Please wait. This can take some minutes ...
Many resources are needed to download a project. Please understand that we have to compensate our server costs. Thank you in advance.
Project price only 1 $
You can buy this project and download/modify it how often you want.
com.landawn.abacus.util.stream.AbstractDoubleStream Maven / Gradle / Ivy
/*
* Copyright (C) 2016 HaiYang Li
*
* Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except
* in compliance with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software distributed under the License
* is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express
* or implied. See the License for the specific language governing permissions and limitations under
* the License.
*/
package com.landawn.abacus.util.stream;
import java.util.Collection;
import java.util.HashSet;
import java.util.Map;
import java.util.NoSuchElementException;
import java.util.Random;
import java.util.Set;
import java.util.concurrent.atomic.AtomicLong;
import com.landawn.abacus.util.DoubleIterator;
import com.landawn.abacus.util.DoubleList;
import com.landawn.abacus.util.DoubleMatrix;
import com.landawn.abacus.util.DoubleSummaryStatistics;
import com.landawn.abacus.util.Fn;
import com.landawn.abacus.util.IndexedDouble;
import com.landawn.abacus.util.Joiner;
import com.landawn.abacus.util.Multiset;
import com.landawn.abacus.util.MutableDouble;
import com.landawn.abacus.util.MutableLong;
import com.landawn.abacus.util.N;
import com.landawn.abacus.util.Nth;
import com.landawn.abacus.util.Optional;
import com.landawn.abacus.util.OptionalDouble;
import com.landawn.abacus.util.Pair;
import com.landawn.abacus.util.Percentage;
import com.landawn.abacus.util.Try;
import com.landawn.abacus.util.function.BiConsumer;
import com.landawn.abacus.util.function.BiPredicate;
import com.landawn.abacus.util.function.BinaryOperator;
import com.landawn.abacus.util.function.Consumer;
import com.landawn.abacus.util.function.DoubleBiFunction;
import com.landawn.abacus.util.function.DoubleBiPredicate;
import com.landawn.abacus.util.function.DoubleConsumer;
import com.landawn.abacus.util.function.DoubleFunction;
import com.landawn.abacus.util.function.DoublePredicate;
import com.landawn.abacus.util.function.DoubleTriFunction;
import com.landawn.abacus.util.function.Function;
import com.landawn.abacus.util.function.ObjDoubleConsumer;
import com.landawn.abacus.util.function.Predicate;
import com.landawn.abacus.util.function.Supplier;
import com.landawn.abacus.util.function.ToDoubleFunction;
/**
* This class is a sequential, stateful and immutable stream implementation.
*
* @since 0.8
*
* @author Haiyang Li
*/
abstract class AbstractDoubleStream extends DoubleStream {
AbstractDoubleStream(final boolean sorted, final Collection closeHandlers) {
super(sorted, closeHandlers);
}
@Override
public DoubleStream flattMap(final DoubleFunction mapper) {
return flatMap(new DoubleFunction() {
@Override
public DoubleStream apply(double t) {
return DoubleStream.of(mapper.apply(t));
}
});
}
@Override
public Stream flattMapToObj(final DoubleFunction extends Collection> mapper) {
return flatMapToObj(new DoubleFunction>() {
@Override
public Stream apply(double t) {
return Stream.of(mapper.apply(t));
}
});
}
@Override
public DoubleStream skip(final long n, final DoubleConsumer action) {
N.checkArgNotNegative(n, "n");
if (n == 0) {
return this;
}
final DoublePredicate filter = isParallel() ? new DoublePredicate() {
final AtomicLong cnt = new AtomicLong(n);
@Override
public boolean test(double value) {
return cnt.getAndDecrement() > 0;
}
} : new DoublePredicate() {
final MutableLong cnt = MutableLong.of(n);
@Override
public boolean test(double value) {
return cnt.getAndDecrement() > 0;
}
};
return dropWhile(filter, action);
}
@Override
public DoubleStream removeIf(final DoublePredicate predicate) {
N.requireNonNull(predicate);
return filter(new DoublePredicate() {
@Override
public boolean test(double value) {
return predicate.test(value) == false;
}
});
}
@Override
public DoubleStream removeIf(final DoublePredicate predicate, final DoubleConsumer action) {
N.requireNonNull(predicate);
N.requireNonNull(predicate);
return filter(new DoublePredicate() {
@Override
public boolean test(double value) {
if (predicate.test(value)) {
action.accept(value);
return false;
}
return true;
}
});
}
@Override
public DoubleStream dropWhile(final DoublePredicate predicate, final DoubleConsumer action) {
N.requireNonNull(predicate);
N.requireNonNull(action);
return dropWhile(new DoublePredicate() {
@Override
public boolean test(double value) {
if (predicate.test(value)) {
action.accept(value);
return true;
}
return false;
}
});
}
@Override
public DoubleStream step(final long step) {
N.checkArgPositive(step, "step");
if (step == 1) {
return this;
}
final long skip = step - 1;
final DoubleIteratorEx iter = this.iteratorEx();
final DoubleIterator doubleIterator = new DoubleIteratorEx() {
@Override
public boolean hasNext() {
return iter.hasNext();
}
@Override
public double nextDouble() {
final double next = iter.nextDouble();
iter.skip(skip);
return next;
}
};
return newStream(doubleIterator, sorted);
}
@Override
public Stream split(final int size) {
return splitToList(size).map(new Function() {
@Override
public DoubleStream apply(DoubleList t) {
return new ArrayDoubleStream(t.array(), 0, t.size(), sorted, null);
}
});
}
@Override
public Stream split(final DoublePredicate predicate) {
return splitToList(predicate).map(new Function() {
@Override
public DoubleStream apply(DoubleList t) {
return new ArrayDoubleStream(t.array(), 0, t.size(), sorted, null);
}
});
}
@Override
public Stream splitToList(final DoublePredicate predicate) {
final BiPredicate predicate2 = new BiPredicate() {
@Override
public boolean test(Double t, Object u) {
return predicate.test(t);
}
};
return splitToList(null, predicate2, null);
}
@Override
public Stream split(final U seed, final BiPredicate super Double, ? super U> predicate, final Consumer super U> seedUpdate) {
return splitToList(seed, predicate, seedUpdate).map(new Function() {
@Override
public DoubleStream apply(DoubleList t) {
return new ArrayDoubleStream(t.array(), 0, t.size(), sorted, null);
}
});
}
@Override
public Stream sliding(final int windowSize, final int increment) {
return slidingToList(windowSize, increment).map(new Function() {
@Override
public DoubleStream apply(DoubleList t) {
return new ArrayDoubleStream(t.array(), 0, t.size(), sorted, null);
}
});
}
@Override
public DoubleStream collapse(final DoubleBiPredicate collapsible, final DoubleBiFunction mergeFunction) {
final DoubleIteratorEx iter = iteratorEx();
return newStream(new DoubleIteratorEx() {
private boolean hasNext = false;
private double next = 0;
@Override
public boolean hasNext() {
return hasNext || iter.hasNext();
}
@Override
public double nextDouble() {
double res = hasNext ? next : (next = iter.nextDouble());
while ((hasNext = iter.hasNext())) {
if (collapsible.test(next, (next = iter.nextDouble()))) {
res = mergeFunction.apply(res, next);
} else {
break;
}
}
return res;
}
}, false);
}
@Override
public DoubleStream scan(final DoubleBiFunction accumulator) {
final DoubleIteratorEx iter = iteratorEx();
return newStream(new DoubleIteratorEx() {
private double res = 0;
private boolean isFirst = true;
@Override
public boolean hasNext() {
return iter.hasNext();
}
@Override
public double nextDouble() {
if (isFirst) {
isFirst = false;
return (res = iter.nextDouble());
} else {
return (res = accumulator.apply(res, iter.nextDouble()));
}
}
}, false);
}
@Override
public DoubleStream scan(final double seed, final DoubleBiFunction accumulator) {
final DoubleIteratorEx iter = iteratorEx();
return newStream(new DoubleIteratorEx() {
private double res = seed;
@Override
public boolean hasNext() {
return iter.hasNext();
}
@Override
public double nextDouble() {
return (res = accumulator.apply(res, iter.nextDouble()));
}
}, false);
}
@Override
public Map toMap(DoubleFunction extends K> keyExtractor, DoubleFunction extends U> valueMapper) {
final Supplier> mapFactory = Fn.Suppliers.ofMap();
return toMap(keyExtractor, valueMapper, mapFactory);
}
@Override
public > M toMap(DoubleFunction extends K> keyExtractor, DoubleFunction extends U> valueMapper, Supplier mapFactory) {
final BinaryOperator mergeFunction = Fn.throwingMerger();
return toMap(keyExtractor, valueMapper, mergeFunction, mapFactory);
}
@Override
public Map toMap(DoubleFunction extends K> keyExtractor, DoubleFunction extends U> valueMapper, BinaryOperator mergeFunction) {
final Supplier> mapFactory = Fn.Suppliers.ofMap();
return toMap(keyExtractor, valueMapper, mergeFunction, mapFactory);
}
@Override
public Map toMap(DoubleFunction extends K> classifier, Collector downstream) {
final Supplier> mapFactory = Fn.Suppliers.ofMap();
return toMap(classifier, downstream, mapFactory);
}
@Override
public DoubleMatrix toMatrix() {
return DoubleMatrix.of(toArray());
}
@Override
public DoubleStream distinct() {
final Set set = new HashSet<>();
return newStream(this.sequential().filter(new DoublePredicate() {
@Override
public boolean test(double value) {
return set.add(value);
}
}).iteratorEx(), sorted);
}
@Override
public double sum() {
final Supplier supplier = new Supplier() {
@Override
public double[] get() {
return new double[3];
}
};
final ObjDoubleConsumer accumulator = new ObjDoubleConsumer() {
@Override
public void accept(double[] ll, double d) {
Collectors.sumWithCompensation(ll, d);
ll[2] += d;
}
};
final BiConsumer combiner = new BiConsumer() {
@Override
public void accept(double[] ll, double[] rr) {
Collectors.sumWithCompensation(ll, rr[0]);
Collectors.sumWithCompensation(ll, rr[1]);
ll[2] += rr[2];
}
};
final double[] summation = collect(supplier, accumulator, combiner);
return Collectors.computeFinalSum(summation);
}
@Override
public OptionalDouble average() {
final Supplier supplier = new Supplier() {
@Override
public double[] get() {
return new double[4];
}
};
final ObjDoubleConsumer accumulator = new ObjDoubleConsumer() {
@Override
public void accept(double[] ll, double d) {
ll[2]++;
Collectors.sumWithCompensation(ll, d);
ll[3] += d;
}
};
final BiConsumer combiner = new BiConsumer() {
@Override
public void accept(double[] ll, double[] rr) {
Collectors.sumWithCompensation(ll, rr[0]);
Collectors.sumWithCompensation(ll, rr[1]);
ll[2] += rr[2];
ll[3] += rr[3];
}
};
final double[] avg = collect(supplier, accumulator, combiner);
return avg[2] > 0 ? OptionalDouble.of(Collectors.computeFinalSum(avg) / avg[2]) : OptionalDouble.empty();
}
@Override
public OptionalDouble first() {
final DoubleIterator iter = this.iteratorEx();
return iter.hasNext() ? OptionalDouble.of(iter.nextDouble()) : OptionalDouble.empty();
}
@Override
public OptionalDouble last() {
final DoubleIterator iter = this.iteratorEx();
if (iter.hasNext() == false) {
return OptionalDouble.empty();
}
double next = iter.nextDouble();
while (iter.hasNext()) {
next = iter.nextDouble();
}
return OptionalDouble.of(next);
}
@Override
public OptionalDouble findAny(final Try.DoublePredicate predicate) throws E {
return findFirst(predicate);
}
@Override
public OptionalDouble findFirstOrLast(Try.DoublePredicate predicateForFirst,
Try.DoublePredicate predicateForLast) throws E, E2 {
final DoubleIteratorEx iter = iteratorEx();
MutableDouble last = null;
double next = 0;
while (iter.hasNext()) {
next = iter.nextDouble();
if (predicateForFirst.test(next)) {
return OptionalDouble.of(next);
} else if (predicateForLast.test(next)) {
if (last == null) {
last = MutableDouble.of(next);
} else {
last.setValue(next);
}
}
}
return last == null ? OptionalDouble.empty() : OptionalDouble.of(last.value());
}
@Override
public DoubleStream intersection(final Collection> c) {
final Multiset> multiset = Multiset.from(c);
return newStream(this.sequential().filter(new DoublePredicate() {
@Override
public boolean test(double value) {
return multiset.getAndRemove(value) > 0;
}
}).iteratorEx(), sorted);
}
@Override
public DoubleStream difference(final Collection> c) {
final Multiset> multiset = Multiset.from(c);
return newStream(this.sequential().filter(new DoublePredicate() {
@Override
public boolean test(double value) {
return multiset.getAndRemove(value) < 1;
}
}).iteratorEx(), sorted);
}
@Override
public DoubleStream symmetricDifference(final Collection c) {
final Multiset> multiset = Multiset.from(c);
return newStream(this.sequential().filter(new DoublePredicate() {
@Override
public boolean test(double value) {
return multiset.getAndRemove(value) < 1;
}
}).append(Stream.of(c).filter(new Predicate() {
@Override
public boolean test(Double value) {
return multiset.getAndRemove(value) > 0;
}
}).mapToDouble(ToDoubleFunction.UNBOX)).iteratorEx(), false);
}
@Override
public Stream splitAt(final int n) {
N.checkArgNotNegative(n, "n");
return newStream(new ObjIteratorEx() {
private DoubleStream[] a = null;
private int cursor = 0;
@Override
public boolean hasNext() {
init();
return cursor < 2;
}
@Override
public DoubleStream next() {
if (hasNext() == false) {
throw new NoSuchElementException();
}
return a[cursor++];
}
private void init() {
if (a == null) {
final DoubleIterator iter = AbstractDoubleStream.this.iteratorEx();
final DoubleList list = new DoubleList();
while (list.size() < n && iter.hasNext()) {
list.add(iter.nextDouble());
}
a = new DoubleStream[] { new ArrayDoubleStream(list.array(), 0, list.size(), sorted, null), new IteratorDoubleStream(iter, sorted, null) };
}
}
}, false, null);
}
@Override
public Stream splitBy(final DoublePredicate where) {
N.requireNonNull(where);
return newStream(new ObjIteratorEx() {
private DoubleStream[] a = null;
private int cursor = 0;
@Override
public boolean hasNext() {
init();
return cursor < 2;
}
@Override
public DoubleStream next() {
if (hasNext() == false) {
throw new NoSuchElementException();
}
return a[cursor++];
}
private void init() {
if (a == null) {
final DoubleIterator iter = AbstractDoubleStream.this.iteratorEx();
final DoubleList list = new DoubleList();
double next = 0;
DoubleStream s = null;
while (iter.hasNext()) {
next = iter.nextDouble();
if (where.test(next)) {
list.add(next);
} else {
s = DoubleStream.of(next);
break;
}
}
a = new DoubleStream[] { new ArrayDoubleStream(list.array(), 0, list.size(), sorted, null), new IteratorDoubleStream(iter, sorted, null) };
if (s != null) {
if (sorted) {
a[1] = new IteratorDoubleStream(a[1].prepend(s).iteratorEx(), sorted, null);
} else {
a[1] = a[1].prepend(s);
}
}
}
}
}, false, null);
}
@Override
public DoubleStream reversed() {
return newStream(new DoubleIteratorEx() {
private boolean initialized = false;
private double[] aar;
private int cursor;
@Override
public boolean hasNext() {
if (initialized == false) {
init();
}
return cursor > 0;
}
@Override
public double nextDouble() {
if (initialized == false) {
init();
}
if (cursor <= 0) {
throw new NoSuchElementException();
}
return aar[--cursor];
}
@Override
public long count() {
if (initialized == false) {
init();
}
return cursor;
}
@Override
public void skip(long n) {
if (initialized == false) {
init();
}
cursor = n < cursor ? cursor - (int) n : 0;
}
@Override
public double[] toArray() {
if (initialized == false) {
init();
}
final double[] a = new double[cursor];
for (int i = 0; i < cursor; i++) {
a[i] = aar[cursor - i - 1];
}
return a;
}
private void init() {
if (initialized == false) {
initialized = true;
aar = AbstractDoubleStream.this.toArray();
cursor = aar.length;
}
}
}, false);
}
@Override
public DoubleStream shuffled(final Random rnd) {
return lazyLoad(new Function() {
@Override
public double[] apply(final double[] a) {
N.shuffle(a, rnd);
return a;
}
}, false);
}
@Override
public DoubleStream rotated(final int distance) {
return newStream(new DoubleIteratorEx() {
private boolean initialized = false;
private double[] aar;
private int len;
private int start;
private int cnt = 0;
@Override
public boolean hasNext() {
if (initialized == false) {
init();
}
return cnt < len;
}
@Override
public double nextDouble() {
if (hasNext() == false) {
throw new NoSuchElementException();
}
return aar[(start + cnt++) % len];
}
@Override
public long count() {
if (initialized == false) {
init();
}
return len - cnt;
}
@Override
public void skip(long n) {
if (initialized == false) {
init();
}
cnt = n < len - cnt ? cnt + (int) n : len;
}
@Override
public double[] toArray() {
if (initialized == false) {
init();
}
final double[] a = new double[len - cnt];
for (int i = cnt; i < len; i++) {
a[i - cnt] = aar[(start + i) % len];
}
return a;
}
private void init() {
if (initialized == false) {
initialized = true;
aar = AbstractDoubleStream.this.toArray();
len = aar.length;
if (len > 0) {
start = distance % len;
if (start < 0) {
start += len;
}
start = len - start;
}
}
}
}, distance == 0 && sorted);
}
@Override
public DoubleStream sorted() {
if (sorted) {
return this;
}
return lazyLoad(new Function() {
@Override
public double[] apply(final double[] a) {
if (isParallel()) {
N.parallelSort(a);
} else {
N.sort(a);
}
return a;
}
}, true);
}
@Override
public DoubleStream reverseSorted() {
return newStream(new DoubleIteratorEx() {
private boolean initialized = false;
private double[] aar;
private int cursor;
@Override
public boolean hasNext() {
if (initialized == false) {
init();
}
return cursor > 0;
}
@Override
public double nextDouble() {
if (initialized == false) {
init();
}
if (cursor <= 0) {
throw new NoSuchElementException();
}
return aar[--cursor];
}
@Override
public long count() {
if (initialized == false) {
init();
}
return cursor;
}
@Override
public void skip(long n) {
if (initialized == false) {
init();
}
cursor = n < cursor ? cursor - (int) n : 0;
}
@Override
public double[] toArray() {
if (initialized == false) {
init();
}
final double[] a = new double[cursor];
for (int i = 0; i < cursor; i++) {
a[i] = aar[cursor - i - 1];
}
return a;
}
private void init() {
if (initialized == false) {
initialized = true;
aar = AbstractDoubleStream.this.toArray();
if (isParallel()) {
N.parallelSort(aar);
} else {
N.sort(aar);
}
cursor = aar.length;
}
}
}, false);
}
private DoubleStream lazyLoad(final Function op, final boolean sorted) {
return newStream(new DoubleIteratorEx() {
private boolean initialized = false;
private double[] aar;
private int cursor = 0;
private int len;
@Override
public boolean hasNext() {
if (initialized == false) {
init();
}
return cursor < len;
}
@Override
public double nextDouble() {
if (initialized == false) {
init();
}
if (cursor >= len) {
throw new NoSuchElementException();
}
return aar[cursor++];
}
@Override
public long count() {
if (initialized == false) {
init();
}
return len - cursor;
}
@Override
public void skip(long n) {
if (initialized == false) {
init();
}
cursor = n > len - cursor ? len : cursor + (int) n;
}
@Override
public double[] toArray() {
if (initialized == false) {
init();
}
final double[] a = new double[len - cursor];
for (int i = cursor; i < len; i++) {
a[i - cursor] = aar[i];
}
return a;
}
private void init() {
if (initialized == false) {
initialized = true;
aar = op.apply(AbstractDoubleStream.this.toArray());
len = aar.length;
}
}
}, sorted);
}
@Override
public Optional> percentiles() {
final double[] a = sorted().toArray();
if (a.length == 0) {
return Optional.empty();
}
return Optional.of(N.percentiles(a));
}
@Override
public Pair>> summarizze() {
final double[] a = sorted().toArray();
if (N.isNullOrEmpty(a)) {
return Pair.of(new DoubleSummaryStatistics(), Optional.> empty());
} else {
return Pair.of(new DoubleSummaryStatistics(a.length, sum(a), a[0], a[a.length - 1]), Optional.of(N.percentiles(a)));
}
}
@Override
public String join(final CharSequence delimiter) {
return join(delimiter, "", "");
}
@Override
public String join(final CharSequence delimiter, final CharSequence prefix, final CharSequence suffix) {
final Joiner joiner = Joiner.with(delimiter, prefix, suffix).reuseStringBuilder(true);
final DoubleIteratorEx iter = this.iteratorEx();
while (iter.hasNext()) {
joiner.append(iter.nextDouble());
}
return joiner.toString();
}
@Override
public R collect(Supplier supplier, ObjDoubleConsumer accumulator) {
final BiConsumer combiner = collectingCombiner;
return collect(supplier, accumulator, combiner);
}
@Override
public Pair headAndTail() {
return Pair.of(head(), tail());
}
@Override
public Pair headAndTaill() {
return Pair.of(headd(), taill());
}
@Override
public Stream indexed() {
final MutableLong idx = MutableLong.of(0);
return newStream(this.sequential().mapToObj(new DoubleFunction() {
@Override
public IndexedDouble apply(double t) {
return IndexedDouble.of(t, idx.getAndIncrement());
}
}).iterator(), true, INDEXED_DOUBLE_COMPARATOR);
}
@Override
public DoubleStream append(DoubleStream stream) {
return DoubleStream.concat(this, stream);
}
@Override
public DoubleStream prepend(DoubleStream stream) {
return DoubleStream.concat(stream, this);
}
@Override
public DoubleStream merge(DoubleStream b, DoubleBiFunction nextSelector) {
return DoubleStream.merge(this, b, nextSelector);
}
@Override
public DoubleStream zipWith(DoubleStream b, DoubleBiFunction zipFunction) {
return DoubleStream.zip(this, b, zipFunction);
}
@Override
public DoubleStream zipWith(DoubleStream b, DoubleStream c, DoubleTriFunction zipFunction) {
return DoubleStream.zip(this, b, c, zipFunction);
}
@Override
public DoubleStream zipWith(DoubleStream b, double valueForNoneA, double valueForNoneB, DoubleBiFunction zipFunction) {
return DoubleStream.zip(this, b, valueForNoneA, valueForNoneB, zipFunction);
}
@Override
public DoubleStream zipWith(DoubleStream b, DoubleStream c, double valueForNoneA, double valueForNoneB, double valueForNoneC,
DoubleTriFunction zipFunction) {
return DoubleStream.zip(this, b, c, valueForNoneA, valueForNoneB, valueForNoneC, zipFunction);
}
@Override
public DoubleStream cached() {
return newStream(toArray(), sorted);
}
}