com.landawn.abacus.util.AbstractMatrix Maven / Gradle / Ivy
/*
* Copyright (C) 2016 HaiYang Li
*
* Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except
* in compliance with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software distributed under the License
* is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express
* or implied. See the License for the specific language governing permissions and limitations under
* the License.
*/
package com.landawn.abacus.util;
import java.security.SecureRandom;
import java.util.Random;
import com.landawn.abacus.util.function.IntFunction;
import com.landawn.abacus.util.stream.IntStream;
import com.landawn.abacus.util.stream.Stream;
/**
*
* @param
* @param
* @param element stream
* @param row/column stream.
* @param
*
* @since 0.8
*
* @author Haiyang Li
*/
public abstract class AbstractMatrix> {
static final Random RAND = new SecureRandom();
static final boolean isParallelStreamSupported;
static {
boolean tmp = false;
try {
if (ClassUtil.forClass("com.landawn.abacus.util.stream.ParallelArrayIntStream") != null
&& ClassUtil.forClass("com.landawn.abacus.util.stream.ParallelIteratorIntStream") != null) {
tmp = true;
}
} catch (Throwable e) {
// ignore.
}
isParallelStreamSupported = tmp;
}
/**
* Row length.
*/
public final int rows;
/**
* Column length.
*/
public final int cols;
public final long count;
final A[] a;
protected AbstractMatrix(A[] a) {
this.a = a;
this.rows = a.length;
this.cols = a.length == 0 ? 0 : length(a[0]);
if (a.length > 1) {
for (int i = 1, len = a.length; i < len; i++) {
if (length(a[i]) != this.cols) {
throw new IllegalArgumentException("The length of sub arrays must be same");
}
}
}
this.count = this.cols * this.rows * 1L;
}
public A[] array() {
return a;
}
public void println() {
for (A e : a) {
N.println(e);
}
}
public boolean isEmpty() {
return count == 0;
}
// Replaced by stream and stream2.
// public abstract PL row(int i);
//
// public abstract PL column(int j);
/**
*
* @return a new Matrix
*/
public abstract X copy();
/**
*
* @param fromRowIndex
* @param toRowIndex
* @return a new Matrix
*/
public abstract X copy(int fromRowIndex, int toRowIndex);
/**
*
* @param fromRowIndex
* @param toRowIndex
* @param fromColumnIndex
* @param toColumnIndex
* @return a new Matrix
*/
public abstract X copy(int fromRowIndex, int toRowIndex, int fromColumnIndex, int toColumnIndex);
/**
* Rotate this matrix clockwise 90
*
* @return a new Matrix
*/
public abstract X rotate90();
/**
* Rotate this matrix clockwise 180
*
* @return a new Matrix
*/
public abstract X rotate180();
/**
* Rotate this matrix clockwise 270
*
* @return a new Matrix
*/
public abstract X rotate270();
public abstract X transpose();
public X reshape(int newCols) {
return reshape((int) (count % newCols == 0 ? count / newCols : count / newCols + 1), newCols);
}
public abstract X reshape(int newRows, int newCols);
public boolean isSameShape(X x) {
return this.rows == x.rows && this.cols == x.cols;
}
/**
* Repeat elements rowRepeats
times in row direction and colRepeats
times in column direction.
*
* @param rowRepeats
* @param colRepeats
* @return a new matrix
* @see https://www.mathworks.com/help/matlab/ref/repelem.html
*/
public abstract X repelem(int rowRepeats, int colRepeats);
/**
* Repeat this matrix rowRepeats
times in row direction and colRepeats
times in column direction.
*
* @param rowRepeats
* @param colRepeats
* @return a new matrix
* @see https://www.mathworks.com/help/matlab/ref/repmat.html
*/
public abstract X repmat(int rowRepeats, int colRepeats);
public abstract PL flatten();
public Stream pointsLU2RD() {
N.checkState(rows == cols, "'rows' and 'cols' must be same to get diagonals: rows=%s, cols=%s", rows, cols);
return IntStream.range(0, rows).mapToObj(new IntFunction() {
@Override
public IntPair apply(int i) {
return IntPair.of(i, i);
}
});
}
public Stream pointsRU2LD() {
N.checkState(rows == cols, "'rows' and 'cols' must be same to get diagonals: rows=%s, cols=%s", rows, cols);
return IntStream.range(0, rows).mapToObj(new IntFunction() {
@Override
public IntPair apply(int i) {
return IntPair.of(i, cols - i - 1);
}
});
}
public Stream pointsH() {
return pointsH(0, rows);
}
public Stream pointsH(int rowIndex) {
return pointsH(rowIndex, rowIndex + 1);
}
public Stream pointsH(int fromRowIndex, int toRowIndex) {
N.checkFromToIndex(fromRowIndex, toRowIndex, rows);
return IntStream.range(fromRowIndex, toRowIndex).flatMapToObj(new IntFunction>() {
@Override
public Stream apply(final int rowIndex) {
return IntStream.range(0, cols).mapToObj(new IntFunction() {
@Override
public IntPair apply(final int columnIndex) {
return IntPair.of(rowIndex, columnIndex);
}
});
}
});
}
public Stream pointsV() {
return pointsV(0, cols);
}
public Stream pointsV(int columnIndex) {
return pointsV(columnIndex, columnIndex + 1);
}
public Stream pointsV(int fromColumnIndex, int toColumnIndex) {
N.checkFromToIndex(fromColumnIndex, toColumnIndex, cols);
return IntStream.range(fromColumnIndex, toColumnIndex).flatMapToObj(new IntFunction>() {
@Override
public Stream apply(final int columnIndex) {
return IntStream.range(0, rows).mapToObj(new IntFunction() {
@Override
public IntPair apply(final int rowIndex) {
return IntPair.of(rowIndex, columnIndex);
}
});
}
});
}
public Stream> pointsR() {
return pointsR(0, rows);
}
public Stream> pointsR(int fromRowIndex, int toRowIndex) {
N.checkFromToIndex(fromRowIndex, toRowIndex, rows);
return IntStream.range(fromRowIndex, toRowIndex).mapToObj(new IntFunction>() {
@Override
public Stream apply(final int rowIndex) {
return IntStream.range(0, cols).mapToObj(new IntFunction() {
@Override
public IntPair apply(final int columnIndex) {
return IntPair.of(rowIndex, columnIndex);
}
});
}
});
}
public Stream> pointsC() {
return pointsR(0, cols);
}
public Stream> pointsC(int fromColumnIndex, int toColumnIndex) {
N.checkFromToIndex(fromColumnIndex, toColumnIndex, cols);
return IntStream.range(fromColumnIndex, toColumnIndex).mapToObj(new IntFunction>() {
@Override
public Stream apply(final int columnIndex) {
return IntStream.range(0, rows).mapToObj(new IntFunction() {
@Override
public IntPair apply(final int rowIndex) {
return IntPair.of(rowIndex, columnIndex);
}
});
}
});
}
public abstract ES streamLU2RD();
public abstract ES streamRU2LD();
public abstract ES streamH();
public abstract ES streamH(final int rowIndex);
public abstract ES streamH(final int fromRowIndex, final int toRowIndex);
public abstract ES streamV();
public abstract ES streamV(final int columnIndex);
public abstract ES streamV(final int fromColumnIndex, final int toColumnIndex);
public abstract RS streamR();
public abstract RS streamR(final int fromRowIndex, final int toRowIndex);
public abstract RS streamC();
public abstract RS streamC(final int fromColumnIndex, final int toColumnIndex);
protected abstract int length(A a);
boolean isParallelable() {
return isParallelStreamSupported && count > 8192;
}
boolean isParallelable(final int bm) {
return isParallelStreamSupported && count * bm > 8192;
}
void checkSameShape(X x) {
N.checkArgument(this.isSameShape(x), "Must be same shape");
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy