final int to = toIndex - cursor > sliceSize ? cursor + sliceSize : toIndex;

                        if (cursor >= to) {
                            return null;
                        }

                        double result = elements[cursor++];

                        try {
                            while (cursor < to && eHolder.value() == null) {
                                result = accumulator.applyAsDouble(result, elements[cursor++]);
                            }
                        } catch (Throwable e) {
                            setError(eHolder, e);
                        }

                        return result;
                    }
                }));
            }
        } else {
            final MutableInt cursor = MutableInt.of(fromIndex);

            for (int i = 0; i < maxThreadNum; i++) {
                futureList.add(asyncExecutor.execute(new Callable() {
                    @Override
                    public Double call() {
                        double result = 0;

                        synchronized (elements) {
                            if (cursor.intValue() < toIndex) {
                                result = elements[cursor.getAndIncrement()];
                            } else {
                                return null;
                            }
                        }

                        double next = 0;

                        try {
                            while (eHolder.value() == null) {
                                synchronized (elements) {
                                    if (cursor.intValue() < toIndex) {
                                        next = elements[cursor.getAndIncrement()];
                                    } else {
                                        break;
                                    }
                                }

                                result = accumulator.applyAsDouble(result, next);
                            }
                        } catch (Throwable e) {
                            setError(eHolder, e);
                        }

                        return result;
                    }
                }));
            }
        }

        if (eHolder.value() != null) {
            throw N.toRuntimeException(eHolder.value());
        }

        Double result = null;

        try {
            for (CompletableFuture future : futureList) {
                final Double tmp = future.get();

                if (tmp == null) {
                    continue;
                } else if (result == null) {
                    result = tmp;
                } else {
                    result = accumulator.applyAsDouble(result, tmp);
                }
            }
        } catch (Exception e) {
            throw N.toRuntimeException(e);
        }

        return result == null ? OptionalDouble.empty() : OptionalDouble.of(result);
    }

    @Override
    public  R collect(final Supplier supplier, final ObjDoubleConsumer accumulator, final BiConsumer combiner) {
        if (maxThreadNum <= 1) {
            return sequential().collect(supplier, accumulator, combiner);
        }

        final List> futureList = new ArrayList<>(maxThreadNum);
        final Holder eHolder = new Holder<>();

        if (splitor == Splitor.ARRAY) {
            final int sliceSize = (toIndex - fromIndex) / maxThreadNum + ((toIndex - fromIndex) % maxThreadNum == 0 ? 0 : 1);

            for (int i = 0; i < maxThreadNum; i++) {
                final int sliceIndex = i;

                futureList.add(asyncExecutor.execute(new Callable() {
                    @Override
                    public R call() {
                        int cursor = fromIndex + sliceIndex * sliceSize;
                        final int to = toIndex - cursor > sliceSize ? cursor + sliceSize : toIndex;

                        final R container = supplier.get();

                        try {
                            while (cursor < to && eHolder.value() == null) {
                                accumulator.accept(container, elements[cursor++]);
                            }
                        } catch (Throwable e) {
                            setError(eHolder, e);
                        }

                        return container;
                    }
                }));
            }
        } else {
            final MutableInt cursor = MutableInt.of(fromIndex);

            for (int i = 0; i < maxThreadNum; i++) {
                futureList.add(asyncExecutor.execute(new Callable() {
                    @Override
                    public R call() {
                        final R container = supplier.get();
                        double next = 0;

                        try {
                            while (eHolder.value() == null) {
                                synchronized (elements) {
                                    if (cursor.intValue() < toIndex) {
                                        next = elements[cursor.getAndIncrement()];
                                    } else {
                                        break;
                                    }
                                }

                                accumulator.accept(container, next);
                            }
                        } catch (Throwable e) {
                            setError(eHolder, e);
                        }

                        return container;
                    }
                }));
            }
        }

        if (eHolder.value() != null) {
            throw N.toRuntimeException(eHolder.value());
        }

        R container = (R) NONE;

        try {
            for (CompletableFuture future : futureList) {
                if (container == NONE) {
                    container = future.get();
                } else {
                    combiner.accept(container, future.get());
                }
            }
        } catch (Exception e) {
            throw N.toRuntimeException(e);
        }

        return container == NONE ? supplier.get() : container;
    }

    @Override
    public DoubleStream tail() {
        if (fromIndex == toIndex) {
            return this;
        }

        return new ParallelArrayDoubleStream(elements, fromIndex + 1, toIndex, closeHandlers, sorted, maxThreadNum, splitor);
    }

    @Override
    public DoubleStream head2() {
        if (fromIndex == toIndex) {
            return this;
        }

        return new ParallelArrayDoubleStream(elements, fromIndex, toIndex - 1, closeHandlers, sorted, maxThreadNum, splitor);
    }

    @Override
    public OptionalDouble min() {
        if (fromIndex == toIndex) {
            return OptionalDouble.empty();
        } else if (sorted) {
            return OptionalDouble.of(elements[fromIndex]);
        } else if (maxThreadNum <= 1) {
            return OptionalDouble.of(N.min(elements, fromIndex, toIndex));
        }

        final List> futureList = new ArrayList<>(maxThreadNum);
        final int sliceSize = (toIndex - fromIndex) / maxThreadNum + ((toIndex - fromIndex) % maxThreadNum == 0 ? 0 : 1);

        for (int i = 0; i < maxThreadNum; i++) {
            final int sliceIndex = i;

            futureList.add(asyncExecutor.execute(new Callable() {
                @Override
                public Double call() {
                    int cursor = fromIndex + sliceIndex * sliceSize;
                    final int to = toIndex - cursor > sliceSize ? cursor + sliceSize : toIndex;

                    return cursor >= to ? null : N.min(elements, cursor, to);
                }
            }));
        }

        Double candidate = null;

        try {
            for (CompletableFuture future : futureList) {
                final Double tmp = future.get();

                if (tmp == null) {
                    continue;
                } else if (candidate == null || N.compare(tmp.doubleValue(), candidate.doubleValue()) < 0) {
                    candidate = tmp;
                }
            }
        } catch (Exception e) {
            throw N.toRuntimeException(e);
        }

        return candidate == null ? OptionalDouble.empty() : OptionalDouble.of(candidate);
    }

    @Override
    public OptionalDouble max() {
        if (fromIndex == toIndex) {
            return OptionalDouble.empty();
        } else if (sorted) {
            return OptionalDouble.of(elements[toIndex - 1]);
        } else if (maxThreadNum <= 1) {
            return OptionalDouble.of(N.max(elements, fromIndex, toIndex));
        }

        final List> futureList = new ArrayList<>(maxThreadNum);
        final int sliceSize = (toIndex - fromIndex) / maxThreadNum + ((toIndex - fromIndex) % maxThreadNum == 0 ? 0 : 1);

        for (int i = 0; i < maxThreadNum; i++) {
            final int sliceIndex = i;

            futureList.add(asyncExecutor.execute(new Callable() {
                @Override
                public Double call() {
                    int cursor = fromIndex + sliceIndex * sliceSize;
                    final int to = toIndex - cursor > sliceSize ? cursor + sliceSize : toIndex;
                    return cursor >= to ? null : N.max(elements, cursor, to);
                }
            }));
        }

        Double candidate = null;

        try {
            for (CompletableFuture future : futureList) {
                final Double tmp = future.get();

                if (tmp == null) {
                    continue;
                } else if (candidate == null || N.compare(tmp.doubleValue(), candidate.doubleValue()) > 0) {
                    candidate = tmp;
                }
            }
        } catch (Exception e) {
            throw N.toRuntimeException(e);
        }

        return candidate == null ? OptionalDouble.empty() : OptionalDouble.of(candidate);
    }

    @Override
    public OptionalDouble kthLargest(int k) {
        N.checkArgument(k > 0, "'k' must be bigger than 0");

        if (k > toIndex - fromIndex) {
            return OptionalDouble.empty();
        } else if (sorted) {
            return OptionalDouble.of(elements[toIndex - k]);
        }

        return OptionalDouble.of(N.kthLargest(elements, fromIndex, toIndex, k));
    }

    @Override
    public double sum() {
        if (fromIndex == toIndex) {
            return 0d;
        } else if (maxThreadNum <= 1) {
            return sequential().sum();
        }

        final Supplier supplier = new Supplier() {
            @Override
            public double[] get() {
                return new double[3];
            }
        };

        final ObjDoubleConsumer accumulator = new ObjDoubleConsumer() {
            @Override
            public void accept(double[] ll, double d) {
                Collectors.sumWithCompensation(ll, d);
                ll[2] += d;
            }
        };

        final BiConsumer combiner = new BiConsumer() {
            @Override
            public void accept(double[] ll, double[] rr) {
                Collectors.sumWithCompensation(ll, rr[0]);
                Collectors.sumWithCompensation(ll, rr[1]);
                ll[2] += rr[2];
            }
        };

        final List> futureList = new ArrayList<>(maxThreadNum);
        final int sliceSize = (toIndex - fromIndex) / maxThreadNum + ((toIndex - fromIndex) % maxThreadNum == 0 ? 0 : 1);

        for (int i = 0; i < maxThreadNum; i++) {
            final int sliceIndex = i;

            futureList.add(asyncExecutor.execute(new Callable() {
                @Override
                public double[] call() {
                    int cursor = fromIndex + sliceIndex * sliceSize;
                    final int to = toIndex - cursor > sliceSize ? cursor + sliceSize : toIndex;

                    double[] container = supplier.get();

                    while (cursor < to) {
                        accumulator.accept(container, elements[cursor++]);
                    }

                    return container;
                }
            }));
        }

        double[] summation = null;

        try {
            for (CompletableFuture future : futureList) {
                final double[] tmp = future.get();

                if (summation == null) {
                    summation = tmp;
                } else {
                    combiner.accept(summation, tmp);
                }
            }
        } catch (Exception e) {
            throw N.toRuntimeException(e);
        }

        return Collectors.computeFinalSum(summation);
    }

    @Override
    public OptionalDouble average() {
        if (fromIndex == toIndex) {
            return OptionalDouble.empty();
        } else if (maxThreadNum <= 1) {
            return sequential().average();
        }

        final Supplier supplier = new Supplier() {
            @Override
            public double[] get() {
                return new double[4];
            }
        };

        final ObjDoubleConsumer accumulator = new ObjDoubleConsumer() {
            @Override
            public void accept(double[] ll, double d) {
                ll[2]++;
                Collectors.sumWithCompensation(ll, d);
                ll[3] += d;
            }
        };

        final BiConsumer combiner = new BiConsumer() {
            @Override
            public void accept(double[] ll, double[] rr) {
                Collectors.sumWithCompensation(ll, rr[0]);
                Collectors.sumWithCompensation(ll, rr[1]);
                ll[2] += rr[2];
                ll[3] += rr[3];
            }
        };

        final List> futureList = new ArrayList<>(maxThreadNum);
        final int sliceSize = (toIndex - fromIndex) / maxThreadNum + ((toIndex - fromIndex) % maxThreadNum == 0 ? 0 : 1);

        for (int i = 0; i < maxThreadNum; i++) {
            final int sliceIndex = i;

            futureList.add(asyncExecutor.execute(new Callable() {
                @Override
                public double[] call() {
                    int cursor = fromIndex + sliceIndex * sliceSize;
                    final int to = toIndex - cursor > sliceSize ? cursor + sliceSize : toIndex;

                    double[] container = supplier.get();

                    while (cursor < to) {
                        accumulator.accept(container, elements[cursor++]);
                    }

                    return container;
                }
            }));
        }

        double[] avg = null;

        try {
            for (CompletableFuture future : futureList) {
                final double[] tmp = future.get();

                if (avg == null) {
                    avg = tmp;
                } else {
                    combiner.accept(avg, tmp);
                }
            }
        } catch (Exception e) {
            throw N.toRuntimeException(e);
        }

        return avg[2] > 0 ? OptionalDouble.of(Collectors.computeFinalSum(avg) / avg[2]) : OptionalDouble.empty();
    }

    @Override
    public long count() {
        return toIndex - fromIndex;
    }

    @Override
    public DoubleStream reversed() {
        return new ParallelIteratorDoubleStream(sequential().reversed().exIterator(), closeHandlers, false, maxThreadNum, splitor);
    }

    @Override
    public DoubleSummaryStatistics summarize() {
        if (fromIndex == toIndex) {
            return new DoubleSummaryStatistics();
        } else if (maxThreadNum <= 1) {
            return sequential().summarize();
        }

        final List> futureList = new ArrayList<>(maxThreadNum);
        final int sliceSize = (toIndex - fromIndex) / maxThreadNum + ((toIndex - fromIndex) % maxThreadNum == 0 ? 0 : 1);

        for (int i = 0; i < maxThreadNum; i++) {
            final int sliceIndex = i;

            futureList.add(asyncExecutor.execute(new Callable() {
                @Override
                public DoubleSummaryStatistics call() {
                    int cursor = fromIndex + sliceIndex * sliceSize;
                    final int to = toIndex - cursor > sliceSize ? cursor + sliceSize : toIndex;
                    final DoubleSummaryStatistics result = new DoubleSummaryStatistics();

                    for (int i = cursor; i < to; i++) {
                        result.accept(elements[i]);
                    }

                    return result;
                }
            }));
        }

        DoubleSummaryStatistics result = null;

        try {
            for (CompletableFuture future : futureList) {
                final DoubleSummaryStatistics tmp = future.get();

                if (tmp == null) {
                    continue;
                } else if (result == null) {
                    result = tmp;
                } else {
                    result.combine(tmp);
                }
            }
        } catch (Exception e) {
            throw N.toRuntimeException(e);
        }

        return result;
    }

    @Override
    public boolean anyMatch(final DoublePredicate predicate) {
        if (maxThreadNum <= 1) {
            return sequential().anyMatch(predicate);
        }

        final List> futureList = new ArrayList<>(maxThreadNum);
        final Holder eHolder = new Holder<>();
        final MutableBoolean result = MutableBoolean.of(false);

        if (splitor == Splitor.ARRAY) {
            final int sliceSize = (toIndex - fromIndex) / maxThreadNum + ((toIndex - fromIndex) % maxThreadNum == 0 ? 0 : 1);

            for (int i = 0; i < maxThreadNum; i++) {
                final int sliceIndex = i;

                futureList.add(asyncExecutor.execute(new Runnable() {
                    @Override
                    public void run() {
                        int cursor = fromIndex + sliceIndex * sliceSize;
                        final int to = toIndex - cursor > sliceSize ? cursor + sliceSize : toIndex;

                        try {
                            while (cursor < to && result.isFalse() && eHolder.value() == null) {
                                if (predicate.test(elements[cursor++])) {
                                    result.setTrue();
                                    break;
                                }
                            }
                        } catch (Throwable e) {
                            setError(eHolder, e);
                        }
                    }
                }));
            }
        } else {
            final MutableInt cursor = MutableInt.of(fromIndex);

            for (int i = 0; i < maxThreadNum; i++) {
                futureList.add(asyncExecutor.execute(new Runnable() {
                    @Override
                    public void run() {
                        double next = 0;

                        try {
                            while (result.isFalse() && eHolder.value() == null) {
                                synchronized (elements) {
                                    if (cursor.intValue() < toIndex) {
                                        next = elements[cursor.getAndIncrement()];
                                    } else {
                                        break;
                                    }
                                }

                                if (predicate.test(next)) {
                                    result.setTrue();
                                    break;
                                }
                            }
                        } catch (Throwable e) {
                            setError(eHolder, e);
                        }
                    }
                }));
            }
        }

        complete(futureList, eHolder);

        return result.value();
    }

    @Override
    public boolean allMatch(final DoublePredicate predicate) {
        if (maxThreadNum <= 1) {
            return sequential().allMatch(predicate);
        }

        final List> futureList = new ArrayList<>(maxThreadNum);
        final Holder eHolder = new Holder<>();
        final MutableBoolean result = MutableBoolean.of(true);

        if (splitor == Splitor.ARRAY) {
            final int sliceSize = (toIndex - fromIndex) / maxThreadNum + ((toIndex - fromIndex) % maxThreadNum == 0 ? 0 : 1);

            for (int i = 0; i < maxThreadNum; i++) {
                final int sliceIndex = i;

                futureList.add(asyncExecutor.execute(new Runnable() {
                    @Override
                    public void run() {
                        int cursor = fromIndex + sliceIndex * sliceSize;
                        final int to = toIndex - cursor > sliceSize ? cursor + sliceSize : toIndex;

                        try {
                            while (cursor < to && result.isTrue() && eHolder.value() == null) {
                                if (predicate.test(elements[cursor++]) == false) {
                                    result.setFalse();
                                    break;
                                }
                            }
                        } catch (Throwable e) {
                            setError(eHolder, e);
                        }
                    }
                }));
            }
        } else {
            final MutableInt cursor = MutableInt.of(fromIndex);

            for (int i = 0; i < maxThreadNum; i++) {
                futureList.add(asyncExecutor.execute(new Runnable() {
                    @Override
                    public void run() {
                        double next = 0;

                        try {
                            while (result.isTrue() && eHolder.value() == null) {
                                synchronized (elements) {
                                    if (cursor.intValue() < toIndex) {
                                        next = elements[cursor.getAndIncrement()];
                                    } else {
                                        break;
                                    }
                                }

                                if (predicate.test(next) == false) {
                                    result.setFalse();
                                    break;
                                }
                            }
                        } catch (Throwable e) {
                            setError(eHolder, e);
                        }
                    }
                }));
            }
        }

        complete(futureList, eHolder);

        return result.value();
    }

    @Override
    public boolean noneMatch(final DoublePredicate predicate) {
        if (maxThreadNum <= 1) {
            return sequential().noneMatch(predicate);
        }

        final List> futureList = new ArrayList<>(maxThreadNum);
        final Holder eHolder = new Holder<>();
        final MutableBoolean result = MutableBoolean.of(true);

        if (splitor == Splitor.ARRAY) {
            final int sliceSize = (toIndex - fromIndex) / maxThreadNum + ((toIndex - fromIndex) % maxThreadNum == 0 ? 0 : 1);

            for (int i = 0; i < maxThreadNum; i++) {
                final int sliceIndex = i;

                futureList.add(asyncExecutor.execute(new Runnable() {
                    @Override
                    public void run() {
                        int cursor = fromIndex + sliceIndex * sliceSize;
                        final int to = toIndex - cursor > sliceSize ? cursor + sliceSize : toIndex;

                        try {
                            while (cursor < to && result.isTrue() && eHolder.value() == null) {
                                if (predicate.test(elements[cursor++])) {
                                    result.setFalse();
                                    break;
                                }
                            }
                        } catch (Throwable e) {
                            setError(eHolder, e);
                        }
                    }
                }));
            }
        } else {
            final MutableInt cursor = MutableInt.of(fromIndex);

            for (int i = 0; i < maxThreadNum; i++) {
                futureList.add(asyncExecutor.execute(new Runnable() {
                    @Override
                    public void run() {
                        double next = 0;

                        try {
                            while (result.isTrue() && eHolder.value() == null) {
                                synchronized (elements) {
                                    if (cursor.intValue() < toIndex) {
                                        next = elements[cursor.getAndIncrement()];
                                    } else {
                                        break;
                                    }
                                }

                                if (predicate.test(next)) {
                                    result.setFalse();
                                    break;
                                }
                            }
                        } catch (Throwable e) {
                            setError(eHolder, e);
                        }
                    }
                }));
            }
        }

        complete(futureList, eHolder);

        return result.value();
    }

    @Override
    public OptionalDouble findFirst(final DoublePredicate predicate) {
        if (maxThreadNum <= 1) {
            return sequential().findFirst(predicate);
        }

        final List> futureList = new ArrayList<>(maxThreadNum);
        final Holder eHolder = new Holder<>();
        final Holder> resultHolder = new Holder<>();

        if (splitor == Splitor.ARRAY) {
            final int sliceSize = (toIndex - fromIndex) / maxThreadNum + ((toIndex - fromIndex) % maxThreadNum == 0 ? 0 : 1);

            for (int i = 0; i < maxThreadNum; i++) {
                final int sliceIndex = i;

                futureList.add(asyncExecutor.execute(new Runnable() {
                    @Override
                    public void run() {
                        int cursor = fromIndex + sliceIndex * sliceSize;
                        final int to = toIndex - cursor > sliceSize ? cursor + sliceSize : toIndex;
                        final Pair pair = new Pair<>();

                        try {
                            while (cursor < to && (resultHolder.value() == null || cursor < resultHolder.value().left) && eHolder.value() == null) {
                                pair.left = cursor;
                                pair.right = elements[cursor++];

                                if (predicate.test(pair.right)) {
                                    synchronized (resultHolder) {
                                        if (resultHolder.value() == null || pair.left < resultHolder.value().left) {
                                            resultHolder.setValue(pair.copy());
                                        }
                                    }

                                    break;
                                }
                            }
                        } catch (Throwable e) {
                            setError(eHolder, e);
                        }
                    }
                }));
            }
        } else {
            final MutableInt cursor = MutableInt.of(fromIndex);

            for (int i = 0; i < maxThreadNum; i++) {
                futureList.add(asyncExecutor.execute(new Runnable() {
                    @Override
                    public void run() {
                        final Pair pair = new Pair<>();

                        try {
                            while (resultHolder.value() == null && eHolder.value() == null) {
                                synchronized (elements) {
                                    if (cursor.intValue() < toIndex) {
                                        pair.left = cursor.intValue();
                                        pair.right = elements[cursor.getAndIncrement()];
                                    } else {
                                        break;
                                    }
                                }

                                if (predicate.test(pair.right)) {
                                    synchronized (resultHolder) {
                                        if (resultHolder.value() == null || pair.left < resultHolder.value().left) {
                                            resultHolder.setValue(pair.copy());
                                        }
                                    }

                                    break;
                                }
                            }
                        } catch (Throwable e) {
                            setError(eHolder, e);
                        }
                    }
                }));
            }
        }

        complete(futureList, eHolder);

        return resultHolder.value() == null ? OptionalDouble.empty() : OptionalDouble.of(resultHolder.value().right);
    }

    @Override
    public OptionalDouble findLast(final DoublePredicate predicate) {
        if (maxThreadNum <= 1) {
            return sequential().findLast(predicate);
        }

        final List> futureList = new ArrayList<>(maxThreadNum);
        final Holder eHolder = new Holder<>();
        final Holder> resultHolder = new Holder<>();

        if (splitor == Splitor.ARRAY) {
            final int sliceSize = (toIndex - fromIndex) / maxThreadNum + ((toIndex - fromIndex) % maxThreadNum == 0 ? 0 : 1);

            for (int i = 0; i < maxThreadNum; i++) {
                final int sliceIndex = i;

                futureList.add(asyncExecutor.execute(new Runnable() {
                    @Override
                    public void run() {
                        final int from = fromIndex + sliceIndex * sliceSize;
                        int cursor = toIndex - from > sliceSize ? from + sliceSize : toIndex;
                        final Pair pair = new Pair<>();

                        try {
                            while (cursor > from && (resultHolder.value() == null || cursor > resultHolder.value().left) && eHolder.value() == null) {
                                pair.left = cursor;
                                pair.right = elements[--cursor];

                                if (predicate.test(pair.right)) {
                                    synchronized (resultHolder) {
                                        if (resultHolder.value() == null || pair.left > resultHolder.value().left) {
                                            resultHolder.setValue(pair.copy());
                                        }
                                    }

                                    break;
                                }
                            }
                        } catch (Throwable e) {
                            setError(eHolder, e);
                        }
                    }
                }));
            }
        } else {
            final MutableInt cursor = MutableInt.of(toIndex);

            for (int i = 0; i < maxThreadNum; i++) {
                futureList.add(asyncExecutor.execute(new Runnable() {
                    @Override
                    public void run() {
                        final Pair pair = new Pair<>();

                        try {
                            while (resultHolder.value() == null && eHolder.value() == null) {
                                synchronized (elements) {
                                    if (cursor.intValue() > fromIndex) {
                                        pair.left = cursor.intValue();
                                        pair.right = elements[cursor.decrementAndGet()];
                                    } else {
                                        break;
                                    }
                                }

                                if (predicate.test(pair.right)) {
                                    synchronized (resultHolder) {
                                        if (resultHolder.value() == null || pair.left > resultHolder.value().left) {
                                            resultHolder.setValue(pair.copy());
                                        }
                                    }

                                    break;
                                }
                            }
                        } catch (Throwable e) {
                            setError(eHolder, e);
                        }
                    }
                }));
            }
        }

        complete(futureList, eHolder);

        return resultHolder.value() == null ? OptionalDouble.empty() : OptionalDouble.of(resultHolder.value().right);
    }

    @Override
    public OptionalDouble findAny(final DoublePredicate predicate) {
        if (maxThreadNum <= 1) {
            return sequential().findAny(predicate);
        }

        final List> futureList = new ArrayList<>(maxThreadNum);
        final Holder eHolder = new Holder<>();
        final Holder resultHolder = Holder.of(NONE);

        if (splitor == Splitor.ARRAY) {
            final int sliceSize = (toIndex - fromIndex) / maxThreadNum + ((toIndex - fromIndex) % maxThreadNum == 0 ? 0 : 1);

            for (int i = 0; i < maxThreadNum; i++) {
                final int sliceIndex = i;

                futureList.add(asyncExecutor.execute(new Runnable() {
                    @Override
                    public void run() {
                        int cursor = fromIndex + sliceIndex * sliceSize;
                        final int to = toIndex - cursor > sliceSize ? cursor + sliceSize : toIndex;
                        double next = 0;

                        try {
                            while (cursor < to && resultHolder.value() == NONE && eHolder.value() == null) {
                                next = elements[cursor++];

                                if (predicate.test(next)) {
                                    synchronized (resultHolder) {
                                        if (resultHolder.value() == NONE) {
                                            resultHolder.setValue(next);
                                        }
                                    }

                                    break;
                                }
                            }
                        } catch (Throwable e) {
                            setError(eHolder, e);
                        }
                    }
                }));
            }
        } else {
            final MutableInt cursor = MutableInt.of(fromIndex);

            for (int i = 0; i < maxThreadNum; i++) {
                futureList.add(asyncExecutor.execute(new Runnable() {
                    @Override
                    public void run() {
                        double next = 0;

                        try {
                            while (resultHolder.value() == NONE && eHolder.value() == null) {
                                synchronized (elements) {
                                    if (cursor.intValue() < toIndex) {
                                        next = elements[cursor.getAndIncrement()];
                                    } else {
                                        break;
                                    }
                                }

                                if (predicate.test(next)) {
                                    synchronized (resultHolder) {
                                        if (resultHolder.value() == NONE) {
                                            resultHolder.setValue(next);
                                        }
                                    }

                                    break;
                                }
                            }
                        } catch (Throwable e) {
                            setError(eHolder, e);
                        }
                    }
                }));
            }
        }

        complete(futureList, eHolder);

        return resultHolder.value() == NONE ? OptionalDouble.empty() : OptionalDouble.of((Double) resultHolder.value());
    }

    @Override
    public Stream boxed() {
        Stream tmp = boxed;

        if (tmp == null) {
            tmp = new ParallelIteratorStream(iterator(), closeHandlers, sorted, sorted ? DOUBLE_COMPARATOR : null, maxThreadNum, splitor);
            boxed = tmp;
        }

        return tmp;
    }

    @Override
    public DoubleStream cached() {
        return this;
    }

    @Override
    public DoubleStream append(DoubleStream stream) {
        return new ParallelIteratorDoubleStream(DoubleStream.concat(this, stream), closeHandlers, false, maxThreadNum, splitor);
    }

    @Override
    public DoubleStream prepend(DoubleStream stream) {
        return new ParallelIteratorDoubleStream(DoubleStream.concat(stream, this), closeHandlers, false, maxThreadNum, splitor);
    }

    @Override
    public DoubleStream merge(final DoubleStream b, final DoubleBiFunction nextSelector) {
        return new ParallelIteratorDoubleStream(DoubleStream.merge(this, b, nextSelector), closeHandlers, false, maxThreadNum, splitor);
    }

    @Override
    public DoubleStream zipWith(DoubleStream b, DoubleBiFunction zipFunction) {
        return new ParallelIteratorDoubleStream(DoubleStream.zip(this, b, zipFunction), closeHandlers, false, maxThreadNum, splitor);
    }

    @Override
    public DoubleStream zipWith(DoubleStream b, DoubleStream c, DoubleTriFunction zipFunction) {
        return new ParallelIteratorDoubleStream(DoubleStream.zip(this, b, c, zipFunction), closeHandlers, false, maxThreadNum, splitor);
    }

    @Override
    public DoubleStream zipWith(DoubleStream b, double valueForNoneA, double valueForNoneB, DoubleBiFunction zipFunction) {
        return new ParallelIteratorDoubleStream(DoubleStream.zip(this, b, valueForNoneA, valueForNoneB, zipFunction), closeHandlers, false, maxThreadNum,
                splitor);
    }

    @Override
    public DoubleStream zipWith(DoubleStream b, DoubleStream c, double valueForNoneA, double valueForNoneB, double valueForNoneC,
            DoubleTriFunction zipFunction) {
        return new ParallelIteratorDoubleStream(DoubleStream.zip(this, b, c, valueForNoneA, valueForNoneB, valueForNoneC, zipFunction), closeHandlers, false,
                maxThreadNum, splitor);
    }

    @Override
    public boolean isParallel() {
        return true;
    }

    @Override
    public DoubleStream sequential() {
        ArrayDoubleStream tmp = sequential;

        if (tmp == null) {
            tmp = new ArrayDoubleStream(elements, fromIndex, toIndex, closeHandlers, sorted);
            sequential = tmp;
        }

        return tmp;
    }

    @Override
    public DoubleStream parallel(int maxThreadNum, Splitor splitor) {
        if (maxThreadNum < 1 || maxThreadNum > MAX_THREAD_NUM_PER_OPERATION) {
            throw new IllegalArgumentException("'maxThreadNum' must not less than 1 or exceeded: " + MAX_THREAD_NUM_PER_OPERATION);
        }

        if (this.maxThreadNum == maxThreadNum && this.splitor == splitor) {
            return this;
        }

        return new ParallelArrayDoubleStream(elements, fromIndex, toIndex, closeHandlers, sorted, maxThreadNum, splitor);
    }

    @Override
    public int maxThreadNum() {
        return maxThreadNum;
    }

    @Override
    public DoubleStream maxThreadNum(int maxThreadNum) {
        if (maxThreadNum < 1 || maxThreadNum > MAX_THREAD_NUM_PER_OPERATION) {
            throw new IllegalArgumentException("'maxThreadNum' must not less than 1 or exceeded: " + MAX_THREAD_NUM_PER_OPERATION);
        }

        if (this.maxThreadNum == maxThreadNum) {
            return this;
        }

        return new ParallelArrayDoubleStream(elements, fromIndex, toIndex, closeHandlers, sorted, maxThreadNum, splitor);
    }

    @Override
    public BaseStream.Splitor splitor() {
        return splitor;
    }

    @Override
    public DoubleStream splitor(BaseStream.Splitor splitor) {
        if (this.splitor == splitor) {
            return this;
        }

        return new ParallelArrayDoubleStream(elements, fromIndex, toIndex, closeHandlers, sorted, maxThreadNum, splitor);
    }

    @Override
    public DoubleStream onClose(Runnable closeHandler) {
        final Set newCloseHandlers = new AbstractStream.LocalLinkedHashSet<>(N.isNullOrEmpty(this.closeHandlers) ? 1 : this.closeHandlers.size() + 1);

        if (N.notNullOrEmpty(this.closeHandlers)) {
            newCloseHandlers.addAll(this.closeHandlers);
        }

        newCloseHandlers.add(closeHandler);

        return new ParallelArrayDoubleStream(elements, fromIndex, toIndex, newCloseHandlers, sorted, maxThreadNum, splitor);
    }
}