com.landawn.abacus.util.stream.ParallelArrayLongStream Maven / Gradle / Ivy
/*
* Copyright (C) 2016 HaiYang Li
*
* Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except
* in compliance with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software distributed under the License
* is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express
* or implied. See the License for the specific language governing permissions and limitations under
* the License.
*/
package com.landawn.abacus.util.stream;
import java.util.ArrayList;
import java.util.Collection;
import java.util.Comparator;
import java.util.List;
import java.util.Map;
import java.util.Set;
import java.util.concurrent.Callable;
import java.util.concurrent.ExecutionException;
import com.landawn.abacus.util.CompletableFuture;
import com.landawn.abacus.util.Holder;
import com.landawn.abacus.util.LongSummaryStatistics;
import com.landawn.abacus.util.MutableBoolean;
import com.landawn.abacus.util.MutableInt;
import com.landawn.abacus.util.N;
import com.landawn.abacus.util.Nth;
import com.landawn.abacus.util.OptionalDouble;
import com.landawn.abacus.util.OptionalLong;
import com.landawn.abacus.util.Pair;
import com.landawn.abacus.util.Try;
import com.landawn.abacus.util.function.BiConsumer;
import com.landawn.abacus.util.function.BinaryOperator;
import com.landawn.abacus.util.function.Consumer;
import com.landawn.abacus.util.function.Function;
import com.landawn.abacus.util.function.LongBiFunction;
import com.landawn.abacus.util.function.LongBinaryOperator;
import com.landawn.abacus.util.function.LongConsumer;
import com.landawn.abacus.util.function.LongFunction;
import com.landawn.abacus.util.function.LongPredicate;
import com.landawn.abacus.util.function.LongToDoubleFunction;
import com.landawn.abacus.util.function.LongToFloatFunction;
import com.landawn.abacus.util.function.LongToIntFunction;
import com.landawn.abacus.util.function.LongTriFunction;
import com.landawn.abacus.util.function.LongUnaryOperator;
import com.landawn.abacus.util.function.ObjLongConsumer;
import com.landawn.abacus.util.function.Predicate;
import com.landawn.abacus.util.function.Supplier;
import com.landawn.abacus.util.function.ToDoubleFunction;
import com.landawn.abacus.util.function.ToFloatFunction;
import com.landawn.abacus.util.function.ToIntFunction;
import com.landawn.abacus.util.function.ToLongFunction;
/**
* This class is a sequential, stateful and immutable stream implementation.
*
* @since 0.8
*
* @author Haiyang Li
*/
final class ParallelArrayLongStream extends ArrayLongStream {
private final int maxThreadNum;
private final Splitor splitor;
private volatile ArrayLongStream sequential;
private volatile Stream boxed;
ParallelArrayLongStream(final long[] values, final int fromIndex, final int toIndex, final boolean sorted, int maxThreadNum, Splitor splitor,
final Collection closeHandlers) {
super(values, fromIndex, toIndex, sorted, closeHandlers);
this.maxThreadNum = checkMaxThreadNum(maxThreadNum);
this.splitor = splitor == null ? DEFAULT_SPLITOR : splitor;
}
@Override
public LongStream filter(final LongPredicate predicate) {
if (maxThreadNum <= 1 || toIndex - fromIndex <= 1) {
return super.filter(predicate);
}
final Stream stream = boxed().filter(new Predicate() {
@Override
public boolean test(Long value) {
return predicate.test(value.longValue());
}
});
return new ParallelIteratorLongStream(stream, false, maxThreadNum, splitor, closeHandlers);
}
@Override
public LongStream takeWhile(final LongPredicate predicate) {
if (maxThreadNum <= 1 || toIndex - fromIndex <= 1) {
return super.takeWhile(predicate);
}
final Stream stream = boxed().takeWhile(new Predicate() {
@Override
public boolean test(Long value) {
return predicate.test(value.longValue());
}
});
return new ParallelIteratorLongStream(stream, false, maxThreadNum, splitor, closeHandlers);
}
@Override
public LongStream dropWhile(final LongPredicate predicate) {
if (maxThreadNum <= 1 || toIndex - fromIndex <= 1) {
return super.dropWhile(predicate);
}
final Stream stream = boxed().dropWhile(new Predicate() {
@Override
public boolean test(Long value) {
return predicate.test(value.longValue());
}
});
return new ParallelIteratorLongStream(stream, false, maxThreadNum, splitor, closeHandlers);
}
@Override
public LongStream map(final LongUnaryOperator mapper) {
if (maxThreadNum <= 1 || toIndex - fromIndex <= 1) {
return super.map(mapper);
}
final LongStream stream = boxed().mapToLong(new ToLongFunction() {
@Override
public long applyAsLong(Long value) {
return mapper.applyAsLong(value.longValue());
}
});
return new ParallelIteratorLongStream(stream, false, maxThreadNum, splitor, closeHandlers);
}
@Override
public IntStream mapToInt(final LongToIntFunction mapper) {
if (maxThreadNum <= 1 || toIndex - fromIndex <= 1) {
return super.mapToInt(mapper);
}
final IntStream stream = boxed().mapToInt(new ToIntFunction() {
@Override
public int applyAsInt(Long value) {
return mapper.applyAsInt(value.longValue());
}
});
return new ParallelIteratorIntStream(stream, false, maxThreadNum, splitor, closeHandlers);
}
@Override
public FloatStream mapToFloat(final LongToFloatFunction mapper) {
if (maxThreadNum <= 1 || toIndex - fromIndex <= 1) {
return super.mapToFloat(mapper);
}
final FloatStream stream = boxed().mapToFloat(new ToFloatFunction() {
@Override
public float applyAsFloat(Long value) {
return mapper.applyAsFloat(value.longValue());
}
});
return new ParallelIteratorFloatStream(stream, false, maxThreadNum, splitor, closeHandlers);
}
@Override
public DoubleStream mapToDouble(final LongToDoubleFunction mapper) {
if (maxThreadNum <= 1 || toIndex - fromIndex <= 1) {
return super.mapToDouble(mapper);
}
final DoubleStream stream = boxed().mapToDouble(new ToDoubleFunction() {
@Override
public double applyAsDouble(Long value) {
return mapper.applyAsDouble(value.longValue());
}
});
return new ParallelIteratorDoubleStream(stream, false, maxThreadNum, splitor, closeHandlers);
}
@Override
public Stream mapToObj(final LongFunction extends U> mapper) {
if (maxThreadNum <= 1 || toIndex - fromIndex <= 1) {
return super.mapToObj(mapper);
}
return boxed().map(new Function() {
@Override
public U apply(Long value) {
return mapper.apply(value.longValue());
}
});
}
@Override
public LongStream flatMap(final LongFunction extends LongStream> mapper) {
if (maxThreadNum <= 1 || toIndex - fromIndex <= 1) {
return new ParallelIteratorLongStream(sequential().flatMap(mapper), false, maxThreadNum, splitor, null);
}
final LongStream stream = boxed().flatMapToLong(new Function() {
@Override
public LongStream apply(Long value) {
return mapper.apply(value.longValue());
}
});
return new ParallelIteratorLongStream(stream, false, maxThreadNum, splitor, null);
}
@Override
public IntStream flatMapToInt(final LongFunction extends IntStream> mapper) {
if (maxThreadNum <= 1 || toIndex - fromIndex <= 1) {
return new ParallelIteratorIntStream(sequential().flatMapToInt(mapper), false, maxThreadNum, splitor, null);
}
final IntStream stream = boxed().flatMapToInt(new Function() {
@Override
public IntStream apply(Long value) {
return mapper.apply(value.longValue());
}
});
return new ParallelIteratorIntStream(stream, false, maxThreadNum, splitor, null);
}
@Override
public FloatStream flatMapToFloat(final LongFunction extends FloatStream> mapper) {
if (maxThreadNum <= 1 || toIndex - fromIndex <= 1) {
return new ParallelIteratorFloatStream(sequential().flatMapToFloat(mapper), false, maxThreadNum, splitor, null);
}
final FloatStream stream = boxed().flatMapToFloat(new Function() {
@Override
public FloatStream apply(Long value) {
return mapper.apply(value.longValue());
}
});
return new ParallelIteratorFloatStream(stream, false, maxThreadNum, splitor, null);
}
@Override
public DoubleStream flatMapToDouble(final LongFunction extends DoubleStream> mapper) {
if (maxThreadNum <= 1 || toIndex - fromIndex <= 1) {
return new ParallelIteratorDoubleStream(sequential().flatMapToDouble(mapper), false, maxThreadNum, splitor, null);
}
final DoubleStream stream = boxed().flatMapToDouble(new Function() {
@Override
public DoubleStream apply(Long value) {
return mapper.apply(value.longValue());
}
});
return new ParallelIteratorDoubleStream(stream, false, maxThreadNum, splitor, null);
}
@Override
public Stream flatMapToObj(final LongFunction extends Stream> mapper) {
if (maxThreadNum <= 1 || toIndex - fromIndex <= 1) {
return new ParallelIteratorStream<>(sequential().flatMapToObj(mapper), false, null, maxThreadNum, splitor, null);
}
return boxed().flatMap(new Function>() {
@Override
public Stream apply(Long value) {
return mapper.apply(value.longValue());
}
});
}
@Override
public LongStream top(int n) {
return top(n, LONG_COMPARATOR);
}
@Override
public LongStream top(int n, Comparator super Long> comparator) {
N.checkArgument(n > 0, "'n' must be bigger than 0");
if (n >= toIndex - fromIndex) {
return this;
} else if (sorted && isSameComparator(comparator, LONG_COMPARATOR)) {
return new ParallelArrayLongStream(elements, toIndex - n, toIndex, sorted, maxThreadNum, splitor, closeHandlers);
} else {
final long[] a = N.top(elements, fromIndex, toIndex, n, comparator);
return new ParallelArrayLongStream(a, 0, a.length, sorted, maxThreadNum, splitor, closeHandlers);
}
}
@Override
public LongStream peek(final LongConsumer action) {
if (maxThreadNum <= 1 || toIndex - fromIndex <= 1) {
return super.peek(action);
}
final LongStream stream = boxed().peek(new Consumer() {
@Override
public void accept(Long t) {
action.accept(t);
}
}).sequential().mapToLong(ToLongFunction.UNBOX);
return new ParallelIteratorLongStream(stream, false, maxThreadNum, splitor, closeHandlers);
}
@Override
public LongStream limit(long maxSize) {
N.checkArgNotNegative(maxSize, "maxSize");
if (maxSize >= toIndex - fromIndex) {
return this;
}
return new ParallelArrayLongStream(elements, fromIndex, (int) (fromIndex + maxSize), sorted, maxThreadNum, splitor, closeHandlers);
}
@Override
public LongStream skip(long n) {
N.checkArgNotNegative(n, "n");
if (n == 0) {
return this;
}
if (n >= toIndex - fromIndex) {
return new ParallelArrayLongStream(elements, toIndex, toIndex, sorted, maxThreadNum, splitor, closeHandlers);
} else {
return new ParallelArrayLongStream(elements, (int) (fromIndex + n), toIndex, sorted, maxThreadNum, splitor, closeHandlers);
}
}
@Override
public void forEach(final Try.LongConsumer action) throws E {
if (maxThreadNum <= 1 || toIndex - fromIndex <= 1) {
super.forEach(action);
return;
}
final int threadNum = N.min(maxThreadNum, (toIndex - fromIndex));
final List> futureList = new ArrayList<>(threadNum);
final Holder eHolder = new Holder<>();
if (splitor == Splitor.ARRAY) {
final int sliceSize = (toIndex - fromIndex) / threadNum + ((toIndex - fromIndex) % threadNum == 0 ? 0 : 1);
for (int i = 0; i < threadNum; i++) {
final int sliceIndex = i;
futureList.add(asyncExecutor.execute(new Runnable() {
@Override
public void run() {
int cursor = fromIndex + sliceIndex * sliceSize;
final int to = toIndex - cursor > sliceSize ? cursor + sliceSize : toIndex;
try {
while (cursor < to && eHolder.value() == null) {
action.accept(elements[cursor++]);
}
} catch (Throwable e) {
setError(eHolder, e);
}
}
}));
}
} else {
final MutableInt cursor = MutableInt.of(fromIndex);
for (int i = 0; i < threadNum; i++) {
futureList.add(asyncExecutor.execute(new Runnable() {
@Override
public void run() {
long next = 0;
try {
while (eHolder.value() == null) {
synchronized (elements) {
if (cursor.intValue() < toIndex) {
next = elements[cursor.getAndIncrement()];
} else {
break;
}
}
action.accept(next);
}
} catch (Throwable e) {
setError(eHolder, e);
}
}
}));
}
}
complette(futureList, eHolder, (E) null);
}
@Override
public > M toMap(final LongFunction extends K> keyExtractor, final LongFunction extends U> valueMapper,
final BinaryOperator mergeFunction, final Supplier mapFactory) {
if (maxThreadNum <= 1 || toIndex - fromIndex <= 1) {
return super.toMap(keyExtractor, valueMapper, mergeFunction, mapFactory);
}
final Function super Long, ? extends K> keyExtractor2 = new Function() {
@Override
public K apply(Long value) {
return keyExtractor.apply(value);
}
};
final Function super Long, ? extends U> valueMapper2 = new Function() {
@Override
public U apply(Long value) {
return valueMapper.apply(value);
}
};
return boxed().toMap(keyExtractor2, valueMapper2, mergeFunction, mapFactory);
}
@Override
public > M toMap(final LongFunction extends K> classifier, final Collector downstream,
final Supplier mapFactory) {
if (maxThreadNum <= 1 || toIndex - fromIndex <= 1) {
return super.toMap(classifier, downstream, mapFactory);
}
final Function super Long, ? extends K> classifier2 = new Function() {
@Override
public K apply(Long value) {
return classifier.apply(value);
}
};
return boxed().toMap(classifier2, downstream, mapFactory);
}
@Override
public long reduce(final long identity, final LongBinaryOperator op) {
if (maxThreadNum <= 1 || toIndex - fromIndex <= 1) {
return super.reduce(identity, op);
}
final int threadNum = N.min(maxThreadNum, (toIndex - fromIndex));
final List> futureList = new ArrayList<>(threadNum);
final Holder eHolder = new Holder<>();
if (splitor == Splitor.ARRAY) {
final int sliceSize = (toIndex - fromIndex) / threadNum + ((toIndex - fromIndex) % threadNum == 0 ? 0 : 1);
for (int i = 0; i < threadNum; i++) {
final int sliceIndex = i;
futureList.add(asyncExecutor.execute(new Callable() {
@Override
public Long call() {
int cursor = fromIndex + sliceIndex * sliceSize;
final int to = toIndex - cursor > sliceSize ? cursor + sliceSize : toIndex;
long result = identity;
try {
while (cursor < to && eHolder.value() == null) {
result = op.applyAsLong(result, elements[cursor++]);
}
} catch (Throwable e) {
setError(eHolder, e);
}
return result;
}
}));
}
} else {
final MutableInt cursor = MutableInt.of(fromIndex);
for (int i = 0; i < threadNum; i++) {
futureList.add(asyncExecutor.execute(new Callable() {
@Override
public Long call() {
long result = identity;
long next = 0;
try {
while (eHolder.value() == null) {
synchronized (elements) {
if (cursor.intValue() < toIndex) {
next = elements[cursor.getAndIncrement()];
} else {
break;
}
}
result = op.applyAsLong(result, next);
}
} catch (Throwable e) {
setError(eHolder, e);
}
return result;
}
}));
}
}
if (eHolder.value() != null) {
throw N.toRuntimeException(eHolder.value());
}
Long result = null;
try {
for (CompletableFuture future : futureList) {
if (result == null) {
result = future.get();
} else {
result = op.applyAsLong(result, future.get());
}
}
} catch (InterruptedException | ExecutionException e) {
throw N.toRuntimeException(e);
}
return result == null ? identity : result;
}
@Override
public OptionalLong reduce(final LongBinaryOperator accumulator) {
if (maxThreadNum <= 1 || toIndex - fromIndex <= 1) {
return super.reduce(accumulator);
}
final int threadNum = N.min(maxThreadNum, (toIndex - fromIndex));
final List> futureList = new ArrayList<>(threadNum);
final Holder eHolder = new Holder<>();
if (splitor == Splitor.ARRAY) {
final int sliceSize = (toIndex - fromIndex) / threadNum + ((toIndex - fromIndex) % threadNum == 0 ? 0 : 1);
for (int i = 0; i < threadNum; i++) {
final int sliceIndex = i;
futureList.add(asyncExecutor.execute(new Callable() {
@Override
public Long call() {
int cursor = fromIndex + sliceIndex * sliceSize;
final int to = toIndex - cursor > sliceSize ? cursor + sliceSize : toIndex;
if (cursor >= to) {
return null;
}
long result = elements[cursor++];
try {
while (cursor < to && eHolder.value() == null) {
result = accumulator.applyAsLong(result, elements[cursor++]);
}
} catch (Throwable e) {
setError(eHolder, e);
}
return result;
}
}));
}
} else {
final MutableInt cursor = MutableInt.of(fromIndex);
for (int i = 0; i < threadNum; i++) {
futureList.add(asyncExecutor.execute(new Callable() {
@Override
public Long call() {
long result = 0;
synchronized (elements) {
if (cursor.intValue() < toIndex) {
result = elements[cursor.getAndIncrement()];
} else {
return null;
}
}
long next = 0;
try {
while (eHolder.value() == null) {
synchronized (elements) {
if (cursor.intValue() < toIndex) {
next = elements[cursor.getAndIncrement()];
} else {
break;
}
}
result = accumulator.applyAsLong(result, next);
}
} catch (Throwable e) {
setError(eHolder, e);
}
return result;
}
}));
}
}
if (eHolder.value() != null) {
throw N.toRuntimeException(eHolder.value());
}
Long result = null;
try {
for (CompletableFuture future : futureList) {
final Long tmp = future.get();
if (tmp == null) {
continue;
} else if (result == null) {
result = tmp;
} else {
result = accumulator.applyAsLong(result, tmp);
}
}
} catch (InterruptedException | ExecutionException e) {
throw N.toRuntimeException(e);
}
return result == null ? OptionalLong.empty() : OptionalLong.of(result);
}
@Override
public R collect(final Supplier supplier, final ObjLongConsumer accumulator, final BiConsumer combiner) {
if (maxThreadNum <= 1 || toIndex - fromIndex <= 1) {
return super.collect(supplier, accumulator, combiner);
}
final int threadNum = N.min(maxThreadNum, (toIndex - fromIndex));
final List> futureList = new ArrayList<>(threadNum);
final Holder eHolder = new Holder<>();
if (splitor == Splitor.ARRAY) {
final int sliceSize = (toIndex - fromIndex) / threadNum + ((toIndex - fromIndex) % threadNum == 0 ? 0 : 1);
for (int i = 0; i < threadNum; i++) {
final int sliceIndex = i;
futureList.add(asyncExecutor.execute(new Callable() {
@Override
public R call() {
int cursor = fromIndex + sliceIndex * sliceSize;
final int to = toIndex - cursor > sliceSize ? cursor + sliceSize : toIndex;
final R container = supplier.get();
try {
while (cursor < to && eHolder.value() == null) {
accumulator.accept(container, elements[cursor++]);
}
} catch (Throwable e) {
setError(eHolder, e);
}
return container;
}
}));
}
} else {
final MutableInt cursor = MutableInt.of(fromIndex);
for (int i = 0; i < threadNum; i++) {
futureList.add(asyncExecutor.execute(new Callable() {
@Override
public R call() {
final R container = supplier.get();
long next = 0;
try {
while (eHolder.value() == null) {
synchronized (elements) {
if (cursor.intValue() < toIndex) {
next = elements[cursor.getAndIncrement()];
} else {
break;
}
}
accumulator.accept(container, next);
}
} catch (Throwable e) {
setError(eHolder, e);
}
return container;
}
}));
}
}
if (eHolder.value() != null) {
throw N.toRuntimeException(eHolder.value());
}
R container = (R) NONE;
try {
for (CompletableFuture future : futureList) {
if (container == NONE) {
container = future.get();
} else {
combiner.accept(container, future.get());
}
}
} catch (InterruptedException | ExecutionException e) {
throw N.toRuntimeException(e);
}
return container == NONE ? supplier.get() : container;
}
@Override
public LongStream tail() {
if (fromIndex == toIndex) {
return this;
}
return new ParallelArrayLongStream(elements, fromIndex + 1, toIndex, sorted, maxThreadNum, splitor, closeHandlers);
}
@Override
public LongStream headd() {
if (fromIndex == toIndex) {
return this;
}
return new ParallelArrayLongStream(elements, fromIndex, toIndex - 1, sorted, maxThreadNum, splitor, closeHandlers);
}
@Override
public OptionalLong min() {
if (fromIndex == toIndex) {
return OptionalLong.empty();
} else if (sorted) {
return OptionalLong.of(elements[fromIndex]);
} else if (maxThreadNum <= 1 || toIndex - fromIndex <= 1) {
return OptionalLong.of(N.min(elements, fromIndex, toIndex));
}
final int threadNum = N.min(maxThreadNum, (toIndex - fromIndex));
final List> futureList = new ArrayList<>(threadNum);
final int sliceSize = (toIndex - fromIndex) / threadNum + ((toIndex - fromIndex) % threadNum == 0 ? 0 : 1);
for (int i = 0; i < threadNum; i++) {
final int sliceIndex = i;
futureList.add(asyncExecutor.execute(new Callable() {
@Override
public Long call() {
int cursor = fromIndex + sliceIndex * sliceSize;
final int to = toIndex - cursor > sliceSize ? cursor + sliceSize : toIndex;
return cursor >= to ? null : N.min(elements, cursor, to);
}
}));
}
Long candidate = null;
try {
for (CompletableFuture future : futureList) {
final Long tmp = future.get();
if (tmp == null) {
continue;
} else if (candidate == null || tmp.longValue() < candidate.longValue()) {
candidate = tmp;
}
}
} catch (InterruptedException | ExecutionException e) {
throw N.toRuntimeException(e);
}
return candidate == null ? OptionalLong.empty() : OptionalLong.of(candidate);
}
@Override
public OptionalLong max() {
if (fromIndex == toIndex) {
return OptionalLong.empty();
} else if (sorted) {
return OptionalLong.of(elements[toIndex - 1]);
} else if (maxThreadNum <= 1 || toIndex - fromIndex <= 1) {
return OptionalLong.of(N.max(elements, fromIndex, toIndex));
}
final int threadNum = N.min(maxThreadNum, (toIndex - fromIndex));
final List> futureList = new ArrayList<>(threadNum);
final int sliceSize = (toIndex - fromIndex) / threadNum + ((toIndex - fromIndex) % threadNum == 0 ? 0 : 1);
for (int i = 0; i < threadNum; i++) {
final int sliceIndex = i;
futureList.add(asyncExecutor.execute(new Callable() {
@Override
public Long call() {
int cursor = fromIndex + sliceIndex * sliceSize;
final int to = toIndex - cursor > sliceSize ? cursor + sliceSize : toIndex;
return cursor >= to ? null : N.max(elements, cursor, to);
}
}));
}
Long candidate = null;
try {
for (CompletableFuture future : futureList) {
final Long tmp = future.get();
if (tmp == null) {
continue;
} else if (candidate == null || tmp.longValue() > candidate.longValue()) {
candidate = tmp;
}
}
} catch (InterruptedException | ExecutionException e) {
throw N.toRuntimeException(e);
}
return candidate == null ? OptionalLong.empty() : OptionalLong.of(candidate);
}
@Override
public long sum() {
if (fromIndex == toIndex) {
return 0L;
} else if (maxThreadNum <= 1 || toIndex - fromIndex <= 1) {
return sum(elements, fromIndex, toIndex);
}
final int threadNum = N.min(maxThreadNum, (toIndex - fromIndex));
final List> futureList = new ArrayList<>(threadNum);
final int sliceSize = (toIndex - fromIndex) / threadNum + ((toIndex - fromIndex) % threadNum == 0 ? 0 : 1);
for (int i = 0; i < threadNum; i++) {
final int sliceIndex = i;
futureList.add(asyncExecutor.execute(new Callable() {
@Override
public Long call() {
int cursor = fromIndex + sliceIndex * sliceSize;
final int to = toIndex - cursor > sliceSize ? cursor + sliceSize : toIndex;
return cursor >= to ? null : sum(elements, cursor, to);
}
}));
}
long result = 0;
try {
for (CompletableFuture future : futureList) {
final Long tmp = future.get();
if (tmp == null) {
continue;
} else {
result += tmp.longValue();
}
}
} catch (InterruptedException | ExecutionException e) {
throw N.toRuntimeException(e);
}
return result;
}
@Override
public OptionalDouble average() {
if (fromIndex == toIndex) {
return OptionalDouble.empty();
}
return OptionalDouble.of(sum() / toIndex - fromIndex);
}
@Override
public LongSummaryStatistics summarize() {
if (fromIndex == toIndex) {
return new LongSummaryStatistics();
} else if (maxThreadNum <= 1 || toIndex - fromIndex <= 1) {
return super.summarize();
}
final int threadNum = N.min(maxThreadNum, (toIndex - fromIndex));
final List> futureList = new ArrayList<>(threadNum);
final int sliceSize = (toIndex - fromIndex) / threadNum + ((toIndex - fromIndex) % threadNum == 0 ? 0 : 1);
for (int i = 0; i < threadNum; i++) {
final int sliceIndex = i;
futureList.add(asyncExecutor.execute(new Callable() {
@Override
public LongSummaryStatistics call() {
int cursor = fromIndex + sliceIndex * sliceSize;
final int to = toIndex - cursor > sliceSize ? cursor + sliceSize : toIndex;
final LongSummaryStatistics result = new LongSummaryStatistics();
for (int i = cursor; i < to; i++) {
result.accept(elements[i]);
}
return result;
}
}));
}
LongSummaryStatistics result = null;
try {
for (CompletableFuture future : futureList) {
final LongSummaryStatistics tmp = future.get();
if (tmp == null) {
continue;
} else if (result == null) {
result = tmp;
} else {
result.combine(tmp);
}
}
} catch (InterruptedException | ExecutionException e) {
throw N.toRuntimeException(e);
}
return result;
}
@Override
public boolean anyMatch(final Try.LongPredicate predicate) throws E {
if (maxThreadNum <= 1 || toIndex - fromIndex <= 1) {
return super.anyMatch(predicate);
}
final int threadNum = N.min(maxThreadNum, (toIndex - fromIndex));
final List> futureList = new ArrayList<>(threadNum);
final Holder eHolder = new Holder<>();
final MutableBoolean result = MutableBoolean.of(false);
if (splitor == Splitor.ARRAY) {
final int sliceSize = (toIndex - fromIndex) / threadNum + ((toIndex - fromIndex) % threadNum == 0 ? 0 : 1);
for (int i = 0; i < threadNum; i++) {
final int sliceIndex = i;
futureList.add(asyncExecutor.execute(new Runnable() {
@Override
public void run() {
int cursor = fromIndex + sliceIndex * sliceSize;
final int to = toIndex - cursor > sliceSize ? cursor + sliceSize : toIndex;
try {
while (cursor < to && result.isFalse() && eHolder.value() == null) {
if (predicate.test(elements[cursor++])) {
result.setTrue();
break;
}
}
} catch (Throwable e) {
setError(eHolder, e);
}
}
}));
}
} else {
final MutableInt cursor = MutableInt.of(fromIndex);
for (int i = 0; i < threadNum; i++) {
futureList.add(asyncExecutor.execute(new Runnable() {
@Override
public void run() {
long next = 0;
try {
while (result.isFalse() && eHolder.value() == null) {
synchronized (elements) {
if (cursor.intValue() < toIndex) {
next = elements[cursor.getAndIncrement()];
} else {
break;
}
}
if (predicate.test(next)) {
result.setTrue();
break;
}
}
} catch (Throwable e) {
setError(eHolder, e);
}
}
}));
}
}
complette(futureList, eHolder, (E) null);
return result.value();
}
@Override
public boolean allMatch(final Try.LongPredicate predicate) throws E {
if (maxThreadNum <= 1 || toIndex - fromIndex <= 1) {
return super.allMatch(predicate);
}
final int threadNum = N.min(maxThreadNum, (toIndex - fromIndex));
final List> futureList = new ArrayList<>(threadNum);
final Holder eHolder = new Holder<>();
final MutableBoolean result = MutableBoolean.of(true);
if (splitor == Splitor.ARRAY) {
final int sliceSize = (toIndex - fromIndex) / threadNum + ((toIndex - fromIndex) % threadNum == 0 ? 0 : 1);
for (int i = 0; i < threadNum; i++) {
final int sliceIndex = i;
futureList.add(asyncExecutor.execute(new Runnable() {
@Override
public void run() {
int cursor = fromIndex + sliceIndex * sliceSize;
final int to = toIndex - cursor > sliceSize ? cursor + sliceSize : toIndex;
try {
while (cursor < to && result.isTrue() && eHolder.value() == null) {
if (predicate.test(elements[cursor++]) == false) {
result.setFalse();
break;
}
}
} catch (Throwable e) {
setError(eHolder, e);
}
}
}));
}
} else {
final MutableInt cursor = MutableInt.of(fromIndex);
for (int i = 0; i < threadNum; i++) {
futureList.add(asyncExecutor.execute(new Runnable() {
@Override
public void run() {
long next = 0;
try {
while (result.isTrue() && eHolder.value() == null) {
synchronized (elements) {
if (cursor.intValue() < toIndex) {
next = elements[cursor.getAndIncrement()];
} else {
break;
}
}
if (predicate.test(next) == false) {
result.setFalse();
break;
}
}
} catch (Throwable e) {
setError(eHolder, e);
}
}
}));
}
}
complette(futureList, eHolder, (E) null);
return result.value();
}
@Override
public boolean noneMatch(final Try.LongPredicate predicate) throws E {
if (maxThreadNum <= 1 || toIndex - fromIndex <= 1) {
return super.noneMatch(predicate);
}
final int threadNum = N.min(maxThreadNum, (toIndex - fromIndex));
final List> futureList = new ArrayList<>(threadNum);
final Holder eHolder = new Holder<>();
final MutableBoolean result = MutableBoolean.of(true);
if (splitor == Splitor.ARRAY) {
final int sliceSize = (toIndex - fromIndex) / threadNum + ((toIndex - fromIndex) % threadNum == 0 ? 0 : 1);
for (int i = 0; i < threadNum; i++) {
final int sliceIndex = i;
futureList.add(asyncExecutor.execute(new Runnable() {
@Override
public void run() {
int cursor = fromIndex + sliceIndex * sliceSize;
final int to = toIndex - cursor > sliceSize ? cursor + sliceSize : toIndex;
try {
while (cursor < to && result.isTrue() && eHolder.value() == null) {
if (predicate.test(elements[cursor++])) {
result.setFalse();
break;
}
}
} catch (Throwable e) {
setError(eHolder, e);
}
}
}));
}
} else {
final MutableInt cursor = MutableInt.of(fromIndex);
for (int i = 0; i < threadNum; i++) {
futureList.add(asyncExecutor.execute(new Runnable() {
@Override
public void run() {
long next = 0;
try {
while (result.isTrue() && eHolder.value() == null) {
synchronized (elements) {
if (cursor.intValue() < toIndex) {
next = elements[cursor.getAndIncrement()];
} else {
break;
}
}
if (predicate.test(next)) {
result.setFalse();
break;
}
}
} catch (Throwable e) {
setError(eHolder, e);
}
}
}));
}
}
complette(futureList, eHolder, (E) null);
return result.value();
}
@Override
public OptionalLong findFirst(final Try.LongPredicate predicate) throws E {
if (maxThreadNum <= 1 || toIndex - fromIndex <= 1) {
return super.findFirst(predicate);
}
final int threadNum = N.min(maxThreadNum, (toIndex - fromIndex));
final List> futureList = new ArrayList<>(threadNum);
final Holder eHolder = new Holder<>();
final Holder> resultHolder = new Holder<>();
if (splitor == Splitor.ARRAY) {
final int sliceSize = (toIndex - fromIndex) / threadNum + ((toIndex - fromIndex) % threadNum == 0 ? 0 : 1);
for (int i = 0; i < threadNum; i++) {
final int sliceIndex = i;
futureList.add(asyncExecutor.execute(new Runnable() {
@Override
public void run() {
int cursor = fromIndex + sliceIndex * sliceSize;
final int to = toIndex - cursor > sliceSize ? cursor + sliceSize : toIndex;
final Pair pair = new Pair<>();
try {
while (cursor < to && (resultHolder.value() == null || cursor < resultHolder.value().left) && eHolder.value() == null) {
pair.left = cursor;
pair.right = elements[cursor++];
if (predicate.test(pair.right)) {
synchronized (resultHolder) {
if (resultHolder.value() == null || pair.left < resultHolder.value().left) {
resultHolder.setValue(pair.copy());
}
}
break;
}
}
} catch (Throwable e) {
setError(eHolder, e);
}
}
}));
}
} else {
final MutableInt cursor = MutableInt.of(fromIndex);
for (int i = 0; i < threadNum; i++) {
futureList.add(asyncExecutor.execute(new Runnable() {
@Override
public void run() {
final Pair pair = new Pair<>();
try {
while (resultHolder.value() == null && eHolder.value() == null) {
synchronized (elements) {
if (cursor.intValue() < toIndex) {
pair.left = cursor.intValue();
pair.right = elements[cursor.getAndIncrement()];
} else {
break;
}
}
if (predicate.test(pair.right)) {
synchronized (resultHolder) {
if (resultHolder.value() == null || pair.left < resultHolder.value().left) {
resultHolder.setValue(pair.copy());
}
}
break;
}
}
} catch (Throwable e) {
setError(eHolder, e);
}
}
}));
}
}
complette(futureList, eHolder, (E) null);
return resultHolder.value() == null ? OptionalLong.empty() : OptionalLong.of(resultHolder.value().right);
}
@Override
public OptionalLong findLast(final Try.LongPredicate predicate) throws E {
if (maxThreadNum <= 1 || toIndex - fromIndex <= 1) {
return super.findLast(predicate);
}
final int threadNum = N.min(maxThreadNum, (toIndex - fromIndex));
final List> futureList = new ArrayList<>(threadNum);
final Holder eHolder = new Holder<>();
final Holder> resultHolder = new Holder<>();
if (splitor == Splitor.ARRAY) {
final int sliceSize = (toIndex - fromIndex) / threadNum + ((toIndex - fromIndex) % threadNum == 0 ? 0 : 1);
for (int i = 0; i < threadNum; i++) {
final int sliceIndex = i;
futureList.add(asyncExecutor.execute(new Runnable() {
@Override
public void run() {
final int from = fromIndex + sliceIndex * sliceSize;
int cursor = toIndex - from > sliceSize ? from + sliceSize : toIndex;
final Pair pair = new Pair<>();
try {
while (cursor > from && (resultHolder.value() == null || cursor > resultHolder.value().left) && eHolder.value() == null) {
pair.left = cursor;
pair.right = elements[--cursor];
if (predicate.test(pair.right)) {
synchronized (resultHolder) {
if (resultHolder.value() == null || pair.left > resultHolder.value().left) {
resultHolder.setValue(pair.copy());
}
}
break;
}
}
} catch (Throwable e) {
setError(eHolder, e);
}
}
}));
}
} else {
final MutableInt cursor = MutableInt.of(toIndex);
for (int i = 0; i < threadNum; i++) {
futureList.add(asyncExecutor.execute(new Runnable() {
@Override
public void run() {
final Pair pair = new Pair<>();
try {
while (resultHolder.value() == null && eHolder.value() == null) {
synchronized (elements) {
if (cursor.intValue() > fromIndex) {
pair.left = cursor.intValue();
pair.right = elements[cursor.decrementAndGet()];
} else {
break;
}
}
if (predicate.test(pair.right)) {
synchronized (resultHolder) {
if (resultHolder.value() == null || pair.left > resultHolder.value().left) {
resultHolder.setValue(pair.copy());
}
}
break;
}
}
} catch (Throwable e) {
setError(eHolder, e);
}
}
}));
}
}
complette(futureList, eHolder, (E) null);
return resultHolder.value() == null ? OptionalLong.empty() : OptionalLong.of(resultHolder.value().right);
}
@Override
public OptionalLong findAny(final Try.LongPredicate predicate) throws E {
if (maxThreadNum <= 1 || toIndex - fromIndex <= 1) {
return super.findAny(predicate);
}
final int threadNum = N.min(maxThreadNum, (toIndex - fromIndex));
final List> futureList = new ArrayList<>(threadNum);
final Holder eHolder = new Holder<>();
final Holder
© 2015 - 2025 Weber Informatics LLC | Privacy Policy