All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.landawn.abacus.util.N Maven / Gradle / Ivy

Go to download

A general programming library in Java/Android. It's easy to learn and simple to use with concise and powerful APIs.

There is a newer version: 2.1.12
Show newest version
/*
 * Copyright (c) 2015, Haiyang Li.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package com.landawn.abacus.util;

import java.io.File;
import java.io.InputStream;
import java.io.OutputStream;
import java.io.Reader;
import java.io.Writer;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collection;
import java.util.Collections;
import java.util.Comparator;
import java.util.HashMap;
import java.util.HashSet;
import java.util.Iterator;
import java.util.LinkedHashMap;
import java.util.LinkedList;
import java.util.List;
import java.util.ListIterator;
import java.util.Map;
import java.util.PriorityQueue;
import java.util.Queue;
import java.util.RandomAccess;
import java.util.Set;
import java.util.concurrent.Callable;
import java.util.concurrent.TimeUnit;

import com.landawn.abacus.exception.DuplicatedResultException;
import com.landawn.abacus.exception.UncheckedException;
import com.landawn.abacus.parser.DeserializationConfig;
import com.landawn.abacus.parser.JSONDeserializationConfig;
import com.landawn.abacus.parser.JSONDeserializationConfig.JDC;
import com.landawn.abacus.parser.JSONSerializationConfig;
import com.landawn.abacus.parser.XMLDeserializationConfig;
import com.landawn.abacus.parser.XMLDeserializationConfig.XDC;
import com.landawn.abacus.parser.XMLSerializationConfig;
import com.landawn.abacus.type.Type;
import com.landawn.abacus.util.Fn.Factory;
import com.landawn.abacus.util.Tuple.Tuple2;
import com.landawn.abacus.util.u.Nullable;
import com.landawn.abacus.util.u.OptionalDouble;
import com.landawn.abacus.util.function.IntFunction;

// TODO: Auto-generated Javadoc
/**
 * 

* Note: This class includes codes copied from Apache Commons Lang, Google Guava and other open source projects under the Apache License 2.0. * The methods copied from other libraries/frameworks/projects may be modified in this class. *

* Class N is a general java utility class. It provides the most daily used operations for Object/primitive types/String/Array/Collection/Map/Entity...: * * When to throw exception? It's designed to avoid throwing any unnecessary * exception if the contract defined by method is not broken. for example, if * user tries to reverse a null or empty String. the input String will be * returned. But exception will be thrown if trying to repeat/swap a null or * empty string or operate Array/Collection by adding/removing...
* * @author Haiyang Li * * @version $Revision: 0.8 $ 07/03/10 * * @see com.landawn.abacus.util.IOUtil * @see com.landawn.abacus.util.StringUtil * @see com.landawn.abacus.util.Iterables * @see com.landawn.abacus.util.Iterators * @see com.landawn.abacus.util.Maps * @see com.landawn.abacus.util.Primitives * @see com.landawn.abacus.util.Array * @see com.landawn.abacus.util.Seq */ public final class N extends CommonUtil { private static final float LOAD_FACTOR_FOR_FLAT_MAP = 1.75f; private static final int LOAD_FACTOR_FOR_TWO_FLAT_MAP = 2; private N() { // Utility class. } /** * * @param a * @param objectToFind * @return */ public static int occurrencesOf(final boolean[] a, final boolean objectToFind) { if (isNullOrEmpty(a)) { return 0; } int occurrences = 0; for (int i = 0, len = a.length; i < len; i++) { if (a[i] == objectToFind) { occurrences++; } } return occurrences; } /** * * @param a * @param objectToFind * @return */ public static int occurrencesOf(final char[] a, final char objectToFind) { if (isNullOrEmpty(a)) { return 0; } int occurrences = 0; for (int i = 0, len = a.length; i < len; i++) { if (a[i] == objectToFind) { occurrences++; } } return occurrences; } /** * * @param a * @param objectToFind * @return */ public static int occurrencesOf(final byte[] a, final byte objectToFind) { if (isNullOrEmpty(a)) { return 0; } int occurrences = 0; for (int i = 0, len = a.length; i < len; i++) { if (a[i] == objectToFind) { occurrences++; } } return occurrences; } /** * * @param a * @param objectToFind * @return */ public static int occurrencesOf(final short[] a, final short objectToFind) { if (isNullOrEmpty(a)) { return 0; } int occurrences = 0; for (int i = 0, len = a.length; i < len; i++) { if (a[i] == objectToFind) { occurrences++; } } return occurrences; } /** * * @param a * @param objectToFind * @return */ public static int occurrencesOf(final int[] a, final int objectToFind) { if (isNullOrEmpty(a)) { return 0; } int occurrences = 0; for (int i = 0, len = a.length; i < len; i++) { if (a[i] == objectToFind) { occurrences++; } } return occurrences; } /** * * @param a * @param objectToFind * @return */ public static int occurrencesOf(final long[] a, final long objectToFind) { if (isNullOrEmpty(a)) { return 0; } int occurrences = 0; for (int i = 0, len = a.length; i < len; i++) { if (a[i] == objectToFind) { occurrences++; } } return occurrences; } /** * * @param a * @param objectToFind * @return */ public static int occurrencesOf(final float[] a, final float objectToFind) { if (isNullOrEmpty(a)) { return 0; } int occurrences = 0; for (int i = 0, len = a.length; i < len; i++) { if (Float.compare(a[i], objectToFind) == 0) { occurrences++; } } return occurrences; } /** * * @param a * @param objectToFind * @return */ public static int occurrencesOf(final double[] a, final double objectToFind) { if (isNullOrEmpty(a)) { return 0; } int occurrences = 0; for (int i = 0, len = a.length; i < len; i++) { if (Double.compare(a[i], objectToFind) == 0) { occurrences++; } } return occurrences; } /** * * @param a * @param objectToFind * @return */ public static int occurrencesOf(final Object[] a, final Object objectToFind) { if (isNullOrEmpty(a)) { return 0; } int occurrences = 0; if (objectToFind == null) { for (int i = 0, len = a.length; i < len; i++) { if (a[i] == null) { occurrences++; } } } else { for (int i = 0, len = a.length; i < len; i++) { if (objectToFind.equals(a[i])) { occurrences++; } } } return occurrences; } /** * * @param c * @param objectToFind * @return * @see java.util.Collections#frequency(Collection, Object) */ public static int occurrencesOf(final Collection c, final Object objectToFind) { if (isNullOrEmpty(c)) { return 0; } return Collections.frequency(c, objectToFind); } /** * * @param a * @param objectToFind * @return true, if successful */ public static boolean contains(final boolean[] a, final boolean objectToFind) { return indexOf(a, objectToFind) != INDEX_NOT_FOUND; } /** * * @param a * @param objectToFind * @return true, if successful */ public static boolean contains(final char[] a, final char objectToFind) { return indexOf(a, objectToFind) != INDEX_NOT_FOUND; } /** * * @param a * @param objectToFind * @return true, if successful */ public static boolean contains(final byte[] a, final byte objectToFind) { return indexOf(a, objectToFind) != INDEX_NOT_FOUND; } /** * * @param a * @param objectToFind * @return true, if successful */ public static boolean contains(final short[] a, final short objectToFind) { return indexOf(a, objectToFind) != INDEX_NOT_FOUND; } /** * * @param a * @param objectToFind * @return true, if successful */ public static boolean contains(final int[] a, final int objectToFind) { return indexOf(a, objectToFind) != INDEX_NOT_FOUND; } /** * * @param a * @param objectToFind * @return true, if successful */ public static boolean contains(final long[] a, final long objectToFind) { return indexOf(a, objectToFind) != INDEX_NOT_FOUND; } /** * * @param a * @param objectToFind * @return true, if successful */ public static boolean contains(final float[] a, final float objectToFind) { return indexOf(a, objectToFind) != INDEX_NOT_FOUND; } /** * * @param a * @param objectToFind * @return true, if successful */ public static boolean contains(final double[] a, final double objectToFind) { return indexOf(a, objectToFind) != INDEX_NOT_FOUND; } /** * * @param a * @param objectToFind * @return true, if successful */ public static boolean contains(final Object[] a, final Object objectToFind) { return indexOf(a, objectToFind) != INDEX_NOT_FOUND; } /** * * @param c * @param e * @return true, if successful */ public static boolean contains(final Collection c, final Object e) { if (isNullOrEmpty(c)) { return false; } return c.contains(e); } /** * Contains all. * * @param c the c * @param objsToFind the objs to find * @return true, if successful */ public static boolean containsAll(final Collection c, final Collection objsToFind) { if (N.isNullOrEmpty(objsToFind)) { return true; } else if (N.isNullOrEmpty(c)) { return false; } return c.containsAll(objsToFind); } /** * Contains all. * * @param c the c * @param objsToFind the objs to find * @return true, if successful */ public static boolean containsAll(final Collection c, final Object[] objsToFind) { if (N.isNullOrEmpty(objsToFind)) { return true; } else if (N.isNullOrEmpty(c)) { return false; } return c.containsAll(Array.asList(objsToFind)); } /** * Contains any. * * @param c the c * @param objsToFind the objs to find * @return true, if successful */ public static boolean containsAny(final Collection c, final Collection objsToFind) { if (N.isNullOrEmpty(c) || N.isNullOrEmpty(objsToFind)) { return false; } return !N.disjoint(c, objsToFind); } /** * Contains any. * * @param c the c * @param objsToFind the objs to find * @return true, if successful */ public static boolean containsAny(final Collection c, final Object[] objsToFind) { if (N.isNullOrEmpty(c) || N.isNullOrEmpty(objsToFind)) { return false; } return !N.disjoint(c, Array.asList(objsToFind)); } /** * Gets the only element. * * @param the generic type * @param iterable the iterable * @return throws DuplicatedResultException if there are more than one elements in the specified {@code iterable}. */ public static Nullable getOnlyElement(Iterable iterable) throws DuplicatedResultException { if (iterable == null) { return Nullable.empty(); } return Iterators.getOnlyElement(iterable.iterator()); } /** * Returns consecutive sub arrays of an array, each of the same size (the final list may be smaller), * or an empty List if the specified array is null or empty. * * @param a * @param chunkSize the desired size of each sub array (the last may be smaller). * @return */ public static List split(final boolean[] a, final int chunkSize) { checkArgPositive(chunkSize, "chunkSize"); if (isNullOrEmpty(a)) { return new ArrayList<>(); } final int len = a.length; final List res = new ArrayList<>(len % chunkSize == 0 ? len / chunkSize : (len / chunkSize) + 1); for (int from = 0, toIndex = a.length; from < toIndex; from += chunkSize) { res.add(copyOfRange(a, from, from <= toIndex - chunkSize ? from + chunkSize : toIndex)); } return res; } /** * Returns consecutive sub arrays of an array, each of the same chunkSize (the final list may be smaller), * or an empty List if the specified array is null or empty. * * @param a * @param fromIndex * @param toIndex * @param chunkSize the desired size of each sub array (the last may be smaller). * @return */ public static List split(final boolean[] a, final int fromIndex, final int toIndex, final int chunkSize) { checkFromToIndex(fromIndex, toIndex, len(a)); checkArgPositive(chunkSize, "chunkSize"); if (isNullOrEmpty(a)) { return new ArrayList<>(); } final int len = toIndex - fromIndex; final List res = new ArrayList<>(len % chunkSize == 0 ? len / chunkSize : (len / chunkSize) + 1); for (int from = fromIndex; from < toIndex; from += chunkSize) { res.add(copyOfRange(a, from, from <= toIndex - chunkSize ? from + chunkSize : toIndex)); } return res; } /** * Returns consecutive sub arrays of an array, each of the same chunkSize (the final list may be smaller), * or an empty List if the specified array is null or empty. * * @param a * @param chunkSize the desired size of each sub array (the last may be smaller). * @return */ public static List split(final char[] a, final int chunkSize) { checkArgPositive(chunkSize, "chunkSize"); if (isNullOrEmpty(a)) { return new ArrayList<>(); } final int len = a.length; final List res = new ArrayList<>(len % chunkSize == 0 ? len / chunkSize : (len / chunkSize) + 1); for (int from = 0, toIndex = a.length; from < toIndex; from += chunkSize) { res.add(copyOfRange(a, from, from <= toIndex - chunkSize ? from + chunkSize : toIndex)); } return res; } /** * Returns consecutive sub arrays of an array, each of the same chunkSize (the final list may be smaller), * or an empty List if the specified array is null or empty. * * @param a * @param fromIndex * @param toIndex * @param chunkSize the desired size of each sub array (the last may be smaller). * @return */ public static List split(final char[] a, final int fromIndex, final int toIndex, final int chunkSize) { checkFromToIndex(fromIndex, toIndex, len(a)); checkArgPositive(chunkSize, "chunkSize"); if (isNullOrEmpty(a)) { return new ArrayList<>(); } final int len = toIndex - fromIndex; final List res = new ArrayList<>(len % chunkSize == 0 ? len / chunkSize : (len / chunkSize) + 1); for (int from = fromIndex; from < toIndex; from += chunkSize) { res.add(copyOfRange(a, from, from <= toIndex - chunkSize ? from + chunkSize : toIndex)); } return res; } /** * Returns consecutive sub arrays of an array, each of the same chunkSize (the final list may be smaller), * or an empty List if the specified array is null or empty. * * @param a * @param chunkSize the desired size of each sub array (the last may be smaller). * @return */ public static List split(final byte[] a, final int chunkSize) { checkArgPositive(chunkSize, "chunkSize"); if (isNullOrEmpty(a)) { return new ArrayList<>(); } final int len = a.length; final List res = new ArrayList<>(len % chunkSize == 0 ? len / chunkSize : (len / chunkSize) + 1); for (int from = 0, toIndex = a.length; from < toIndex; from += chunkSize) { res.add(copyOfRange(a, from, from <= toIndex - chunkSize ? from + chunkSize : toIndex)); } return res; } /** * Returns consecutive sub arrays of an array, each of the same chunkSize (the final list may be smaller), * or an empty List if the specified array is null or empty. * * @param a * @param fromIndex * @param toIndex * @param chunkSize the desired size of each sub array (the last may be smaller). * @return */ public static List split(final byte[] a, final int fromIndex, final int toIndex, final int chunkSize) { checkFromToIndex(fromIndex, toIndex, len(a)); checkArgPositive(chunkSize, "chunkSize"); if (isNullOrEmpty(a)) { return new ArrayList<>(); } final int len = toIndex - fromIndex; final List res = new ArrayList<>(len % chunkSize == 0 ? len / chunkSize : (len / chunkSize) + 1); for (int from = fromIndex; from < toIndex; from += chunkSize) { res.add(copyOfRange(a, from, from <= toIndex - chunkSize ? from + chunkSize : toIndex)); } return res; } /** * Returns consecutive sub arrays of an array, each of the same chunkSize (the final list may be smaller), * or an empty List if the specified array is null or empty. * * @param a * @param chunkSize the desired size of each sub array (the last may be smaller). * @return */ public static List split(final short[] a, final int chunkSize) { checkArgPositive(chunkSize, "chunkSize"); if (isNullOrEmpty(a)) { return new ArrayList<>(); } final int len = a.length; final List res = new ArrayList<>(len % chunkSize == 0 ? len / chunkSize : (len / chunkSize) + 1); for (int from = 0, toIndex = a.length; from < toIndex; from += chunkSize) { res.add(copyOfRange(a, from, from <= toIndex - chunkSize ? from + chunkSize : toIndex)); } return res; } /** * Returns consecutive sub arrays of an array, each of the same chunkSize (the final list may be smaller), * or an empty List if the specified array is null or empty. * * @param a * @param fromIndex * @param toIndex * @param chunkSize the desired size of each sub array (the last may be smaller). * @return */ public static List split(final short[] a, final int fromIndex, final int toIndex, final int chunkSize) { checkFromToIndex(fromIndex, toIndex, len(a)); checkArgPositive(chunkSize, "chunkSize"); if (isNullOrEmpty(a)) { return new ArrayList<>(); } final int len = toIndex - fromIndex; final List res = new ArrayList<>(len % chunkSize == 0 ? len / chunkSize : (len / chunkSize) + 1); for (int from = fromIndex; from < toIndex; from += chunkSize) { res.add(copyOfRange(a, from, from <= toIndex - chunkSize ? from + chunkSize : toIndex)); } return res; } /** * Returns consecutive sub arrays of an array, each of the same chunkSize (the final list may be smaller), * or an empty List if the specified array is null or empty. * * @param a * @param chunkSize the desired size of each sub array (the last may be smaller). * @return */ public static List split(final int[] a, final int chunkSize) { checkArgPositive(chunkSize, "chunkSize"); if (isNullOrEmpty(a)) { return new ArrayList<>(); } final int len = a.length; final List res = new ArrayList<>(len % chunkSize == 0 ? len / chunkSize : (len / chunkSize) + 1); for (int from = 0, toIndex = a.length; from < toIndex; from += chunkSize) { res.add(copyOfRange(a, from, from <= toIndex - chunkSize ? from + chunkSize : toIndex)); } return res; } /** * Returns consecutive sub arrays of an array, each of the same chunkSize (the final list may be smaller), * or an empty List if the specified array is null or empty. * * @param a * @param fromIndex * @param toIndex * @param chunkSize the desired size of each sub array (the last may be smaller). * @return */ public static List split(final int[] a, final int fromIndex, final int toIndex, final int chunkSize) { checkFromToIndex(fromIndex, toIndex, len(a)); checkArgPositive(chunkSize, "chunkSize"); if (isNullOrEmpty(a)) { return new ArrayList<>(); } final int len = toIndex - fromIndex; final List res = new ArrayList<>(len % chunkSize == 0 ? len / chunkSize : (len / chunkSize) + 1); for (int from = fromIndex; from < toIndex; from += chunkSize) { res.add(copyOfRange(a, from, from <= toIndex - chunkSize ? from + chunkSize : toIndex)); } return res; } /** * Returns consecutive sub arrays of an array, each of the same chunkSize (the final list may be smaller), * or an empty List if the specified array is null or empty. * * @param a * @param chunkSize the desired size of each sub array (the last may be smaller). * @return */ public static List split(final long[] a, final int chunkSize) { checkArgPositive(chunkSize, "chunkSize"); if (isNullOrEmpty(a)) { return new ArrayList<>(); } final int len = a.length; final List res = new ArrayList<>(len % chunkSize == 0 ? len / chunkSize : (len / chunkSize) + 1); for (int from = 0, toIndex = a.length; from < toIndex; from += chunkSize) { res.add(copyOfRange(a, from, from <= toIndex - chunkSize ? from + chunkSize : toIndex)); } return res; } /** * Returns consecutive sub arrays of an array, each of the same chunkSize (the final list may be smaller), * or an empty List if the specified array is null or empty. * * @param a * @param fromIndex * @param toIndex * @param chunkSize the desired size of each sub array (the last may be smaller). * @return */ public static List split(final long[] a, final int fromIndex, final int toIndex, final int chunkSize) { checkFromToIndex(fromIndex, toIndex, len(a)); checkArgPositive(chunkSize, "chunkSize"); if (isNullOrEmpty(a)) { return new ArrayList<>(); } final int len = toIndex - fromIndex; final List res = new ArrayList<>(len % chunkSize == 0 ? len / chunkSize : (len / chunkSize) + 1); for (int from = fromIndex; from < toIndex; from += chunkSize) { res.add(copyOfRange(a, from, from <= toIndex - chunkSize ? from + chunkSize : toIndex)); } return res; } /** * Returns consecutive sub arrays of an array, each of the same chunkSize (the final list may be smaller), * or an empty List if the specified array is null or empty. * * @param a * @param chunkSize the desired size of each sub array (the last may be smaller). * @return */ public static List split(final float[] a, final int chunkSize) { checkArgPositive(chunkSize, "chunkSize"); if (isNullOrEmpty(a)) { return new ArrayList<>(); } final int len = a.length; final List res = new ArrayList<>(len % chunkSize == 0 ? len / chunkSize : (len / chunkSize) + 1); for (int from = 0, toIndex = a.length; from < toIndex; from += chunkSize) { res.add(copyOfRange(a, from, from <= toIndex - chunkSize ? from + chunkSize : toIndex)); } return res; } /** * Returns consecutive sub arrays of an array, each of the same chunkSize (the final list may be smaller), * or an empty List if the specified array is null or empty. * * @param a * @param fromIndex * @param toIndex * @param chunkSize the desired size of each sub array (the last may be smaller). * @return */ public static List split(final float[] a, final int fromIndex, final int toIndex, final int chunkSize) { checkFromToIndex(fromIndex, toIndex, len(a)); checkArgPositive(chunkSize, "chunkSize"); if (isNullOrEmpty(a)) { return new ArrayList<>(); } final int len = toIndex - fromIndex; final List res = new ArrayList<>(len % chunkSize == 0 ? len / chunkSize : (len / chunkSize) + 1); for (int from = fromIndex; from < toIndex; from += chunkSize) { res.add(copyOfRange(a, from, from <= toIndex - chunkSize ? from + chunkSize : toIndex)); } return res; } /** * Returns consecutive sub arrays of an array, each of the same chunkSize (the final list may be smaller), * or an empty List if the specified array is null or empty. * * @param a * @param chunkSize the desired size of each sub array (the last may be smaller). * @return */ public static List split(final double[] a, final int chunkSize) { checkArgPositive(chunkSize, "chunkSize"); if (isNullOrEmpty(a)) { return new ArrayList<>(); } final int len = a.length; final List res = new ArrayList<>(len % chunkSize == 0 ? len / chunkSize : (len / chunkSize) + 1); for (int from = 0, toIndex = a.length; from < toIndex; from += chunkSize) { res.add(copyOfRange(a, from, from <= toIndex - chunkSize ? from + chunkSize : toIndex)); } return res; } /** * Returns consecutive sub arrays of an array, each of the same chunkSize (the final list may be smaller), * or an empty List if the specified array is null or empty. * * @param a * @param fromIndex * @param toIndex * @param chunkSize the desired size of each sub array (the last may be smaller). * @return */ public static List split(final double[] a, final int fromIndex, final int toIndex, final int chunkSize) { checkFromToIndex(fromIndex, toIndex, len(a)); checkArgPositive(chunkSize, "chunkSize"); if (isNullOrEmpty(a)) { return new ArrayList<>(); } final int len = toIndex - fromIndex; final List res = new ArrayList<>(len % chunkSize == 0 ? len / chunkSize : (len / chunkSize) + 1); for (int from = fromIndex; from < toIndex; from += chunkSize) { res.add(copyOfRange(a, from, from <= toIndex - chunkSize ? from + chunkSize : toIndex)); } return res; } /** * Returns consecutive sub arrays of an array, each of the same chunkSize (the final list may be smaller), * or an empty List if the specified array is null or empty. * * @param * @param a * @param chunkSize the desired size of each sub array (the last may be smaller). * @return */ public static List split(final T[] a, final int chunkSize) { checkArgPositive(chunkSize, "chunkSize"); if (isNullOrEmpty(a)) { return new ArrayList<>(); } final int len = a.length; final List res = new ArrayList<>(len % chunkSize == 0 ? len / chunkSize : (len / chunkSize) + 1); for (int from = 0, toIndex = a.length; from < toIndex; from += chunkSize) { res.add(copyOfRange(a, from, from <= toIndex - chunkSize ? from + chunkSize : toIndex)); } return res; } /** * Returns consecutive sub arrays of an array, each of the same chunkSize (the final list may be smaller), * or an empty List if the specified array is null or empty. * * @param * @param a * @param fromIndex * @param toIndex * @param chunkSize the desired size of each sub array (the last may be smaller). * @return */ public static List split(final T[] a, final int fromIndex, final int toIndex, final int chunkSize) { checkFromToIndex(fromIndex, toIndex, len(a)); checkArgPositive(chunkSize, "chunkSize"); if (isNullOrEmpty(a)) { return new ArrayList<>(); } final int len = toIndex - fromIndex; final List res = new ArrayList<>(len % chunkSize == 0 ? len / chunkSize : (len / chunkSize) + 1); for (int from = fromIndex; from < toIndex; from += chunkSize) { res.add(copyOfRange(a, from, from <= toIndex - chunkSize ? from + chunkSize : toIndex)); } return res; } /** * Returns consecutive sub lists of a collection, each of the same chunkSize (the final list may be smaller). * or an empty List if the specified collection is null or empty. The order of elements in the original collection is kept * * @param * @param c * @param chunkSize the desired size of each sub list (the last may be smaller). * @return */ public static List> split(final Collection c, final int chunkSize) { checkArgPositive(chunkSize, "chunkSize"); if (isNullOrEmpty(c)) { return new ArrayList<>(); } return split(c, 0, c.size(), chunkSize); } /** * Returns consecutive sub lists of a collection, each of the same chunkSize (the final list may be smaller). * or an empty List if the specified collection is null or empty. The order of elements in the original collection is kept * * @param * @param c * @param fromIndex * @param toIndex * @param chunkSize the desired size of each sub list (the last may be smaller). * @return */ public static List> split(final Collection c, final int fromIndex, final int toIndex, final int chunkSize) { checkFromToIndex(fromIndex, toIndex, size(c)); checkArgPositive(chunkSize, "chunkSize"); if (isNullOrEmpty(c)) { return new ArrayList<>(); } final int len = toIndex - fromIndex; final List> res = new ArrayList<>(len % chunkSize == 0 ? len / chunkSize : (len / chunkSize) + 1); if (c instanceof List) { final List list = (List) c; for (int i = fromIndex; i < toIndex; i += chunkSize) { res.add(new ArrayList<>(list.subList(i, i <= toIndex - chunkSize ? i + chunkSize : toIndex))); } } else { final Iterator iter = c.iterator(); for (int i = 0; i < toIndex; i += chunkSize) { if (i < fromIndex) { iter.next(); i++; continue; } final List subList = new ArrayList<>(min(chunkSize, toIndex - i)); for (int j = i, to = i <= toIndex - chunkSize ? i + chunkSize : toIndex; j < to; j++) { subList.add(iter.next()); } res.add(subList); } } return res; } /** * Returns consecutive substring of the specified string, each of the same length (the final list may be smaller), * or an empty array if the specified string is null or empty. * * @param str * @param chunkSize the desired size of each sub String (the last may be smaller). * @return */ public static List split(final CharSequence str, final int chunkSize) { checkArgPositive(chunkSize, "chunkSize"); if (isNullOrEmpty(str)) { return new ArrayList<>(); } return split(str, 0, str.length(), chunkSize); } /** * Returns consecutive substring of the specified string, each of the same length (the final list may be smaller), * or an empty array if the specified string is null or empty. * * @param str * @param fromIndex * @param toIndex * @param chunkSize the desired size of each sub String (the last may be smaller). * @return */ public static List split(final CharSequence str, final int fromIndex, final int toIndex, final int chunkSize) { checkFromToIndex(fromIndex, toIndex, len(str)); checkArgPositive(chunkSize, "chunkSize"); if (isNullOrEmpty(str)) { return new ArrayList<>(); } final int len = toIndex - fromIndex; final List res = new ArrayList<>(len % chunkSize == 0 ? len / chunkSize : (len / chunkSize) + 1); for (int from = fromIndex; from < toIndex; from += chunkSize) { res.add(str.subSequence(from, from <= toIndex - chunkSize ? from + chunkSize : toIndex).toString()); } return res; } /** * * @param * @param a * @param b * @return * @see IntList#intersection(IntList) */ public static List intersection(final T[] a, final Object[] b) { if (isNullOrEmpty(a) || isNullOrEmpty(b)) { return new ArrayList<>(); } final Multiset bOccurrences = Multiset.of(b); final List result = new ArrayList<>(min(9, a.length, b.length)); for (T e : a) { if (bOccurrences.getAndRemove(e) > 0) { result.add(e); } } return result; } /** * * @param * @param a * @param b * @return * @see IntList#intersection(IntList) */ public static List intersection(final Collection a, final Collection b) { if (isNullOrEmpty(a) || isNullOrEmpty(b)) { return new ArrayList<>(); } final Multiset bOccurrences = Multiset.from(b); final List result = new ArrayList<>(min(9, a.size(), b.size())); for (T e : a) { if (bOccurrences.getAndRemove(e) > 0) { result.add(e); } } return result; } /** * * @param * @param c * @return */ public static List intersection(final Collection> c) { if (isNullOrEmpty(c)) { return new ArrayList<>(); } else if (c.size() == 1) { return newArrayList(c.iterator().next()); } for (Collection e : c) { if (isNullOrEmpty(e)) { return new ArrayList<>(); } } final Iterator> iter = c.iterator(); List result = intersection(iter.next(), iter.next()); while (iter.hasNext()) { result = intersection(result, iter.next()); if (result.size() == 0) { break; } } return result; } /** * * @param * @param a * @param b * @return * @see IntList#difference(IntList) */ public static List difference(final T[] a, final Object[] b) { if (isNullOrEmpty(a)) { return new ArrayList<>(); } else if (isNullOrEmpty(b)) { return asList(a); } final Multiset bOccurrences = Multiset.of(b); final List result = new ArrayList<>(min(a.length, max(9, a.length - b.length))); for (T e : a) { if (bOccurrences.getAndRemove(e) < 1) { result.add(e); } } return result; } /** * * @param * @param a * @param b * @return * @see IntList#difference(IntList) */ public static List difference(final Collection a, final Collection b) { if (isNullOrEmpty(a)) { return new ArrayList<>(); } else if (isNullOrEmpty(b)) { return new ArrayList<>(a); } final Multiset bOccurrences = Multiset.from(b); final List result = new ArrayList<>(min(a.size(), max(9, a.size() - b.size()))); for (T e : a) { if (bOccurrences.getAndRemove(e) < 1) { result.add(e); } } return result; } /** * * @param * @param a * @param b * @return * @see IntList#symmetricDifference(IntList) */ public static List symmetricDifference(final T[] a, final T[] b) { if (isNullOrEmpty(a)) { return asList(b); } else if (isNullOrEmpty(b)) { return asList(a); } final Multiset bOccurrences = Multiset.of(b); final List result = new ArrayList<>(max(9, Math.abs(a.length - b.length))); for (T e : a) { if (bOccurrences.getAndRemove(e) < 1) { result.add(e); } } for (T e : b) { if (bOccurrences.getAndRemove(e) > 0) { result.add(e); } if (bOccurrences.isEmpty()) { break; } } return result; } /** * * @param * @param a * @param b * @return * @see IntList#symmetricDifference(IntList) */ public static List symmetricDifference(final Collection a, final Collection b) { if (isNullOrEmpty(a)) { return isNullOrEmpty(b) ? new ArrayList() : new ArrayList<>(b); } else if (isNullOrEmpty(b)) { return isNullOrEmpty(a) ? new ArrayList() : new ArrayList<>(a); } final Multiset bOccurrences = Multiset.from(b); final List result = new ArrayList<>(max(9, Math.abs(a.size() - b.size()))); for (T e : a) { if (bOccurrences.getAndRemove(e) < 1) { result.add(e); } } for (T e : b) { if (bOccurrences.getAndRemove(e) > 0) { result.add(e); } if (bOccurrences.isEmpty()) { break; } } return result; } /** * Different set. * * @param the generic type * @param a the a * @param b the b * @return the sets the */ @SuppressWarnings("rawtypes") public static Set differentSet(final Collection a, final Collection b) { if (N.isNullOrEmpty(a)) { return N.newHashSet(); } else if (N.isNullOrEmpty(b)) { return N.newHashSet(a); } final Set result = N.newHashSet(a); N.removeAll(a, (Collection) b); return result; } /** * Symmetric different set. * * @param the generic type * @param a the a * @param b the b * @return the sets the */ public static Set symmetricDifferentSet(final Collection a, final Collection b) { if (N.isNullOrEmpty(a)) { return N.isNullOrEmpty(b) ? N. newHashSet() : N. newHashSet(b); } else if (N.isNullOrEmpty(b)) { return N.isNullOrEmpty(a) ? N. newHashSet() : N. newHashSet(a); } final Set commonSet = commonSet(a, b); final Set result = N.newHashSet(a); for (T e : a) { if (!commonSet.contains(e)) { result.add(e); } } for (T e : b) { if (!commonSet.contains(e)) { result.add(e); } } return result; } /** * Common set. * * @param the generic type * @param a the a * @param b the b * @return the sets the */ public static Set commonSet(final Collection a, final Collection b) { if (N.isNullOrEmpty(a) || N.isNullOrEmpty(b)) { return N.newHashSet(); } return commonSet(Array.asList(a, (Collection) b)); } /** * Common set. * * @param the generic type * @param c the c * @return the sets the */ public static Set commonSet(final Collection> c) { if (N.isNullOrEmpty(c)) { return N.newHashSet(); } else if (c.size() == 1) { return N.newHashSet(c.iterator().next()); } Collection smallest = null; for (final Collection e : c) { if (N.isNullOrEmpty(e)) { return N.newHashSet(); } if (smallest == null || e.size() < smallest.size()) { smallest = e; } } final Map map = new HashMap<>(); for (T e : smallest) { map.put(e, new MutableInt(1)); } int cnt = 1; MutableInt val = null; for (final Collection ec : c) { if (ec == smallest) { continue; } for (T e : ec) { val = map.get(e); if (val == null) { // do nothing. } else if (val.intValue() < cnt) { // map.remove(e); } else if (val.intValue() == cnt) { val.increment(); } } cnt++; } final Set result = N.newHashSet(map.size()); for (Map.Entry entry : map.entrySet()) { if (entry.getValue().intValue() == cnt) { result.add(entry.getKey()); } } return result; } /** * * @param a * @param b * @return */ public static boolean[] concat(final boolean[] a, final boolean[] b) { if (isNullOrEmpty(a)) { return isNullOrEmpty(b) ? EMPTY_BOOLEAN_ARRAY : b.clone(); } else if (isNullOrEmpty(b)) { return isNullOrEmpty(a) ? EMPTY_BOOLEAN_ARRAY : a.clone(); } final boolean[] c = new boolean[a.length + b.length]; copy(a, 0, c, 0, a.length); copy(b, 0, c, a.length, b.length); return c; } /** * * @param aa * @return */ @SafeVarargs public static boolean[] concat(final boolean[]... aa) { if (isNullOrEmpty(aa)) { return EMPTY_BOOLEAN_ARRAY; } else if (aa.length == 1) { return isNullOrEmpty(aa[0]) ? EMPTY_BOOLEAN_ARRAY : aa[0].clone(); } int len = 0; for (boolean[] a : aa) { if (isNullOrEmpty(a)) { continue; } len += a.length; } final boolean[] c = new boolean[len]; int fromIndex = 0; for (boolean[] a : aa) { if (isNullOrEmpty(a)) { continue; } System.arraycopy(a, 0, c, fromIndex, a.length); fromIndex += a.length; } return c; } /** * * @param a * @param b * @return */ public static char[] concat(final char[] a, final char[] b) { if (isNullOrEmpty(a)) { return isNullOrEmpty(b) ? EMPTY_CHAR_ARRAY : b.clone(); } else if (isNullOrEmpty(b)) { return isNullOrEmpty(a) ? EMPTY_CHAR_ARRAY : a.clone(); } final char[] c = new char[a.length + b.length]; copy(a, 0, c, 0, a.length); copy(b, 0, c, a.length, b.length); return c; } /** * * @param aa * @return */ @SafeVarargs public static char[] concat(final char[]... aa) { if (isNullOrEmpty(aa)) { return EMPTY_CHAR_ARRAY; } else if (aa.length == 1) { return isNullOrEmpty(aa[0]) ? EMPTY_CHAR_ARRAY : aa[0].clone(); } int len = 0; for (char[] a : aa) { if (isNullOrEmpty(a)) { continue; } len += a.length; } final char[] c = new char[len]; int fromIndex = 0; for (char[] a : aa) { if (isNullOrEmpty(a)) { continue; } System.arraycopy(a, 0, c, fromIndex, a.length); fromIndex += a.length; } return c; } /** * * @param a * @param b * @return */ public static byte[] concat(final byte[] a, final byte[] b) { if (isNullOrEmpty(a)) { return isNullOrEmpty(b) ? EMPTY_BYTE_ARRAY : b.clone(); } else if (isNullOrEmpty(b)) { return isNullOrEmpty(a) ? EMPTY_BYTE_ARRAY : a.clone(); } final byte[] c = new byte[a.length + b.length]; copy(a, 0, c, 0, a.length); copy(b, 0, c, a.length, b.length); return c; } /** * * @param aa * @return */ @SafeVarargs public static byte[] concat(final byte[]... aa) { if (isNullOrEmpty(aa)) { return EMPTY_BYTE_ARRAY; } else if (aa.length == 1) { return isNullOrEmpty(aa[0]) ? EMPTY_BYTE_ARRAY : aa[0].clone(); } int len = 0; for (byte[] a : aa) { if (isNullOrEmpty(a)) { continue; } len += a.length; } final byte[] c = new byte[len]; int fromIndex = 0; for (byte[] a : aa) { if (isNullOrEmpty(a)) { continue; } System.arraycopy(a, 0, c, fromIndex, a.length); fromIndex += a.length; } return c; } /** * * @param a * @param b * @return */ public static short[] concat(final short[] a, final short[] b) { if (isNullOrEmpty(a)) { return isNullOrEmpty(b) ? EMPTY_SHORT_ARRAY : b.clone(); } else if (isNullOrEmpty(b)) { return isNullOrEmpty(a) ? EMPTY_SHORT_ARRAY : a.clone(); } final short[] c = new short[a.length + b.length]; copy(a, 0, c, 0, a.length); copy(b, 0, c, a.length, b.length); return c; } /** * * @param aa * @return */ @SafeVarargs public static short[] concat(final short[]... aa) { if (isNullOrEmpty(aa)) { return EMPTY_SHORT_ARRAY; } else if (aa.length == 1) { return isNullOrEmpty(aa[0]) ? EMPTY_SHORT_ARRAY : aa[0].clone(); } int len = 0; for (short[] a : aa) { if (isNullOrEmpty(a)) { continue; } len += a.length; } final short[] c = new short[len]; int fromIndex = 0; for (short[] a : aa) { if (isNullOrEmpty(a)) { continue; } System.arraycopy(a, 0, c, fromIndex, a.length); fromIndex += a.length; } return c; } /** * * @param a * @param b * @return */ public static int[] concat(final int[] a, final int[] b) { if (isNullOrEmpty(a)) { return isNullOrEmpty(b) ? EMPTY_INT_ARRAY : b.clone(); } else if (isNullOrEmpty(b)) { return isNullOrEmpty(a) ? EMPTY_INT_ARRAY : a.clone(); } final int[] c = new int[a.length + b.length]; copy(a, 0, c, 0, a.length); copy(b, 0, c, a.length, b.length); return c; } /** * * @param aa * @return */ @SafeVarargs public static int[] concat(final int[]... aa) { if (isNullOrEmpty(aa)) { return EMPTY_INT_ARRAY; } else if (aa.length == 1) { return isNullOrEmpty(aa[0]) ? EMPTY_INT_ARRAY : aa[0].clone(); } int len = 0; for (int[] a : aa) { if (isNullOrEmpty(a)) { continue; } len += a.length; } final int[] c = new int[len]; int fromIndex = 0; for (int[] a : aa) { if (isNullOrEmpty(a)) { continue; } System.arraycopy(a, 0, c, fromIndex, a.length); fromIndex += a.length; } return c; } /** * * @param a * @param b * @return */ public static long[] concat(final long[] a, final long[] b) { if (isNullOrEmpty(a)) { return isNullOrEmpty(b) ? EMPTY_LONG_ARRAY : b.clone(); } else if (isNullOrEmpty(b)) { return isNullOrEmpty(a) ? EMPTY_LONG_ARRAY : a.clone(); } final long[] c = new long[a.length + b.length]; copy(a, 0, c, 0, a.length); copy(b, 0, c, a.length, b.length); return c; } /** * * @param aa * @return */ @SafeVarargs public static long[] concat(final long[]... aa) { if (isNullOrEmpty(aa)) { return EMPTY_LONG_ARRAY; } else if (aa.length == 1) { return isNullOrEmpty(aa[0]) ? EMPTY_LONG_ARRAY : aa[0].clone(); } int len = 0; for (long[] a : aa) { if (isNullOrEmpty(a)) { continue; } len += a.length; } final long[] c = new long[len]; int fromIndex = 0; for (long[] a : aa) { if (isNullOrEmpty(a)) { continue; } System.arraycopy(a, 0, c, fromIndex, a.length); fromIndex += a.length; } return c; } /** * * @param a * @param b * @return */ public static float[] concat(final float[] a, final float[] b) { if (isNullOrEmpty(a)) { return isNullOrEmpty(b) ? EMPTY_FLOAT_ARRAY : b.clone(); } else if (isNullOrEmpty(b)) { return isNullOrEmpty(a) ? EMPTY_FLOAT_ARRAY : a.clone(); } final float[] c = new float[a.length + b.length]; copy(a, 0, c, 0, a.length); copy(b, 0, c, a.length, b.length); return c; } /** * * @param aa * @return */ @SafeVarargs public static float[] concat(final float[]... aa) { if (isNullOrEmpty(aa)) { return EMPTY_FLOAT_ARRAY; } else if (aa.length == 1) { return isNullOrEmpty(aa[0]) ? EMPTY_FLOAT_ARRAY : aa[0].clone(); } int len = 0; for (float[] a : aa) { if (isNullOrEmpty(a)) { continue; } len += a.length; } final float[] c = new float[len]; int fromIndex = 0; for (float[] a : aa) { if (isNullOrEmpty(a)) { continue; } System.arraycopy(a, 0, c, fromIndex, a.length); fromIndex += a.length; } return c; } /** * * @param a * @param b * @return */ public static double[] concat(final double[] a, final double[] b) { if (isNullOrEmpty(a)) { return isNullOrEmpty(b) ? EMPTY_DOUBLE_ARRAY : b.clone(); } else if (isNullOrEmpty(b)) { return isNullOrEmpty(a) ? EMPTY_DOUBLE_ARRAY : a.clone(); } final double[] c = new double[a.length + b.length]; copy(a, 0, c, 0, a.length); copy(b, 0, c, a.length, b.length); return c; } /** * * @param aa * @return */ @SafeVarargs public static double[] concat(final double[]... aa) { if (isNullOrEmpty(aa)) { return EMPTY_DOUBLE_ARRAY; } else if (aa.length == 1) { return isNullOrEmpty(aa[0]) ? EMPTY_DOUBLE_ARRAY : aa[0].clone(); } int len = 0; for (double[] a : aa) { if (isNullOrEmpty(a)) { continue; } len += a.length; } final double[] c = new double[len]; int fromIndex = 0; for (double[] a : aa) { if (isNullOrEmpty(a)) { continue; } System.arraycopy(a, 0, c, fromIndex, a.length); fromIndex += a.length; } return c; } /** * * @param * @param a * @param b * @return */ @SuppressWarnings("unchecked") public static T[] concat(final T[] a, final T[] b) { if (isNullOrEmpty(a)) { return isNullOrEmpty(b) ? a : b.clone(); } else if (isNullOrEmpty(b)) { return a.clone(); } final T[] c = (T[]) newArray(a.getClass().getComponentType(), a.length + b.length); copy(a, 0, c, 0, a.length); copy(b, 0, c, a.length, b.length); return c; } /** * * @param * @param aa * @return * @throws NullPointerException if the specified aa is null. */ @SafeVarargs public static T[] concat(final T[]... aa) { checkArgNotNull(aa, "aa"); if (aa.length == 1) { return isNullOrEmpty(aa[0]) ? aa[0] : aa[0].clone(); } int len = 0; for (T[] a : aa) { if (isNullOrEmpty(a)) { continue; } len += a.length; } final T[] c = newArray(aa.getClass().getComponentType().getComponentType(), len); int fromIndex = 0; for (T[] a : aa) { if (isNullOrEmpty(a)) { continue; } System.arraycopy(a, 0, c, fromIndex, a.length); fromIndex += a.length; } return c; } /** * * @param * @param a * @param b * @return */ public static List concat(final Collection a, final Collection b) { if (isNullOrEmpty(a)) { return isNullOrEmpty(b) ? new ArrayList(0) : new ArrayList<>(b); } else if (isNullOrEmpty(b)) { return new ArrayList<>(a); } final List result = new ArrayList<>(a.size() + b.size()); result.addAll(a); result.addAll(b); return result; } /** * * @param * @param a * @return */ @SafeVarargs public static List concat(final Collection... a) { if (isNullOrEmpty(a)) { return new ArrayList<>(); } return concat(Arrays.asList(a)); } /** * * @param * @param c * @return */ public static List concat(final Collection> c) { return concat(c, Factory. ofList()); } /** * * @param * @param * @param c * @param supplier * @return */ public static > C concat(final Collection> c, final IntFunction supplier) { if (isNullOrEmpty(c)) { return supplier.apply(0); } int count = 0; for (Collection e : c) { if (notNullOrEmpty(e)) { count += e.size(); } } final C result = supplier.apply(count); for (Collection e : c) { if (notNullOrEmpty(e)) { result.addAll(e); } } return result; } /** * * @param * @param a * @param b * @return */ public static ObjIterator concat(final Iterator a, final Iterator b) { return Iterators.concat(a, b); } /** * * @param * @param a * @return */ @SafeVarargs public static ObjIterator concat(final Iterator... a) { return Iterators.concat(a); } /** * * @param * @param c * @return */ public static ObjIterator concatt(final Collection> c) { return Iterators.concat(c); } /** * * @param a * @param oldVal * @param newVal * @return */ public static int replaceAll(final boolean[] a, final boolean oldVal, final boolean newVal) { if (isNullOrEmpty(a)) { return 0; } int result = 0; for (int i = 0, len = a.length; i < len; i++) { if (a[i] == oldVal) { a[i] = newVal; result++; } } return result; } /** * * @param a * @param oldVal * @param newVal * @return */ public static int replaceAll(final char[] a, final char oldVal, final char newVal) { if (isNullOrEmpty(a)) { return 0; } int result = 0; for (int i = 0, len = a.length; i < len; i++) { if (a[i] == oldVal) { a[i] = newVal; result++; } } return result; } /** * * @param a * @param oldVal * @param newVal * @return */ public static int replaceAll(final byte[] a, final byte oldVal, final byte newVal) { if (isNullOrEmpty(a)) { return 0; } int result = 0; for (int i = 0, len = a.length; i < len; i++) { if (a[i] == oldVal) { a[i] = newVal; result++; } } return result; } /** * * @param a * @param oldVal * @param newVal * @return */ public static int replaceAll(final short[] a, final short oldVal, final short newVal) { if (isNullOrEmpty(a)) { return 0; } int result = 0; for (int i = 0, len = a.length; i < len; i++) { if (a[i] == oldVal) { a[i] = newVal; result++; } } return result; } /** * * @param a * @param oldVal * @param newVal * @return */ public static int replaceAll(final int[] a, final int oldVal, final int newVal) { if (isNullOrEmpty(a)) { return 0; } int result = 0; for (int i = 0, len = a.length; i < len; i++) { if (a[i] == oldVal) { a[i] = newVal; result++; } } return result; } /** * * @param a * @param oldVal * @param newVal * @return */ public static int replaceAll(final long[] a, final long oldVal, final long newVal) { if (isNullOrEmpty(a)) { return 0; } int result = 0; for (int i = 0, len = a.length; i < len; i++) { if (a[i] == oldVal) { a[i] = newVal; result++; } } return result; } /** * * @param a * @param oldVal * @param newVal * @return */ public static int replaceAll(final float[] a, final float oldVal, final float newVal) { if (isNullOrEmpty(a)) { return 0; } int result = 0; for (int i = 0, len = a.length; i < len; i++) { if (Float.compare(a[i], oldVal) == 0) { a[i] = newVal; result++; } } return result; } /** * * @param a * @param oldVal * @param newVal * @return */ public static int replaceAll(final double[] a, final double oldVal, final double newVal) { if (isNullOrEmpty(a)) { return 0; } int result = 0; for (int i = 0, len = a.length; i < len; i++) { if (Double.compare(a[i], oldVal) == 0) { a[i] = newVal; result++; } } return result; } /** * * @param * @param a * @param oldVal * @param newVal * @return */ public static int replaceAll(final T[] a, final Object oldVal, final T newVal) { if (isNullOrEmpty(a)) { return 0; } int result = 0; if (oldVal == null) { for (int i = 0, len = a.length; i < len; i++) { if (a[i] == null) { a[i] = newVal; result++; } } } else { for (int i = 0, len = a.length; i < len; i++) { if (equals(a[i], oldVal)) { a[i] = newVal; result++; } } } return result; } /** * * @param * @param list * @param oldVal * @param newVal * @return */ public static int replaceAll(final List list, final Object oldVal, final T newVal) { if (isNullOrEmpty(list)) { return 0; } int result = 0; final int size = list.size(); if (size < REPLACEALL_THRESHOLD || list instanceof RandomAccess) { if (oldVal == null) { for (int i = 0; i < size; i++) { if (list.get(i) == null) { list.set(i, newVal); result++; } } } else { for (int i = 0; i < size; i++) { if (oldVal.equals(list.get(i))) { list.set(i, newVal); result++; } } } } else { final ListIterator itr = list.listIterator(); if (oldVal == null) { for (int i = 0; i < size; i++) { if (itr.next() == null) { itr.set(newVal); result++; } } } else { for (int i = 0; i < size; i++) { if (oldVal.equals(itr.next())) { itr.set(newVal); result++; } } } } return result; } /** *

* Copies the given array and adds the given element at the end of the new * array. * * @param a * @param element * @return A new array containing the existing elements plus the new element */ public static boolean[] add(final boolean[] a, final boolean element) { if (isNullOrEmpty(a)) { return Array.of(element); } final boolean[] newArray = new boolean[a.length + 1]; copy(a, 0, newArray, 0, a.length); newArray[a.length] = element; return newArray; } /** *

* Copies the given array and adds the given element at the end of the new * array. * * @param a * @param element * @return A new array containing the existing elements plus the new element */ public static char[] add(final char[] a, final char element) { if (isNullOrEmpty(a)) { return Array.of(element); } final char[] newArray = new char[a.length + 1]; copy(a, 0, newArray, 0, a.length); newArray[a.length] = element; return newArray; } /** *

* Copies the given array and adds the given element at the end of the new * array. * * @param a * @param element * @return A new array containing the existing elements plus the new element */ public static byte[] add(final byte[] a, final byte element) { if (isNullOrEmpty(a)) { return Array.of(element); } final byte[] newArray = new byte[a.length + 1]; copy(a, 0, newArray, 0, a.length); newArray[a.length] = element; return newArray; } /** *

* Copies the given array and adds the given element at the end of the new * array. * * @param a * @param element * @return A new array containing the existing elements plus the new element */ public static short[] add(final short[] a, final short element) { if (isNullOrEmpty(a)) { return Array.of(element); } final short[] newArray = new short[a.length + 1]; copy(a, 0, newArray, 0, a.length); newArray[a.length] = element; return newArray; } /** *

* Copies the given array and adds the given element at the end of the new * array. * * @param a * @param element * @return A new array containing the existing elements plus the new element */ public static int[] add(final int[] a, final int element) { if (isNullOrEmpty(a)) { return Array.of(element); } final int[] newArray = new int[a.length + 1]; copy(a, 0, newArray, 0, a.length); newArray[a.length] = element; return newArray; } /** *

* Copies the given array and adds the given element at the end of the new * array. * * @param a * @param element * @return A new array containing the existing elements plus the new element */ public static long[] add(final long[] a, final long element) { if (isNullOrEmpty(a)) { return Array.of(element); } final long[] newArray = new long[a.length + 1]; copy(a, 0, newArray, 0, a.length); newArray[a.length] = element; return newArray; } /** *

* Copies the given array and adds the given element at the end of the new * array. * * @param a * @param element * @return A new array containing the existing elements plus the new element */ public static float[] add(final float[] a, final float element) { if (isNullOrEmpty(a)) { return Array.of(element); } final float[] newArray = new float[a.length + 1]; copy(a, 0, newArray, 0, a.length); newArray[a.length] = element; return newArray; } /** *

* Copies the given array and adds the given element at the end of the new * array. * * @param a * @param element * @return A new array containing the existing elements plus the new element */ public static double[] add(final double[] a, final double element) { if (isNullOrEmpty(a)) { return Array.of(element); } final double[] newArray = new double[a.length + 1]; copy(a, 0, newArray, 0, a.length); newArray[a.length] = element; return newArray; } /** *

* Copies the given array and adds the given element at the end of the new * array. * * @param a * @param element * @return A new array containing the existing elements plus the new element */ public static String[] add(final String[] a, final String element) { if (isNullOrEmpty(a)) { return asArray(element); } final String[] newArray = new String[a.length + 1]; copy(a, 0, newArray, 0, a.length); newArray[a.length] = element; return newArray; } /** *

* Copies the given array and adds the given element at the end of the new * array. * * @param * @param a * @param element * @return A new array containing the existing elements plus the new element * @throws NullPointerException if the specified a is null. */ public static T[] add(final T[] a, final T element) { checkArgNotNull(a, "a"); if (isNullOrEmpty(a)) { return asArray(element); } final T[] newArray = (T[]) Array.newInstance(a.getClass().getComponentType(), a.length + 1); copy(a, 0, newArray, 0, a.length); newArray[a.length] = element; return newArray; } /** *

* Adds all the elements of the given arrays into a new array. *

* * @param a * the first array whose elements are added to the new array. * @param b * the second array whose elements are added to the new array. * @return A new array containing the elements from a and b */ @SafeVarargs public static boolean[] addAll(final boolean[] a, final boolean... b) { if (isNullOrEmpty(a)) { return isNullOrEmpty(b) ? EMPTY_BOOLEAN_ARRAY : b.clone(); } final boolean[] newArray = new boolean[a.length + b.length]; copy(a, 0, newArray, 0, a.length); copy(b, 0, newArray, a.length, b.length); return newArray; } /** *

* Adds all the elements of the given arrays into a new array. *

* * @param a * the first array whose elements are added to the new array. * @param b * the second array whose elements are added to the new array. * @return A new array containing the elements from a and b */ @SafeVarargs public static char[] addAll(final char[] a, final char... b) { if (isNullOrEmpty(a)) { return isNullOrEmpty(b) ? EMPTY_CHAR_ARRAY : b.clone(); } final char[] newArray = new char[a.length + b.length]; copy(a, 0, newArray, 0, a.length); copy(b, 0, newArray, a.length, b.length); return newArray; } /** *

* Adds all the elements of the given arrays into a new array. *

* * @param a * the first array whose elements are added to the new array. * @param b * the second array whose elements are added to the new array. * @return A new array containing the elements from a and b */ @SafeVarargs public static byte[] addAll(final byte[] a, final byte... b) { if (isNullOrEmpty(a)) { return isNullOrEmpty(b) ? EMPTY_BYTE_ARRAY : b.clone(); } final byte[] newArray = new byte[a.length + b.length]; copy(a, 0, newArray, 0, a.length); copy(b, 0, newArray, a.length, b.length); return newArray; } /** *

* Adds all the elements of the given arrays into a new array. *

* * @param a * the first array whose elements are added to the new array. * @param b * the second array whose elements are added to the new array. * @return A new array containing the elements from a and b */ @SafeVarargs public static short[] addAll(final short[] a, final short... b) { if (isNullOrEmpty(a)) { return isNullOrEmpty(b) ? EMPTY_SHORT_ARRAY : b.clone(); } final short[] newArray = new short[a.length + b.length]; copy(a, 0, newArray, 0, a.length); copy(b, 0, newArray, a.length, b.length); return newArray; } /** *

* Adds all the elements of the given arrays into a new array. *

* * @param a * the first array whose elements are added to the new array. * @param b * the second array whose elements are added to the new array. * @return A new array containing the elements from a and b */ @SafeVarargs public static int[] addAll(final int[] a, final int... b) { if (isNullOrEmpty(a)) { return isNullOrEmpty(b) ? EMPTY_INT_ARRAY : b.clone(); } final int[] newArray = new int[a.length + b.length]; copy(a, 0, newArray, 0, a.length); copy(b, 0, newArray, a.length, b.length); return newArray; } /** *

* Adds all the elements of the given arrays into a new array. *

* * @param a * the first array whose elements are added to the new array. * @param b * the second array whose elements are added to the new array. * @return A new array containing the elements from a and b */ @SafeVarargs public static long[] addAll(final long[] a, final long... b) { if (isNullOrEmpty(a)) { return isNullOrEmpty(b) ? EMPTY_LONG_ARRAY : b.clone(); } final long[] newArray = new long[a.length + b.length]; copy(a, 0, newArray, 0, a.length); copy(b, 0, newArray, a.length, b.length); return newArray; } /** *

* Adds all the elements of the given arrays into a new array. *

* * @param a * the first array whose elements are added to the new array. * @param b * the second array whose elements are added to the new array. * @return A new array containing the elements from a and b */ @SafeVarargs public static float[] addAll(final float[] a, final float... b) { if (isNullOrEmpty(a)) { return isNullOrEmpty(b) ? EMPTY_FLOAT_ARRAY : b.clone(); } final float[] newArray = new float[a.length + b.length]; copy(a, 0, newArray, 0, a.length); copy(b, 0, newArray, a.length, b.length); return newArray; } /** *

* Adds all the elements of the given arrays into a new array. *

* * @param a * the first array whose elements are added to the new array. * @param b * the second array whose elements are added to the new array. * @return A new array containing the elements from a and b */ @SafeVarargs public static double[] addAll(final double[] a, final double... b) { if (isNullOrEmpty(a)) { return isNullOrEmpty(b) ? EMPTY_DOUBLE_ARRAY : b.clone(); } final double[] newArray = new double[a.length + b.length]; copy(a, 0, newArray, 0, a.length); copy(b, 0, newArray, a.length, b.length); return newArray; } /** *

* Adds all the elements of the given arrays into a new array. *

* * @param a * the first array whose elements are added to the new array. * @param b * the second array whose elements are added to the new array. * @return A new array containing the elements from a and b */ @SafeVarargs public static String[] addAll(final String[] a, final String... b) { if (isNullOrEmpty(a)) { return isNullOrEmpty(b) ? EMPTY_STRING_ARRAY : b.clone(); } final String[] newArray = new String[a.length + b.length]; copy(a, 0, newArray, 0, a.length); copy(b, 0, newArray, a.length, b.length); return newArray; } /** *

* Adds all the elements of the given arrays into a new array. *

* * @param * @param a the first array whose elements are added to the new array. * @param b the second array whose elements are added to the new array. * @return A new array containing the elements from a and b * @throws NullPointerException if the specified a is null. */ @SafeVarargs public static T[] addAll(final T[] a, final T... b) { checkArgNotNull(a, "a"); if (isNullOrEmpty(a)) { return isNullOrEmpty(b) ? b : b.clone(); } final T[] newArray = (T[]) Array.newInstance(a.getClass().getComponentType(), a.length + b.length); copy(a, 0, newArray, 0, a.length); copy(b, 0, newArray, a.length, b.length); return newArray; } /** *

* Inserts the specified element at the specified position in the array. * Shifts the element currently at that position (if any) and any subsequent * elements to the right (adds one to their indices). *

* *

* This method returns a new array with the same elements of the input array * plus the given element on the specified position. The component type of * the returned array is always the same as that of the input array. *

* * @param a * @param index the position of the new object * @param element the object to add * @return A new array containing the existing elements and the new element */ public static boolean[] insert(final boolean[] a, final int index, final boolean element) { if (isNullOrEmpty(a) && index == 0) { return Array.of(element); } final boolean[] newArray = new boolean[a.length + 1]; if (index > 0) { copy(a, 0, newArray, 0, index); } newArray[index] = element; if (index < a.length) { copy(a, index, newArray, index + 1, a.length - index); } return newArray; } /** *

* Inserts the specified element at the specified position in the array. * Shifts the element currently at that position (if any) and any subsequent * elements to the right (adds one to their indices). *

* *

* This method returns a new array with the same elements of the input array * plus the given element on the specified position. The component type of * the returned array is always the same as that of the input array. *

* * @param a * @param index the position of the new object * @param element the object to add * @return A new array containing the existing elements and the new element */ public static char[] insert(final char[] a, final int index, final char element) { if (isNullOrEmpty(a) && index == 0) { return Array.of(element); } final char[] newArray = new char[a.length + 1]; if (index > 0) { copy(a, 0, newArray, 0, index); } newArray[index] = element; if (index < a.length) { copy(a, index, newArray, index + 1, a.length - index); } return newArray; } /** *

* Inserts the specified element at the specified position in the array. * Shifts the element currently at that position (if any) and any subsequent * elements to the right (adds one to their indices). *

* *

* This method returns a new array with the same elements of the input array * plus the given element on the specified position. The component type of * the returned array is always the same as that of the input array. *

* * @param a * @param index the position of the new object * @param element the object to add * @return A new array containing the existing elements and the new element */ public static byte[] insert(final byte[] a, final int index, final byte element) { if (isNullOrEmpty(a) && index == 0) { return Array.of(element); } final byte[] newArray = new byte[a.length + 1]; if (index > 0) { copy(a, 0, newArray, 0, index); } newArray[index] = element; if (index < a.length) { copy(a, index, newArray, index + 1, a.length - index); } return newArray; } /** *

* Inserts the specified element at the specified position in the array. * Shifts the element currently at that position (if any) and any subsequent * elements to the right (adds one to their indices). *

* *

* This method returns a new array with the same elements of the input array * plus the given element on the specified position. The component type of * the returned array is always the same as that of the input array. *

* * @param a * @param index the position of the new object * @param element the object to add * @return A new array containing the existing elements and the new element */ public static short[] insert(final short[] a, final int index, final short element) { if (isNullOrEmpty(a) && index == 0) { return Array.of(element); } final short[] newArray = new short[a.length + 1]; if (index > 0) { copy(a, 0, newArray, 0, index); } newArray[index] = element; if (index < a.length) { copy(a, index, newArray, index + 1, a.length - index); } return newArray; } /** *

* Inserts the specified element at the specified position in the array. * Shifts the element currently at that position (if any) and any subsequent * elements to the right (adds one to their indices). *

* *

* This method returns a new array with the same elements of the input array * plus the given element on the specified position. The component type of * the returned array is always the same as that of the input array. *

* * @param a * @param index the position of the new object * @param element the object to add * @return A new array containing the existing elements and the new element */ public static int[] insert(final int[] a, final int index, final int element) { if (isNullOrEmpty(a) && index == 0) { return Array.of(element); } final int[] newArray = new int[a.length + 1]; if (index > 0) { copy(a, 0, newArray, 0, index); } newArray[index] = element; if (index < a.length) { copy(a, index, newArray, index + 1, a.length - index); } return newArray; } /** *

* Inserts the specified element at the specified position in the array. * Shifts the element currently at that position (if any) and any subsequent * elements to the right (adds one to their indices). *

* *

* This method returns a new array with the same elements of the input array * plus the given element on the specified position. The component type of * the returned array is always the same as that of the input array. *

* * @param a * @param index the position of the new object * @param element the object to add * @return A new array containing the existing elements and the new element */ public static long[] insert(final long[] a, final int index, final long element) { if (isNullOrEmpty(a) && index == 0) { return Array.of(element); } final long[] newArray = new long[a.length + 1]; if (index > 0) { copy(a, 0, newArray, 0, index); } newArray[index] = element; if (index < a.length) { copy(a, index, newArray, index + 1, a.length - index); } return newArray; } /** *

* Inserts the specified element at the specified position in the array. * Shifts the element currently at that position (if any) and any subsequent * elements to the right (adds one to their indices). *

* *

* This method returns a new array with the same elements of the input array * plus the given element on the specified position. The component type of * the returned array is always the same as that of the input array. *

* * @param a * @param index the position of the new object * @param element the object to add * @return A new array containing the existing elements and the new element */ public static float[] insert(final float[] a, final int index, final float element) { if (isNullOrEmpty(a) && index == 0) { return Array.of(element); } final float[] newArray = new float[a.length + 1]; if (index > 0) { copy(a, 0, newArray, 0, index); } newArray[index] = element; if (index < a.length) { copy(a, index, newArray, index + 1, a.length - index); } return newArray; } /** *

* Inserts the specified element at the specified position in the array. * Shifts the element currently at that position (if any) and any subsequent * elements to the right (adds one to their indices). *

* *

* This method returns a new array with the same elements of the input array * plus the given element on the specified position. The component type of * the returned array is always the same as that of the input array. *

* * @param a * @param index the position of the new object * @param element the object to add * @return A new array containing the existing elements and the new element */ public static double[] insert(final double[] a, final int index, final double element) { if (isNullOrEmpty(a) && index == 0) { return Array.of(element); } final double[] newArray = new double[a.length + 1]; if (index > 0) { copy(a, 0, newArray, 0, index); } newArray[index] = element; if (index < a.length) { copy(a, index, newArray, index + 1, a.length - index); } return newArray; } /** * * @param a * @param index * @param element * @return */ public static String[] insert(final String[] a, final int index, final String element) { if (isNullOrEmpty(a) && index == 0) { return asArray(element); } final String[] newArray = new String[a.length + 1]; if (index > 0) { copy(a, 0, newArray, 0, index); } newArray[index] = element; if (index < a.length) { copy(a, index, newArray, index + 1, a.length - index); } return newArray; } /** *

* Inserts the specified element at the specified position in the array. * Shifts the element currently at that position (if any) and any subsequent * elements to the right (adds one to their indices). *

* *

* This method returns a new array with the same elements of the input array * plus the given element on the specified position. The component type of * the returned array is always the same as that of the input array. *

* * @param * @param a * @param index the position of the new object * @param element the object to add * @return A new array containing the existing elements and the new element * @throws NullPointerException if the specified a is null. */ public static T[] insert(final T[] a, final int index, final T element) { checkArgNotNull(a, "a"); final T[] newArray = newArray(a.getClass().getComponentType(), a.length + 1); if (index > 0) { copy(a, 0, newArray, 0, index); } newArray[index] = element; if (index < a.length) { copy(a, index, newArray, index + 1, a.length - index); } return newArray; } /** *

* Inserts the specified elements at the specified position in the array. * Shifts the element currently at that position (if any) and any subsequent * elements to the right (adds one to their indices). *

* * @param a * the first array whose elements are added to the new array. * @param index * the position of the new elements start from * @param b * the second array whose elements are added to the new array. * @return A new array containing the elements from a and b */ @SafeVarargs public static boolean[] insertAll(final boolean[] a, final int index, final boolean... b) { if (isNullOrEmpty(a) && index == 0) { return b.clone(); } final boolean[] newArray = new boolean[a.length + b.length]; if (index > 0) { copy(a, 0, newArray, 0, index); } copy(b, 0, newArray, index, b.length); if (index < a.length) { copy(a, index, newArray, index + b.length, a.length - index); } return newArray; } /** *

* Inserts the specified elements at the specified position in the array. * Shifts the element currently at that position (if any) and any subsequent * elements to the right (adds one to their indices). *

* * @param a * the first array whose elements are added to the new array. * @param index * the position of the new elements start from * @param b * the second array whose elements are added to the new array. * @return A new array containing the elements from a and b */ @SafeVarargs public static char[] insertAll(final char[] a, final int index, final char... b) { if (isNullOrEmpty(a) && index == 0) { return b.clone(); } final char[] newArray = new char[a.length + b.length]; if (index > 0) { copy(a, 0, newArray, 0, index); } copy(b, 0, newArray, index, b.length); if (index < a.length) { copy(a, index, newArray, index + b.length, a.length - index); } return newArray; } /** *

* Inserts the specified elements at the specified position in the array. * Shifts the element currently at that position (if any) and any subsequent * elements to the right (adds one to their indices). *

* * @param a * the first array whose elements are added to the new array. * @param index * the position of the new elements start from * @param b * the second array whose elements are added to the new array. * @return A new array containing the elements from a and b */ @SafeVarargs public static byte[] insertAll(final byte[] a, final int index, final byte... b) { if (isNullOrEmpty(a) && index == 0) { return b.clone(); } final byte[] newArray = new byte[a.length + b.length]; if (index > 0) { copy(a, 0, newArray, 0, index); } copy(b, 0, newArray, index, b.length); if (index < a.length) { copy(a, index, newArray, index + b.length, a.length - index); } return newArray; } /** *

* Inserts the specified elements at the specified position in the array. * Shifts the element currently at that position (if any) and any subsequent * elements to the right (adds one to their indices). *

* * @param a * the first array whose elements are added to the new array. * @param index * the position of the new elements start from * @param b * the second array whose elements are added to the new array. * @return A new array containing the elements from a and b */ @SafeVarargs public static short[] insertAll(final short[] a, final int index, final short... b) { if (isNullOrEmpty(a) && index == 0) { return b.clone(); } final short[] newArray = new short[a.length + b.length]; if (index > 0) { copy(a, 0, newArray, 0, index); } copy(b, 0, newArray, index, b.length); if (index < a.length) { copy(a, index, newArray, index + b.length, a.length - index); } return newArray; } /** *

* Inserts the specified elements at the specified position in the array. * Shifts the element currently at that position (if any) and any subsequent * elements to the right (adds one to their indices). *

* * @param a * the first array whose elements are added to the new array. * @param index * the position of the new elements start from * @param b * the second array whose elements are added to the new array. * @return A new array containing the elements from a and b */ @SafeVarargs public static int[] insertAll(final int[] a, final int index, final int... b) { if (isNullOrEmpty(a) && index == 0) { return b.clone(); } final int[] newArray = new int[a.length + b.length]; if (index > 0) { copy(a, 0, newArray, 0, index); } copy(b, 0, newArray, index, b.length); if (index < a.length) { copy(a, index, newArray, index + b.length, a.length - index); } return newArray; } /** *

* Inserts the specified elements at the specified position in the array. * Shifts the element currently at that position (if any) and any subsequent * elements to the right (adds one to their indices). *

* * @param a * the first array whose elements are added to the new array. * @param index * the position of the new elements start from * @param b * the second array whose elements are added to the new array. * @return A new array containing the elements from a and b */ @SafeVarargs public static long[] insertAll(final long[] a, final int index, final long... b) { if (isNullOrEmpty(a) && index == 0) { return b.clone(); } final long[] newArray = new long[a.length + b.length]; if (index > 0) { copy(a, 0, newArray, 0, index); } copy(b, 0, newArray, index, b.length); if (index < a.length) { copy(a, index, newArray, index + b.length, a.length - index); } return newArray; } /** *

* Inserts the specified elements at the specified position in the array. * Shifts the element currently at that position (if any) and any subsequent * elements to the right (adds one to their indices). *

* * @param a * the first array whose elements are added to the new array. * @param index * the position of the new elements start from * @param b * the second array whose elements are added to the new array. * @return A new array containing the elements from a and b */ @SafeVarargs public static float[] insertAll(final float[] a, final int index, final float... b) { if (isNullOrEmpty(a) && index == 0) { return b.clone(); } final float[] newArray = new float[a.length + b.length]; if (index > 0) { copy(a, 0, newArray, 0, index); } copy(b, 0, newArray, index, b.length); if (index < a.length) { copy(a, index, newArray, index + b.length, a.length - index); } return newArray; } /** *

* Inserts the specified elements at the specified position in the array. * Shifts the element currently at that position (if any) and any subsequent * elements to the right (adds one to their indices). *

* * @param a * the first array whose elements are added to the new array. * @param index * the position of the new elements start from * @param b * the second array whose elements are added to the new array. * @return A new array containing the elements from a and b */ @SafeVarargs public static double[] insertAll(final double[] a, final int index, final double... b) { if (isNullOrEmpty(a) && index == 0) { return b.clone(); } final double[] newArray = new double[a.length + b.length]; if (index > 0) { copy(a, 0, newArray, 0, index); } copy(b, 0, newArray, index, b.length); if (index < a.length) { copy(a, index, newArray, index + b.length, a.length - index); } return newArray; } /** * * @param a * @param index * @param b * @return */ @SafeVarargs public static String[] insertAll(final String[] a, final int index, final String... b) { if (isNullOrEmpty(a) && index == 0) { return b.clone(); } final String[] newArray = new String[a.length + b.length]; if (index > 0) { copy(a, 0, newArray, 0, index); } copy(b, 0, newArray, index, b.length); if (index < a.length) { copy(a, index, newArray, index + b.length, a.length - index); } return newArray; } /** *

* Inserts the specified elements at the specified position in the array. * Shifts the element currently at that position (if any) and any subsequent * elements to the right (adds one to their indices). *

* * @param * @param a the first array whose elements are added to the new array. * @param index the position of the new elements start from * @param b the second array whose elements are added to the new array. * @return A new array containing the elements from a and b * @throws NullPointerException if the specified a is null. */ @SafeVarargs public static T[] insertAll(final T[] a, final int index, final T... b) { checkArgNotNull(a, "a"); final T[] newArray = (T[]) Array.newInstance(a.getClass().getComponentType(), a.length + b.length); if (index > 0) { copy(a, 0, newArray, 0, index); } copy(b, 0, newArray, index, b.length); if (index < a.length) { copy(a, index, newArray, index + b.length, a.length - index); } return newArray; } /** *

* Removes the element at the specified position from the specified array. * All subsequent elements are shifted to the left (subtracts one from their * indices). *

* *

* This method returns a new array with the same elements of the input array * except the element on the specified position. The component type of the * returned array is always the same as that of the input array. *

* * @param a * @param index the position of the element to be removed * @return A new array containing the existing elements except the element * at the specified position. */ public static boolean[] delete(final boolean[] a, final int index) { final boolean[] result = new boolean[a.length - 1]; if (index > 0) { copy(a, 0, result, 0, index); } if (index + 1 < a.length) { copy(a, index + 1, result, index, a.length - index - 1); } return result; } /** *

* Removes the element at the specified position from the specified array. * All subsequent elements are shifted to the left (subtracts one from their * indices). *

* *

* This method returns a new array with the same elements of the input array * except the element on the specified position. The component type of the * returned array is always the same as that of the input array. *

* * @param a * @param index the position of the element to be removed * @return A new array containing the existing elements except the element * at the specified position. */ public static char[] delete(final char[] a, final int index) { final char[] result = new char[a.length - 1]; if (index > 0) { copy(a, 0, result, 0, index); } if (index + 1 < a.length) { copy(a, index + 1, result, index, a.length - index - 1); } return result; } /** *

* Removes the element at the specified position from the specified array. * All subsequent elements are shifted to the left (subtracts one from their * indices). *

* *

* This method returns a new array with the same elements of the input array * except the element on the specified position. The component type of the * returned array is always the same as that of the input array. *

* * @param a * @param index the position of the element to be removed * @return A new array containing the existing elements except the element * at the specified position. */ public static byte[] delete(final byte[] a, final int index) { final byte[] result = new byte[a.length - 1]; if (index > 0) { copy(a, 0, result, 0, index); } if (index + 1 < a.length) { copy(a, index + 1, result, index, a.length - index - 1); } return result; } /** *

* Removes the element at the specified position from the specified array. * All subsequent elements are shifted to the left (subtracts one from their * indices). *

* *

* This method returns a new array with the same elements of the input array * except the element on the specified position. The component type of the * returned array is always the same as that of the input array. *

* * @param a * @param index the position of the element to be removed * @return A new array containing the existing elements except the element * at the specified position. */ public static short[] delete(final short[] a, final int index) { final short[] result = new short[a.length - 1]; if (index > 0) { copy(a, 0, result, 0, index); } if (index + 1 < a.length) { copy(a, index + 1, result, index, a.length - index - 1); } return result; } /** *

* Removes the element at the specified position from the specified array. * All subsequent elements are shifted to the left (subtracts one from their * indices). *

* *

* This method returns a new array with the same elements of the input array * except the element on the specified position. The component type of the * returned array is always the same as that of the input array. *

* * @param a * @param index the position of the element to be removed * @return A new array containing the existing elements except the element * at the specified position. */ public static int[] delete(final int[] a, final int index) { final int[] result = new int[a.length - 1]; if (index > 0) { copy(a, 0, result, 0, index); } if (index + 1 < a.length) { copy(a, index + 1, result, index, a.length - index - 1); } return result; } /** *

* Removes the element at the specified position from the specified array. * All subsequent elements are shifted to the left (subtracts one from their * indices). *

* *

* This method returns a new array with the same elements of the input array * except the element on the specified position. The component type of the * returned array is always the same as that of the input array. *

* * @param a * @param index the position of the element to be removed * @return A new array containing the existing elements except the element * at the specified position. */ public static long[] delete(final long[] a, final int index) { final long[] result = new long[a.length - 1]; if (index > 0) { copy(a, 0, result, 0, index); } if (index + 1 < a.length) { copy(a, index + 1, result, index, a.length - index - 1); } return result; } /** *

* Removes the element at the specified position from the specified array. * All subsequent elements are shifted to the left (subtracts one from their * indices). *

* *

* This method returns a new array with the same elements of the input array * except the element on the specified position. The component type of the * returned array is always the same as that of the input array. *

* * @param a * @param index the position of the element to be removed * @return A new array containing the existing elements except the element * at the specified position. */ public static float[] delete(final float[] a, final int index) { final float[] result = new float[a.length - 1]; if (index > 0) { copy(a, 0, result, 0, index); } if (index + 1 < a.length) { copy(a, index + 1, result, index, a.length - index - 1); } return result; } /** *

* Removes the element at the specified position from the specified array. * All subsequent elements are shifted to the left (subtracts one from their * indices). *

* *

* This method returns a new array with the same elements of the input array * except the element on the specified position. The component type of the * returned array is always the same as that of the input array. *

* * @param a * @param index the position of the element to be removed * @return A new array containing the existing elements except the element * at the specified position. */ public static double[] delete(final double[] a, final int index) { final double[] result = new double[a.length - 1]; if (index > 0) { copy(a, 0, result, 0, index); } if (index + 1 < a.length) { copy(a, index + 1, result, index, a.length - index - 1); } return result; } /** *

* Removes the element at the specified position from the specified array. * All subsequent elements are shifted to the left (subtracts one from their * indices). *

* *

* This method returns a new array with the same elements of the input array * except the element on the specified position. The component type of the * returned array is always the same as that of the input array. *

* * @param the component type of the array * @param a * @param index the position of the element to be removed * @return A new array containing the existing elements except the element * at the specified position. */ public static T[] delete(final T[] a, final int index) { final T[] result = newArray(a.getClass().getComponentType(), a.length - 1); if (index > 0) { copy(a, 0, result, 0, index); } if (index + 1 < a.length) { copy(a, index + 1, result, index, a.length - index - 1); } return result; } /** *

* Removes the elements at the specified positions from the specified array. * All remaining elements are shifted to the left. *

* *

* This method returns a new array with the same elements of the input array * except those at the specified positions. The component type of the * returned array is always the same as that of the input array. *

* *

* If the input array is {@code null}, an IndexOutOfBoundsException will be * thrown, because in that case no valid index can be specified. *

* *
     * N.deleteAll([true, false, true], 0, 2) = [false]
     * N.removeAll([true, false, true], 1, 2) = [true]
     * 
* * @param a * the array to remove the element from, may not be {@code null} * @param indices * the positions of the elements to be removed * @return A new array containing the existing elements except those at the * specified positions. */ @SafeVarargs public static boolean[] deleteAll(final boolean[] a, int... indices) { if (isNullOrEmpty(indices)) { return a.clone(); } else if (indices.length == 1) { return delete(a, indices[0]); } indices = indices.clone(); sort(indices); final int lastIndex = indices[indices.length - 1]; if (indices[0] < 0 || lastIndex >= a.length) { throw new IndexOutOfBoundsException("The specified indices are from: " + indices[0] + " to: " + lastIndex); } int diff = 1; for (int i = 1, len = indices.length; i < len; i++) { if (indices[i] == indices[i - 1]) { continue; } diff++; } final boolean[] result = new boolean[a.length - diff]; int dest = 0; int len = 0; for (int i = 0, preIndex = -1; i < indices.length; preIndex = indices[i], i++) { if (indices[i] - preIndex > 1) { len = indices[i] - preIndex - 1; copy(a, preIndex + 1, result, dest, len); dest += len; } } if (lastIndex < a.length - 1) { len = a.length - lastIndex - 1; copy(a, lastIndex + 1, result, dest, len); dest += len; } return result; } /** *

* Removes the elements at the specified positions from the specified array. * All remaining elements are shifted to the left. *

* *

* This method returns a new array with the same elements of the input array * except those at the specified positions. The component type of the * returned array is always the same as that of the input array. *

* *
     * N.deleteAll([1], 0)             = []
     * N.deleteAll([2, 6], 0)          = [6]
     * N.deleteAll([2, 6], 0, 1)       = []
     * N.deleteAll([2, 6, 3], 1, 2)    = [2]
     * N.deleteAll([2, 6, 3], 0, 2)    = [6]
     * N.deleteAll([2, 6, 3], 0, 1, 2) = []
     * 
* * @param a * @param indices the positions of the elements to be removed * @return A new array containing the existing elements except those at the * specified positions. */ @SafeVarargs public static char[] deleteAll(final char[] a, int... indices) { if (isNullOrEmpty(indices)) { return a.clone(); } else if (indices.length == 1) { return delete(a, indices[0]); } indices = indices.clone(); sort(indices); final int lastIndex = indices[indices.length - 1]; if (indices[0] < 0 || lastIndex >= a.length) { throw new IndexOutOfBoundsException("The specified indices are from: " + indices[0] + " to: " + lastIndex); } int diff = 1; for (int i = 1, len = indices.length; i < len; i++) { if (indices[i] == indices[i - 1]) { continue; } diff++; } final char[] result = new char[a.length - diff]; int dest = 0; int len = 0; for (int i = 0, preIndex = -1; i < indices.length; preIndex = indices[i], i++) { if (indices[i] - preIndex > 1) { len = indices[i] - preIndex - 1; copy(a, preIndex + 1, result, dest, len); dest += len; } } if (lastIndex < a.length - 1) { len = a.length - lastIndex - 1; copy(a, lastIndex + 1, result, dest, len); dest += len; } return result; } /** *

* Removes the elements at the specified positions from the specified array. * All remaining elements are shifted to the left. *

* *

* This method returns a new array with the same elements of the input array * except those at the specified positions. The component type of the * returned array is always the same as that of the input array. *

* *
     * N.deleteAll([1], 0)             = []
     * N.deleteAll([2, 6], 0)          = [6]
     * N.deleteAll([2, 6], 0, 1)       = []
     * N.deleteAll([2, 6, 3], 1, 2)    = [2]
     * N.deleteAll([2, 6, 3], 0, 2)    = [6]
     * N.deleteAll([2, 6, 3], 0, 1, 2) = []
     * 
* * @param a * @param indices the positions of the elements to be removed * @return A new array containing the existing elements except those at the * specified positions. */ @SafeVarargs public static byte[] deleteAll(final byte[] a, int... indices) { if (isNullOrEmpty(indices)) { return a.clone(); } else if (indices.length == 1) { return delete(a, indices[0]); } indices = indices.clone(); sort(indices); final int lastIndex = indices[indices.length - 1]; if (indices[0] < 0 || lastIndex >= a.length) { throw new IndexOutOfBoundsException("The specified indices are from: " + indices[0] + " to: " + lastIndex); } int diff = 1; for (int i = 1, len = indices.length; i < len; i++) { if (indices[i] == indices[i - 1]) { continue; } diff++; } final byte[] result = new byte[a.length - diff]; int dest = 0; int len = 0; for (int i = 0, preIndex = -1; i < indices.length; preIndex = indices[i], i++) { if (indices[i] - preIndex > 1) { len = indices[i] - preIndex - 1; copy(a, preIndex + 1, result, dest, len); dest += len; } } if (lastIndex < a.length - 1) { len = a.length - lastIndex - 1; copy(a, lastIndex + 1, result, dest, len); dest += len; } return result; } /** *

* Removes the elements at the specified positions from the specified array. * All remaining elements are shifted to the left. *

* *

* This method returns a new array with the same elements of the input array * except those at the specified positions. The component type of the * returned array is always the same as that of the input array. *

* *
     * N.deleteAll([1], 0)             = []
     * N.deleteAll([2, 6], 0)          = [6]
     * N.deleteAll([2, 6], 0, 1)       = []
     * N.deleteAll([2, 6, 3], 1, 2)    = [2]
     * N.deleteAll([2, 6, 3], 0, 2)    = [6]
     * N.deleteAll([2, 6, 3], 0, 1, 2) = []
     * 
* * @param a * @param indices the positions of the elements to be removed * @return A new array containing the existing elements except those at the * specified positions. */ @SafeVarargs public static short[] deleteAll(final short[] a, int... indices) { if (isNullOrEmpty(indices)) { return a.clone(); } else if (indices.length == 1) { return delete(a, indices[0]); } indices = indices.clone(); sort(indices); final int lastIndex = indices[indices.length - 1]; if (indices[0] < 0 || lastIndex >= a.length) { throw new IndexOutOfBoundsException("The specified indices are from: " + indices[0] + " to: " + lastIndex); } int diff = 1; for (int i = 1, len = indices.length; i < len; i++) { if (indices[i] == indices[i - 1]) { continue; } diff++; } final short[] result = new short[a.length - diff]; int dest = 0; int len = 0; for (int i = 0, preIndex = -1; i < indices.length; preIndex = indices[i], i++) { if (indices[i] - preIndex > 1) { len = indices[i] - preIndex - 1; copy(a, preIndex + 1, result, dest, len); dest += len; } } if (lastIndex < a.length - 1) { len = a.length - lastIndex - 1; copy(a, lastIndex + 1, result, dest, len); dest += len; } return result; } /** *

* Removes the elements at the specified positions from the specified array. * All remaining elements are shifted to the left. *

* *

* This method returns a new array with the same elements of the input array * except those at the specified positions. The component type of the * returned array is always the same as that of the input array. *

* *
     * N.deleteAll([1], 0)             = []
     * N.deleteAll([2, 6], 0)          = [6]
     * N.deleteAll([2, 6], 0, 1)       = []
     * N.deleteAll([2, 6, 3], 1, 2)    = [2]
     * N.deleteAll([2, 6, 3], 0, 2)    = [6]
     * N.deleteAll([2, 6, 3], 0, 1, 2) = []
     * 
* * @param a * @param indices the positions of the elements to be removed * @return A new array containing the existing elements except those at the * specified positions. * @throws IndexOutOfBoundsException if any index is out of range (index < 0 || index >= * array.length), or if the array is {@code null}. */ @SafeVarargs public static int[] deleteAll(final int[] a, int... indices) { if (isNullOrEmpty(indices)) { return a.clone(); } else if (indices.length == 1) { return delete(a, indices[0]); } indices = indices.clone(); sort(indices); final int lastIndex = indices[indices.length - 1]; if (indices[0] < 0 || lastIndex >= a.length) { throw new IndexOutOfBoundsException("The specified indices are from: " + indices[0] + " to: " + lastIndex); } int diff = 1; for (int i = 1, len = indices.length; i < len; i++) { if (indices[i] == indices[i - 1]) { continue; } diff++; } final int[] result = new int[a.length - diff]; int dest = 0; int len = 0; for (int i = 0, preIndex = -1; i < indices.length; preIndex = indices[i], i++) { if (indices[i] - preIndex > 1) { len = indices[i] - preIndex - 1; copy(a, preIndex + 1, result, dest, len); dest += len; } } if (lastIndex < a.length - 1) { len = a.length - lastIndex - 1; copy(a, lastIndex + 1, result, dest, len); dest += len; } return result; } /** *

* Removes the elements at the specified positions from the specified array. * All remaining elements are shifted to the left. *

* *

* This method returns a new array with the same elements of the input array * except those at the specified positions. The component type of the * returned array is always the same as that of the input array. *

* *
     * N.deleteAll([1], 0)             = []
     * N.deleteAll([2, 6], 0)          = [6]
     * N.deleteAll([2, 6], 0, 1)       = []
     * N.deleteAll([2, 6, 3], 1, 2)    = [2]
     * N.deleteAll([2, 6, 3], 0, 2)    = [6]
     * N.deleteAll([2, 6, 3], 0, 1, 2) = []
     * 
* * @param a * the array to remove the element from, may not be {@code null} * @param indices * the positions of the elements to be removed * @return A new array containing the existing elements except those at the * specified positions. */ @SafeVarargs public static long[] deleteAll(final long[] a, int... indices) { if (isNullOrEmpty(indices)) { return a.clone(); } else if (indices.length == 1) { return delete(a, indices[0]); } indices = indices.clone(); sort(indices); final int lastIndex = indices[indices.length - 1]; if (indices[0] < 0 || lastIndex >= a.length) { throw new IndexOutOfBoundsException("The specified indices are from: " + indices[0] + " to: " + lastIndex); } int diff = 1; for (int i = 1, len = indices.length; i < len; i++) { if (indices[i] == indices[i - 1]) { continue; } diff++; } final long[] result = new long[a.length - diff]; int dest = 0; int len = 0; for (int i = 0, preIndex = -1; i < indices.length; preIndex = indices[i], i++) { if (indices[i] - preIndex > 1) { len = indices[i] - preIndex - 1; copy(a, preIndex + 1, result, dest, len); dest += len; } } if (lastIndex < a.length - 1) { len = a.length - lastIndex - 1; copy(a, lastIndex + 1, result, dest, len); dest += len; } return result; } /** *

* Removes the elements at the specified positions from the specified array. * All remaining elements are shifted to the left. *

* *

* This method returns a new array with the same elements of the input array * except those at the specified positions. The component type of the * returned array is always the same as that of the input array. *

* *
     * N.deleteAll([1], 0)             = []
     * N.deleteAll([2, 6], 0)          = [6]
     * N.deleteAll([2, 6], 0, 1)       = []
     * N.deleteAll([2, 6, 3], 1, 2)    = [2]
     * N.deleteAll([2, 6, 3], 0, 2)    = [6]
     * N.deleteAll([2, 6, 3], 0, 1, 2) = []
     * 
* * @param a * @param indices the positions of the elements to be removed * @return A new array containing the existing elements except those at the * specified positions. */ @SafeVarargs public static float[] deleteAll(final float[] a, int... indices) { if (isNullOrEmpty(indices)) { return a.clone(); } else if (indices.length == 1) { return delete(a, indices[0]); } indices = indices.clone(); sort(indices); final int lastIndex = indices[indices.length - 1]; if (indices[0] < 0 || lastIndex >= a.length) { throw new IndexOutOfBoundsException("The specified indices are from: " + indices[0] + " to: " + lastIndex); } int diff = 1; for (int i = 1, len = indices.length; i < len; i++) { if (indices[i] == indices[i - 1]) { continue; } diff++; } final float[] result = new float[a.length - diff]; int dest = 0; int len = 0; for (int i = 0, preIndex = -1; i < indices.length; preIndex = indices[i], i++) { if (indices[i] - preIndex > 1) { len = indices[i] - preIndex - 1; copy(a, preIndex + 1, result, dest, len); dest += len; } } if (lastIndex < a.length - 1) { len = a.length - lastIndex - 1; copy(a, lastIndex + 1, result, dest, len); dest += len; } return result; } /** *

* Removes the elements at the specified positions from the specified array. * All remaining elements are shifted to the left. *

* *

* This method returns a new array with the same elements of the input array * except those at the specified positions. The component type of the * returned array is always the same as that of the input array. *

* *
     * N.deleteAll([1], 0)             = []
     * N.deleteAll([2, 6], 0)          = [6]
     * N.deleteAll([2, 6], 0, 1)       = []
     * N.deleteAll([2, 6, 3], 1, 2)    = [2]
     * N.deleteAll([2, 6, 3], 0, 2)    = [6]
     * N.deleteAll([2, 6, 3], 0, 1, 2) = []
     * 
* * @param a * @param indices the positions of the elements to be removed * @return A new array containing the existing elements except those at the * specified positions. */ @SafeVarargs public static double[] deleteAll(final double[] a, int... indices) { if (isNullOrEmpty(indices)) { return a.clone(); } else if (indices.length == 1) { return delete(a, indices[0]); } indices = indices.clone(); sort(indices); final int lastIndex = indices[indices.length - 1]; if (indices[0] < 0 || lastIndex >= a.length) { throw new IndexOutOfBoundsException("The specified indices are from: " + indices[0] + " to: " + lastIndex); } int diff = 1; for (int i = 1, len = indices.length; i < len; i++) { if (indices[i] == indices[i - 1]) { continue; } diff++; } final double[] result = new double[a.length - diff]; int dest = 0; int len = 0; for (int i = 0, preIndex = -1; i < indices.length; preIndex = indices[i], i++) { if (indices[i] - preIndex > 1) { len = indices[i] - preIndex - 1; copy(a, preIndex + 1, result, dest, len); dest += len; } } if (lastIndex < a.length - 1) { len = a.length - lastIndex - 1; copy(a, lastIndex + 1, result, dest, len); dest += len; } return result; } /** *

* Removes the elements at the specified positions from the specified array. * All remaining elements are shifted to the left. *

* *

* This method returns a new array with the same elements of the input array * except those at the specified positions. The component type of the * returned array is always the same as that of the input array. *

* * *
     * N.deleteAll(["a", "b", "c"], 0, 2) = ["b"]
     * N.deleteAll(["a", "b", "c"], 1, 2) = ["a"]
     * 
* * @param the component type of the array * @param a * @param indices the positions of the elements to be removed * @return A new array containing the existing elements except those at the * specified positions. * @throws NullPointerException if the specified a is null. */ @SafeVarargs public static T[] deleteAll(final T[] a, int... indices) { checkArgNotNull(a, "a"); if (isNullOrEmpty(indices)) { return a.clone(); } else if (indices.length == 1) { return delete(a, indices[0]); } indices = indices.clone(); sort(indices); return deleteAllBySortedIndices(a, indices); } /** * Delete all by sorted indices. * * @param * @param a * @param indices * @return */ private static T[] deleteAllBySortedIndices(final T[] a, int... indices) { final int lastIndex = indices[indices.length - 1]; if (indices[0] < 0 || lastIndex >= a.length) { throw new IndexOutOfBoundsException("The specified indices are from: " + indices[0] + " to: " + lastIndex); } int diff = 1; for (int i = 1, len = indices.length; i < len; i++) { if (indices[i] == indices[i - 1]) { continue; } diff++; } final T[] result = newArray(a.getClass().getComponentType(), a.length - diff); int dest = 0; int len = 0; for (int i = 0, preIndex = -1; i < indices.length; preIndex = indices[i], i++) { if (indices[i] - preIndex > 1) { len = indices[i] - preIndex - 1; copy(a, preIndex + 1, result, dest, len); dest += len; } } if (lastIndex < a.length - 1) { len = a.length - lastIndex - 1; copy(a, lastIndex + 1, result, dest, len); dest += len; } return result; } /** * Removes the elements at the specified positions from the specified List. * * @param list * @param indices * @return true, if successful */ @SuppressWarnings("rawtypes") @SafeVarargs public static boolean deleteAll(final List list, int... indices) { checkArgNotNull(list); if (isNullOrEmpty(indices)) { return false; } else if (indices.length == 1) { list.remove(indices[0]); return true; } indices = indices.clone(); sort(indices); if (indices[0] < 0 || indices[indices.length - 1] >= list.size()) { throw new IndexOutOfBoundsException("The specified indices are from: " + indices[0] + " to: " + indices[indices.length - 1]); } if (list instanceof LinkedList) { final Iterator iterator = list.iterator(); int idx = -1; for (int i = 0, len = indices.length; i < len; i++) { if (i > 0 && indices[i] == indices[i - 1]) { continue; } while (idx < indices[i]) { idx++; iterator.next(); } iterator.remove(); } } else { final Object[] a = list.toArray(); final Object[] res = deleteAllBySortedIndices(a, indices); list.clear(); list.addAll((List) Arrays.asList(res)); } return true; } /** * Deletes the values from {@code fromIndex} to {@code toIndex}. * * @param a * @param fromIndex * @param toIndex * @return a new array */ public static boolean[] deleteRange(final boolean[] a, final int fromIndex, final int toIndex) { checkFromToIndex(fromIndex, toIndex, a.length); if (fromIndex == toIndex) { return a.clone(); } final boolean[] b = new boolean[a.length - (toIndex - fromIndex)]; if (fromIndex > 0) { copy(a, 0, b, 0, fromIndex); } if (toIndex < a.length) { copy(a, toIndex, b, fromIndex, a.length - toIndex); } return b; } /** * Deletes the values from {@code fromIndex} to {@code toIndex}. * * @param a * @param fromIndex * @param toIndex * @return a new array */ public static char[] deleteRange(final char[] a, final int fromIndex, final int toIndex) { checkFromToIndex(fromIndex, toIndex, a.length); if (fromIndex == toIndex) { return a.clone(); } final char[] b = new char[a.length - (toIndex - fromIndex)]; if (fromIndex > 0) { copy(a, 0, b, 0, fromIndex); } if (toIndex < a.length) { copy(a, toIndex, b, fromIndex, a.length - toIndex); } return b; } /** * Deletes the values from {@code fromIndex} to {@code toIndex}. * * @param a * @param fromIndex * @param toIndex * @return a new array */ public static byte[] deleteRange(final byte[] a, final int fromIndex, final int toIndex) { checkFromToIndex(fromIndex, toIndex, a.length); if (fromIndex == toIndex) { return a.clone(); } final byte[] b = new byte[a.length - (toIndex - fromIndex)]; if (fromIndex > 0) { copy(a, 0, b, 0, fromIndex); } if (toIndex < a.length) { copy(a, toIndex, b, fromIndex, a.length - toIndex); } return b; } /** * Deletes the values from {@code fromIndex} to {@code toIndex}. * * @param a * @param fromIndex * @param toIndex * @return a new array */ public static short[] deleteRange(final short[] a, final int fromIndex, final int toIndex) { checkFromToIndex(fromIndex, toIndex, a.length); if (fromIndex == toIndex) { return a.clone(); } final short[] b = new short[a.length - (toIndex - fromIndex)]; if (fromIndex > 0) { copy(a, 0, b, 0, fromIndex); } if (toIndex < a.length) { copy(a, toIndex, b, fromIndex, a.length - toIndex); } return b; } /** * Deletes the values from {@code fromIndex} to {@code toIndex}. * * @param a * @param fromIndex * @param toIndex * @return a new array */ public static int[] deleteRange(final int[] a, final int fromIndex, final int toIndex) { checkFromToIndex(fromIndex, toIndex, a.length); if (fromIndex == toIndex) { return a.clone(); } final int[] b = new int[a.length - (toIndex - fromIndex)]; if (fromIndex > 0) { copy(a, 0, b, 0, fromIndex); } if (toIndex < a.length) { copy(a, toIndex, b, fromIndex, a.length - toIndex); } return b; } /** * Deletes the values from {@code fromIndex} to {@code toIndex}. * * @param a * @param fromIndex * @param toIndex * @return a new array */ public static long[] deleteRange(final long[] a, final int fromIndex, final int toIndex) { checkFromToIndex(fromIndex, toIndex, a.length); if (fromIndex == toIndex) { return a.clone(); } final long[] b = new long[a.length - (toIndex - fromIndex)]; if (fromIndex > 0) { copy(a, 0, b, 0, fromIndex); } if (toIndex < a.length) { copy(a, toIndex, b, fromIndex, a.length - toIndex); } return b; } /** * Deletes the values from {@code fromIndex} to {@code toIndex}. * * @param a * @param fromIndex * @param toIndex * @return a new array */ public static float[] deleteRange(final float[] a, final int fromIndex, final int toIndex) { checkFromToIndex(fromIndex, toIndex, a.length); if (fromIndex == toIndex) { return a.clone(); } final float[] b = new float[a.length - (toIndex - fromIndex)]; if (fromIndex > 0) { copy(a, 0, b, 0, fromIndex); } if (toIndex < a.length) { copy(a, toIndex, b, fromIndex, a.length - toIndex); } return b; } /** * Deletes the values from {@code fromIndex} to {@code toIndex}. * * @param a * @param fromIndex * @param toIndex * @return a new array */ public static double[] deleteRange(final double[] a, final int fromIndex, final int toIndex) { checkFromToIndex(fromIndex, toIndex, a.length); if (fromIndex == toIndex) { return a.clone(); } final double[] b = new double[a.length - (toIndex - fromIndex)]; if (fromIndex > 0) { copy(a, 0, b, 0, fromIndex); } if (toIndex < a.length) { copy(a, toIndex, b, fromIndex, a.length - toIndex); } return b; } /** * Deletes the values from {@code fromIndex} to {@code toIndex}. * * @param * @param a * @param fromIndex * @param toIndex * @return a new array */ public static T[] deleteRange(final T[] a, final int fromIndex, final int toIndex) { checkFromToIndex(fromIndex, toIndex, a.length); if (fromIndex == toIndex) { return a.clone(); } final T[] b = Array.newInstance(a.getClass().getComponentType(), a.length - (toIndex - fromIndex)); if (fromIndex > 0) { copy(a, 0, b, 0, fromIndex); } if (toIndex < a.length) { copy(a, toIndex, b, fromIndex, a.length - toIndex); } return b; } /** * Returns {@code true} if the {@code List} is updated when {@code fromIndex < toIndex}, otherwise {@code false} is returned when {@code fromIndex == toIndex}. * * @param * @param c * @param fromIndex * @param toIndex * @return true, if successful */ @SuppressWarnings("unchecked") public static boolean deleteRange(final List c, final int fromIndex, final int toIndex) { checkFromToIndex(fromIndex, toIndex, c.size()); if (fromIndex == toIndex) { return false; } if (c instanceof LinkedList || toIndex - fromIndex <= 3) { c.subList(fromIndex, toIndex).clear(); } else { if (isListElementDataFieldGettable && isListElementDataFieldSettable && listElementDataField != null && c instanceof ArrayList) { T[] array = null; try { array = (T[]) listElementDataField.get(c); copy(array, toIndex, array, fromIndex, c.size() - toIndex); listSizeField.set(c, c.size() - (toIndex - fromIndex)); // update modCount c.add(null); c.remove(c.size() - 1); return true; } catch (Throwable e) { // ignore; isListElementDataFieldSettable = false; } } final List tmp = new ArrayList<>(c.size() - (toIndex - fromIndex)); if (fromIndex > 0) { tmp.addAll(c.subList(0, fromIndex)); } if (toIndex < c.size()) { tmp.addAll(c.subList(toIndex, c.size())); } c.clear(); c.addAll(tmp); } return true; } /** *

* Removes the first occurrence of the specified element from the specified * array. All subsequent elements are shifted to the left (subtracts one * from their indices). If the array doesn't contains such an element, no * elements are removed from the array. *

* *

* This method returns a new array with the same elements of the input array * except the first occurrence of the specified element. The component type * of the returned array is always the same as that of the input array. *

* * @param a * @param element the element to be removed * @return A new array containing the existing elements except the first * occurrence of the specified element. */ public static boolean[] remove(final boolean[] a, final boolean element) { if (isNullOrEmpty(a)) { return EMPTY_BOOLEAN_ARRAY; } int index = indexOf(a, 0, element); return index == INDEX_NOT_FOUND ? a.clone() : delete(a, index); } /** *

* Removes the first occurrence of the specified element from the specified * array. All subsequent elements are shifted to the left (subtracts one * from their indices). If the array doesn't contains such an element, no * elements are removed from the array. *

* *

* This method returns a new array with the same elements of the input array * except the first occurrence of the specified element. The component type * of the returned array is always the same as that of the input array. *

* * @param a * @param element the element to be removed * @return A new array containing the existing elements except the first * occurrence of the specified element. */ public static char[] remove(final char[] a, final char element) { if (isNullOrEmpty(a)) { return EMPTY_CHAR_ARRAY; } int index = indexOf(a, 0, element); return index == INDEX_NOT_FOUND ? a.clone() : delete(a, index); } /** *

* Removes the first occurrence of the specified element from the specified * array. All subsequent elements are shifted to the left (subtracts one * from their indices). If the array doesn't contains such an element, no * elements are removed from the array. *

* *

* This method returns a new array with the same elements of the input array * except the first occurrence of the specified element. The component type * of the returned array is always the same as that of the input array. *

* * @param a * @param element the element to be removed * @return A new array containing the existing elements except the first * occurrence of the specified element. */ public static byte[] remove(final byte[] a, final byte element) { if (isNullOrEmpty(a)) { return EMPTY_BYTE_ARRAY; } int index = indexOf(a, 0, element); return index == INDEX_NOT_FOUND ? a.clone() : delete(a, index); } /** *

* Removes the first occurrence of the specified element from the specified * array. All subsequent elements are shifted to the left (subtracts one * from their indices). If the array doesn't contains such an element, no * elements are removed from the array. *

* *

* This method returns a new array with the same elements of the input array * except the first occurrence of the specified element. The component type * of the returned array is always the same as that of the input array. *

* * @param a * @param element the element to be removed * @return A new array containing the existing elements except the first * occurrence of the specified element. */ public static short[] remove(final short[] a, final short element) { if (isNullOrEmpty(a)) { return EMPTY_SHORT_ARRAY; } int index = indexOf(a, 0, element); return index == INDEX_NOT_FOUND ? a.clone() : delete(a, index); } /** *

* Removes the first occurrence of the specified element from the specified * array. All subsequent elements are shifted to the left (subtracts one * from their indices). If the array doesn't contains such an element, no * elements are removed from the array. *

* *

* This method returns a new array with the same elements of the input array * except the first occurrence of the specified element. The component type * of the returned array is always the same as that of the input array. *

* * @param a * @param element the element to be removed * @return A new array containing the existing elements except the first * occurrence of the specified element. */ public static int[] remove(final int[] a, final int element) { if (isNullOrEmpty(a)) { return EMPTY_INT_ARRAY; } int index = indexOf(a, 0, element); return index == INDEX_NOT_FOUND ? a.clone() : delete(a, index); } /** *

* Removes the first occurrence of the specified element from the specified * array. All subsequent elements are shifted to the left (subtracts one * from their indices). If the array doesn't contains such an element, no * elements are removed from the array. *

* *

* This method returns a new array with the same elements of the input array * except the first occurrence of the specified element. The component type * of the returned array is always the same as that of the input array. *

* * @param a * @param element the element to be removed * @return A new array containing the existing elements except the first * occurrence of the specified element. */ public static long[] remove(final long[] a, final long element) { if (isNullOrEmpty(a)) { return EMPTY_LONG_ARRAY; } int index = indexOf(a, 0, element); return index == INDEX_NOT_FOUND ? a.clone() : delete(a, index); } /** *

* Removes the first occurrence of the specified element from the specified * array. All subsequent elements are shifted to the left (subtracts one * from their indices). If the array doesn't contains such an element, no * elements are removed from the array. *

* *

* This method returns a new array with the same elements of the input array * except the first occurrence of the specified element. The component type * of the returned array is always the same as that of the input array. *

* * @param a * @param element the element to be removed * @return A new array containing the existing elements except the first * occurrence of the specified element. */ public static float[] remove(final float[] a, final float element) { if (isNullOrEmpty(a)) { return EMPTY_FLOAT_ARRAY; } int index = indexOf(a, 0, element); return index == INDEX_NOT_FOUND ? a.clone() : delete(a, index); } /** *

* Removes the first occurrence of the specified element from the specified * array. All subsequent elements are shifted to the left (subtracts one * from their indices). If the array doesn't contains such an element, no * elements are removed from the array. *

* *

* This method returns a new array with the same elements of the input array * except the first occurrence of the specified element. The component type * of the returned array is always the same as that of the input array. *

* * @param a * @param element the element to be removed * @return A new array containing the existing elements except the first * occurrence of the specified element. */ public static double[] remove(final double[] a, final double element) { if (isNullOrEmpty(a)) { return EMPTY_DOUBLE_ARRAY; } int index = indexOf(a, 0, element); return index == INDEX_NOT_FOUND ? a.clone() : delete(a, index); } /** *

* Removes the first occurrence of the specified element from the specified * array. All subsequent elements are shifted to the left (subtracts one * from their indices). If the array doesn't contains such an element, no * elements are removed from the array. *

* *

* This method returns a new array with the same elements of the input array * except the first occurrence of the specified element. The component type * of the returned array is always the same as that of the input array. *

* * @param * @param a * @param element the element to be removed * @return A new array containing the existing elements except the first * occurrence of the specified element. */ public static T[] remove(final T[] a, final T element) { if (isNullOrEmpty(a)) { return a; } int index = indexOf(a, 0, element); return index == INDEX_NOT_FOUND ? a.clone() : delete(a, index); } /** *

* Removes the first occurrence of the specified element from the specified * collection. If the collection doesn't contains such an element, no * elements are removed from the collection. *

* * @param c * @param element the element to be removed * @return true if this collection changed as a result of the call */ public static boolean remove(final Collection c, final T element) { if (isNullOrEmpty(c)) { return false; } return c.remove(element); } /** * Removes all the occurrences of the specified element from the specified * array. All subsequent elements are shifted to the left (subtracts one * from their indices). If the array doesn't contains such an element, no * elements are removed from the array. * * @param a * @param element * @return A new array containing the existing elements except the * occurrences of the specified element. */ public static boolean[] removeAllOccurrences(final boolean[] a, final boolean element) { if (isNullOrEmpty(a)) { return EMPTY_BOOLEAN_ARRAY; } final boolean[] copy = a.clone(); int idx = 0; for (int i = 0, len = a.length; i < len; i++) { if (a[i] == element) { continue; } copy[idx++] = a[i]; } return idx == copy.length ? copy : copyOfRange(copy, 0, idx); } /** * Removes all the occurrences of the specified element from the specified * array. All subsequent elements are shifted to the left (subtracts one * from their indices). If the array doesn't contains such an element, no * elements are removed from the array. * * @param a * @param element * @return A new array containing the existing elements except the * occurrences of the specified element. */ public static char[] removeAllOccurrences(final char[] a, final char element) { if (isNullOrEmpty(a)) { return EMPTY_CHAR_ARRAY; } final char[] copy = a.clone(); int idx = 0; for (int i = 0, len = a.length; i < len; i++) { if (a[i] == element) { continue; } copy[idx++] = a[i]; } return idx == copy.length ? copy : copyOfRange(copy, 0, idx); } /** * Removes all the occurrences of the specified element from the specified * array. All subsequent elements are shifted to the left (subtracts one * from their indices). If the array doesn't contains such an element, no * elements are removed from the array. * * @param a * @param element * @return A new array containing the existing elements except the * occurrences of the specified element. */ public static byte[] removeAllOccurrences(final byte[] a, final byte element) { if (isNullOrEmpty(a)) { return EMPTY_BYTE_ARRAY; } final byte[] copy = a.clone(); int idx = 0; for (int i = 0, len = a.length; i < len; i++) { if (a[i] == element) { continue; } copy[idx++] = a[i]; } return idx == copy.length ? copy : copyOfRange(copy, 0, idx); } /** * Removes all the occurrences of the specified element from the specified * array. All subsequent elements are shifted to the left (subtracts one * from their indices). If the array doesn't contains such an element, no * elements are removed from the array. * * @param a * @param element * @return A new array containing the existing elements except the * occurrences of the specified element. */ public static short[] removeAllOccurrences(final short[] a, final short element) { if (isNullOrEmpty(a)) { return EMPTY_SHORT_ARRAY; } final short[] copy = a.clone(); int idx = 0; for (int i = 0, len = a.length; i < len; i++) { if (a[i] == element) { continue; } copy[idx++] = a[i]; } return idx == copy.length ? copy : copyOfRange(copy, 0, idx); } /** * Removes all the occurrences of the specified element from the specified * array. All subsequent elements are shifted to the left (subtracts one * from their indices). If the array doesn't contains such an element, no * elements are removed from the array. * * @param a * @param element * @return A new array containing the existing elements except the * occurrences of the specified element. */ public static int[] removeAllOccurrences(final int[] a, final int element) { if (isNullOrEmpty(a)) { return EMPTY_INT_ARRAY; } final int[] copy = a.clone(); int idx = 0; for (int i = 0, len = a.length; i < len; i++) { if (a[i] == element) { continue; } copy[idx++] = a[i]; } return idx == copy.length ? copy : copyOfRange(copy, 0, idx); } /** * Removes all the occurrences of the specified element from the specified * array. All subsequent elements are shifted to the left (subtracts one * from their indices). If the array doesn't contains such an element, no * elements are removed from the array. * * @param a * @param element * @return A new array containing the existing elements except the * occurrences of the specified element. */ public static long[] removeAllOccurrences(final long[] a, final long element) { if (isNullOrEmpty(a)) { return EMPTY_LONG_ARRAY; } final long[] copy = a.clone(); int idx = 0; for (int i = 0, len = a.length; i < len; i++) { if (a[i] == element) { continue; } copy[idx++] = a[i]; } return idx == copy.length ? copy : copyOfRange(copy, 0, idx); } /** * Removes all the occurrences of the specified element from the specified * array. All subsequent elements are shifted to the left (subtracts one * from their indices). If the array doesn't contains such an element, no * elements are removed from the array. * * @param a * @param element * @return A new array containing the existing elements except the * occurrences of the specified element. */ public static float[] removeAllOccurrences(final float[] a, final float element) { if (isNullOrEmpty(a)) { return EMPTY_FLOAT_ARRAY; } final float[] copy = a.clone(); int idx = 0; for (int i = 0, len = a.length; i < len; i++) { if (equals(a[i], element)) { continue; } copy[idx++] = a[i]; } return idx == copy.length ? copy : copyOfRange(copy, 0, idx); } /** * Removes all the occurrences of the specified element from the specified * array. All subsequent elements are shifted to the left (subtracts one * from their indices). If the array doesn't contains such an element, no * elements are removed from the array. * * @param a * @param element * @return A new array containing the existing elements except the * occurrences of the specified element. */ public static double[] removeAllOccurrences(final double[] a, final double element) { if (isNullOrEmpty(a)) { return EMPTY_DOUBLE_ARRAY; } final double[] copy = a.clone(); int idx = 0; for (int i = 0, len = a.length; i < len; i++) { if (equals(a[i], element)) { continue; } copy[idx++] = a[i]; } return idx == copy.length ? copy : copyOfRange(copy, 0, idx); } /** * Removes all the occurrences of the specified element from the specified * array. All subsequent elements are shifted to the left (subtracts one * from their indices). If the array doesn't contains such an element, no * elements are removed from the array. * * @param * @param a * @param element * @return A new array containing the existing elements except the * occurrences of the specified element. */ public static T[] removeAllOccurrences(final T[] a, final T element) { if (isNullOrEmpty(a)) { return a; } final T[] copy = a.clone(); int idx = 0; for (int i = 0, len = a.length; i < len; i++) { if (equals(a[i], element)) { continue; } copy[idx++] = a[i]; } return idx == copy.length ? copy : copyOfRange(copy, 0, idx); } /** * Removes the all occurrences. * * @param c * @param element * @return true, if successful */ public static boolean removeAllOccurrences(final Collection c, final T element) { if (isNullOrEmpty(c)) { return false; } return removeAll(c, asSet(element)); } /** * Returns a new array with removes all the occurrences of specified elements from a. * * @param * @param a * @param elements * @return * @see Collection#removeAll(Collection) */ @SafeVarargs public static T[] removeAll(final T[] a, final T... elements) { if (isNullOrEmpty(a)) { return a; } else if (isNullOrEmpty(elements)) { return a.clone(); } else if (elements.length == 1) { return removeAllOccurrences(a, elements[0]); } final Set set = asSet(elements); final List result = new ArrayList<>(); for (T e : a) { if (!set.contains(e)) { result.add(e); } } return result.toArray((T[]) newArray(a.getClass().getComponentType(), result.size())); } /** * Removes the all. * * @param c * @param elements * @return true, if successful */ @SafeVarargs public static boolean removeAll(final Collection c, final T... elements) { if (isNullOrEmpty(c) || isNullOrEmpty(elements)) { return false; } else { return removeAll(c, asSet(elements)); } } /** * Removes the all. * * @param c * @param objsToRemove * @return true, if successful */ public static boolean removeAll(final Collection c, final Collection objsToRemove) { if (N.isNullOrEmpty(c) || N.isNullOrEmpty(objsToRemove)) { return false; } if (c instanceof HashSet && !(objsToRemove instanceof Set)) { boolean result = false; for (Object e : objsToRemove) { result |= c.remove(e); if (c.size() == 0) { break; } } return result; } else { return c.removeAll(objsToRemove); } } /** * Removes the duplicates. * * @param a * @return */ public static boolean[] removeDuplicates(final boolean[] a) { if (isNullOrEmpty(a)) { return EMPTY_BOOLEAN_ARRAY; } return removeDuplicates(a, false); } /** * Removes the duplicates. * * @param a * @param isSorted * @return */ public static boolean[] removeDuplicates(final boolean[] a, final boolean isSorted) { if (isNullOrEmpty(a)) { return EMPTY_BOOLEAN_ARRAY; } return removeDuplicates(a, 0, a.length, isSorted); } /** * Removes the duplicates. * * @param a * @param from * @param to * @param isSorted * @return */ public static boolean[] removeDuplicates(final boolean[] a, final int from, final int to, final boolean isSorted) { checkFromToIndex(from, to, len(a)); if (isNullOrEmpty(a) && from == 0 && to == 0) { return EMPTY_BOOLEAN_ARRAY; } else if (to - from <= 1) { return copyOfRange(a, from, to); } final Boolean[] b = new Boolean[2]; for (int i = from; i < to; i++) { if (b[0] == null) { b[0] = a[i]; } else if (b[0].booleanValue() != a[i]) { b[1] = a[i]; break; } } return b[1] == null ? new boolean[] { b[0].booleanValue() } : new boolean[] { b[0].booleanValue(), b[1].booleanValue() }; } /** * Removes the duplicates. * * @param a * @return */ public static char[] removeDuplicates(final char[] a) { if (isNullOrEmpty(a)) { return EMPTY_CHAR_ARRAY; } return removeDuplicates(a, false); } /** * Removes the duplicates. * * @param a * @param isSorted * @return */ public static char[] removeDuplicates(final char[] a, final boolean isSorted) { if (isNullOrEmpty(a)) { return EMPTY_CHAR_ARRAY; } return removeDuplicates(a, 0, a.length, isSorted); } /** * Removes the duplicates. * * @param a * @param from * @param to * @param isSorted * @return */ public static char[] removeDuplicates(final char[] a, final int from, final int to, final boolean isSorted) { checkFromToIndex(from, to, len(a)); if (isNullOrEmpty(a) && from == 0 && to == 0) { return EMPTY_CHAR_ARRAY; } else if (to - from <= 1) { return copyOfRange(a, from, to); } if (isSorted) { final char[] b = (from == 0 && to == a.length) ? a.clone() : copyOfRange(a, from, to); int idx = 1; for (int i = 1, len = b.length; i < len; i++) { if (b[i] == b[i - 1]) { continue; } b[idx++] = b[i]; } return idx == b.length ? b : copyOfRange(b, 0, idx); } else { final Set set = newLinkedHashSet(initHashCapacity(a.length)); for (int i = from; i < to; i++) { set.add(a[i]); } if (set.size() == to - from) { return (from == 0 && to == a.length) ? a.clone() : copyOfRange(a, from, to); } else { final char[] result = new char[set.size()]; int i = 0; for (char e : set) { result[i++] = e; } return result; } } } /** * Removes the duplicates. * * @param a * @return */ public static byte[] removeDuplicates(final byte[] a) { if (isNullOrEmpty(a)) { return EMPTY_BYTE_ARRAY; } return removeDuplicates(a, false); } /** * Removes the duplicates. * * @param a * @param isSorted * @return */ public static byte[] removeDuplicates(final byte[] a, final boolean isSorted) { if (isNullOrEmpty(a)) { return EMPTY_BYTE_ARRAY; } return removeDuplicates(a, 0, a.length, isSorted); } /** * Removes the duplicates. * * @param a * @param from * @param to * @param isSorted * @return */ public static byte[] removeDuplicates(final byte[] a, final int from, final int to, final boolean isSorted) { checkFromToIndex(from, to, len(a)); if (isNullOrEmpty(a) && from == 0 && to == 0) { return EMPTY_BYTE_ARRAY; } else if (to - from <= 1) { return copyOfRange(a, from, to); } if (isSorted) { final byte[] b = (from == 0 && to == a.length) ? a.clone() : copyOfRange(a, from, to); int idx = 1; for (int i = 1, len = b.length; i < len; i++) { if (b[i] == b[i - 1]) { continue; } b[idx++] = b[i]; } return idx == b.length ? b : copyOfRange(b, 0, idx); } else { final Set set = newLinkedHashSet(initHashCapacity(a.length)); for (int i = from; i < to; i++) { set.add(a[i]); } if (set.size() == to - from) { return (from == 0 && to == a.length) ? a.clone() : copyOfRange(a, from, to); } else { final byte[] result = new byte[set.size()]; int i = 0; for (byte e : set) { result[i++] = e; } return result; } } } /** * Removes the duplicates. * * @param a * @return */ public static short[] removeDuplicates(final short[] a) { if (isNullOrEmpty(a)) { return EMPTY_SHORT_ARRAY; } return removeDuplicates(a, false); } /** * Removes the duplicates. * * @param a * @param isSorted * @return */ public static short[] removeDuplicates(final short[] a, final boolean isSorted) { if (isNullOrEmpty(a)) { return EMPTY_SHORT_ARRAY; } return removeDuplicates(a, 0, a.length, isSorted); } /** * Removes the duplicates. * * @param a * @param from * @param to * @param isSorted * @return */ public static short[] removeDuplicates(final short[] a, final int from, final int to, final boolean isSorted) { checkFromToIndex(from, to, len(a)); if (isNullOrEmpty(a) && from == 0 && to == 0) { return EMPTY_SHORT_ARRAY; } else if (to - from <= 1) { return copyOfRange(a, from, to); } if (isSorted) { final short[] b = (from == 0 && to == a.length) ? a.clone() : copyOfRange(a, from, to); int idx = 1; for (int i = 1, len = b.length; i < len; i++) { if (b[i] == b[i - 1]) { continue; } b[idx++] = b[i]; } return idx == b.length ? b : copyOfRange(b, 0, idx); } else { final Set set = newLinkedHashSet(initHashCapacity(a.length)); for (int i = from; i < to; i++) { set.add(a[i]); } if (set.size() == to - from) { return (from == 0 && to == a.length) ? a.clone() : copyOfRange(a, from, to); } else { final short[] result = new short[set.size()]; int i = 0; for (short e : set) { result[i++] = e; } return result; } } } /** * Removes the duplicates. * * @param a * @return */ public static int[] removeDuplicates(final int[] a) { if (isNullOrEmpty(a)) { return EMPTY_INT_ARRAY; } return removeDuplicates(a, false); } /** * Removes the duplicates. * * @param a * @param isSorted * @return */ public static int[] removeDuplicates(final int[] a, final boolean isSorted) { if (isNullOrEmpty(a)) { return EMPTY_INT_ARRAY; } return removeDuplicates(a, 0, a.length, isSorted); } /** * Removes the duplicates. * * @param a * @param from * @param to * @param isSorted * @return */ public static int[] removeDuplicates(final int[] a, final int from, final int to, final boolean isSorted) { checkFromToIndex(from, to, len(a)); if (isNullOrEmpty(a) && from == 0 && to == 0) { return EMPTY_INT_ARRAY; } else if (to - from <= 1) { return copyOfRange(a, from, to); } if (isSorted) { final int[] b = (from == 0 && to == a.length) ? a.clone() : copyOfRange(a, from, to); int idx = 1; for (int i = 1, len = b.length; i < len; i++) { if (b[i] == b[i - 1]) { continue; } b[idx++] = b[i]; } return idx == b.length ? b : copyOfRange(b, 0, idx); } else { final Set set = newLinkedHashSet(initHashCapacity(a.length)); for (int i = from; i < to; i++) { set.add(a[i]); } if (set.size() == to - from) { return (from == 0 && to == a.length) ? a.clone() : copyOfRange(a, from, to); } else { final int[] result = new int[set.size()]; int i = 0; for (int e : set) { result[i++] = e; } return result; } } } /** * Removes the duplicates. * * @param a * @return */ public static long[] removeDuplicates(final long[] a) { if (isNullOrEmpty(a)) { return EMPTY_LONG_ARRAY; } return removeDuplicates(a, false); } /** * Removes the duplicates. * * @param a * @param isSorted * @return */ public static long[] removeDuplicates(final long[] a, final boolean isSorted) { if (isNullOrEmpty(a)) { return EMPTY_LONG_ARRAY; } return removeDuplicates(a, 0, a.length, isSorted); } /** * Removes the duplicates. * * @param a * @param from * @param to * @param isSorted * @return */ public static long[] removeDuplicates(final long[] a, final int from, final int to, final boolean isSorted) { checkFromToIndex(from, to, len(a)); if (isNullOrEmpty(a) && from == 0 && to == 0) { return EMPTY_LONG_ARRAY; } else if (to - from <= 1) { return copyOfRange(a, from, to); } if (isSorted) { final long[] b = (from == 0 && to == a.length) ? a.clone() : copyOfRange(a, from, to); int idx = 1; for (int i = 1, len = b.length; i < len; i++) { if (b[i] == b[i - 1]) { continue; } b[idx++] = b[i]; } return idx == b.length ? b : copyOfRange(b, 0, idx); } else { final Set set = newLinkedHashSet(initHashCapacity(a.length)); for (int i = from; i < to; i++) { set.add(a[i]); } if (set.size() == to - from) { return (from == 0 && to == a.length) ? a.clone() : copyOfRange(a, from, to); } else { final long[] result = new long[set.size()]; int i = 0; for (long e : set) { result[i++] = e; } return result; } } } /** * Removes the duplicates. * * @param a * @return */ public static float[] removeDuplicates(final float[] a) { if (isNullOrEmpty(a)) { return EMPTY_FLOAT_ARRAY; } return removeDuplicates(a, false); } /** * Removes the duplicates. * * @param a * @param isSorted * @return */ public static float[] removeDuplicates(final float[] a, final boolean isSorted) { if (isNullOrEmpty(a)) { return EMPTY_FLOAT_ARRAY; } return removeDuplicates(a, 0, a.length, isSorted); } /** * Removes the duplicates. * * @param a * @param from * @param to * @param isSorted * @return */ public static float[] removeDuplicates(final float[] a, final int from, final int to, final boolean isSorted) { checkFromToIndex(from, to, len(a)); if (isNullOrEmpty(a) && from == 0 && to == 0) { return EMPTY_FLOAT_ARRAY; } else if (to - from <= 1) { return copyOfRange(a, from, to); } if (isSorted) { final float[] b = (from == 0 && to == a.length) ? a.clone() : copyOfRange(a, from, to); int idx = 1; for (int i = 1, len = b.length; i < len; i++) { if (equals(b[i], b[i - 1])) { continue; } b[idx++] = b[i]; } return idx == b.length ? b : copyOfRange(b, 0, idx); } else { final Set set = newLinkedHashSet(initHashCapacity(a.length)); for (int i = from; i < to; i++) { set.add(a[i]); } if (set.size() == to - from) { return (from == 0 && to == a.length) ? a.clone() : copyOfRange(a, from, to); } else { final float[] result = new float[set.size()]; int i = 0; for (float e : set) { result[i++] = e; } return result; } } } /** * Removes the duplicates. * * @param a * @return */ public static double[] removeDuplicates(final double[] a) { if (isNullOrEmpty(a)) { return EMPTY_DOUBLE_ARRAY; } return removeDuplicates(a, false); } /** * Removes the duplicates. * * @param a * @param isSorted * @return */ public static double[] removeDuplicates(final double[] a, final boolean isSorted) { if (isNullOrEmpty(a)) { return EMPTY_DOUBLE_ARRAY; } return removeDuplicates(a, 0, a.length, isSorted); } /** * Removes the duplicates. * * @param a * @param from * @param to * @param isSorted * @return */ public static double[] removeDuplicates(final double[] a, final int from, final int to, final boolean isSorted) { checkFromToIndex(from, to, len(a)); if (isNullOrEmpty(a) && from == 0 && to == 0) { return EMPTY_DOUBLE_ARRAY; } else if (to - from <= 1) { return copyOfRange(a, from, to); } if (isSorted) { final double[] b = (from == 0 && to == a.length) ? a.clone() : copyOfRange(a, from, to); int idx = 1; for (int i = 1, len = b.length; i < len; i++) { if (equals(b[i], b[i - 1])) { continue; } b[idx++] = b[i]; } return idx == b.length ? b : copyOfRange(b, 0, idx); } else { final Set set = newLinkedHashSet(initHashCapacity(a.length)); for (int i = from; i < to; i++) { set.add(a[i]); } if (set.size() == to - from) { return (from == 0 && to == a.length) ? a.clone() : copyOfRange(a, from, to); } else { final double[] result = new double[set.size()]; int i = 0; for (double e : set) { result[i++] = e; } return result; } } } /** *

* Removes all duplicates elements *

* *
     * N.removeElements(["a", "b", "a"]) = ["a", "b"]
     * 
* * @param the component type of the array * @param a * @return A new array containing the existing elements except the duplicates * @throws NullPointerException if the specified array a is null. */ public static T[] removeDuplicates(final T[] a) { if (isNullOrEmpty(a)) { return a; } return removeDuplicates(a, false); } /** * Removes the duplicates. * * @param * @param a * @param isSorted * @return */ public static T[] removeDuplicates(final T[] a, final boolean isSorted) { if (isNullOrEmpty(a)) { return a; } return removeDuplicates(a, 0, a.length, isSorted); } /** * Removes the duplicates. * * @param * @param a * @param from * @param to * @param isSorted * @return */ public static T[] removeDuplicates(final T[] a, final int from, final int to, final boolean isSorted) { checkFromToIndex(from, to, len(a)); if (isNullOrEmpty(a) && from == 0 && to == 0) { return a; } else if (to - from <= 1) { return copyOfRange(a, from, to); } if (isSorted) { final T[] b = (from == 0 && to == a.length) ? a.clone() : copyOfRange(a, from, to); int idx = 1; for (int i = 1, len = b.length; i < len; i++) { if (equals(b[i], b[i - 1])) { continue; } b[idx++] = b[i]; } return idx == b.length ? b : copyOfRange(b, 0, idx); } else { final List list = distinct(a, from, to); return list.toArray((T[]) newArray(a.getClass().getComponentType(), list.size())); } } /** * Removes the duplicates. * * @param c * @return true if there is one or more duplicated elements are removed. otherwise false is returned. */ public static boolean removeDuplicates(final Collection c) { if (isNullOrEmpty(c) || c.size() == 1) { return false; } return removeDuplicates(c, false); } /** * Removes the duplicates. * * @param c * @param isSorted * @return true if there is one or more duplicated elements are removed. otherwise false is returned. */ @SuppressWarnings("rawtypes") public static boolean removeDuplicates(final Collection c, final boolean isSorted) { if (isNullOrEmpty(c) || c.size() == 1) { return false; } if (isSorted) { boolean hasDuplicates = false; final Iterator it = c.iterator(); Object pre = it.next(); Object next = null; while (it.hasNext()) { next = it.next(); if (equals(next, pre)) { it.remove(); hasDuplicates = true; } else { pre = next; } } return hasDuplicates; } else { List list = distinct(c); final boolean hasDuplicates = list.size() != c.size(); if (hasDuplicates) { c.clear(); c.addAll((List) list); } return hasDuplicates; } } // Primitive/Object array converters // ---------------------------------------------------------------------- /** * Checks for duplicates. * * @param a * @return true, if successful */ public static boolean hasDuplicates(final char[] a) { return hasDuplicates(a, false); } /** * Checks for duplicates. * * @param a * @param isSorted * @return true, if successful */ public static boolean hasDuplicates(final char[] a, final boolean isSorted) { if (isNullOrEmpty(a)) { return false; } return hasDuplicates(a, 0, a.length, isSorted); } /** * Checks for duplicates. * * @param a * @param fromIndex * @param toIndex * @param isSorted * @return true, if successful */ static boolean hasDuplicates(final char[] a, final int fromIndex, final int toIndex, final boolean isSorted) { checkFromToIndex(fromIndex, toIndex, a.length); if (isNullOrEmpty(a) || toIndex - fromIndex < 2) { return false; } else if (toIndex - fromIndex == 2) { return a[fromIndex] == a[fromIndex + 1]; } else if (toIndex - fromIndex == 3) { return a[fromIndex] == a[fromIndex + 1] || a[fromIndex] == a[fromIndex + 2] || a[fromIndex + 1] == a[fromIndex + 2]; } if (isSorted) { for (int i = fromIndex + 1; i < toIndex; i++) { if (a[i] == a[i - 1]) { return true; } } return false; } else { final Set set = newHashSet(initHashCapacity(toIndex - fromIndex)); for (int i = fromIndex; i < toIndex; i++) { if (set.add(a[i]) == false) { return true; } } return false; } } /** * Checks for duplicates. * * @param a * @return true, if successful */ public static boolean hasDuplicates(final byte[] a) { return hasDuplicates(a, false); } /** * Checks for duplicates. * * @param a * @param isSorted * @return true, if successful */ public static boolean hasDuplicates(final byte[] a, final boolean isSorted) { if (isNullOrEmpty(a)) { return false; } return hasDuplicates(a, 0, a.length, isSorted); } /** * Checks for duplicates. * * @param a * @param fromIndex * @param toIndex * @param isSorted * @return true, if successful */ static boolean hasDuplicates(final byte[] a, final int fromIndex, final int toIndex, final boolean isSorted) { checkFromToIndex(fromIndex, toIndex, a.length); if (isNullOrEmpty(a) || toIndex - fromIndex < 2) { return false; } else if (toIndex - fromIndex == 2) { return a[fromIndex] == a[fromIndex + 1]; } else if (toIndex - fromIndex == 3) { return a[fromIndex] == a[fromIndex + 1] || a[fromIndex] == a[fromIndex + 2] || a[fromIndex + 1] == a[fromIndex + 2]; } if (isSorted) { for (int i = fromIndex + 1; i < toIndex; i++) { if (a[i] == a[i - 1]) { return true; } } return false; } else { final Set set = newHashSet(initHashCapacity(toIndex - fromIndex)); for (int i = fromIndex; i < toIndex; i++) { if (set.add(a[i]) == false) { return true; } } return false; } } /** * Checks for duplicates. * * @param a * @return true, if successful */ public static boolean hasDuplicates(final short[] a) { return hasDuplicates(a, false); } /** * Checks for duplicates. * * @param a * @param isSorted * @return true, if successful */ public static boolean hasDuplicates(final short[] a, final boolean isSorted) { if (isNullOrEmpty(a)) { return false; } return hasDuplicates(a, 0, a.length, isSorted); } /** * Checks for duplicates. * * @param a * @param fromIndex * @param toIndex * @param isSorted * @return true, if successful */ static boolean hasDuplicates(final short[] a, final int fromIndex, final int toIndex, final boolean isSorted) { checkFromToIndex(fromIndex, toIndex, a.length); if (isNullOrEmpty(a) || toIndex - fromIndex < 2) { return false; } else if (toIndex - fromIndex == 2) { return a[fromIndex] == a[fromIndex + 1]; } else if (toIndex - fromIndex == 3) { return a[fromIndex] == a[fromIndex + 1] || a[fromIndex] == a[fromIndex + 2] || a[fromIndex + 1] == a[fromIndex + 2]; } if (isSorted) { for (int i = fromIndex + 1; i < toIndex; i++) { if (a[i] == a[i - 1]) { return true; } } return false; } else { final Set set = newHashSet(initHashCapacity(toIndex - fromIndex)); for (int i = fromIndex; i < toIndex; i++) { if (set.add(a[i]) == false) { return true; } } return false; } } /** * Checks for duplicates. * * @param a * @return true, if successful */ public static boolean hasDuplicates(final int[] a) { return hasDuplicates(a, false); } /** * Checks for duplicates. * * @param a * @param isSorted * @return true, if successful */ public static boolean hasDuplicates(final int[] a, final boolean isSorted) { if (isNullOrEmpty(a)) { return false; } return hasDuplicates(a, 0, a.length, isSorted); } /** * Checks for duplicates. * * @param a * @param fromIndex * @param toIndex * @param isSorted * @return true, if successful */ static boolean hasDuplicates(final int[] a, final int fromIndex, final int toIndex, final boolean isSorted) { checkFromToIndex(fromIndex, toIndex, a.length); if (isNullOrEmpty(a) || toIndex - fromIndex < 2) { return false; } else if (toIndex - fromIndex == 2) { return a[fromIndex] == a[fromIndex + 1]; } else if (toIndex - fromIndex == 3) { return a[fromIndex] == a[fromIndex + 1] || a[fromIndex] == a[fromIndex + 2] || a[fromIndex + 1] == a[fromIndex + 2]; } if (isSorted) { for (int i = fromIndex + 1; i < toIndex; i++) { if (a[i] == a[i - 1]) { return true; } } return false; } else { final Set set = newHashSet(initHashCapacity(toIndex - fromIndex)); for (int i = fromIndex; i < toIndex; i++) { if (set.add(a[i]) == false) { return true; } } return false; } } /** * Checks for duplicates. * * @param a * @return true, if successful */ public static boolean hasDuplicates(final long[] a) { return hasDuplicates(a, false); } /** * Checks for duplicates. * * @param a * @param isSorted * @return true, if successful */ public static boolean hasDuplicates(final long[] a, final boolean isSorted) { if (isNullOrEmpty(a)) { return false; } return hasDuplicates(a, 0, a.length, isSorted); } /** * Checks for duplicates. * * @param a * @param fromIndex * @param toIndex * @param isSorted * @return true, if successful */ static boolean hasDuplicates(final long[] a, final int fromIndex, final int toIndex, final boolean isSorted) { checkFromToIndex(fromIndex, toIndex, a.length); if (isNullOrEmpty(a) || toIndex - fromIndex < 2) { return false; } else if (toIndex - fromIndex == 2) { return a[fromIndex] == a[fromIndex + 1]; } else if (toIndex - fromIndex == 3) { return a[fromIndex] == a[fromIndex + 1] || a[fromIndex] == a[fromIndex + 2] || a[fromIndex + 1] == a[fromIndex + 2]; } if (isSorted) { for (int i = fromIndex + 1; i < toIndex; i++) { if (a[i] == a[i - 1]) { return true; } } return false; } else { final Set set = newHashSet(initHashCapacity(toIndex - fromIndex)); for (int i = fromIndex; i < toIndex; i++) { if (set.add(a[i]) == false) { return true; } } return false; } } /** * Checks for duplicates. * * @param a * @return true, if successful */ public static boolean hasDuplicates(final float[] a) { return hasDuplicates(a, false); } /** * Checks for duplicates. * * @param a * @param isSorted * @return true, if successful */ public static boolean hasDuplicates(final float[] a, final boolean isSorted) { if (isNullOrEmpty(a)) { return false; } return hasDuplicates(a, 0, a.length, isSorted); } /** * Checks for duplicates. * * @param a * @param fromIndex * @param toIndex * @param isSorted * @return true, if successful */ static boolean hasDuplicates(final float[] a, final int fromIndex, final int toIndex, final boolean isSorted) { checkFromToIndex(fromIndex, toIndex, a.length); if (isNullOrEmpty(a) || toIndex - fromIndex < 2) { return false; } else if (toIndex - fromIndex == 2) { return equals(a[fromIndex], a[fromIndex + 1]); } else if (toIndex - fromIndex == 3) { return equals(a[fromIndex], a[fromIndex + 1]) || equals(a[fromIndex], a[fromIndex + 2]) || equals(a[fromIndex + 1], a[fromIndex + 2]); } if (isSorted) { for (int i = fromIndex + 1; i < toIndex; i++) { if (equals(a[i], a[i - 1])) { return true; } } return false; } else { final Set set = newHashSet(initHashCapacity(toIndex - fromIndex)); for (int i = fromIndex; i < toIndex; i++) { if (set.add(a[i]) == false) { return true; } } return false; } } /** * Checks for duplicates. * * @param a * @return true, if successful */ public static boolean hasDuplicates(final double[] a) { return hasDuplicates(a, false); } /** * Checks for duplicates. * * @param a * @param isSorted * @return true, if successful */ public static boolean hasDuplicates(final double[] a, final boolean isSorted) { if (isNullOrEmpty(a)) { return false; } return hasDuplicates(a, 0, a.length, isSorted); } /** * Checks for duplicates. * * @param a * @param fromIndex * @param toIndex * @param isSorted * @return true, if successful */ static boolean hasDuplicates(final double[] a, final int fromIndex, final int toIndex, final boolean isSorted) { checkFromToIndex(fromIndex, toIndex, a.length); if (isNullOrEmpty(a) || toIndex - fromIndex < 2) { return false; } else if (toIndex - fromIndex == 2) { return equals(a[fromIndex], a[fromIndex + 1]); } else if (toIndex - fromIndex == 3) { return equals(a[fromIndex], a[fromIndex + 1]) || equals(a[fromIndex], a[fromIndex + 2]) || equals(a[fromIndex + 1], a[fromIndex + 2]); } if (isSorted) { for (int i = fromIndex + 1; i < toIndex; i++) { if (equals(a[i], a[i - 1])) { return true; } } return false; } else { final Set set = newHashSet(initHashCapacity(toIndex - fromIndex)); for (int i = fromIndex; i < toIndex; i++) { if (set.add(a[i]) == false) { return true; } } return false; } } /** * Checks for duplicates. * * @param * @param a * @return true, if successful */ public static boolean hasDuplicates(final T[] a) { return hasDuplicates(a, false); } /** * Checks for duplicates. * * @param * @param a * @param isSorted * @return true, if successful */ public static boolean hasDuplicates(final T[] a, final boolean isSorted) { if (isNullOrEmpty(a)) { return false; } return hasDuplicates(a, 0, a.length, isSorted); } /** * Checks for duplicates. * * @param * @param a * @param fromIndex * @param toIndex * @param isSorted * @return true, if successful */ static boolean hasDuplicates(final T[] a, final int fromIndex, final int toIndex, final boolean isSorted) { checkFromToIndex(fromIndex, toIndex, a.length); if (isNullOrEmpty(a) || toIndex - fromIndex < 2) { return false; } else if (toIndex - fromIndex == 2) { return equals(a[fromIndex], a[fromIndex + 1]); } else if (toIndex - fromIndex == 3) { return equals(a[fromIndex], a[fromIndex + 1]) || equals(a[fromIndex], a[fromIndex + 2]) || equals(a[fromIndex + 1], a[fromIndex + 2]); } if (isSorted) { for (int i = fromIndex + 1; i < toIndex; i++) { if (equals(a[i], a[i - 1])) { return true; } } return false; } else { final Set set = newHashSet(initHashCapacity(toIndex - fromIndex)); for (int i = fromIndex; i < toIndex; i++) { if (set.add(hashKey(a[i])) == false) { return true; } } return false; } } /** * Checks for duplicates. * * @param c * @return true, if successful */ public static boolean hasDuplicates(final Collection c) { return hasDuplicates(c, false); } /** * Checks for duplicates. * * @param c * @param isSorted * @return true, if successful */ public static boolean hasDuplicates(final Collection c, final boolean isSorted) { if (isNullOrEmpty(c) || c.size() == 1) { return false; } if (isSorted) { final Iterator it = c.iterator(); Object pre = it.next(); Object next = null; while (it.hasNext()) { next = it.next(); if (equals(next, pre)) { return true; } pre = next; } return false; } else { final Set set = newHashSet(initHashCapacity(c.size())); for (Object e : c) { if (set.add(hashKey(e)) == false) { return true; } } return false; } } /** * * @param c * @param objsToKeep * @return true, if successful */ public static boolean retainAll(final Collection c, final Collection objsToKeep) { if (N.isNullOrEmpty(c)) { return false; } else if (N.isNullOrEmpty(objsToKeep)) { c.clear(); return true; } if (c instanceof HashSet && !(objsToKeep instanceof Set) && (c.size() > 9 || objsToKeep.size() > 9)) { return c.retainAll(N.newHashSet(objsToKeep)); } else { return c.retainAll(objsToKeep); } } /** * * @param obj * @return */ static Object hashKey(Object obj) { return obj == null || obj.getClass().isArray() == false ? obj : Wrapper.of(obj); } /** * * @param a * @return a long number */ @SafeVarargs public static int sum(final char... a) { if (isNullOrEmpty(a)) { return 0; } return sum(a, 0, a.length); } /** * * @param a * @param from * @param to * @return */ public static int sum(final char[] a, final int from, final int to) { checkFromToIndex(from, to, len(a)); if (isNullOrEmpty(a)) { if (to > 0) { throw new IndexOutOfBoundsException(); } return 0; } int sum = 0; for (int i = from; i < to; i++) { sum += a[i]; } return sum; } /** * * @param a * @return a long number */ @SafeVarargs public static int sum(final byte... a) { if (isNullOrEmpty(a)) { return 0; } return sum(a, 0, a.length); } /** * * @param a * @param from * @param to * @return */ public static int sum(final byte[] a, final int from, final int to) { checkFromToIndex(from, to, len(a)); if (isNullOrEmpty(a)) { if (to > 0) { throw new IndexOutOfBoundsException(); } return 0; } int sum = 0; for (int i = from; i < to; i++) { sum += a[i]; } return sum; } /** * * @param a * @return a long number */ @SafeVarargs public static int sum(final short... a) { if (isNullOrEmpty(a)) { return 0; } return sum(a, 0, a.length); } /** * * @param a * @param from * @param to * @return */ public static int sum(final short[] a, final int from, final int to) { checkFromToIndex(from, to, len(a)); if (isNullOrEmpty(a)) { if (to > 0) { throw new IndexOutOfBoundsException(); } return 0; } int sum = 0; for (int i = from; i < to; i++) { sum += a[i]; } return sum; } /** * * @param a * @return a long number */ @SafeVarargs public static int sum(final int... a) { if (isNullOrEmpty(a)) { return 0; } return sum(a, 0, a.length); } /** * * @param a * @param from * @param to * @return */ public static int sum(final int[] a, final int from, final int to) { checkFromToIndex(from, to, len(a)); if (isNullOrEmpty(a)) { if (to > 0) { throw new IndexOutOfBoundsException(); } return 0; } int sum = 0; for (int i = from; i < to; i++) { sum += a[i]; } return sum; } /** * * @param a * @return a long number */ @SafeVarargs public static long sum(final long... a) { if (isNullOrEmpty(a)) { return 0L; } return sum(a, 0, a.length); } /** * * @param a * @param from * @param to * @return */ public static long sum(final long[] a, final int from, final int to) { checkFromToIndex(from, to, len(a)); if (isNullOrEmpty(a)) { if (to > 0) { throw new IndexOutOfBoundsException(); } return 0L; } long sum = 0; for (int i = from; i < to; i++) { sum += a[i]; } return sum; } /** * * @param a * @return a double number */ @SafeVarargs public static float sum(final float... a) { if (isNullOrEmpty(a)) { return 0f; } return sum(a, 0, a.length); } /** * * @param a * @param from * @param to * @return */ public static float sum(final float[] a, final int from, final int to) { checkFromToIndex(from, to, len(a)); if (isNullOrEmpty(a)) { if (to > 0) { throw new IndexOutOfBoundsException(); } return 0f; } final KahanSummation summation = new KahanSummation(); for (int i = from; i < to; i++) { summation.add(a[i]); } return (float) summation.sum(); } /** * * @param a * @return a double number */ @SafeVarargs public static double sum(final double... a) { if (isNullOrEmpty(a)) { return 0d; } return sum(a, 0, a.length); } /** * * @param a * @param from * @param to * @return */ public static double sum(final double[] a, final int from, final int to) { checkFromToIndex(from, to, len(a)); if (isNullOrEmpty(a)) { if (to > 0) { throw new IndexOutOfBoundsException(); } return 0d; } final KahanSummation summation = new KahanSummation(); for (int i = from; i < to; i++) { summation.add(a[i]); } return summation.sum(); } /** * * @param a * @return a double number */ @SafeVarargs public static double average(final char... a) { if (isNullOrEmpty(a)) { return 0d; } return average(a, 0, a.length); } /** * * @param a * @param from * @param to * @return */ public static double average(final char[] a, final int from, final int to) { checkFromToIndex(from, to, len(a)); if (isNullOrEmpty(a)) { if (to > 0) { throw new IndexOutOfBoundsException(); } return 0d; } else if (from == to) { return 0d; } return ((double) sum(a, from, to)) / (to - from); } /** * * @param a * @return a double number */ @SafeVarargs public static double average(final byte... a) { if (isNullOrEmpty(a)) { return 0d; } return average(a, 0, a.length); } /** * * @param a * @param from * @param to * @return */ public static double average(final byte[] a, final int from, final int to) { checkFromToIndex(from, to, len(a)); if (isNullOrEmpty(a)) { if (to > 0) { throw new IndexOutOfBoundsException(); } return 0d; } else if (from == to) { return 0d; } return ((double) sum(a, from, to)) / (to - from); } /** * * @param a * @return a double number */ @SafeVarargs public static double average(final short... a) { if (isNullOrEmpty(a)) { return 0d; } return average(a, 0, a.length); } /** * * @param a * @param from * @param to * @return */ public static double average(final short[] a, final int from, final int to) { checkFromToIndex(from, to, len(a)); if (isNullOrEmpty(a)) { if (to > 0) { throw new IndexOutOfBoundsException(); } return 0d; } else if (from == to) { return 0d; } return ((double) sum(a, from, to)) / (to - from); } /** * * @param a * @return a double number */ @SafeVarargs public static double average(final int... a) { if (isNullOrEmpty(a)) { return 0d; } return average(a, 0, a.length); } /** * * @param a * @param from * @param to * @return */ public static double average(final int[] a, final int from, final int to) { checkFromToIndex(from, to, len(a)); if (isNullOrEmpty(a)) { if (to > 0) { throw new IndexOutOfBoundsException(); } return 0d; } else if (from == to) { return 0d; } return ((double) sum(a, from, to)) / (to - from); } /** * * @param a * @return a double number */ @SafeVarargs public static double average(final long... a) { if (isNullOrEmpty(a)) { return 0d; } return average(a, 0, a.length); } /** * * @param a * @param from * @param to * @return */ public static double average(final long[] a, final int from, final int to) { checkFromToIndex(from, to, len(a)); if (isNullOrEmpty(a)) { if (to > 0) { throw new IndexOutOfBoundsException(); } return 0d; } else if (from == to) { return 0d; } return ((double) sum(a, from, to)) / (to - from); } /** * * @param a * @return a double number */ @SafeVarargs public static double average(final float... a) { if (isNullOrEmpty(a)) { return 0d; } return average(a, 0, a.length); } /** * * @param a * @param from * @param to * @return */ public static double average(final float[] a, final int from, final int to) { checkFromToIndex(from, to, len(a)); if (isNullOrEmpty(a)) { if (to > 0) { throw new IndexOutOfBoundsException(); } return 0d; } else if (from == to) { return 0d; } final KahanSummation summation = new KahanSummation(); for (int i = from; i < to; i++) { summation.add(a[i]); } return summation.average().orZero(); } /** * * @param a * @return a double number */ @SafeVarargs public static double average(final double... a) { if (isNullOrEmpty(a)) { return 0d; } return average(a, 0, a.length); } /** * * @param a * @param from * @param to * @return */ public static double average(final double[] a, final int from, final int to) { checkFromToIndex(from, to, len(a)); if (isNullOrEmpty(a)) { if (to > 0) { throw new IndexOutOfBoundsException(); } return 0d; } else if (from == to) { return 0d; } final KahanSummation summation = new KahanSummation(); for (int i = from; i < to; i++) { summation.add(a[i]); } return summation.average().orZero(); } /** *

* Gets the minimum of two char values. *

* * @param a * @param b * @return */ public static char min(final char a, final char b) { return (a <= b) ? a : b; } /** *

* Gets the minimum of two byte values. *

* * @param a * @param b * @return */ public static byte min(final byte a, final byte b) { return (a <= b) ? a : b; } /** *

* Gets the minimum of two short values. *

* * @param a * @param b * @return */ public static short min(final short a, final short b) { return (a <= b) ? a : b; } /** *

* Gets the minimum of two int values. *

* * @param a * @param b * @return */ public static int min(final int a, final int b) { return (a <= b) ? a : b; } /** *

* Gets the minimum of two long values. *

* * @param a * @param b * @return */ public static long min(final long a, final long b) { return (a <= b) ? a : b; } /** *

* Gets the minimum of two float values. *

* * @param a * @param b * @return */ public static float min(final float a, final float b) { return Math.min(a, b); } /** *

* Gets the minimum of two double values. *

* * @param a * @param b * @return */ public static double min(final double a, final double b) { return Math.min(a, b); } /** * * @param * @param a * @param b * @return */ public static > T min(final T a, final T b) { return (T) min(a, b, NULL_MAX_COMPARATOR); } /** * * @param * @param a * @param b * @param cmp * @return */ public static T min(final T a, final T b, final Comparator cmp) { return (cmp == null ? NULL_MAX_COMPARATOR : cmp).compare(a, b) <= 0 ? a : b; } /** *

* Gets the minimum of three char values. *

* * @param a * @param b * @param c * @return */ public static char min(final char a, final char b, final char c) { final char m = (a <= b) ? a : b; return (m <= c) ? m : c; } /** *

* Gets the minimum of three byte values. *

* * @param a * @param b * @param c * @return */ public static byte min(final byte a, final byte b, final byte c) { final byte m = (a <= b) ? a : b; return (m <= c) ? m : c; } /** *

* Gets the minimum of three short values. *

* * @param a * @param b * @param c * @return */ public static short min(final short a, final short b, final short c) { final short m = (a <= b) ? a : b; return (m <= c) ? m : c; } /** *

* Gets the minimum of three int values. *

* * @param a * @param b * @param c * @return */ public static int min(final int a, final int b, final int c) { final int m = (a <= b) ? a : b; return (m <= c) ? m : c; } /** *

* Gets the minimum of three long values. *

* * @param a * @param b * @param c * @return */ public static long min(final long a, final long b, final long c) { final long m = (a <= b) ? a : b; return (m <= c) ? m : c; } /** *

* Gets the minimum of three float values. *

* * @param a * @param b * @param c * @return */ public static float min(final float a, final float b, final float c) { return Math.min(Math.min(a, b), c); } /** *

* Gets the minimum of three double values. *

* * @param a * @param b * @param c * @return */ public static double min(final double a, final double b, final double c) { return Math.min(Math.min(a, b), c); } /** * * @param * @param a * @param b * @param c * @return */ public static > T min(final T a, final T b, final T c) { return (T) min(a, b, c, NULL_MAX_COMPARATOR); } /** * * @param * @param a * @param b * @param c * @param cmp * @return */ public static T min(final T a, final T b, final T c, final Comparator cmp) { return min(min(a, b, cmp), c, cmp); } /** *

* Returns the minimum value in an array. *

* * @param a * an array, must not be null or empty * @return */ @SafeVarargs public static char min(final char... a) { checkArgNotNullOrEmpty(a, "The spcified array can not be null or empty"); if (isNullOrEmpty(a)) { throw new IllegalArgumentException("The spcified array can not be null or empty"); } return min(a, 0, a.length); } /** * * @param a * @param from * @param to * @return */ public static char min(final char[] a, final int from, final int to) { if (isNullOrEmpty(a) || to - from < 1) { throw new IllegalArgumentException("The spcified array can not be null or empty"); } char min = a[from]; for (int i = from + 1; i < to; i++) { if (a[i] < min) { min = a[i]; } } return min; } /** *

* Returns the minimum value in an array. *

* * @param a * an array, must not be null or empty * @return */ @SafeVarargs public static byte min(final byte... a) { checkArgNotNullOrEmpty(a, "The spcified array can not be null or empty"); return min(a, 0, a.length); } /** * * @param a * @param from * @param to * @return */ public static byte min(final byte[] a, final int from, final int to) { if (isNullOrEmpty(a) || to - from < 1) { throw new IllegalArgumentException("The spcified array can not be null or empty"); } byte min = a[from]; for (int i = from + 1; i < to; i++) { if (a[i] < min) { min = a[i]; } } return min; } /** *

* Returns the minimum value in an array. *

* * @param a * an array, must not be null or empty * @return */ @SafeVarargs public static short min(final short... a) { checkArgNotNullOrEmpty(a, "The spcified array can not be null or empty"); return min(a, 0, a.length); } /** * * @param a * @param from * @param to * @return */ public static short min(final short[] a, final int from, final int to) { if (isNullOrEmpty(a) || to - from < 1) { throw new IllegalArgumentException("The spcified array can not be null or empty"); } short min = a[from]; for (int i = from + 1; i < to; i++) { if (a[i] < min) { min = a[i]; } } return min; } /** *

* Returns the minimum value in an array. *

* * @param a * an array, must not be null or empty * @return */ @SafeVarargs public static int min(final int... a) { checkArgNotNullOrEmpty(a, "The spcified array can not be null or empty"); return min(a, 0, a.length); } /** * * @param a * @param from * @param to * @return */ public static int min(final int[] a, final int from, final int to) { if (isNullOrEmpty(a) || to - from < 1) { throw new IllegalArgumentException("The spcified array can not be null or empty"); } int min = a[from]; for (int i = from + 1; i < to; i++) { if (a[i] < min) { min = a[i]; } } return min; } // Min in array // -------------------------------------------------------------------- /** *

* Returns the minimum value in an array. *

* * @param a * an array, must not be null or empty * @return */ @SafeVarargs public static long min(final long... a) { checkArgNotNullOrEmpty(a, "The spcified array can not be null or empty"); return min(a, 0, a.length); } /** * * @param a * @param from * @param to * @return */ public static long min(final long[] a, final int from, final int to) { if (isNullOrEmpty(a) || to - from < 1) { throw new IllegalArgumentException("The spcified array can not be null or empty"); } long min = a[from]; for (int i = from + 1; i < to; i++) { if (a[i] < min) { min = a[i]; } } return min; } /** *

* Returns the minimum value in an array. *

* * @param a * an array, must not be null or empty * @return * @see IEEE754rUtil#min(float[]) IEEE754rUtils for a version of this method * that handles NaN differently */ @SafeVarargs public static float min(final float... a) { checkArgNotNullOrEmpty(a, "The spcified array can not be null or empty"); return min(a, 0, a.length); } /** * * @param a * @param from * @param to * @return */ public static float min(final float[] a, final int from, final int to) { if (isNullOrEmpty(a) || to - from < 1) { throw new IllegalArgumentException("The spcified array can not be null or empty"); } float min = a[from]; for (int i = from + 1; i < to; i++) { min = Math.min(min, a[i]); if (Float.isNaN(min)) { return min; } } return min; } /** *

* Returns the minimum value in an array. *

* * @param a * an array, must not be null or empty * @return * @see IEEE754rUtil#min(double[]) IEEE754rUtils for a version of this * method that handles NaN differently */ @SafeVarargs public static double min(final double... a) { checkArgNotNullOrEmpty(a, "The spcified array can not be null or empty"); return min(a, 0, a.length); } /** * * @param a * @param from * @param to * @return */ public static double min(final double[] a, final int from, final int to) { if (isNullOrEmpty(a) || to - from < 1) { throw new IllegalArgumentException("The spcified array can not be null or empty"); } double min = a[from]; for (int i = from + 1; i < to; i++) { min = Math.min(min, a[i]); if (Double.isNaN(min)) { return min; } } return min; } /** * Returns the minimum element in the array. * * @param * @param a an array, must not be null or empty * @return */ public static > T min(final T[] a) { checkArgNotNullOrEmpty(a, "The spcified array can not be null or empty"); return min(a, 0, a.length); } /** * * @param * @param a * @param from * @param to * @return */ public static > T min(final T[] a, final int from, final int to) { return (T) min(a, from, to, NULL_MAX_COMPARATOR); } /** * Returns the minimum element in the array. * * @param * @param a an array, must not be null or empty * @param cmp * @return */ public static T min(final T[] a, final Comparator cmp) { checkArgNotNullOrEmpty(a, "The spcified array can not be null or empty"); return min(a, 0, a.length, cmp); } /** * * @param * @param a * @param from * @param to * @param cmp * @return */ public static T min(final T[] a, final int from, final int to, Comparator cmp) { if (isNullOrEmpty(a) || to - from < 1) { throw new IllegalArgumentException("The spcified array can not be null or empty"); } cmp = cmp == null ? NULL_MAX_COMPARATOR : cmp; T candidate = a[from]; for (int i = from + 1; i < to; i++) { if (cmp.compare(a[i], candidate) < 0) { candidate = a[i]; } if (candidate == null && cmp == NULL_MIN_COMPARATOR) { return null; } } return candidate; } /** * * @param * @param c * @return */ public static > T min(final Collection c) { checkArgNotNullOrEmpty(c, "The spcified collection can not be null or empty"); return min(c, 0, c.size()); } /** * * @param * @param c * @param from * @param to * @return */ public static > T min(final Collection c, final int from, final int to) { checkArgNotNullOrEmpty(c, "The spcified collection can not be null or empty"); return (T) min(c, from, to, NULL_MAX_COMPARATOR); } /** * * @param * @param c * @param cmp * @return */ public static T min(final Collection c, Comparator cmp) { checkArgNotNullOrEmpty(c, "The spcified collection can not be null or empty"); return min(c, 0, c.size(), cmp); } /** * Returns the minimum element in the collection. * * @param * @param c * @param from * @param to * @param cmp * @return */ public static T min(final Collection c, final int from, final int to, Comparator cmp) { checkFromToIndex(from, to, size(c)); if (isNullOrEmpty(c) || to - from < 1 || from >= c.size()) { throw new IllegalArgumentException("The size of collection can not be null or empty"); } cmp = cmp == null ? NULL_MAX_COMPARATOR : cmp; T candidate = null; T e = null; if (c instanceof List && c instanceof RandomAccess) { final List list = (List) c; candidate = list.get(from); for (int i = from + 1; i < to; i++) { e = list.get(i); if (cmp.compare(e, candidate) < 0) { candidate = e; } if (candidate == null && cmp == NULL_MIN_COMPARATOR) { return null; } } } else { final Iterator it = c.iterator(); for (int i = 0; i < to; i++) { if (i < from) { it.next(); continue; } else if (i == from) { candidate = it.next(); } else { e = it.next(); if (cmp.compare(e, candidate) < 0) { candidate = e; } if (candidate == null && cmp == NULL_MIN_COMPARATOR) { return null; } } } } return candidate; } /** * * @param * @param a * @return */ public static > List minAll(final T[] a) { return minAll(a, NULL_MAX_COMPARATOR); } /** * * @param * @param a * @param cmp * @return */ public static List minAll(final T[] a, Comparator cmp) { if (isNullOrEmpty(a)) { return new ArrayList<>(); } cmp = cmp == null ? NULL_MAX_COMPARATOR : cmp; final List result = new ArrayList<>(); T candicate = a[0]; int cp = 0; result.add(candicate); for (int i = 1, len = a.length; i < len; i++) { cp = cmp.compare(a[i], candicate); if (cp == 0) { result.add(a[i]); } else if (cp < 0) { result.clear(); result.add(a[i]); candicate = a[i]; } } return result; } /** * * @param * @param c * @return */ public static > List minAll(final Collection c) { return minAll(c, NULL_MAX_COMPARATOR); } /** * * @param * @param c * @param cmp * @return */ public static List minAll(final Collection c, Comparator cmp) { if (isNullOrEmpty(c)) { return new ArrayList<>(); } cmp = cmp == null ? NULL_MAX_COMPARATOR : cmp; final Iterator iter = c.iterator(); final List result = new ArrayList<>(); T candicate = iter.next(); T next = null; int cp = 0; result.add(candicate); while (iter.hasNext()) { next = iter.next(); cp = cmp.compare(next, candicate); if (cp == 0) { result.add(next); } else if (cp < 0) { result.clear(); result.add(next); candicate = next; } } return result; } /** *

* Gets the maximum of two char values. *

* * @param a * @param b * @return */ public static char max(final char a, final char b) { return (a >= b) ? a : b; } /** *

* Gets the maximum of two byte values. *

* * @param a * @param b * @return */ public static byte max(final byte a, final byte b) { return (a >= b) ? a : b; } /** *

* Gets the maximum of two short values. *

* * @param a * @param b * @return */ public static short max(final short a, final short b) { return (a >= b) ? a : b; } /** *

* Gets the maximum of two int values. *

* * @param a * @param b * @return */ public static int max(final int a, final int b) { return (a >= b) ? a : b; } /** *

* Gets the maximum of two long values. *

* * @param a * @param b * @return */ public static long max(final long a, final long b) { return (a >= b) ? a : b; } /** *

* Gets the maximum of two float values. *

* * @param a * @param b * @return */ public static float max(final float a, final float b) { return Math.max(a, b); } /** *

* Gets the maximum of two double values. *

* * @param a * @param b * @return */ public static double max(final double a, final double b) { return Math.max(a, b); } /** * * @param * @param a * @param b * @return */ public static > T max(final T a, final T b) { return (T) max(a, b, NULL_MIN_COMPARATOR); } /** * * @param * @param a * @param b * @param cmp * @return */ public static T max(final T a, final T b, final Comparator cmp) { return (cmp == null ? NULL_MIN_COMPARATOR : cmp).compare(a, b) >= 0 ? a : b; } /** * Gets the maximum of three char values. * * @param a * @param b * @param c * @return */ public static char max(final char a, final char b, final char c) { final char m = (a >= b) ? a : b; return (m >= c) ? m : c; } /** * Gets the maximum of three byte values. * * @param a * @param b * @param c * @return */ public static byte max(final byte a, final byte b, final byte c) { final byte m = (a >= b) ? a : b; return (m >= c) ? m : c; } /** * Gets the maximum of three short values. * * @param a * @param b * @param c * @return */ public static short max(final short a, final short b, final short c) { final short m = (a >= b) ? a : b; return (m >= c) ? m : c; } /** * Gets the maximum of three int values. * * @param a * @param b * @param c * @return */ public static int max(final int a, final int b, final int c) { final int m = (a >= b) ? a : b; return (m >= c) ? m : c; } /** * Gets the maximum of three long values. * * @param a * @param b * @param c * @return */ public static long max(final long a, final long b, final long c) { final long m = (a >= b) ? a : b; return (m >= c) ? m : c; } /** * Gets the maximum of three float values. * * @param a * @param b * @param c * @return */ public static float max(final float a, final float b, final float c) { return Math.max(Math.max(a, b), c); } /** * Gets the maximum of three double values. * * @param a * @param b * @param c * @return */ public static double max(final double a, final double b, final double c) { return Math.max(Math.max(a, b), c); } /** * * @param * @param a * @param b * @param c * @return */ public static > T max(final T a, final T b, final T c) { return (T) max(a, b, c, NULL_MIN_COMPARATOR); } /** * * @param * @param a * @param b * @param c * @param cmp * @return */ public static T max(final T a, final T b, final T c, final Comparator cmp) { return max(max(a, b, cmp), c, cmp); } /** *

* Returns the maximum value in an array. *

* * @param a * an array, must not be null or empty * @return */ @SafeVarargs public static char max(final char... a) { checkArgNotNullOrEmpty(a, "The spcified array can not be null or empty"); return max(a, 0, a.length); } /** * * @param a * @param from * @param to * @return */ public static char max(final char[] a, final int from, final int to) { if (isNullOrEmpty(a) || to - from < 1) { throw new IllegalArgumentException("The spcified array can not be null or empty"); } char max = a[from]; for (int i = from + 1; i < to; i++) { if (a[i] > max) { max = a[i]; } } return max; } /** *

* Returns the maximum value in an array. *

* * @param a * an array, must not be null or empty * @return */ @SafeVarargs public static byte max(final byte... a) { checkArgNotNullOrEmpty(a, "The spcified array can not be null or empty"); return max(a, 0, a.length); } /** * * @param a * @param from * @param to * @return */ public static byte max(final byte[] a, final int from, final int to) { if (isNullOrEmpty(a) || to - from < 1) { throw new IllegalArgumentException("The spcified array can not be null or empty"); } byte max = a[from]; for (int i = from + 1; i < to; i++) { if (a[i] > max) { max = a[i]; } } return max; } /** *

* Returns the maximum value in an array. *

* * @param a * an array, must not be null or empty * @return */ @SafeVarargs public static short max(final short... a) { checkArgNotNullOrEmpty(a, "The spcified array can not be null or empty"); return max(a, 0, a.length); } /** * * @param a * @param from * @param to * @return */ public static short max(final short[] a, final int from, final int to) { if (isNullOrEmpty(a) || to - from < 1) { throw new IllegalArgumentException("The spcified array can not be null or empty"); } short max = a[from]; for (int i = from + 1; i < to; i++) { if (a[i] > max) { max = a[i]; } } return max; } /** *

* Returns the maximum value in an array. *

* * @param a * an array, must not be null or empty * @return */ @SafeVarargs public static int max(final int... a) { checkArgNotNullOrEmpty(a, "The spcified array can not be null or empty"); return max(a, 0, a.length); } /** * * @param a * @param from * @param to * @return */ public static int max(final int[] a, final int from, final int to) { if (isNullOrEmpty(a) || to - from < 1) { throw new IllegalArgumentException("The spcified array can not be null or empty"); } int max = a[from]; for (int i = from + 1; i < to; i++) { if (a[i] > max) { max = a[i]; } } return max; } /** *

* Returns the maximum value in an array. *

* * @param a * an array, must not be null or empty * @return */ @SafeVarargs public static long max(final long... a) { checkArgNotNullOrEmpty(a, "The spcified array can not be null or empty"); return max(a, 0, a.length); } /** * * @param a * @param from * @param to * @return */ public static long max(final long[] a, final int from, final int to) { if (isNullOrEmpty(a) || to - from < 1) { throw new IllegalArgumentException("The spcified array can not be null or empty"); } long max = a[from]; for (int i = from + 1; i < to; i++) { if (a[i] > max) { max = a[i]; } } return max; } /** *

* Returns the maximum value in an array. *

* * @param a * an array, must not be null or empty * @return * @see IEEE754rUtil#max(float[]) IEEE754rUtils for a version of this method * that handles NaN differently */ @SafeVarargs public static float max(final float... a) { checkArgNotNullOrEmpty(a, "The spcified array can not be null or empty"); return max(a, 0, a.length); } /** * * @param a * @param from * @param to * @return */ public static float max(final float[] a, final int from, final int to) { if (isNullOrEmpty(a) || to - from < 1) { throw new IllegalArgumentException("The spcified array can not be null or empty"); } float max = a[from]; for (int i = from + 1; i < to; i++) { max = Math.max(max, a[i]); if (Float.isNaN(max)) { return max; } } return max; } /** *

* Returns the maximum value in an array. *

* * @param a * an array, must not be null or empty * @return * @see IEEE754rUtil#max(double[]) IEEE754rUtils for a version of this * method that handles NaN differently */ @SafeVarargs public static double max(final double... a) { checkArgNotNullOrEmpty(a, "The spcified array can not be null or empty"); return max(a, 0, a.length); } /** * * @param a * @param from * @param to * @return */ public static double max(final double[] a, final int from, final int to) { if (isNullOrEmpty(a) || to - from < 1) { throw new IllegalArgumentException("The spcified array can not be null or empty"); } double max = a[from]; for (int i = from + 1; i < to; i++) { max = Math.max(max, a[i]); if (Double.isNaN(max)) { return max; } } return max; } /** * Returns the maximum element in the array. * * @param * @param a an array, must not be null or empty * @return * @throws IllegalArgumentException if a is null or empty. */ public static > T max(final T[] a) { checkArgNotNullOrEmpty(a, "The spcified array can not be null or empty"); return max(a, 0, a.length); } /** * * @param * @param a * @param from * @param to * @return */ public static > T max(final T[] a, final int from, final int to) { return (T) max(a, from, to, NULL_MIN_COMPARATOR); } /** * Returns the maximum element in the array. * * @param * @param a an array, must not be null or empty * @param cmp * @return */ public static T max(final T[] a, final Comparator cmp) { checkArgNotNullOrEmpty(a, "The spcified array can not be null or empty"); return max(a, 0, a.length, cmp); } /** * * @param * @param a * @param from * @param to * @param cmp * @return */ public static T max(final T[] a, final int from, final int to, Comparator cmp) { if (isNullOrEmpty(a) || to - from < 1) { throw new IllegalArgumentException("The spcified array can not be null or empty"); } cmp = cmp == null ? NULL_MIN_COMPARATOR : cmp; T candidate = a[from]; for (int i = from + 1; i < to; i++) { if (cmp.compare(a[i], candidate) > 0) { candidate = a[i]; } if (candidate == null && cmp == NULL_MAX_COMPARATOR) { return null; } } return candidate; } /** * * @param * @param c * @return */ public static > T max(final Collection c) { checkArgNotNullOrEmpty(c, "The spcified collection can not be null or empty"); return max(c, 0, c.size()); } /** * * @param * @param c * @param from * @param to * @return */ public static > T max(final Collection c, final int from, final int to) { checkArgNotNullOrEmpty(c, "The spcified collection can not be null or empty"); return (T) max(c, from, to, NULL_MIN_COMPARATOR); } /** * * @param * @param c * @param cmp * @return */ public static T max(final Collection c, Comparator cmp) { checkArgNotNullOrEmpty(c, "The spcified collection can not be null or empty"); return max(c, 0, c.size(), cmp); } /** * Returns the maximum element in the collection. * * @param * @param c * @param from * @param to * @param cmp * @return */ public static T max(final Collection c, final int from, final int to, Comparator cmp) { checkFromToIndex(from, to, size(c)); if (isNullOrEmpty(c) || to - from < 1 || from >= c.size()) { throw new IllegalArgumentException("The size of collection can not be null or empty"); } cmp = cmp == null ? NULL_MIN_COMPARATOR : cmp; T candidate = null; T e = null; if (c instanceof List && c instanceof RandomAccess) { final List list = (List) c; candidate = list.get(from); for (int i = from + 1; i < to; i++) { e = list.get(i); if (cmp.compare(e, candidate) > 0) { candidate = e; } if (candidate == null && cmp == NULL_MAX_COMPARATOR) { return null; } } } else { final Iterator it = c.iterator(); for (int i = 0; i < to; i++) { if (i < from) { it.next(); continue; } else if (i == from) { candidate = it.next(); } else { e = it.next(); if (cmp.compare(e, candidate) > 0) { candidate = e; } } if (candidate == null && cmp == NULL_MAX_COMPARATOR) { return null; } } } return candidate; } /** * * @param * @param a * @return */ public static > List maxAll(final T[] a) { return maxAll(a, NULL_MIN_COMPARATOR); } /** * * @param * @param a * @param cmp * @return */ public static List maxAll(final T[] a, Comparator cmp) { if (isNullOrEmpty(a)) { return new ArrayList<>(); } cmp = cmp == null ? NULL_MIN_COMPARATOR : cmp; final List result = new ArrayList<>(); T candicate = a[0]; int cp = 0; result.add(candicate); for (int i = 1, len = a.length; i < len; i++) { cp = cmp.compare(a[i], candicate); if (cp == 0) { result.add(a[i]); } else if (cp > 0) { result.clear(); result.add(a[i]); candicate = a[i]; } } return result; } /** * * @param * @param c * @return */ public static > List maxAll(final Collection c) { return maxAll(c, NULL_MIN_COMPARATOR); } /** * * @param * @param c * @param cmp * @return */ public static List maxAll(final Collection c, Comparator cmp) { if (isNullOrEmpty(c)) { return new ArrayList<>(); } cmp = cmp == null ? NULL_MIN_COMPARATOR : cmp; final Iterator iter = c.iterator(); final List result = new ArrayList<>(); T candicate = iter.next(); T next = null; int cp = 0; result.add(candicate); while (iter.hasNext()) { next = iter.next(); cp = cmp.compare(next, candicate); if (cp == 0) { result.add(next); } else if (cp > 0) { result.clear(); result.add(next); candicate = next; } } return result; } /** * Gets the median of three values. * * @param a * @param b * @param c * @return * @see #median(int...) */ public static char median(final char a, final char b, final char c) { if ((a >= b && a <= c) || (a >= c && a <= b)) { return a; } else if ((b >= a && b <= c) || (b >= c && b <= a)) { return b; } else { return c; } } /** * Gets the median of three values. * * @param a * @param b * @param c * @return * @see #median(int...) */ public static byte median(final byte a, final byte b, final byte c) { if ((a >= b && a <= c) || (a >= c && a <= b)) { return a; } else if ((b >= a && b <= c) || (b >= c && b <= a)) { return b; } else { return c; } } /** * Gets the median of three values. * * @param a * @param b * @param c * @return * @see #median(int...) */ public static short median(final short a, final short b, final short c) { if ((a >= b && a <= c) || (a >= c && a <= b)) { return a; } else if ((b >= a && b <= c) || (b >= c && b <= a)) { return b; } else { return c; } } /** * Gets the median of three values. * * @param a * @param b * @param c * @return * @see #median(int...) */ public static int median(final int a, final int b, final int c) { if ((a >= b && a <= c) || (a >= c && a <= b)) { return a; } else if ((b >= a && b <= c) || (b >= c && b <= a)) { return b; } else { return c; } } /** * Gets the median of three values. * * @param a * @param b * @param c * @return * @see #median(int...) */ public static long median(final long a, final long b, final long c) { if ((a >= b && a <= c) || (a >= c && a <= b)) { return a; } else if ((b >= a && b <= c) || (b >= c && b <= a)) { return b; } else { return c; } } /** * Gets the median of three values. * * @param a * @param b * @param c * @return * @see #median(int...) */ public static float median(final float a, final float b, final float c) { int ab = Float.compare(a, b); int ac = Float.compare(a, c); int bc = 0; if ((ab >= 0 && ac <= 0) || (ac >= 0 && ab <= 0)) { return a; } else if ((((bc = Float.compare(b, c)) <= 0) && ab <= 0) || (bc >= 0 && ab >= 0)) { return b; } else { return c; } } /** * Gets the median of three values. * * @param a * @param b * @param c * @return * @see #median(int...) */ public static double median(final double a, final double b, final double c) { int ab = Double.compare(a, b); int ac = Double.compare(a, c); int bc = 0; if ((ab >= 0 && ac <= 0) || (ac >= 0 && ab <= 0)) { return a; } else if ((((bc = Double.compare(b, c)) <= 0) && ab <= 0) || (bc >= 0 && ab >= 0)) { return b; } else { return c; } } /** * Gets the median of three values. * * @param * @param a * @param b * @param c * @return * @see #median(int...) */ public static > T median(final T a, final T b, final T c) { return (T) median(a, b, c, NATURAL_ORDER); } /** * Gets the median of three values. * * @param * @param a * @param b * @param c * @param cmp * @return * @see #median(int...) */ public static T median(final T a, final T b, final T c, Comparator cmp) { cmp = cmp == null ? NATURAL_ORDER : cmp; int ab = cmp.compare(a, b); int ac = cmp.compare(a, c); int bc = 0; if ((ab >= 0 && ac <= 0) || (ac >= 0 && ab <= 0)) { return a; } else if ((((bc = cmp.compare(b, c)) <= 0) && ab <= 0) || (bc >= 0 && ab >= 0)) { return b; } else { return c; } } /** * Returns the length / 2 + 1 largest value in the specified array. * * @param a an array, must not be null or empty * @return * @see #median(int...) */ @SafeVarargs public static char median(final char... a) { checkArgNotNullOrEmpty(a, "The spcified array can not be null or empty"); return median(a, 0, a.length); } /** * * @param a * @param from * @param to * @return */ public static char median(final char[] a, final int from, final int to) { if (isNullOrEmpty(a) || to - from < 1) { throw new IllegalArgumentException("The spcified array can not be null or empty"); } checkFromToIndex(from, to, a.length); final int len = to - from; if (len == 1) { return a[from]; } else if (len == 2) { return min(a[from], a[from + 1]); } else if (len == 3) { return median(a[from], a[from + 1], a[from + 2]); } else { return kthLargest(a, from, to, len / 2 + 1); } } /** * Returns the length / 2 + 1 largest value in the specified array. * * @param a an array, must not be null or empty * @return * @see #median(int...) */ @SafeVarargs public static byte median(final byte... a) { checkArgNotNullOrEmpty(a, "The spcified array can not be null or empty"); return median(a, 0, a.length); } /** * * @param a * @param from * @param to * @return */ public static byte median(final byte[] a, final int from, final int to) { if (isNullOrEmpty(a) || to - from < 1) { throw new IllegalArgumentException("The spcified array can not be null or empty"); } checkFromToIndex(from, to, a.length); final int len = to - from; if (len == 1) { return a[from]; } else if (len == 2) { return min(a[from], a[from + 1]); } else if (len == 3) { return median(a[from], a[from + 1], a[from + 2]); } else { return kthLargest(a, from, to, len / 2 + 1); } } /** * Returns the length / 2 + 1 largest value in the specified array. * * @param a an array, must not be null or empty * @return * @see #median(int...) */ @SafeVarargs public static short median(final short... a) { checkArgNotNullOrEmpty(a, "The spcified array can not be null or empty"); return median(a, 0, a.length); } /** * * @param a * @param from * @param to * @return */ public static short median(final short[] a, final int from, final int to) { if (isNullOrEmpty(a) || to - from < 1) { throw new IllegalArgumentException("The spcified array can not be null or empty"); } checkFromToIndex(from, to, a.length); final int len = to - from; if (len == 1) { return a[from]; } else if (len == 2) { return min(a[from], a[from + 1]); } else if (len == 3) { return median(a[from], a[from + 1], a[from + 2]); } else { return kthLargest(a, from, to, len / 2 + 1); } } /** * Returns the length / 2 + 1 largest value in the specified array. * * @param a an array, must not be null or empty * @return * @see #median(int...) */ @SafeVarargs public static int median(final int... a) { checkArgNotNullOrEmpty(a, "The spcified array can not be null or empty"); return median(a, 0, a.length); } /** * * @param a * @param from * @param to * @return */ public static int median(final int[] a, final int from, final int to) { if (isNullOrEmpty(a) || to - from < 1) { throw new IllegalArgumentException("The spcified array can not be null or empty"); } checkFromToIndex(from, to, a.length); final int len = to - from; if (len == 1) { return a[from]; } else if (len == 2) { return min(a[from], a[from + 1]); } else if (len == 3) { return median(a[from], a[from + 1], a[from + 2]); } else { return kthLargest(a, from, to, len / 2 + 1); } } /** * Returns the length / 2 + 1 largest value in the specified array. * * @param a an array, must not be null or empty * @return * @see #median(int...) */ @SafeVarargs public static long median(final long... a) { checkArgNotNullOrEmpty(a, "The spcified array can not be null or empty"); return median(a, 0, a.length); } /** * * @param a * @param from * @param to * @return */ public static long median(final long[] a, final int from, final int to) { if (isNullOrEmpty(a) || to - from < 1) { throw new IllegalArgumentException("The spcified array can not be null or empty"); } checkFromToIndex(from, to, a.length); final int len = to - from; if (len == 1) { return a[from]; } else if (len == 2) { return min(a[from], a[from + 1]); } else if (len == 3) { return median(a[from], a[from + 1], a[from + 2]); } else { return kthLargest(a, from, to, len / 2 + 1); } } /** * Returns the length / 2 + 1 largest value in the specified array. * * @param a an array, must not be null or empty * @return * @see #median(int...) */ @SafeVarargs public static float median(final float... a) { checkArgNotNullOrEmpty(a, "The spcified array can not be null or empty"); return median(a, 0, a.length); } /** * * @param a * @param from * @param to * @return */ public static float median(final float[] a, final int from, final int to) { if (isNullOrEmpty(a) || to - from < 1) { throw new IllegalArgumentException("The spcified array can not be null or empty"); } checkFromToIndex(from, to, a.length); final int len = to - from; if (len == 1) { return a[from]; } else if (len == 2) { return min(a[from], a[from + 1]); } else if (len == 3) { return median(a[from], a[from + 1], a[from + 2]); } else { return kthLargest(a, from, to, len / 2 + 1); } } /** * Returns the length / 2 + 1 largest value in the specified array. * * @param a an array, must not be null or empty * @return * @see #median(int...) */ @SafeVarargs public static double median(final double... a) { checkArgNotNullOrEmpty(a, "The spcified array can not be null or empty"); return median(a, 0, a.length); } /** * * @param a * @param from * @param to * @return */ public static double median(final double[] a, final int from, final int to) { if (isNullOrEmpty(a) || to - from < 1) { throw new IllegalArgumentException("The spcified array can not be null or empty"); } checkFromToIndex(from, to, a.length); final int len = to - from; if (len == 1) { return a[from]; } else if (len == 2) { return min(a[from], a[from + 1]); } else if (len == 3) { return median(a[from], a[from + 1], a[from + 2]); } else { return kthLargest(a, from, to, len / 2 + 1); } } /** * Returns the length / 2 + 1 largest value in the specified array. * * @param * @param a an array, must not be null or empty * @return * @see #median(int...) */ public static > T median(final T[] a) { checkArgNotNullOrEmpty(a, "The spcified array can not be null or empty"); return median(a, 0, a.length); } /** * * @param * @param a * @param from * @param to * @return */ public static > T median(final T[] a, final int from, final int to) { if (isNullOrEmpty(a) || to - from < 1) { throw new IllegalArgumentException("The spcified array can not be null or empty"); } return (T) median(a, from, to, NATURAL_ORDER); } /** * Returns the length / 2 + 1 largest value in the specified array. * * @param * @param a an array, must not be null or empty * @param cmp * @return * @see #median(int...) */ public static T median(final T[] a, Comparator cmp) { checkArgNotNullOrEmpty(a, "The spcified array can not be null or empty"); return median(a, 0, a.length, cmp); } /** * * @param * @param a * @param from * @param to * @param cmp * @return */ public static T median(final T[] a, final int from, final int to, Comparator cmp) { if (isNullOrEmpty(a) || to - from < 1) { throw new IllegalArgumentException("The spcified array can not be null or empty"); } checkFromToIndex(from, to, a.length); cmp = cmp == null ? NATURAL_ORDER : cmp; final int len = to - from; return kthLargest(a, from, to, len / 2 + 1, cmp); } /** * Returns the length / 2 + 1 largest value in the specified array. * * @param * @param c * @return * @see #median(int...) */ public static > T median(final Collection c) { checkArgNotNullOrEmpty(c, "The spcified collection can not be null or empty"); return median(c, 0, c.size()); } /** * * @param * @param c * @param from * @param to * @return */ public static > T median(final Collection c, final int from, final int to) { return (T) median(c, from, to, NATURAL_ORDER); } /** * Returns the length / 2 + 1 largest value in the specified array. * * @param * @param c * @param cmp * @return * @see #median(int...) */ public static T median(final Collection c, Comparator cmp) { checkArgNotNullOrEmpty(c, "The spcified collection can not be null or empty"); return median(c, 0, c.size(), cmp); } /** * * @param * @param c * @param from * @param to * @param cmp * @return */ public static T median(final Collection c, final int from, final int to, Comparator cmp) { if (isNullOrEmpty(c) || to - from < 1) { throw new IllegalArgumentException("The length of collection can not be null or empty"); } checkFromToIndex(from, to, c.size()); cmp = cmp == null ? NATURAL_ORDER : cmp; final int len = to - from; return kthLargest(c, from, to, len / 2 + 1, cmp); } /** * * @param a * @param k * @return * @throws IllegalArgumentException if the length of the specified array is less than k. */ public static char kthLargest(final char[] a, final int k) { checkArgNotNullOrEmpty(a, "The spcified array can not be null or empty"); return Array.kthLargest(a, k); } /** * * @param a * @param from * @param to * @param k * @return * @throws IllegalArgumentException if to - from is less than k. */ public static char kthLargest(final char[] a, final int from, final int to, final int k) { if (isNullOrEmpty(a) || to - from < 1) { throw new IllegalArgumentException("The spcified array can not be null or empty"); } return Array.kthLargest(a, from, to, k); } /** * * @param a * @param k * @return * @throws IllegalArgumentException if the length of the specified array is less than k. */ public static byte kthLargest(final byte[] a, final int k) { checkArgNotNullOrEmpty(a, "The spcified array can not be null or empty"); return Array.kthLargest(a, k); } /** * * @param a * @param from * @param to * @param k * @return * @throws IllegalArgumentException if to - from is less than k. */ public static byte kthLargest(final byte[] a, final int from, final int to, final int k) { if (isNullOrEmpty(a) || to - from < 1) { throw new IllegalArgumentException("The spcified array can not be null or empty"); } return Array.kthLargest(a, from, to, k); } /** * * @param a * @param k * @return * @throws IllegalArgumentException if the length of the specified array is less than k. */ public static short kthLargest(final short[] a, final int k) { checkArgNotNullOrEmpty(a, "The spcified array can not be null or empty"); return Array.kthLargest(a, k); } /** * * @param a * @param from * @param to * @param k * @return * @throws IllegalArgumentException if to - from is less than k. */ public static short kthLargest(final short[] a, final int from, final int to, final int k) { if (isNullOrEmpty(a) || to - from < 1) { throw new IllegalArgumentException("The spcified array can not be null or empty"); } return Array.kthLargest(a, from, to, k); } /** * * @param a * @param k * @return * @throws IllegalArgumentException if the length of the specified array is less than k. */ public static int kthLargest(final int[] a, final int k) { checkArgNotNullOrEmpty(a, "The spcified array can not be null or empty"); return Array.kthLargest(a, k); } /** * * @param a * @param from * @param to * @param k * @return * @throws IllegalArgumentException if to - from is less than k. */ public static int kthLargest(final int[] a, final int from, final int to, final int k) { if (isNullOrEmpty(a) || to - from < 1) { throw new IllegalArgumentException("The spcified array can not be null or empty"); } return Array.kthLargest(a, from, to, k); } /** * * @param a * @param k * @return * @throws IllegalArgumentException if the length of the specified array is less than k. */ public static long kthLargest(final long[] a, final int k) { checkArgNotNullOrEmpty(a, "The spcified array can not be null or empty"); return Array.kthLargest(a, k); } /** * * @param a * @param from * @param to * @param k * @return * @throws IllegalArgumentException if to - from is less than k. */ public static long kthLargest(final long[] a, final int from, final int to, final int k) { if (isNullOrEmpty(a) || to - from < 1) { throw new IllegalArgumentException("The spcified array can not be null or empty"); } return Array.kthLargest(a, from, to, k); } /** * * @param a * @param k * @return * @throws IllegalArgumentException if the length of the specified array is less than k. */ public static float kthLargest(final float[] a, final int k) { checkArgNotNullOrEmpty(a, "The spcified array can not be null or empty"); return Array.kthLargest(a, k); } /** * * @param a * @param from * @param to * @param k * @return * @throws IllegalArgumentException if to - from is less than k. */ public static float kthLargest(final float[] a, final int from, final int to, final int k) { if (isNullOrEmpty(a) || to - from < 1) { throw new IllegalArgumentException("The spcified array can not be null or empty"); } return Array.kthLargest(a, from, to, k); } /** * * @param a * @param k * @return * @throws IllegalArgumentException if the length of the specified array is less than k. */ public static double kthLargest(final double[] a, final int k) { checkArgNotNullOrEmpty(a, "The spcified array can not be null or empty"); return Array.kthLargest(a, k); } /** * * @param a * @param from * @param to * @param k * @return * @throws IllegalArgumentException if to - from is less than k. */ public static double kthLargest(final double[] a, final int from, final int to, final int k) { if (isNullOrEmpty(a) || to - from < 1) { throw new IllegalArgumentException("The spcified array can not be null or empty"); } return Array.kthLargest(a, from, to, k); } /** * * @param * @param a * @param k * @return * @throws IllegalArgumentException if the length of the specified array is less than k. */ public static > T kthLargest(final T[] a, final int k) { checkArgNotNullOrEmpty(a, "The spcified array can not be null or empty"); return Array.kthLargest(a, k); } /** * * @param * @param a * @param from * @param to * @param k * @return * @throws IllegalArgumentException if to - from is less than k. */ public static > T kthLargest(final T[] a, final int from, final int to, final int k) { if (isNullOrEmpty(a) || to - from < 1) { throw new IllegalArgumentException("The spcified array can not be null or empty"); } return Array.kthLargest(a, from, to, k); } /** * * @param * @param a * @param k * @param cmp * @return * @throws IllegalArgumentException if the length of the specified array is less than k. */ public static T kthLargest(final T[] a, final int k, final Comparator cmp) { checkArgNotNullOrEmpty(a, "The spcified array can not be null or empty"); return Array.kthLargest(a, k, cmp); } /** * * @param * @param a * @param from * @param to * @param k * @param cmp * @return * @throws IllegalArgumentException if to - from is less than k. */ public static T kthLargest(final T[] a, final int from, final int to, final int k, final Comparator cmp) { if (isNullOrEmpty(a) || to - from < 1) { throw new IllegalArgumentException("The spcified array can not be null or empty"); } return Array.kthLargest(a, from, to, k, cmp); } /** * * @param * @param c * @param k * @return * @throws IllegalArgumentException if the length of the specified array is less than k. */ public static > T kthLargest(final Collection c, final int k) { checkArgNotNullOrEmpty(c, "The spcified collection can not be null or empty"); return Array.kthLargest(c, k); } /** * * @param * @param c * @param from * @param to * @param k * @return * @throws IllegalArgumentException if to - from is less than k. */ public static > T kthLargest(final Collection c, final int from, final int to, final int k) { if (isNullOrEmpty(c) || to - from < 1) { throw new IllegalArgumentException("The length of collection can not be null or empty"); } return Array.kthLargest(c, from, to, k); } /** * * @param * @param c * @param k * @param cmp * @return * @throws IllegalArgumentException if the length of the specified array is less than k. */ public static T kthLargest(final Collection c, final int k, final Comparator cmp) { checkArgNotNullOrEmpty(c, "The spcified collection can not be null or empty"); return Array.kthLargest(c, k, cmp); } /** * * @param * @param c * @param from * @param to * @param k * @param cmp * @return * @throws IllegalArgumentException if to - from is less than k. */ public static T kthLargest(final Collection c, final int from, final int to, final int k, final Comparator cmp) { if (isNullOrEmpty(c) || to - from < 1) { throw new IllegalArgumentException("The length of collection can not be null or empty"); } return Array.kthLargest(c, from, to, k, cmp); } /** * Returns the elements at: Percentage * length of the specified array. * * @param sortedArray * @return * @throws IllegalArgumentException if the specified sortedArray is null or empty. */ public static Map percentiles(final char[] sortedArray) { checkArgNotNullOrEmpty(sortedArray, "The spcified 'sortedArray' can not be null or empty"); final int len = sortedArray.length; final Map m = new LinkedHashMap<>(initHashCapacity(Percentage.values().length)); for (Percentage p : Percentage.values()) { m.put(p, sortedArray[(int) (len * p.doubleValue())]); } return m; } /** * Returns the elements at: Percentage * length of the specified array. * * @param sortedArray * @return * @throws IllegalArgumentException if the specified sortedArray is null or empty. */ public static Map percentiles(final byte[] sortedArray) { checkArgNotNullOrEmpty(sortedArray, "The spcified 'sortedArray' can not be null or empty"); final int len = sortedArray.length; final Map m = new LinkedHashMap<>(initHashCapacity(Percentage.values().length)); for (Percentage p : Percentage.values()) { m.put(p, sortedArray[(int) (len * p.doubleValue())]); } return m; } /** * Returns the elements at: Percentage * length of the specified array. * * @param sortedArray * @return * @throws IllegalArgumentException if the specified sortedArray is null or empty. */ public static Map percentiles(final short[] sortedArray) { checkArgNotNullOrEmpty(sortedArray, "The spcified 'sortedArray' can not be null or empty"); final int len = sortedArray.length; final Map m = new LinkedHashMap<>(initHashCapacity(Percentage.values().length)); for (Percentage p : Percentage.values()) { m.put(p, sortedArray[(int) (len * p.doubleValue())]); } return m; } /** * Returns the elements at: Percentage * length of the specified array. * * @param sortedArray * @return * @throws IllegalArgumentException if the specified sortedArray is null or empty. */ public static Map percentiles(final int[] sortedArray) { checkArgNotNullOrEmpty(sortedArray, "The spcified 'sortedArray' can not be null or empty"); final int len = sortedArray.length; final Map m = new LinkedHashMap<>(initHashCapacity(Percentage.values().length)); for (Percentage p : Percentage.values()) { m.put(p, sortedArray[(int) (len * p.doubleValue())]); } return m; } /** * Returns the elements at: Percentage * length of the specified array. * * @param sortedArray * @return * @throws IllegalArgumentException if the specified sortedArray is null or empty. */ public static Map percentiles(final long[] sortedArray) { checkArgNotNullOrEmpty(sortedArray, "The spcified 'sortedArray' can not be null or empty"); final int len = sortedArray.length; final Map m = new LinkedHashMap<>(initHashCapacity(Percentage.values().length)); for (Percentage p : Percentage.values()) { m.put(p, sortedArray[(int) (len * p.doubleValue())]); } return m; } /** * Returns the elements at: Percentage * length of the specified array. * * @param sortedArray * @return * @throws IllegalArgumentException if the specified sortedArray is null or empty. */ public static Map percentiles(final float[] sortedArray) { checkArgNotNullOrEmpty(sortedArray, "The spcified 'sortedArray' can not be null or empty"); final int len = sortedArray.length; final Map m = new LinkedHashMap<>(initHashCapacity(Percentage.values().length)); for (Percentage p : Percentage.values()) { m.put(p, sortedArray[(int) (len * p.doubleValue())]); } return m; } /** * Returns the elements at: Percentage * length of the specified array. * * @param sortedArray * @return * @throws IllegalArgumentException if the specified sortedArray is null or empty. */ public static Map percentiles(final double[] sortedArray) { checkArgNotNullOrEmpty(sortedArray, "The spcified 'sortedArray' can not be null or empty"); final int len = sortedArray.length; final Map m = new LinkedHashMap<>(initHashCapacity(Percentage.values().length)); for (Percentage p : Percentage.values()) { m.put(p, sortedArray[(int) (len * p.doubleValue())]); } return m; } /** * Returns the elements at: Percentage * length of the specified array. * * @param * @param sortedArray * @return * @throws IllegalArgumentException if the specified sortedArray is null or empty. */ public static Map percentiles(final T[] sortedArray) { checkArgNotNullOrEmpty(sortedArray, "The spcified 'sortedArray' can not be null or empty"); final int len = sortedArray.length; final Map m = new LinkedHashMap<>(initHashCapacity(Percentage.values().length)); for (Percentage p : Percentage.values()) { m.put(p, sortedArray[(int) (len * p.doubleValue())]); } return m; } /** * Returns the elements at: Percentage * length of the specified array. * * @param * @param sortedList * @return * @throws IllegalArgumentException if the specified sortedArray is null or empty. */ public static Map percentiles(final List sortedList) { checkArgNotNullOrEmpty(sortedList, "The spcified 'sortedList' can not be null or empty"); final int size = sortedList.size(); final Map m = new LinkedHashMap<>(initHashCapacity(Percentage.values().length)); for (Percentage p : Percentage.values()) { m.put(p, sortedList.get((int) (size * p.doubleValue()))); } return m; } /** * * @param * @param startInclusive * @param endExclusive * @param action * @throws E the e */ public static void forEach(final int startInclusive, final int endExclusive, Throwables.IntConsumer action) throws E { forEach(startInclusive, endExclusive, 1, action); } /** * * @param * @param startInclusive * @param endExclusive * @param step * @param action * @throws E the e */ public static void forEach(final int startInclusive, final int endExclusive, final int step, Throwables.IntConsumer action) throws E { checkArgument(step != 0, "The input parameter 'step' can not be zero"); if (endExclusive == startInclusive || endExclusive > startInclusive != step > 0) { return; } long len = (endExclusive * 1L - startInclusive) / step + ((endExclusive * 1L - startInclusive) % step == 0 ? 0 : 1); int start = startInclusive; while (len-- > 0) { action.accept(start); start += step; } } /** * * @param * @param * @param startInclusive * @param endExclusive * @param a * @param action * @throws E the e */ public static void forEach(final int startInclusive, final int endExclusive, final T a, Throwables.ObjIntConsumer action) throws E { forEach(startInclusive, endExclusive, 1, a, action); } /** * * @param * @param * @param startInclusive * @param endExclusive * @param step * @param a * @param action * @throws E the e */ public static void forEach(final int startInclusive, final int endExclusive, final int step, final T a, Throwables.ObjIntConsumer action) throws E { checkArgument(step != 0, "The input parameter 'step' can not be zero"); if (endExclusive == startInclusive || endExclusive > startInclusive != step > 0) { return; } long len = (endExclusive * 1L - startInclusive) / step + ((endExclusive * 1L - startInclusive) % step == 0 ? 0 : 1); int start = startInclusive; while (len-- > 0) { action.accept(a, start); start += step; } } /** * * @param * @param * @param a * @param action * @throws E the e */ public static void forEach(final T[] a, final Throwables.Consumer action) throws E { checkArgNotNull(action); if (isNullOrEmpty(a)) { return; } for (T e : a) { action.accept(e); } } /** * * @param * @param * @param a * @param fromIndex * @param toIndex * @param action * @throws E the e */ public static void forEach(final T[] a, final int fromIndex, final int toIndex, final Throwables.Consumer action) throws E { checkFromToIndex(fromIndex < toIndex ? fromIndex : (toIndex == -1 ? 0 : toIndex), fromIndex < toIndex ? toIndex : fromIndex, len(a)); checkArgNotNull(action); if (isNullOrEmpty(a)) { return; } if (fromIndex <= toIndex) { for (int i = fromIndex; i < toIndex; i++) { action.accept(a[i]); } } else { for (int i = min(a.length - 1, toIndex); i > toIndex; i--) { action.accept(a[i]); } } } /** * * @param * @param * @param a * @param action * @throws E the e */ public static void forEach(final T[] a, final Throwables.IndexedConsumer action) throws E { checkArgNotNull(action); if (isNullOrEmpty(a)) { return; } forEach(a, 0, a.length, action); } /** * * @param * @param * @param a * @param fromIndex * @param toIndex * @param action * @throws E the e */ public static void forEach(final T[] a, final int fromIndex, final int toIndex, final Throwables.IndexedConsumer action) throws E { checkFromToIndex(fromIndex < toIndex ? fromIndex : (toIndex == -1 ? 0 : toIndex), fromIndex < toIndex ? toIndex : fromIndex, len(a)); checkArgNotNull(action); if (isNullOrEmpty(a)) { return; } if (fromIndex <= toIndex) { for (int i = fromIndex; i < toIndex; i++) { action.accept(i, a[i]); } } else { for (int i = min(a.length - 1, toIndex); i > toIndex; i--) { action.accept(i, a[i]); } } } /** * * @param * @param * @param * @param c * @param action * @throws E the e */ public static void forEach(final Collection c, final Throwables.Consumer action) throws E { checkArgNotNull(action); if (isNullOrEmpty(c)) { return; } for (T e : c) { action.accept(e); } } /** * Mostly it's designed for one-step operation to complete the operation in one step. * java.util.stream.Stream is preferred for multiple phases operation. * * Note: This is NOT a replacement of traditional for loop statement. * The traditional for loop is still recommended in regular programming. * * @param * @param * @param * @param c * @param fromIndex * @param toIndex * @param action * @throws E the e */ public static void forEach(final Collection c, int fromIndex, final int toIndex, final Throwables.Consumer action) throws E { checkFromToIndex(fromIndex < toIndex ? fromIndex : (toIndex == -1 ? 0 : toIndex), fromIndex < toIndex ? toIndex : fromIndex, size(c)); checkArgNotNull(action); if (isNullOrEmpty(c) && fromIndex == 0 && toIndex == 0) { return; } fromIndex = min(c.size() - 1, fromIndex); if (c instanceof List && c instanceof RandomAccess) { final List list = (List) c; if (fromIndex <= toIndex) { for (int i = fromIndex; i < toIndex; i++) { action.accept(list.get(i)); } } else { for (int i = fromIndex; i > toIndex; i--) { action.accept(list.get(i)); } } } else { final Iterator iter = c.iterator(); int idx = 0; if (fromIndex <= toIndex) { while (idx < fromIndex && iter.hasNext()) { iter.next(); idx++; } while (iter.hasNext()) { action.accept(iter.next()); if (++idx >= toIndex) { break; } } } else { while (idx <= toIndex && iter.hasNext()) { iter.next(); idx++; } final T[] a = (T[]) new Object[fromIndex - toIndex]; while (iter.hasNext()) { a[idx - 1 - toIndex] = iter.next(); if (idx++ >= fromIndex) { break; } } for (int i = a.length - 1; i >= 0; i--) { action.accept(a[i]); } } } } /** * * @param * @param * @param * @param c * @param action * @throws E the e */ public static void forEach(final Collection c, final Throwables.IndexedConsumer action) throws E { checkArgNotNull(action); if (isNullOrEmpty(c)) { return; } int idx = 0; for (T e : c) { action.accept(idx++, e); } } /** * Mostly it's designed for one-step operation to complete the operation in one step. * java.util.stream.Stream is preferred for multiple phases operation. * * Note: This is NOT a replacement of traditional for loop statement. * The traditional for loop is still recommended in regular programming. * * @param * @param * @param * @param c * @param fromIndex * @param toIndex * @param action * @throws E the e */ public static void forEach(final Collection c, int fromIndex, final int toIndex, final Throwables.IndexedConsumer action) throws E { checkFromToIndex(fromIndex < toIndex ? fromIndex : (toIndex == -1 ? 0 : toIndex), fromIndex < toIndex ? toIndex : fromIndex, size(c)); checkArgNotNull(action); if (isNullOrEmpty(c) && fromIndex == 0 && toIndex == 0) { return; } fromIndex = min(c.size() - 1, fromIndex); if (c instanceof List && c instanceof RandomAccess) { final List list = (List) c; if (fromIndex <= toIndex) { for (int i = fromIndex; i < toIndex; i++) { action.accept(i, list.get(i)); } } else { for (int i = fromIndex; i > toIndex; i--) { action.accept(i, list.get(i)); } } } else { final Iterator iter = c.iterator(); int idx = 0; if (fromIndex < toIndex) { while (idx < fromIndex && iter.hasNext()) { iter.next(); idx++; } while (iter.hasNext()) { action.accept(idx, iter.next()); if (++idx >= toIndex) { break; } } } else { while (idx <= toIndex && iter.hasNext()) { iter.next(); idx++; } final T[] a = (T[]) new Object[fromIndex - toIndex]; while (iter.hasNext()) { a[idx - 1 - toIndex] = iter.next(); if (idx++ >= fromIndex) { break; } } for (int i = a.length - 1; i >= 0; i--) { action.accept(i + toIndex + 1, a[i]); } } } } /** * * @param * @param * @param * @param * @param a * @param flatMapper * @param action * @throws E the e * @throws E2 the e2 */ public static void forEach(final T[] a, final Throwables.Function, E> flatMapper, final Throwables.BiConsumer action) throws E, E2 { checkArgNotNull(flatMapper); checkArgNotNull(action); if (isNullOrEmpty(a)) { return; } for (T e : a) { final Collection c2 = flatMapper.apply(e); if (notNullOrEmpty(c2)) { for (U u : c2) { action.accept(e, u); } } } } /** * * @param * @param * @param * @param * @param c * @param flatMapper * @param action * @throws E the e * @throws E2 the e2 */ public static void forEach(final Collection c, final Throwables.Function, E> flatMapper, final Throwables.BiConsumer action) throws E, E2 { checkArgNotNull(flatMapper); checkArgNotNull(action); if (isNullOrEmpty(c)) { return; } for (T e : c) { final Collection c2 = flatMapper.apply(e); if (notNullOrEmpty(c2)) { for (U u : c2) { action.accept(e, u); } } } } /** * * @param * @param * @param * @param * @param * @param * @param a * @param flatMapper * @param flatMapper2 * @param action * @throws E the e * @throws E2 the e2 * @throws E3 the e3 */ public static void forEach(final T[] a, final Throwables.Function, E> flatMapper, final Throwables.Function, E2> flatMapper2, final Throwables.TriConsumer action) throws E, E2, E3 { checkArgNotNull(flatMapper); checkArgNotNull(flatMapper2); checkArgNotNull(action); if (isNullOrEmpty(a)) { return; } for (T e : a) { final Collection c2 = flatMapper.apply(e); if (notNullOrEmpty(c2)) { for (T2 t2 : c2) { final Collection c3 = flatMapper2.apply(t2); if (notNullOrEmpty(c3)) { for (T3 t3 : c3) { action.accept(e, t2, t3); } } } } } } /** * * @param * @param * @param * @param * @param * @param * @param c * @param flatMapper * @param flatMapper2 * @param action * @throws E the e * @throws E2 the e2 * @throws E3 the e3 */ public static void forEach(final Collection c, final Throwables.Function, E> flatMapper, final Throwables.Function, E2> flatMapper2, final Throwables.TriConsumer action) throws E, E2, E3 { checkArgNotNull(flatMapper); checkArgNotNull(flatMapper2); checkArgNotNull(action); if (isNullOrEmpty(c)) { return; } for (T e : c) { final Collection c2 = flatMapper.apply(e); if (notNullOrEmpty(c2)) { for (T2 t2 : c2) { final Collection c3 = flatMapper2.apply(t2); if (notNullOrEmpty(c3)) { for (T3 t3 : c3) { action.accept(e, t2, t3); } } } } } } /** * * @param * @param * @param * @param a * @param b * @param action * @throws E the e */ public static void forEach(final A[] a, final B[] b, final Throwables.BiConsumer action) throws E { checkArgNotNull(action); if (isNullOrEmpty(a) || isNullOrEmpty(b)) { return; } for (int i = 0, minLen = min(a.length, b.length); i < minLen; i++) { action.accept(a[i], b[i]); } } /** * * @param * @param * @param * @param a * @param b * @param action * @throws E the e */ public static void forEach(final Collection a, final Collection b, final Throwables.BiConsumer action) throws E { checkArgNotNull(action); if (isNullOrEmpty(a) || isNullOrEmpty(b)) { return; } final Iterator iterA = a.iterator(); final Iterator iterB = b.iterator(); for (int i = 0, minLen = min(a.size(), b.size()); i < minLen; i++) { action.accept(iterA.next(), iterB.next()); } } /** * * @param * @param * @param * @param * @param a * @param b * @param c * @param action * @throws E the e */ public static void forEach(final A[] a, final B[] b, final C[] c, final Throwables.TriConsumer action) throws E { checkArgNotNull(action); if (isNullOrEmpty(a) || isNullOrEmpty(b) || isNullOrEmpty(c)) { return; } for (int i = 0, minLen = min(a.length, b.length, c.length); i < minLen; i++) { action.accept(a[i], b[i], c[i]); } } /** * * @param * @param * @param * @param * @param a * @param b * @param c * @param action * @throws E the e */ public static void forEach(final Collection a, final Collection b, final Collection c, final Throwables.TriConsumer action) throws E { checkArgNotNull(action); if (isNullOrEmpty(a) || isNullOrEmpty(b) || isNullOrEmpty(c)) { return; } final Iterator iterA = a.iterator(); final Iterator iterB = b.iterator(); final Iterator iterC = c.iterator(); for (int i = 0, minLen = min(a.size(), b.size(), c.size()); i < minLen; i++) { action.accept(iterA.next(), iterB.next(), iterC.next()); } } /** * * @param * @param * @param * @param a * @param b * @param valueForNoneA * @param valueForNoneB * @param action * @throws E the e */ public static void forEach(final A[] a, final B[] b, final A valueForNoneA, final B valueForNoneB, final Throwables.BiConsumer action) throws E { checkArgNotNull(action); final int lenA = len(a); final int lenB = len(b); for (int i = 0, maxLen = max(lenA, lenB); i < maxLen; i++) { action.accept(i < lenA ? a[i] : valueForNoneA, i < lenB ? b[i] : valueForNoneB); } } /** * * @param * @param * @param * @param a * @param b * @param valueForNoneA * @param valueForNoneB * @param action * @throws E the e */ public static void forEach(final Collection a, final Collection b, final A valueForNoneA, final B valueForNoneB, final Throwables.BiConsumer action) throws E { checkArgNotNull(action); final Iterator iterA = a == null ? ObjIterator. empty() : a.iterator(); final Iterator iterB = b == null ? ObjIterator. empty() : b.iterator(); final int lenA = size(a); final int lenB = size(b); for (int i = 0, maxLen = max(lenA, lenB); i < maxLen; i++) { action.accept(i < lenA ? iterA.next() : valueForNoneA, i < lenB ? iterB.next() : valueForNoneB); } } /** * * @param * @param * @param * @param * @param a * @param b * @param c * @param valueForNoneA * @param valueForNoneB * @param valueForNoneC * @param action * @throws E the e */ public static void forEach(final A[] a, final B[] b, final C[] c, final A valueForNoneA, final B valueForNoneB, final C valueForNoneC, final Throwables.TriConsumer action) throws E { checkArgNotNull(action); final int lenA = len(a); final int lenB = len(b); final int lenC = len(c); for (int i = 0, maxLen = max(lenA, lenB, lenC); i < maxLen; i++) { action.accept(i < lenA ? a[i] : valueForNoneA, i < lenB ? b[i] : valueForNoneB, i < lenC ? c[i] : valueForNoneC); } } /** * * @param * @param * @param * @param * @param a * @param b * @param c * @param valueForNoneA * @param valueForNoneB * @param valueForNoneC * @param action * @throws E the e */ public static void forEach(final Collection a, final Collection b, final Collection c, final A valueForNoneA, final B valueForNoneB, final C valueForNoneC, final Throwables.TriConsumer action) throws E { checkArgNotNull(action); final Iterator iterA = a == null ? ObjIterator. empty() : a.iterator(); final Iterator iterB = b == null ? ObjIterator. empty() : b.iterator(); final Iterator iterC = c == null ? ObjIterator. empty() : c.iterator(); final int lenA = size(a); final int lenB = size(b); final int lenC = size(c); for (int i = 0, maxLen = max(lenA, lenB, lenC); i < maxLen; i++) { action.accept(i < lenA ? iterA.next() : valueForNoneA, i < lenB ? iterB.next() : valueForNoneB, i < lenC ? iterC.next() : valueForNoneC); } } /** * For each non null. * * @param * @param * @param a * @param action * @throws E the e */ public static void forEachNonNull(final T[] a, final Throwables.Consumer action) throws E { checkArgNotNull(action); if (isNullOrEmpty(a)) { return; } for (T e : a) { if (e != null) { action.accept(e); } } } /** * For each non null. * * @param * @param * @param c * @param action * @throws E the e */ public static void forEachNonNull(final Collection c, final Throwables.Consumer action) throws E { checkArgNotNull(action); if (isNullOrEmpty(c)) { return; } for (T e : c) { if (e != null) { action.accept(e); } } } /** * For each non null. * * @param * @param * @param * @param * @param a * @param flatMapper * @param action * @throws E the e * @throws E2 the e2 */ public static void forEachNonNull(final T[] a, final Throwables.Function, E> flatMapper, final Throwables.BiConsumer action) throws E, E2 { checkArgNotNull(flatMapper); checkArgNotNull(action); if (isNullOrEmpty(a)) { return; } for (T e : a) { if (e != null) { final Collection c2 = flatMapper.apply(e); if (notNullOrEmpty(c2)) { for (U u : c2) { if (u != null) { action.accept(e, u); } } } } } } /** * For each non null. * * @param * @param * @param * @param * @param c * @param flatMapper * @param action * @throws E the e * @throws E2 the e2 */ public static void forEachNonNull(final Collection c, final Throwables.Function, E> flatMapper, final Throwables.BiConsumer action) throws E, E2 { checkArgNotNull(flatMapper); checkArgNotNull(action); if (isNullOrEmpty(c)) { return; } for (T e : c) { if (e != null) { final Collection c2 = flatMapper.apply(e); if (notNullOrEmpty(c2)) { for (U u : c2) { if (u != null) { action.accept(e, u); } } } } } } /** * For each non null. * * @param * @param * @param * @param * @param * @param * @param a * @param flatMapper * @param flatMapper2 * @param action * @throws E the e * @throws E2 the e2 * @throws E3 the e3 */ public static void forEachNonNull(final T[] a, final Throwables.Function, E> flatMapper, final Throwables.Function, E2> flatMapper2, final Throwables.TriConsumer action) throws E, E2, E3 { checkArgNotNull(flatMapper); checkArgNotNull(flatMapper2); checkArgNotNull(action); if (isNullOrEmpty(a)) { return; } for (T e : a) { if (e != null) { final Collection c2 = flatMapper.apply(e); if (notNullOrEmpty(c2)) { for (T2 t2 : c2) { if (t2 != null) { final Collection c3 = flatMapper2.apply(t2); if (notNullOrEmpty(c3)) { for (T3 t3 : c3) { if (t3 != null) { action.accept(e, t2, t3); } } } } } } } } } /** * For each non null. * * @param * @param * @param * @param * @param * @param * @param c * @param flatMapper * @param flatMapper2 * @param action * @throws E the e * @throws E2 the e2 * @throws E3 the e3 */ public static void forEachNonNull(final Collection c, final Throwables.Function, E> flatMapper, final Throwables.Function, E2> flatMapper2, final Throwables.TriConsumer action) throws E, E2, E3 { checkArgNotNull(flatMapper); checkArgNotNull(flatMapper2); checkArgNotNull(action); if (isNullOrEmpty(c)) { return; } for (T e : c) { if (e != null) { final Collection c2 = flatMapper.apply(e); if (notNullOrEmpty(c2)) { for (T2 t2 : c2) { if (t2 != null) { final Collection c3 = flatMapper2.apply(t2); if (notNullOrEmpty(c3)) { for (T3 t3 : c3) { if (t3 != null) { action.accept(e, t2, t3); } } } } } } } } } /** * * @param * @param * @param a * @param filter * @return * @throws E the e */ public static List filter(final T[] a, final Throwables.Predicate filter) throws E { checkArgNotNull(filter); if (isNullOrEmpty(a)) { return new ArrayList<>(); } return filter(a, filter, Integer.MAX_VALUE); } /** * * @param * @param * @param a * @param filter * @param max * @return * @throws E the e */ public static List filter(final T[] a, final Throwables.Predicate filter, final int max) throws E { checkArgNotNull(filter); if (isNullOrEmpty(a)) { return new ArrayList<>(); } return filter(a, 0, a.length, filter, max); } /** * * @param * @param * @param a * @param fromIndex * @param toIndex * @param filter * @return * @throws E the e */ public static List filter(final T[] a, final int fromIndex, final int toIndex, final Throwables.Predicate filter) throws E { return filter(a, fromIndex, toIndex, filter, Integer.MAX_VALUE); } /** * Mostly it's designed for one-step operation to complete the operation in one step. * java.util.stream.Stream is preferred for multiple phases operation. * * @param * @param * @param a * @param fromIndex * @param toIndex * @param filter * @param max * @return * @throws E the e */ public static List filter(final T[] a, final int fromIndex, final int toIndex, final Throwables.Predicate filter, final int max) throws E { checkFromToIndex(fromIndex, toIndex, len(a)); checkArgNotNull(filter); if (isNullOrEmpty(a)) { return new ArrayList<>(); } final List result = new ArrayList<>(min(9, max, (toIndex - fromIndex))); for (int i = fromIndex, cnt = 0; i < toIndex && cnt < max; i++) { if (filter.test(a[i])) { result.add(a[i]); cnt++; } } return result; } /** * * @param * @param * @param c * @param filter * @return * @throws E the e */ public static List filter(final Collection c, final Throwables.Predicate filter) throws E { checkArgNotNull(filter); if (isNullOrEmpty(c)) { return new ArrayList<>(); } return filter(c, filter, Integer.MAX_VALUE); } /** * * @param * @param * @param c * @param filter * @param max * @return * @throws E the e */ public static List filter(final Collection c, final Throwables.Predicate filter, final int max) throws E { checkArgNotNull(filter); if (isNullOrEmpty(c)) { return new ArrayList<>(); } return filter(c, 0, c.size(), filter, max); } /** * * @param * @param * @param c * @param fromIndex * @param toIndex * @param filter * @return * @throws E the e */ public static List filter(final Collection c, final int fromIndex, final int toIndex, final Throwables.Predicate filter) throws E { return filter(c, fromIndex, toIndex, filter, Integer.MAX_VALUE); } /** * * @param * @param * @param c * @param fromIndex * @param toIndex * @param filter * @param max * @return * @throws E the e */ public static List filter(final Collection c, final int fromIndex, final int toIndex, final Throwables.Predicate filter, final int max) throws E { checkFromToIndex(fromIndex, toIndex, size(c)); checkArgNotNull(filter); if (isNullOrEmpty(c) && fromIndex == 0 && toIndex == 0) { return new ArrayList<>(); } final List result = new ArrayList<>(min(9, max, (toIndex - fromIndex))); if (c instanceof List && c instanceof RandomAccess) { final List list = (List) c; T e = null; for (int i = fromIndex, cnt = 0; i < toIndex && cnt < max; i++) { e = list.get(i); if (filter.test(e)) { result.add(e); cnt++; } } } else { int idx = 0; int cnt = 0; for (T e : c) { if (cnt >= max) { break; } if (idx++ < fromIndex) { continue; } if (filter.test(e)) { result.add(e); cnt++; } if (idx >= toIndex) { break; } } } return result; } /** * * @param * @param * @param * @param a * @param filter * @param supplier * @return * @throws E the e */ public static , E extends Exception> R filter(final T[] a, final Throwables.Predicate filter, final IntFunction supplier) throws E { checkArgNotNull(filter); if (isNullOrEmpty(a)) { return supplier.apply(0); } return filter(a, filter, Integer.MAX_VALUE, supplier); } /** * * @param * @param * @param * @param a * @param filter * @param max * @param supplier * @return * @throws E the e */ public static , E extends Exception> R filter(final T[] a, final Throwables.Predicate filter, final int max, final IntFunction supplier) throws E { checkArgNotNull(filter); if (isNullOrEmpty(a)) { return supplier.apply(0); } return filter(a, 0, a.length, filter, max, supplier); } /** * * @param * @param * @param * @param a * @param fromIndex * @param toIndex * @param filter * @param supplier * @return * @throws E the e */ public static , E extends Exception> R filter(final T[] a, final int fromIndex, final int toIndex, final Throwables.Predicate filter, final IntFunction supplier) throws E { return filter(a, fromIndex, toIndex, filter, Integer.MAX_VALUE, supplier); } /** * Mostly it's designed for one-step operation to complete the operation in one step. * java.util.stream.Stream is preferred for multiple phases operation. * * @param * @param * @param * @param a * @param fromIndex * @param toIndex * @param filter * @param max * @param supplier * @return * @throws E the e */ public static , E extends Exception> R filter(final T[] a, final int fromIndex, final int toIndex, final Throwables.Predicate filter, final int max, final IntFunction supplier) throws E { checkFromToIndex(fromIndex, toIndex, len(a)); checkArgNotNull(filter); if (isNullOrEmpty(a)) { return supplier.apply(0); } final R result = supplier.apply(min(9, max, (toIndex - fromIndex))); for (int i = fromIndex, cnt = 0; i < toIndex && cnt < max; i++) { if (filter.test(a[i])) { result.add(a[i]); cnt++; } } return result; } /** * * @param * @param * @param * @param c * @param filter * @param supplier * @return * @throws E the e */ public static , E extends Exception> R filter(final Collection c, final Throwables.Predicate filter, final IntFunction supplier) throws E { checkArgNotNull(filter); if (isNullOrEmpty(c)) { return supplier.apply(0); } return filter(c, filter, Integer.MAX_VALUE, supplier); } /** * * @param * @param * @param * @param c * @param filter * @param max * @param supplier * @return * @throws E the e */ public static , E extends Exception> R filter(final Collection c, final Throwables.Predicate filter, final int max, final IntFunction supplier) throws E { checkArgNotNull(filter); if (isNullOrEmpty(c)) { return supplier.apply(0); } return filter(c, 0, c.size(), filter, max, supplier); } /** * * @param * @param * @param * @param c * @param fromIndex * @param toIndex * @param filter * @param supplier * @return * @throws E the e */ public static , E extends Exception> R filter(final Collection c, final int fromIndex, final int toIndex, final Throwables.Predicate filter, final IntFunction supplier) throws E { return filter(c, fromIndex, toIndex, filter, Integer.MAX_VALUE, supplier); } /** * * @param * @param * @param * @param c * @param fromIndex * @param toIndex * @param filter * @param max * @param supplier * @return * @throws E the e */ public static , E extends Exception> R filter(final Collection c, final int fromIndex, final int toIndex, final Throwables.Predicate filter, final int max, final IntFunction supplier) throws E { checkFromToIndex(fromIndex, toIndex, size(c)); checkArgNotNull(filter); if (isNullOrEmpty(c) && fromIndex == 0 && toIndex == 0) { return supplier.apply(0); } final R result = supplier.apply(min(9, max, (toIndex - fromIndex))); if ((isNullOrEmpty(c) && fromIndex == 0 && toIndex == 0) || (fromIndex == toIndex && fromIndex < c.size())) { return result; } if (c instanceof List && c instanceof RandomAccess) { final List list = (List) c; T e = null; for (int i = fromIndex, cnt = 0; i < toIndex && cnt < max; i++) { e = list.get(i); if (filter.test(e)) { result.add(e); cnt++; } } } else { int idx = 0; int cnt = 0; for (T e : c) { if (cnt >= max) { break; } if (idx++ < fromIndex) { continue; } if (filter.test(e)) { result.add(e); cnt++; } if (idx >= toIndex) { break; } } } return result; } /** * * @param * @param * @param * @param a * @param func * @return * @throws E the e */ public static List map(final T[] a, final Throwables.Function func) throws E { checkArgNotNull(func); if (isNullOrEmpty(a)) { return new ArrayList<>(); } return map(a, 0, a.length, func); } /** * Mostly it's designed for one-step operation to complete the operation in one step. * java.util.stream.Stream is preferred for multiple phases operation. * * @param * @param * @param * @param a * @param fromIndex * @param toIndex * @param func * @return * @throws E the e */ public static List map(final T[] a, final int fromIndex, final int toIndex, final Throwables.Function func) throws E { checkFromToIndex(fromIndex, toIndex, len(a)); checkArgNotNull(func); if (isNullOrEmpty(a)) { return new ArrayList<>(); } final List result = new ArrayList<>(toIndex - fromIndex); for (int i = fromIndex; i < toIndex; i++) { result.add(func.apply(a[i])); } return result; } /** * * @param * @param * @param * @param c * @param func * @return * @throws E the e */ public static List map(final Collection c, final Throwables.Function func) throws E { checkArgNotNull(func); if (isNullOrEmpty(c)) { return new ArrayList<>(); } return map(c, 0, c.size(), func); } /** * Mostly it's designed for one-step operation to complete the operation in one step. * java.util.stream.Stream is preferred for multiple phases operation. * * @param * @param * @param * @param c * @param fromIndex * @param toIndex * @param func * @return * @throws E the e */ public static List map(final Collection c, final int fromIndex, final int toIndex, final Throwables.Function func) throws E { checkFromToIndex(fromIndex, toIndex, size(c)); checkArgNotNull(func); if (isNullOrEmpty(c) && fromIndex == 0 && toIndex == 0) { return new ArrayList<>(); } final List result = new ArrayList<>(toIndex - fromIndex); if (c instanceof List && c instanceof RandomAccess) { final List list = (List) c; for (int i = fromIndex; i < toIndex; i++) { result.add(func.apply(list.get(i))); } } else { int idx = 0; for (T e : c) { if (idx++ < fromIndex) { continue; } result.add(func.apply(e)); if (idx >= toIndex) { break; } } } return result; } /** * * @param * @param * @param * @param * @param a * @param func * @param supplier * @return * @throws E the e */ public static , E extends Exception> C map(final T[] a, final Throwables.Function func, final IntFunction supplier) throws E { checkArgNotNull(func); if (isNullOrEmpty(a)) { return supplier.apply(0); } return map(a, 0, a.length, func, supplier); } /** * Mostly it's designed for one-step operation to complete the operation in one step. * java.util.stream.Stream is preferred for multiple phases operation. * * @param * @param * @param * @param * @param a * @param fromIndex * @param toIndex * @param func * @param supplier * @return * @throws E the e */ public static , E extends Exception> C map(final T[] a, final int fromIndex, final int toIndex, final Throwables.Function func, final IntFunction supplier) throws E { checkFromToIndex(fromIndex, toIndex, len(a)); checkArgNotNull(func); if (isNullOrEmpty(a)) { return supplier.apply(0); } final C result = supplier.apply(toIndex - fromIndex); for (int i = fromIndex; i < toIndex; i++) { result.add(func.apply(a[i])); } return result; } /** * * @param * @param * @param * @param * @param c * @param func * @param supplier * @return * @throws E the e */ public static , E extends Exception> C map(final Collection c, final Throwables.Function func, final IntFunction supplier) throws E { checkArgNotNull(func); if (isNullOrEmpty(c)) { return supplier.apply(0); } return map(c, 0, c.size(), func, supplier); } /** * Mostly it's designed for one-step operation to complete the operation in one step. * java.util.stream.Stream is preferred for multiple phases operation. * * @param * @param * @param * @param * @param c * @param fromIndex * @param toIndex * @param func * @param supplier * @return * @throws E the e */ public static , E extends Exception> C map(final Collection c, final int fromIndex, final int toIndex, final Throwables.Function func, final IntFunction supplier) throws E { checkFromToIndex(fromIndex, toIndex, size(c)); checkArgNotNull(func); if (isNullOrEmpty(c) && fromIndex == 0 && toIndex == 0) { return supplier.apply(0); } final C result = supplier.apply(toIndex - fromIndex); if (c instanceof List && c instanceof RandomAccess) { final List list = (List) c; for (int i = fromIndex; i < toIndex; i++) { result.add(func.apply(list.get(i))); } } else { int idx = 0; for (T e : c) { if (idx++ < fromIndex) { continue; } result.add(func.apply(e)); if (idx >= toIndex) { break; } } } return result; } /** * * @param * @param * @param * @param a * @param func * @return * @throws E the e */ public static List flatMap(final T[] a, final Throwables.Function, E> func) throws E { checkArgNotNull(func); if (isNullOrEmpty(a)) { return new ArrayList<>(); } return flatMap(a, 0, a.length, func); } /** * Mostly it's designed for one-step operation to complete the operation in one step. * java.util.stream.Stream is preferred for multiple phases operation. * * @param * @param * @param * @param a * @param fromIndex * @param toIndex * @param func * @return * @throws E the e */ public static List flatMap(final T[] a, final int fromIndex, final int toIndex, final Throwables.Function, E> func) throws E { checkFromToIndex(fromIndex, toIndex, len(a)); checkArgNotNull(func); if (isNullOrEmpty(a)) { return new ArrayList<>(); } final int len = (toIndex - fromIndex) > N.MAX_ARRAY_SIZE / LOAD_FACTOR_FOR_FLAT_MAP ? N.MAX_ARRAY_SIZE : (int) ((toIndex - fromIndex) * LOAD_FACTOR_FOR_FLAT_MAP); final List result = new ArrayList<>(len); Collection mr = null; for (int i = fromIndex; i < toIndex; i++) { if (notNullOrEmpty(mr = func.apply(a[i]))) { result.addAll(mr); } } return result; } /** * * @param * @param * @param * @param c * @param func * @return * @throws E the e */ public static List flatMap(final Collection c, final Throwables.Function, E> func) throws E { checkArgNotNull(func); if (isNullOrEmpty(c)) { return new ArrayList<>(); } return flatMap(c, 0, c.size(), func); } /** * Mostly it's designed for one-step operation to complete the operation in one step. * java.util.stream.Stream is preferred for multiple phases operation. * * @param * @param * @param * @param c * @param fromIndex * @param toIndex * @param func * @return * @throws E the e */ public static List flatMap(final Collection c, final int fromIndex, final int toIndex, final Throwables.Function, E> func) throws E { checkFromToIndex(fromIndex, toIndex, size(c)); checkArgNotNull(func); if (isNullOrEmpty(c) && fromIndex == 0 && toIndex == 0) { return new ArrayList<>(); } final int len = (toIndex - fromIndex) > N.MAX_ARRAY_SIZE / LOAD_FACTOR_FOR_FLAT_MAP ? N.MAX_ARRAY_SIZE : (int) ((toIndex - fromIndex) * LOAD_FACTOR_FOR_FLAT_MAP); final List result = new ArrayList<>(len); Collection mr = null; if (c instanceof List && c instanceof RandomAccess) { final List list = (List) c; for (int i = fromIndex; i < toIndex; i++) { if (notNullOrEmpty(mr = func.apply(list.get(i)))) { result.addAll(mr); } } } else { int idx = 0; for (T e : c) { if (idx++ < fromIndex) { continue; } if (notNullOrEmpty(mr = func.apply(e))) { result.addAll(mr); } if (idx >= toIndex) { break; } } } return result; } /** * * @param * @param * @param * @param * @param a * @param func * @param supplier * @return * @throws E the e */ public static , E extends Exception> C flatMap(final T[] a, final Throwables.Function, E> func, final IntFunction supplier) throws E { checkArgNotNull(func); if (isNullOrEmpty(a)) { return supplier.apply(0); } return flatMap(a, 0, a.length, func, supplier); } /** * Mostly it's designed for one-step operation to complete the operation in one step. * java.util.stream.Stream is preferred for multiple phases operation. * * @param * @param * @param * @param * @param a * @param fromIndex * @param toIndex * @param func * @param supplier * @return * @throws E the e */ public static , E extends Exception> C flatMap(final T[] a, final int fromIndex, final int toIndex, final Throwables.Function, E> func, final IntFunction supplier) throws E { checkFromToIndex(fromIndex, toIndex, len(a)); checkArgNotNull(func); if (isNullOrEmpty(a)) { return supplier.apply(0); } final int len = (toIndex - fromIndex) > N.MAX_ARRAY_SIZE / LOAD_FACTOR_FOR_FLAT_MAP ? N.MAX_ARRAY_SIZE : (int) ((toIndex - fromIndex) * LOAD_FACTOR_FOR_FLAT_MAP); final C result = supplier.apply(len); Collection mr = null; for (int i = fromIndex; i < toIndex; i++) { if (notNullOrEmpty(mr = func.apply(a[i]))) { result.addAll(mr); } } return result; } /** * * @param * @param * @param * @param * @param c * @param func * @param supplier * @return * @throws E the e */ public static , E extends Exception> C flatMap(final Collection c, final Throwables.Function, E> func, final IntFunction supplier) throws E { checkArgNotNull(func); if (isNullOrEmpty(c)) { return supplier.apply(0); } return flatMap(c, 0, c.size(), func, supplier); } /** * Mostly it's designed for one-step operation to complete the operation in one step. * java.util.stream.Stream is preferred for multiple phases operation. * * @param * @param * @param * @param * @param c * @param fromIndex * @param toIndex * @param func * @param supplier * @return * @throws E the e */ public static , E extends Exception> C flatMap(final Collection c, final int fromIndex, final int toIndex, final Throwables.Function, E> func, final IntFunction supplier) throws E { checkFromToIndex(fromIndex, toIndex, size(c)); checkArgNotNull(func); if (isNullOrEmpty(c) && fromIndex == 0 && toIndex == 0) { return supplier.apply(0); } final int len = (toIndex - fromIndex) > N.MAX_ARRAY_SIZE / LOAD_FACTOR_FOR_FLAT_MAP ? N.MAX_ARRAY_SIZE : (int) ((toIndex - fromIndex) * LOAD_FACTOR_FOR_FLAT_MAP); final C result = supplier.apply(len); Collection mr = null; if (c instanceof List && c instanceof RandomAccess) { final List list = (List) c; for (int i = fromIndex; i < toIndex; i++) { if (notNullOrEmpty(mr = func.apply(list.get(i)))) { result.addAll(mr); } } } else { int idx = 0; for (T e : c) { if (idx++ < fromIndex) { continue; } if (notNullOrEmpty(mr = func.apply(e))) { result.addAll(mr); } if (idx >= toIndex) { break; } } } return result; } /** * * @param * @param * @param * @param * @param * @param * @param a * @param func * @param func2 * @return * @throws E the e * @throws E2 the e2 */ public static , E extends Exception, E2 extends Exception> List flatMap(final T[] a, final Throwables.Function, E> func, final Throwables.Function, E2> func2) throws E, E2 { return flatMap(a, func, func2, Factory. ofList()); } /** * Mostly it's designed for one-step operation to complete the operation in one step. * java.util.stream.Stream is preferred for multiple phases operation. * * @param * @param * @param * @param * @param * @param * @param a * @param func * @param func2 * @param supplier * @return * @throws E the e * @throws E2 the e2 */ public static , E extends Exception, E2 extends Exception> C flatMap(final T[] a, final Throwables.Function, E> func, final Throwables.Function, E2> func2, final IntFunction supplier) throws E, E2 { checkArgNotNull(func); checkArgNotNull(func2); if (isNullOrEmpty(a)) { return supplier.apply(0); } final int len = a.length > N.MAX_ARRAY_SIZE / LOAD_FACTOR_FOR_TWO_FLAT_MAP ? N.MAX_ARRAY_SIZE : a.length * LOAD_FACTOR_FOR_TWO_FLAT_MAP; final C result = supplier.apply(len); for (T e : a) { final Collection c1 = func.apply(e); if (notNullOrEmpty(c1)) { for (T2 e2 : c1) { final Collection c2 = func2.apply(e2); if (notNullOrEmpty(c2)) { result.addAll(c2); } } } } return result; } /** * * @param * @param * @param * @param * @param * @param * @param c * @param func * @param func2 * @return * @throws E the e * @throws E2 the e2 */ public static , E extends Exception, E2 extends Exception> List flatMap(final Collection c, final Throwables.Function, E> func, final Throwables.Function, E2> func2) throws E, E2 { return flatMap(c, func, func2, Factory. ofList()); } /** * Mostly it's designed for one-step operation to complete the operation in one step. * java.util.stream.Stream is preferred for multiple phases operation. * * @param * @param * @param * @param * @param * @param * @param c * @param func * @param func2 * @param supplier * @return * @throws E the e * @throws E2 the e2 */ public static , E extends Exception, E2 extends Exception> C flatMap(final Collection c, final Throwables.Function, E> func, final Throwables.Function, E2> func2, final IntFunction supplier) throws E, E2 { checkArgNotNull(func); checkArgNotNull(func2); if (isNullOrEmpty(c)) { return supplier.apply(0); } final int len = c.size() > N.MAX_ARRAY_SIZE / LOAD_FACTOR_FOR_TWO_FLAT_MAP ? N.MAX_ARRAY_SIZE : c.size() * LOAD_FACTOR_FOR_TWO_FLAT_MAP; final C result = supplier.apply(len); for (T e : c) { final Collection c1 = func.apply(e); if (notNullOrEmpty(c1)) { for (T2 e2 : c1) { final Collection c2 = func2.apply(e2); if (notNullOrEmpty(c2)) { result.addAll(c2); } } } } return result; } /** * * @param * @param * @param * @param a * @param func * @return * @throws E the e */ public static List flattMap(final T[] a, final Throwables.Function func) throws E { checkArgNotNull(func); if (isNullOrEmpty(a)) { return new ArrayList<>(); } return flattMap(a, 0, a.length, func); } /** * Mostly it's designed for one-step operation to complete the operation in one step. * java.util.stream.Stream is preferred for multiple phases operation. * * @param * @param * @param * @param a * @param fromIndex * @param toIndex * @param func * @return * @throws E the e */ public static List flattMap(final T[] a, final int fromIndex, final int toIndex, final Throwables.Function func) throws E { checkFromToIndex(fromIndex, toIndex, len(a)); checkArgNotNull(func); if (isNullOrEmpty(a)) { return new ArrayList<>(); } final int len = (toIndex - fromIndex) > N.MAX_ARRAY_SIZE / LOAD_FACTOR_FOR_FLAT_MAP ? N.MAX_ARRAY_SIZE : (int) ((toIndex - fromIndex) * LOAD_FACTOR_FOR_FLAT_MAP); final List result = new ArrayList<>(len); R[] mr = null; for (int i = fromIndex; i < toIndex; i++) { if (notNullOrEmpty(mr = func.apply(a[i]))) { result.addAll(Arrays.asList(mr)); } } return result; } /** * * @param * @param * @param * @param c * @param func * @return * @throws E the e */ public static List flattMap(final Collection c, final Throwables.Function func) throws E { checkArgNotNull(func); if (isNullOrEmpty(c)) { return new ArrayList<>(); } return flattMap(c, 0, c.size(), func); } /** * Mostly it's designed for one-step operation to complete the operation in one step. * java.util.stream.Stream is preferred for multiple phases operation. * * @param * @param * @param * @param c * @param fromIndex * @param toIndex * @param func * @return * @throws E the e */ public static List flattMap(final Collection c, final int fromIndex, final int toIndex, final Throwables.Function func) throws E { checkFromToIndex(fromIndex, toIndex, size(c)); checkArgNotNull(func); if (isNullOrEmpty(c) && fromIndex == 0 && toIndex == 0) { return new ArrayList<>(); } final int len = (toIndex - fromIndex) > N.MAX_ARRAY_SIZE / LOAD_FACTOR_FOR_FLAT_MAP ? N.MAX_ARRAY_SIZE : (int) ((toIndex - fromIndex) * LOAD_FACTOR_FOR_FLAT_MAP); final List result = new ArrayList<>(len); R[] mr = null; if (c instanceof List && c instanceof RandomAccess) { final List list = (List) c; for (int i = fromIndex; i < toIndex; i++) { if (notNullOrEmpty(mr = func.apply(list.get(i)))) { result.addAll(Arrays.asList(mr)); } } } else { int idx = 0; for (T e : c) { if (idx++ < fromIndex) { continue; } if (notNullOrEmpty(mr = func.apply(e))) { result.addAll(Arrays.asList(mr)); } if (idx >= toIndex) { break; } } } return result; } /** * * @param * @param * @param * @param * @param a * @param func * @param supplier * @return * @throws E the e */ public static , E extends Exception> C flattMap(final T[] a, final Throwables.Function func, final IntFunction supplier) throws E { checkArgNotNull(func); if (isNullOrEmpty(a)) { return supplier.apply(0); } return flattMap(a, 0, a.length, func, supplier); } /** * Mostly it's designed for one-step operation to complete the operation in one step. * java.util.stream.Stream is preferred for multiple phases operation. * * @param * @param * @param * @param * @param a * @param fromIndex * @param toIndex * @param func * @param supplier * @return * @throws E the e */ public static , E extends Exception> C flattMap(final T[] a, final int fromIndex, final int toIndex, final Throwables.Function func, final IntFunction supplier) throws E { checkFromToIndex(fromIndex, toIndex, len(a)); checkArgNotNull(func); if (isNullOrEmpty(a)) { return supplier.apply(0); } final int len = (toIndex - fromIndex) > N.MAX_ARRAY_SIZE / LOAD_FACTOR_FOR_FLAT_MAP ? N.MAX_ARRAY_SIZE : (int) ((toIndex - fromIndex) * LOAD_FACTOR_FOR_FLAT_MAP); final C result = supplier.apply(len); R[] mr = null; for (int i = fromIndex; i < toIndex; i++) { if (notNullOrEmpty(mr = func.apply(a[i]))) { result.addAll(Arrays.asList(mr)); } } return result; } /** * * @param * @param * @param * @param * @param c * @param func * @param supplier * @return * @throws E the e */ public static , E extends Exception> C flattMap(final Collection c, final Throwables.Function func, final IntFunction supplier) throws E { checkArgNotNull(func); if (isNullOrEmpty(c)) { return supplier.apply(0); } return flattMap(c, 0, c.size(), func, supplier); } /** * Mostly it's designed for one-step operation to complete the operation in one step. * java.util.stream.Stream is preferred for multiple phases operation. * * @param * @param * @param * @param * @param c * @param fromIndex * @param toIndex * @param func * @param supplier * @return * @throws E the e */ public static , E extends Exception> C flattMap(final Collection c, final int fromIndex, final int toIndex, final Throwables.Function func, final IntFunction supplier) throws E { checkFromToIndex(fromIndex, toIndex, size(c)); checkArgNotNull(func); if (isNullOrEmpty(c) && fromIndex == 0 && toIndex == 0) { return supplier.apply(0); } final int len = (toIndex - fromIndex) > N.MAX_ARRAY_SIZE / LOAD_FACTOR_FOR_FLAT_MAP ? N.MAX_ARRAY_SIZE : (int) ((toIndex - fromIndex) * LOAD_FACTOR_FOR_FLAT_MAP); final C result = supplier.apply(len); R[] mr = null; if (c instanceof List && c instanceof RandomAccess) { final List list = (List) c; for (int i = fromIndex; i < toIndex; i++) { if (notNullOrEmpty(mr = func.apply(list.get(i)))) { result.addAll(Arrays.asList(mr)); } } } else { int idx = 0; for (T e : c) { if (idx++ < fromIndex) { continue; } if (notNullOrEmpty(mr = func.apply(e))) { result.addAll(Arrays.asList(mr)); } if (idx >= toIndex) { break; } } } return result; } /** * * @param * @param a * @return */ public static int sumInt(final T[] a) { return sumInt(a, Fn.numToInt()); } /** * * @param * @param a * @param fromIndex * @param toIndex * @return */ public static int sumInt(final T[] a, final int fromIndex, final int toIndex) { return sumInt(a, fromIndex, toIndex, Fn.numToInt()); } /** * * @param * @param * @param a * @param func * @return * @throws E the e */ public static int sumInt(final T[] a, final Throwables.ToIntFunction func) throws E { if (isNullOrEmpty(a)) { return 0; } return sumInt(a, 0, a.length, func); } /** * * @param * @param * @param a * @param fromIndex * @param toIndex * @param func * @return * @throws E the e */ public static int sumInt(final T[] a, final int fromIndex, final int toIndex, final Throwables.ToIntFunction func) throws E { checkFromToIndex(fromIndex, toIndex, len(a)); if (fromIndex == toIndex) { return 0; } int sum = 0; for (int i = fromIndex; i < toIndex; i++) { sum += func.applyAsInt(a[i]); } return sum; } /** * * @param * @param c * @return */ public static int sumInt(final Collection c) { return sumInt(c, Fn.numToInt()); } /** * * @param * @param c * @param fromIndex * @param toIndex * @return */ public static int sumInt(final Collection c, final int fromIndex, final int toIndex) { return sumInt(c, fromIndex, toIndex, Fn.numToInt()); } /** * * @param * @param * @param c * @param func * @return * @throws E the e */ public static int sumInt(final Collection c, final Throwables.ToIntFunction func) throws E { if (isNullOrEmpty(c)) { return 0; } int sum = 0; for (T e : c) { sum += func.applyAsInt(e); } return sum; } /** * * @param * @param * @param c * @param fromIndex * @param toIndex * @param func * @return * @throws E the e */ public static int sumInt(final Collection c, final int fromIndex, final int toIndex, final Throwables.ToIntFunction func) throws E { checkFromToIndex(fromIndex, toIndex, size(c)); if (fromIndex == toIndex) { return 0; } int sum = 0; if (c instanceof List && c instanceof RandomAccess) { final List list = (List) c; for (int i = fromIndex; i < toIndex; i++) { sum += func.applyAsInt(list.get(i)); } } else { int idx = 0; for (T e : c) { if (idx++ < fromIndex) { continue; } sum += func.applyAsInt(e); if (idx >= toIndex) { break; } } } return sum; } /** * * @param * @param a * @return */ public static long sumLong(final T[] a) { return sumLong(a, Fn.numToLong()); } /** * * @param * @param a * @param fromIndex * @param toIndex * @return */ public static long sumLong(final T[] a, final int fromIndex, final int toIndex) { return sumLong(a, fromIndex, toIndex, Fn.numToLong()); } /** * * @param * @param * @param a * @param func * @return * @throws E the e */ public static long sumLong(final T[] a, final Throwables.ToLongFunction func) throws E { if (isNullOrEmpty(a)) { return 0L; } return sumLong(a, 0, a.length, func); } /** * * @param * @param * @param a * @param fromIndex * @param toIndex * @param func * @return * @throws E the e */ public static long sumLong(final T[] a, final int fromIndex, final int toIndex, final Throwables.ToLongFunction func) throws E { checkFromToIndex(fromIndex, toIndex, len(a)); if (fromIndex == toIndex) { return 0L; } long sum = 0; for (int i = fromIndex; i < toIndex; i++) { sum += func.applyAsLong(a[i]); } return sum; } /** * * @param * @param c * @return */ public static long sumLong(final Collection c) { return sumLong(c, Fn.numToLong()); } /** * * @param * @param c * @param fromIndex * @param toIndex * @return */ public static long sumLong(final Collection c, final int fromIndex, final int toIndex) { return sumLong(c, fromIndex, toIndex, Fn.numToLong()); } /** * * @param * @param * @param c * @param func * @return * @throws E the e */ public static long sumLong(final Collection c, final Throwables.ToLongFunction func) throws E { if (isNullOrEmpty(c)) { return 0L; } long sum = 0; for (T e : c) { sum += func.applyAsLong(e); } return sum; } /** * * @param * @param * @param c * @param fromIndex * @param toIndex * @param func * @return * @throws E the e */ public static long sumLong(final Collection c, final int fromIndex, final int toIndex, final Throwables.ToLongFunction func) throws E { checkFromToIndex(fromIndex, toIndex, size(c)); if (fromIndex == toIndex) { return 0L; } long sum = 0; if (c instanceof List && c instanceof RandomAccess) { final List list = (List) c; for (int i = fromIndex; i < toIndex; i++) { sum += func.applyAsLong(list.get(i)); } } else { int idx = 0; for (T e : c) { if (idx++ < fromIndex) { continue; } sum += func.applyAsLong(e); if (idx >= toIndex) { break; } } } return sum; } /** * * @param * @param a * @return */ public static double sumDouble(final T[] a) { return sumDouble(a, Fn.numToDouble()); } /** * * @param * @param a * @param fromIndex * @param toIndex * @return */ public static double sumDouble(final T[] a, final int fromIndex, final int toIndex) { return sumDouble(a, fromIndex, toIndex, Fn.numToDouble()); } /** * * @param * @param * @param a * @param func * @return * @throws E the e */ public static double sumDouble(final T[] a, final Throwables.ToDoubleFunction func) throws E { if (isNullOrEmpty(a)) { return 0D; } return sumDouble(a, 0, a.length, func); } /** * * @param * @param * @param a * @param fromIndex * @param toIndex * @param func * @return * @throws E the e */ public static double sumDouble(final T[] a, final int fromIndex, final int toIndex, final Throwables.ToDoubleFunction func) throws E { checkFromToIndex(fromIndex, toIndex, len(a)); if (fromIndex == toIndex) { return 0D; } final KahanSummation summation = new KahanSummation(); for (int i = fromIndex; i < toIndex; i++) { summation.add(func.applyAsDouble(a[i])); } return summation.sum(); } /** * * @param * @param c * @return */ public static double sumDouble(final Collection c) { return sumDouble(c, Fn.numToDouble()); } /** * * @param * @param c * @param fromIndex * @param toIndex * @return */ public static double sumDouble(final Collection c, final int fromIndex, final int toIndex) { return sumDouble(c, fromIndex, toIndex, Fn.numToDouble()); } /** * * @param * @param * @param c * @param func * @return * @throws E the e */ public static double sumDouble(final Collection c, final Throwables.ToDoubleFunction func) throws E { if (isNullOrEmpty(c)) { return 0D; } final KahanSummation summation = new KahanSummation(); for (T e : c) { summation.add(func.applyAsDouble(e)); } return summation.sum(); } /** * * @param * @param * @param c * @param fromIndex * @param toIndex * @param func * @return * @throws E the e */ public static double sumDouble(final Collection c, final int fromIndex, final int toIndex, final Throwables.ToDoubleFunction func) throws E { checkFromToIndex(fromIndex, toIndex, size(c)); if (fromIndex == toIndex) { return 0D; } final KahanSummation summation = new KahanSummation(); if (c instanceof List && c instanceof RandomAccess) { final List list = (List) c; for (int i = fromIndex; i < toIndex; i++) { summation.add(func.applyAsDouble(list.get(i))); } } else { int idx = 0; for (T e : c) { if (idx++ < fromIndex) { continue; } summation.add(func.applyAsDouble(e)); if (idx >= toIndex) { break; } } } return summation.sum(); } /** * * @param * @param a * @return */ public static OptionalDouble averageInt(final T[] a) { return averageInt(a, Fn.numToInt()); } /** * * @param * @param a * @param fromIndex * @param toIndex * @return */ public static OptionalDouble averageInt(final T[] a, final int fromIndex, final int toIndex) { return averageInt(a, fromIndex, toIndex, Fn.numToInt()); } /** * * @param * @param * @param a * @param func * @return * @throws E the e */ public static OptionalDouble averageInt(final T[] a, final Throwables.ToIntFunction func) throws E { if (isNullOrEmpty(a)) { return OptionalDouble.empty(); } return averageInt(a, 0, a.length, func); } /** * * @param * @param * @param a * @param fromIndex * @param toIndex * @param func * @return * @throws E the e */ public static OptionalDouble averageInt(final T[] a, final int fromIndex, final int toIndex, final Throwables.ToIntFunction func) throws E { checkFromToIndex(fromIndex, toIndex, len(a)); if (fromIndex == toIndex) { return OptionalDouble.empty(); } return OptionalDouble.of(((double) sumInt(a, fromIndex, toIndex, func)) / (toIndex - fromIndex)); } /** * * @param * @param c * @return */ public static OptionalDouble averageInt(final Collection c) { return averageInt(c, Fn.numToInt()); } /** * * @param * @param c * @param fromIndex * @param toIndex * @return */ public static OptionalDouble averageInt(final Collection c, final int fromIndex, final int toIndex) { return averageInt(c, fromIndex, toIndex, Fn.numToInt()); } /** * * @param * @param * @param c * @param func * @return * @throws E the e */ public static OptionalDouble averageInt(final Collection c, final Throwables.ToIntFunction func) throws E { if (isNullOrEmpty(c)) { return OptionalDouble.empty(); } return OptionalDouble.of(((double) sumInt(c, func)) / c.size()); } /** * * @param * @param * @param c * @param fromIndex * @param toIndex * @param func * @return * @throws E the e */ public static OptionalDouble averageInt(final Collection c, final int fromIndex, final int toIndex, final Throwables.ToIntFunction func) throws E { checkFromToIndex(fromIndex, toIndex, size(c)); if (fromIndex == toIndex) { return OptionalDouble.empty(); } return OptionalDouble.of(((double) sumInt(c, fromIndex, toIndex, func)) / (toIndex - fromIndex)); } /** * * @param * @param a * @return */ public static OptionalDouble averageLong(final T[] a) { return averageLong(a, Fn.numToLong()); } /** * * @param * @param a * @param fromIndex * @param toIndex * @return */ public static OptionalDouble averageLong(final T[] a, final int fromIndex, final int toIndex) { return averageLong(a, fromIndex, toIndex, Fn.numToLong()); } /** * * @param * @param * @param a * @param func * @return * @throws E the e */ public static OptionalDouble averageLong(final T[] a, final Throwables.ToLongFunction func) throws E { if (isNullOrEmpty(a)) { return OptionalDouble.empty(); } return averageLong(a, 0, a.length, func); } /** * * @param * @param * @param a * @param fromIndex * @param toIndex * @param func * @return * @throws E the e */ public static OptionalDouble averageLong(final T[] a, final int fromIndex, final int toIndex, final Throwables.ToLongFunction func) throws E { checkFromToIndex(fromIndex, toIndex, len(a)); if (fromIndex == toIndex) { return OptionalDouble.empty(); } return OptionalDouble.of(((double) sumLong(a, fromIndex, toIndex, func)) / (toIndex - fromIndex)); } /** * * @param * @param c * @return */ public static OptionalDouble averageLong(final Collection c) { return averageLong(c, Fn.numToLong()); } /** * * @param * @param c * @param fromIndex * @param toIndex * @return */ public static OptionalDouble averageLong(final Collection c, final int fromIndex, final int toIndex) { return averageLong(c, fromIndex, toIndex, Fn.numToLong()); } /** * * @param * @param * @param c * @param func * @return * @throws E the e */ public static OptionalDouble averageLong(final Collection c, final Throwables.ToLongFunction func) throws E { if (isNullOrEmpty(c)) { return OptionalDouble.empty(); } return OptionalDouble.of(((double) sumLong(c, func)) / c.size()); } /** * * @param * @param * @param c * @param fromIndex * @param toIndex * @param func * @return * @throws E the e */ public static OptionalDouble averageLong(final Collection c, final int fromIndex, final int toIndex, final Throwables.ToLongFunction func) throws E { checkFromToIndex(fromIndex, toIndex, size(c)); if (fromIndex == toIndex) { return OptionalDouble.empty(); } return OptionalDouble.of(((double) sumLong(c, fromIndex, toIndex, func)) / (toIndex - fromIndex)); } /** * * @param * @param a * @return */ public static OptionalDouble averageDouble(final T[] a) { return averageDouble(a, Fn.numToDouble()); } /** * * @param * @param a * @param fromIndex * @param toIndex * @return */ public static OptionalDouble averageDouble(final T[] a, final int fromIndex, final int toIndex) { return averageDouble(a, fromIndex, toIndex, Fn.numToDouble()); } /** * * @param * @param * @param a * @param func * @return * @throws E the e */ public static OptionalDouble averageDouble(final T[] a, final Throwables.ToDoubleFunction func) throws E { if (isNullOrEmpty(a)) { return OptionalDouble.empty(); } return averageDouble(a, 0, a.length, func); } /** * * @param * @param * @param a * @param fromIndex * @param toIndex * @param func * @return * @throws E the e */ public static OptionalDouble averageDouble(final T[] a, final int fromIndex, final int toIndex, final Throwables.ToDoubleFunction func) throws E { checkFromToIndex(fromIndex, toIndex, len(a)); if (fromIndex == toIndex) { return OptionalDouble.empty(); } final KahanSummation summation = new KahanSummation(); for (int i = fromIndex; i < toIndex; i++) { summation.add(func.applyAsDouble(a[i])); } return summation.average(); } /** * * @param * @param c * @return */ public static OptionalDouble averageDouble(final Collection c) { return averageDouble(c, Fn.numToDouble()); } /** * * @param * @param c * @param fromIndex * @param toIndex * @return */ public static OptionalDouble averageDouble(final Collection c, final int fromIndex, final int toIndex) { return averageDouble(c, fromIndex, toIndex, Fn.numToDouble()); } /** * * @param * @param * @param c * @param func * @return * @throws E the e */ public static OptionalDouble averageDouble(final Collection c, final Throwables.ToDoubleFunction func) throws E { if (isNullOrEmpty(c)) { return OptionalDouble.empty(); } final KahanSummation summation = new KahanSummation(); for (T e : c) { summation.add(func.applyAsDouble(e)); } return summation.average(); } /** * * @param * @param * @param c * @param fromIndex * @param toIndex * @param func * @return * @throws E the e */ public static OptionalDouble averageDouble(final Collection c, final int fromIndex, final int toIndex, final Throwables.ToDoubleFunction func) throws E { checkFromToIndex(fromIndex, toIndex, size(c)); if (fromIndex == toIndex) { return OptionalDouble.empty(); } final KahanSummation summation = new KahanSummation(); if (c instanceof List && c instanceof RandomAccess) { final List list = (List) c; for (int i = fromIndex; i < toIndex; i++) { summation.add(func.applyAsDouble(list.get(i))); } } else { int idx = 0; for (T e : c) { if (idx++ < fromIndex) { continue; } summation.add(func.applyAsDouble(e)); if (idx >= toIndex) { break; } } } return summation.average(); } /** * Mostly it's designed for one-step operation to complete the operation in one step. * java.util.stream.Stream is preferred for multiple phases operation. * * @param * @param a * @param filter * @return * @throws E the e */ public static int count(final boolean[] a, final Throwables.BooleanPredicate filter) throws E { checkArgNotNull(filter); if (isNullOrEmpty(a)) { return 0; } return count(a, 0, a.length, filter); } /** * Mostly it's designed for one-step operation to complete the operation in one step. * java.util.stream.Stream is preferred for multiple phases operation. * * @param * @param a * @param fromIndex * @param toIndex * @param filter * @return * @throws E the e */ public static int count(final boolean[] a, final int fromIndex, final int toIndex, final Throwables.BooleanPredicate filter) throws E { checkFromToIndex(fromIndex, toIndex, len(a)); checkArgNotNull(filter); if (isNullOrEmpty(a)) { return 0; } int count = 0; for (int i = fromIndex; i < toIndex; i++) { if (filter.test(a[i])) { count++; } } return count; } /** * Mostly it's designed for one-step operation to complete the operation in one step. * java.util.stream.Stream is preferred for multiple phases operation. * * @param * @param a * @param filter * @return * @throws E the e */ public static int count(final char[] a, final Throwables.CharPredicate filter) throws E { checkArgNotNull(filter); if (isNullOrEmpty(a)) { return 0; } return count(a, 0, a.length, filter); } /** * Mostly it's designed for one-step operation to complete the operation in one step. * java.util.stream.Stream is preferred for multiple phases operation. * * @param * @param a * @param fromIndex * @param toIndex * @param filter * @return * @throws E the e */ public static int count(final char[] a, final int fromIndex, final int toIndex, final Throwables.CharPredicate filter) throws E { checkFromToIndex(fromIndex, toIndex, len(a)); checkArgNotNull(filter); if (isNullOrEmpty(a)) { return 0; } int count = 0; for (int i = fromIndex; i < toIndex; i++) { if (filter.test(a[i])) { count++; } } return count; } /** * Mostly it's designed for one-step operation to complete the operation in one step. * java.util.stream.Stream is preferred for multiple phases operation. * * @param * @param a * @param filter * @return * @throws E the e */ public static int count(final byte[] a, final Throwables.BytePredicate filter) throws E { checkArgNotNull(filter); if (isNullOrEmpty(a)) { return 0; } return count(a, 0, a.length, filter); } /** * Mostly it's designed for one-step operation to complete the operation in one step. * java.util.stream.Stream is preferred for multiple phases operation. * * @param * @param a * @param fromIndex * @param toIndex * @param filter * @return * @throws E the e */ public static int count(final byte[] a, final int fromIndex, final int toIndex, final Throwables.BytePredicate filter) throws E { checkFromToIndex(fromIndex, toIndex, len(a)); checkArgNotNull(filter); if (isNullOrEmpty(a)) { return 0; } int count = 0; for (int i = fromIndex; i < toIndex; i++) { if (filter.test(a[i])) { count++; } } return count; } /** * Mostly it's designed for one-step operation to complete the operation in one step. * java.util.stream.Stream is preferred for multiple phases operation. * * @param * @param a * @param filter * @return * @throws E the e */ public static int count(final short[] a, final Throwables.ShortPredicate filter) throws E { checkArgNotNull(filter); if (isNullOrEmpty(a)) { return 0; } return count(a, 0, a.length, filter); } /** * Mostly it's designed for one-step operation to complete the operation in one step. * java.util.stream.Stream is preferred for multiple phases operation. * * @param * @param a * @param fromIndex * @param toIndex * @param filter * @return * @throws E the e */ public static int count(final short[] a, final int fromIndex, final int toIndex, final Throwables.ShortPredicate filter) throws E { checkFromToIndex(fromIndex, toIndex, len(a)); checkArgNotNull(filter); if (isNullOrEmpty(a)) { return 0; } int count = 0; for (int i = fromIndex; i < toIndex; i++) { if (filter.test(a[i])) { count++; } } return count; } /** * Mostly it's designed for one-step operation to complete the operation in one step. * java.util.stream.Stream is preferred for multiple phases operation. * * @param * @param a * @param filter * @return * @throws E the e */ public static int count(final int[] a, final Throwables.IntPredicate filter) throws E { checkArgNotNull(filter); if (isNullOrEmpty(a)) { return 0; } return count(a, 0, a.length, filter); } /** * Mostly it's designed for one-step operation to complete the operation in one step. * java.util.stream.Stream is preferred for multiple phases operation. * * @param * @param a * @param fromIndex * @param toIndex * @param filter * @return * @throws E the e */ public static int count(final int[] a, final int fromIndex, final int toIndex, final Throwables.IntPredicate filter) throws E { checkFromToIndex(fromIndex, toIndex, len(a)); checkArgNotNull(filter); if (isNullOrEmpty(a)) { return 0; } int count = 0; for (int i = fromIndex; i < toIndex; i++) { if (filter.test(a[i])) { count++; } } return count; } /** * Mostly it's designed for one-step operation to complete the operation in one step. * java.util.stream.Stream is preferred for multiple phases operation. * * @param * @param a * @param filter * @return * @throws E the e */ public static int count(final long[] a, final Throwables.LongPredicate filter) throws E { checkArgNotNull(filter); if (isNullOrEmpty(a)) { return 0; } return count(a, 0, a.length, filter); } /** * Mostly it's designed for one-step operation to complete the operation in one step. * java.util.stream.Stream is preferred for multiple phases operation. * * @param * @param a * @param fromIndex * @param toIndex * @param filter * @return * @throws E the e */ public static int count(final long[] a, final int fromIndex, final int toIndex, final Throwables.LongPredicate filter) throws E { checkFromToIndex(fromIndex, toIndex, len(a)); checkArgNotNull(filter); if (isNullOrEmpty(a)) { return 0; } int count = 0; for (int i = fromIndex; i < toIndex; i++) { if (filter.test(a[i])) { count++; } } return count; } /** * Mostly it's designed for one-step operation to complete the operation in one step. * java.util.stream.Stream is preferred for multiple phases operation. * * @param * @param a * @param filter * @return * @throws E the e */ public static int count(final float[] a, final Throwables.FloatPredicate filter) throws E { checkArgNotNull(filter); if (isNullOrEmpty(a)) { return 0; } return count(a, 0, a.length, filter); } /** * Mostly it's designed for one-step operation to complete the operation in one step. * java.util.stream.Stream is preferred for multiple phases operation. * * @param * @param a * @param fromIndex * @param toIndex * @param filter * @return * @throws E the e */ public static int count(final float[] a, final int fromIndex, final int toIndex, final Throwables.FloatPredicate filter) throws E { checkFromToIndex(fromIndex, toIndex, len(a)); checkArgNotNull(filter); if (isNullOrEmpty(a)) { return 0; } int count = 0; for (int i = fromIndex; i < toIndex; i++) { if (filter.test(a[i])) { count++; } } return count; } /** * Mostly it's designed for one-step operation to complete the operation in one step. * java.util.stream.Stream is preferred for multiple phases operation. * * @param * @param a * @param filter * @return * @throws E the e */ public static int count(final double[] a, final Throwables.DoublePredicate filter) throws E { checkArgNotNull(filter); if (isNullOrEmpty(a)) { return 0; } return count(a, 0, a.length, filter); } /** * Mostly it's designed for one-step operation to complete the operation in one step. * java.util.stream.Stream is preferred for multiple phases operation. * * @param * @param a * @param fromIndex * @param toIndex * @param filter * @return * @throws E the e */ public static int count(final double[] a, final int fromIndex, final int toIndex, final Throwables.DoublePredicate filter) throws E { checkFromToIndex(fromIndex, toIndex, len(a)); checkArgNotNull(filter); if (isNullOrEmpty(a)) { return 0; } int count = 0; for (int i = fromIndex; i < toIndex; i++) { if (filter.test(a[i])) { count++; } } return count; } /** * Mostly it's designed for one-step operation to complete the operation in one step. * java.util.stream.Stream is preferred for multiple phases operation. * * @param * @param * @param a * @param filter * @return * @throws E the e */ public static int count(final T[] a, final Throwables.Predicate filter) throws E { checkArgNotNull(filter); if (isNullOrEmpty(a)) { return 0; } return count(a, 0, a.length, filter); } /** * Mostly it's designed for one-step operation to complete the operation in one step. * java.util.stream.Stream is preferred for multiple phases operation. * * @param * @param * @param a * @param fromIndex * @param toIndex * @param filter * @return * @throws E the e */ public static int count(final T[] a, final int fromIndex, final int toIndex, final Throwables.Predicate filter) throws E { checkFromToIndex(fromIndex, toIndex, len(a)); checkArgNotNull(filter); if (isNullOrEmpty(a)) { return 0; } int count = 0; for (int i = fromIndex; i < toIndex; i++) { if (filter.test(a[i])) { count++; } } return count; } /** * Mostly it's designed for one-step operation to complete the operation in one step. * java.util.stream.Stream is preferred for multiple phases operation. * * @param * @param * @param c * @param filter * @return * @throws E the e */ public static int count(final Collection c, final Throwables.Predicate filter) throws E { checkArgNotNull(filter); if (isNullOrEmpty(c)) { return 0; } return count(c, 0, c.size(), filter); } /** * Mostly it's designed for one-step operation to complete the operation in one step. * java.util.stream.Stream is preferred for multiple phases operation. * * @param * @param * @param c * @param fromIndex * @param toIndex * @param filter * @return * @throws E the e */ public static int count(final Collection c, final int fromIndex, final int toIndex, final Throwables.Predicate filter) throws E { checkFromToIndex(fromIndex, toIndex, size(c)); checkArgNotNull(filter); if ((isNullOrEmpty(c) && fromIndex == 0 && toIndex == 0) || (fromIndex == toIndex && fromIndex < c.size())) { return 0; } int count = 0; if (c instanceof List && c instanceof RandomAccess) { final List list = (List) c; for (int i = fromIndex; i < toIndex; i++) { if (filter.test(list.get(i))) { count++; } } } else { int idx = 0; for (T e : c) { if (idx++ < fromIndex) { continue; } if (filter.test(e)) { count++; } if (idx >= toIndex) { break; } } } return count; } /** * * @param a * @param n * @return */ public static short[] top(final short[] a, final int n) { return top(a, n, null); } /** * * @param a * @param n * @param cmp * @return */ public static short[] top(final short[] a, final int n, final Comparator cmp) { return top(a, 0, len(a), n, cmp); } /** * * @param a * @param fromIndex * @param toIndex * @param n * @return */ public static short[] top(final short[] a, final int fromIndex, final int toIndex, final int n) { return top(a, fromIndex, toIndex, n, null); } /** * * @param a * @param fromIndex * @param toIndex * @param n * @param cmp * @return */ public static short[] top(final short[] a, final int fromIndex, final int toIndex, final int n, final Comparator cmp) { checkArgNotNegative(n, "n"); if (n == 0) { return EMPTY_SHORT_ARRAY; } else if (n >= toIndex - fromIndex) { return copyOfRange(a, fromIndex, toIndex); } final Comparator comparator = cmp == null ? Comparators.NATURAL_ORDER : cmp; final Queue heap = new PriorityQueue<>(n, comparator); for (int i = fromIndex; i < toIndex; i++) { if (heap.size() >= n) { if (comparator.compare(heap.peek(), a[i]) < 0) { heap.poll(); heap.add(a[i]); } } else { heap.offer(a[i]); } } final Iterator iter = heap.iterator(); final short[] res = new short[n]; int idx = 0; while (iter.hasNext()) { res[idx++] = iter.next(); } return res; } /** * * @param a * @param n * @return */ public static int[] top(final int[] a, final int n) { return top(a, n, null); } /** * * @param a * @param n * @param cmp * @return */ public static int[] top(final int[] a, final int n, final Comparator cmp) { return top(a, 0, len(a), n, cmp); } /** * * @param a * @param fromIndex * @param toIndex * @param n * @return */ public static int[] top(final int[] a, final int fromIndex, final int toIndex, final int n) { return top(a, fromIndex, toIndex, n, null); } /** * * @param a * @param fromIndex * @param toIndex * @param n * @param cmp * @return */ public static int[] top(final int[] a, final int fromIndex, final int toIndex, final int n, final Comparator cmp) { checkArgNotNegative(n, "n"); if (n == 0) { return EMPTY_INT_ARRAY; } else if (n >= toIndex - fromIndex) { return copyOfRange(a, fromIndex, toIndex); } final Comparator comparator = cmp == null ? Comparators.NATURAL_ORDER : cmp; final Queue heap = new PriorityQueue<>(n, comparator); for (int i = fromIndex; i < toIndex; i++) { if (heap.size() >= n) { if (comparator.compare(heap.peek(), a[i]) < 0) { heap.poll(); heap.add(a[i]); } } else { heap.offer(a[i]); } } final Iterator iter = heap.iterator(); final int[] res = new int[n]; int idx = 0; while (iter.hasNext()) { res[idx++] = iter.next(); } return res; } /** * * @param a * @param n * @return */ public static long[] top(final long[] a, final int n) { return top(a, n, null); } /** * * @param a * @param n * @param cmp * @return */ public static long[] top(final long[] a, final int n, final Comparator cmp) { return top(a, 0, len(a), n, cmp); } /** * * @param a * @param fromIndex * @param toIndex * @param n * @return */ public static long[] top(final long[] a, final int fromIndex, final int toIndex, final int n) { return top(a, fromIndex, toIndex, n, null); } /** * * @param a * @param fromIndex * @param toIndex * @param n * @param cmp * @return */ public static long[] top(final long[] a, final int fromIndex, final int toIndex, final int n, final Comparator cmp) { checkArgNotNegative(n, "n"); if (n == 0) { return EMPTY_LONG_ARRAY; } else if (n >= toIndex - fromIndex) { return copyOfRange(a, fromIndex, toIndex); } final Comparator comparator = cmp == null ? Comparators.NATURAL_ORDER : cmp; final Queue heap = new PriorityQueue<>(n, comparator); for (int i = fromIndex; i < toIndex; i++) { if (heap.size() >= n) { if (comparator.compare(heap.peek(), a[i]) < 0) { heap.poll(); heap.add(a[i]); } } else { heap.offer(a[i]); } } final Iterator iter = heap.iterator(); final long[] res = new long[n]; int idx = 0; while (iter.hasNext()) { res[idx++] = iter.next(); } return res; } /** * * @param a * @param n * @return */ public static float[] top(final float[] a, final int n) { return top(a, n, null); } /** * * @param a * @param n * @param cmp * @return */ public static float[] top(final float[] a, final int n, final Comparator cmp) { return top(a, 0, len(a), n, cmp); } /** * * @param a * @param fromIndex * @param toIndex * @param n * @return */ public static float[] top(final float[] a, final int fromIndex, final int toIndex, final int n) { return top(a, fromIndex, toIndex, n, null); } /** * * @param a * @param fromIndex * @param toIndex * @param n * @param cmp * @return */ public static float[] top(final float[] a, final int fromIndex, final int toIndex, final int n, final Comparator cmp) { checkArgNotNegative(n, "n"); if (n == 0) { return EMPTY_FLOAT_ARRAY; } else if (n >= toIndex - fromIndex) { return copyOfRange(a, fromIndex, toIndex); } final Comparator comparator = cmp == null ? Comparators.NATURAL_ORDER : cmp; final Queue heap = new PriorityQueue<>(n, comparator); for (int i = fromIndex; i < toIndex; i++) { if (heap.size() >= n) { if (comparator.compare(heap.peek(), a[i]) < 0) { heap.poll(); heap.add(a[i]); } } else { heap.offer(a[i]); } } final Iterator iter = heap.iterator(); final float[] res = new float[n]; int idx = 0; while (iter.hasNext()) { res[idx++] = iter.next(); } return res; } /** * * @param a * @param n * @return */ public static double[] top(final double[] a, final int n) { return top(a, n, null); } /** * * @param a * @param n * @param cmp * @return */ public static double[] top(final double[] a, final int n, final Comparator cmp) { return top(a, 0, len(a), n, cmp); } /** * * @param a * @param fromIndex * @param toIndex * @param n * @return */ public static double[] top(final double[] a, final int fromIndex, final int toIndex, final int n) { return top(a, fromIndex, toIndex, n, null); } /** * * @param a * @param fromIndex * @param toIndex * @param n * @param cmp * @return */ public static double[] top(final double[] a, final int fromIndex, final int toIndex, final int n, final Comparator cmp) { checkArgNotNegative(n, "n"); if (n == 0) { return EMPTY_DOUBLE_ARRAY; } else if (n >= toIndex - fromIndex) { return copyOfRange(a, fromIndex, toIndex); } final Comparator comparator = cmp == null ? Comparators.NATURAL_ORDER : cmp; final Queue heap = new PriorityQueue<>(n, comparator); for (int i = fromIndex; i < toIndex; i++) { if (heap.size() >= n) { if (comparator.compare(heap.peek(), a[i]) < 0) { heap.poll(); heap.add(a[i]); } } else { heap.offer(a[i]); } } final Iterator iter = heap.iterator(); final double[] res = new double[n]; int idx = 0; while (iter.hasNext()) { res[idx++] = iter.next(); } return res; } /** * * @param * @param a * @param n * @return */ public static > List top(final T[] a, final int n) { return top(a, n, NATURAL_ORDER); } /** * * @param * @param a * @param n * @param cmp * @return */ public static List top(final T[] a, final int n, final Comparator cmp) { return top(a, 0, len(a), n, cmp); } /** * * @param * @param a * @param fromIndex * @param toIndex * @param n * @return */ public static > List top(final T[] a, final int fromIndex, final int toIndex, final int n) { return top(a, fromIndex, toIndex, n, NATURAL_ORDER); } /** * * @param * @param a * @param fromIndex * @param toIndex * @param n * @param cmp * @return */ public static List top(final T[] a, final int fromIndex, final int toIndex, final int n, final Comparator cmp) { checkArgNotNegative(n, "n"); if (n == 0) { return new ArrayList<>(); } else if (n >= toIndex - fromIndex) { return toList(a, fromIndex, toIndex); } final Comparator comparator = cmp == null ? Comparators.NATURAL_ORDER : cmp; final Queue heap = new PriorityQueue<>(n, comparator); for (int i = fromIndex; i < toIndex; i++) { if (heap.size() >= n) { if (comparator.compare(heap.peek(), a[i]) < 0) { heap.poll(); heap.add(a[i]); } } else { heap.offer(a[i]); } } return createList((T[]) heap.toArray(EMPTY_OBJECT_ARRAY)); } /** * * @param * @param c * @param n * @return */ public static > List top(final Collection c, final int n) { return top(c, n, null); } /** * * @param * @param c * @param n * @param cmp * @return */ public static List top(final Collection c, final int n, final Comparator cmp) { return top(c, 0, size(c), n, cmp); } /** * * @param * @param c * @param fromIndex * @param toIndex * @param n * @return */ public static > List top(final Collection c, final int fromIndex, final int toIndex, final int n) { return top(c, fromIndex, toIndex, n, null); } /** * * @param * @param c * @param fromIndex * @param toIndex * @param n * @param cmp * @return */ public static List top(final Collection c, final int fromIndex, final int toIndex, final int n, final Comparator cmp) { checkArgNotNegative(n, "n"); if (n == 0) { return new ArrayList<>(); } else if (n >= toIndex - fromIndex) { if (fromIndex == 0 && toIndex == c.size()) { return new ArrayList<>(c); } else { final List res = new ArrayList<>(toIndex - fromIndex); final Iterator iter = c.iterator(); T e = null; for (int i = 0; i < toIndex && iter.hasNext(); i++) { e = iter.next(); if (i < fromIndex) { continue; } res.add(e); } return res; } } final Comparator comparator = cmp == null ? Comparators.NATURAL_ORDER : cmp; final Queue heap = new PriorityQueue<>(n, comparator); if (c instanceof List && c instanceof RandomAccess) { final List list = (List) c; T e = null; for (int i = fromIndex; i < toIndex; i++) { e = list.get(i); if (heap.size() >= n) { if (comparator.compare(heap.peek(), e) < 0) { heap.poll(); heap.add(e); } } else { heap.offer(e); } } } else { final Iterator iter = c.iterator(); T e = null; for (int i = 0; i < toIndex && iter.hasNext(); i++) { e = iter.next(); if (i < fromIndex) { continue; } if (heap.size() >= n) { if (comparator.compare(heap.peek(), e) < 0) { heap.poll(); heap.add(e); } } else { heap.offer(e); } } } return createList((T[]) heap.toArray(EMPTY_OBJECT_ARRAY)); } /** * The present order is kept in the result list. * * @param * @param a * @param n * @return */ public static > List topp(final T[] a, final int n) { return topp(a, n, NATURAL_ORDER); } /** * The present order is kept in the result list. * * @param * @param a * @param n * @param cmp * @return */ public static List topp(final T[] a, final int n, final Comparator cmp) { return topp(a, 0, len(a), n, cmp); } /** * The present order is kept in the result list. * * @param * @param a * @param fromIndex * @param toIndex * @param n * @return */ public static > List topp(final T[] a, final int fromIndex, final int toIndex, final int n) { return topp(a, fromIndex, toIndex, n, NATURAL_ORDER); } /** * The present order is kept in the result list. * * @param * @param a * @param fromIndex * @param toIndex * @param n * @param cmp * @return */ @SuppressWarnings("rawtypes") public static List topp(final T[] a, final int fromIndex, final int toIndex, final int n, final Comparator cmp) { checkArgNotNegative(n, "n"); if (n == 0) { return new ArrayList<>(); } else if (n >= toIndex - fromIndex) { return toList(a, fromIndex, toIndex); } final Comparator> comparator = cmp == null ? (Comparator) new Comparator>() { @Override public int compare(final Indexed o1, final Indexed o2) { return N.compare(o1.value(), o2.value()); } } : new Comparator>() { @Override public int compare(final Indexed o1, final Indexed o2) { return cmp.compare(o1.value(), o2.value()); } }; final Queue> heap = new PriorityQueue<>(n, comparator); Indexed indexed = null; for (int i = fromIndex; i < toIndex; i++) { indexed = Indexed.of(a[i], i); if (heap.size() >= n) { if (comparator.compare(heap.peek(), indexed) < 0) { heap.poll(); heap.add(indexed); } } else { heap.offer(indexed); } } final Indexed[] arrayOfIndexed = heap.toArray(new Indexed[heap.size()]); sort(arrayOfIndexed, new Comparator>() { @Override public int compare(final Indexed o1, final Indexed o2) { return o1.index() - o2.index(); } }); final List res = new ArrayList<>(arrayOfIndexed.length); for (int i = 0, len = arrayOfIndexed.length; i < len; i++) { res.add(arrayOfIndexed[i].value()); } return res; } /** * The present order is kept in the result list. * * @param * @param c * @param n * @return */ public static > List topp(final Collection c, final int n) { return topp(c, n, null); } /** * The present order is kept in the result list. * * @param * @param c * @param n * @param cmp * @return */ public static List topp(final Collection c, final int n, final Comparator cmp) { return topp(c, 0, size(c), n, cmp); } /** * The present order is kept in the result list. * * @param * @param c * @param fromIndex * @param toIndex * @param n * @return */ public static > List topp(final Collection c, final int fromIndex, final int toIndex, final int n) { return topp(c, fromIndex, toIndex, n, null); } /** * The present order is kept in the result list. * * @param * @param c * @param fromIndex * @param toIndex * @param n * @param cmp * @return */ @SuppressWarnings("rawtypes") public static List topp(final Collection c, final int fromIndex, final int toIndex, final int n, final Comparator cmp) { checkArgNotNegative(n, "n"); if (n == 0) { return new ArrayList<>(); } else if (n >= toIndex - fromIndex) { if (fromIndex == 0 && toIndex == c.size()) { return new ArrayList<>(c); } else { final List res = new ArrayList<>(toIndex - fromIndex); final Iterator iter = c.iterator(); T e = null; for (int i = 0; i < toIndex && iter.hasNext(); i++) { e = iter.next(); if (i < fromIndex) { continue; } res.add(e); } return res; } } final Comparator> comparator = cmp == null ? (Comparator) new Comparator>() { @Override public int compare(final Indexed o1, final Indexed o2) { return N.compare(o1.value(), o2.value()); } } : new Comparator>() { @Override public int compare(final Indexed o1, final Indexed o2) { return cmp.compare(o1.value(), o2.value()); } }; final Queue> heap = new PriorityQueue<>(n, comparator); if (c instanceof List && c instanceof RandomAccess) { final List list = (List) c; Indexed indexed = null; T e = null; for (int i = fromIndex; i < toIndex; i++) { e = list.get(i); indexed = Indexed.of(e, i); if (heap.size() >= n) { if (comparator.compare(heap.peek(), indexed) < 0) { heap.poll(); heap.add(indexed); } } else { heap.offer(indexed); } } } else { final Iterator iter = c.iterator(); Indexed indexed = null; T e = null; for (int i = 0; i < toIndex && iter.hasNext(); i++) { e = iter.next(); if (i < fromIndex) { continue; } indexed = Indexed.of(e, i); if (heap.size() >= n) { if (comparator.compare(heap.peek(), indexed) < 0) { heap.poll(); heap.add(indexed); } } else { heap.offer(indexed); } } } final Indexed[] arrayOfIndexed = heap.toArray(new Indexed[heap.size()]); sort(arrayOfIndexed, new Comparator>() { @Override public int compare(final Indexed o1, final Indexed o2) { return o1.index() - o2.index(); } }); final List res = new ArrayList<>(arrayOfIndexed.length); for (int i = 0, len = arrayOfIndexed.length; i < len; i++) { res.add(arrayOfIndexed[i].value()); } return res; } /** * Mostly it's designed for one-step operation to complete the operation in one step. * java.util.stream.Stream is preferred for multiple phases operation. * * @param a * @return */ public static boolean[] distinct(final boolean[] a) { return distinct(a, 0, len(a)); } /** * Mostly it's designed for one-step operation to complete the operation in one step. * java.util.stream.Stream is preferred for multiple phases operation. * * @param a * @param fromIndex * @param toIndex * @return */ public static boolean[] distinct(final boolean[] a, final int fromIndex, final int toIndex) { return removeDuplicates(a, fromIndex, toIndex, false); } /** * Mostly it's designed for one-step operation to complete the operation in one step. * java.util.stream.Stream is preferred for multiple phases operation. * * @param a * @return */ public static char[] distinct(final char[] a) { return distinct(a, 0, len(a)); } /** * Mostly it's designed for one-step operation to complete the operation in one step. * java.util.stream.Stream is preferred for multiple phases operation. * * @param a * @param fromIndex * @param toIndex * @return */ public static char[] distinct(final char[] a, final int fromIndex, final int toIndex) { return removeDuplicates(a, fromIndex, toIndex, false); } /** * Mostly it's designed for one-step operation to complete the operation in one step. * java.util.stream.Stream is preferred for multiple phases operation. * * @param a * @return */ public static byte[] distinct(final byte[] a) { return distinct(a, 0, len(a)); } /** * Mostly it's designed for one-step operation to complete the operation in one step. * java.util.stream.Stream is preferred for multiple phases operation. * * @param a * @param fromIndex * @param toIndex * @return */ public static byte[] distinct(final byte[] a, final int fromIndex, final int toIndex) { return removeDuplicates(a, fromIndex, toIndex, false); } /** * Mostly it's designed for one-step operation to complete the operation in one step. * java.util.stream.Stream is preferred for multiple phases operation. * * @param a * @return */ public static short[] distinct(final short[] a) { return distinct(a, 0, len(a)); } /** * Mostly it's designed for one-step operation to complete the operation in one step. * java.util.stream.Stream is preferred for multiple phases operation. * * @param a * @param fromIndex * @param toIndex * @return */ public static short[] distinct(final short[] a, final int fromIndex, final int toIndex) { return removeDuplicates(a, fromIndex, toIndex, false); } /** * Mostly it's designed for one-step operation to complete the operation in one step. * java.util.stream.Stream is preferred for multiple phases operation. * * @param a * @return */ public static int[] distinct(final int[] a) { return distinct(a, 0, len(a)); } /** * Mostly it's designed for one-step operation to complete the operation in one step. * java.util.stream.Stream is preferred for multiple phases operation. * * @param a * @param fromIndex * @param toIndex * @return */ public static int[] distinct(final int[] a, final int fromIndex, final int toIndex) { return removeDuplicates(a, fromIndex, toIndex, false); } /** * Mostly it's designed for one-step operation to complete the operation in one step. * java.util.stream.Stream is preferred for multiple phases operation. * * @param a * @return */ public static long[] distinct(final long[] a) { return distinct(a, 0, len(a)); } /** * Mostly it's designed for one-step operation to complete the operation in one step. * java.util.stream.Stream is preferred for multiple phases operation. * * @param a * @param fromIndex * @param toIndex * @return */ public static long[] distinct(final long[] a, final int fromIndex, final int toIndex) { return removeDuplicates(a, fromIndex, toIndex, false); } /** * Mostly it's designed for one-step operation to complete the operation in one step. * java.util.stream.Stream is preferred for multiple phases operation. * * @param a * @return */ public static float[] distinct(final float[] a) { return distinct(a, 0, len(a)); } /** * Mostly it's designed for one-step operation to complete the operation in one step. * java.util.stream.Stream is preferred for multiple phases operation. * * @param a * @param fromIndex * @param toIndex * @return */ public static float[] distinct(final float[] a, final int fromIndex, final int toIndex) { return removeDuplicates(a, fromIndex, toIndex, false); } /** * Mostly it's designed for one-step operation to complete the operation in one step. * java.util.stream.Stream is preferred for multiple phases operation. * * @param a * @return */ public static double[] distinct(final double[] a) { return distinct(a, 0, len(a)); } /** * Mostly it's designed for one-step operation to complete the operation in one step. * java.util.stream.Stream is preferred for multiple phases operation. * * @param a * @param fromIndex * @param toIndex * @return */ public static double[] distinct(final double[] a, final int fromIndex, final int toIndex) { return removeDuplicates(a, fromIndex, toIndex, false); } /** * Mostly it's designed for one-step operation to complete the operation in one step. * java.util.stream.Stream is preferred for multiple phases operation. * * @param * @param a * @return */ public static List distinct(final T[] a) { if (isNullOrEmpty(a)) { return new ArrayList<>(); } return distinct(a, 0, a.length); } /** * Mostly it's designed for one-step operation to complete the operation in one step. * java.util.stream.Stream is preferred for multiple phases operation. * * @param * @param a * @param fromIndex * @param toIndex * @return */ public static List distinct(final T[] a, final int fromIndex, final int toIndex) { checkFromToIndex(fromIndex, toIndex, len(a)); if (isNullOrEmpty(a)) { return new ArrayList<>(); } final List result = new ArrayList<>(); final Set set = newHashSet(); for (int i = fromIndex; i < toIndex; i++) { if (set.add(hashKey(a[i]))) { result.add(a[i]); } } return result; } /** * Mostly it's designed for one-step operation to complete the operation in one step. * java.util.stream.Stream is preferred for multiple phases operation. * * @param * @param c * @return */ public static List distinct(final Collection c) { if (isNullOrEmpty(c)) { return new ArrayList<>(); } return distinct(c, 0, c.size()); } /** * Mostly it's designed for one-step operation to complete the operation in one step. * java.util.stream.Stream is preferred for multiple phases operation. * * @param * @param c * @param fromIndex * @param toIndex * @return */ public static List distinct(final Collection c, final int fromIndex, final int toIndex) { checkFromToIndex(fromIndex, toIndex, size(c)); if (isNullOrEmpty(c) && fromIndex == 0 && toIndex == 0) { return new ArrayList<>(); } final List result = new ArrayList<>(); final Set set = newHashSet(); T e = null; if (c instanceof List && c instanceof RandomAccess) { final List list = (List) c; for (int i = fromIndex; i < toIndex; i++) { e = list.get(i); if (set.add(hashKey(e))) { result.add(e); } } } else { final Iterator it = c.iterator(); for (int i = 0; i < toIndex && it.hasNext(); i++) { e = it.next(); if (i < fromIndex) { continue; } if (set.add(hashKey(e))) { result.add(e); } } } return result; } /** * Distinct by the value mapped from keyMapper. * * Mostly it's designed for one-step operation to complete the operation in one step. * java.util.stream.Stream is preferred for multiple phases operation. * * @param * @param * @param a * @param keyMapper don't change value of the input parameter. * @return * @throws E the e */ public static List distinctBy(final T[] a, final Throwables.Function keyMapper) throws E { if (isNullOrEmpty(a)) { return new ArrayList<>(); } return distinctBy(a, 0, a.length, keyMapper); } /** * Distinct by the value mapped from keyMapper. * * Mostly it's designed for one-step operation to complete the operation in one step. * java.util.stream.Stream is preferred for multiple phases operation. * * @param * @param * @param a * @param fromIndex * @param toIndex * @param keyMapper don't change value of the input parameter. * @return * @throws E the e */ public static List distinctBy(final T[] a, final int fromIndex, final int toIndex, final Throwables.Function keyMapper) throws E { checkFromToIndex(fromIndex, toIndex, len(a)); if (isNullOrEmpty(a)) { return new ArrayList<>(); } final List result = new ArrayList<>(); final Set set = newHashSet(); for (int i = fromIndex; i < toIndex; i++) { if (set.add(hashKey(keyMapper.apply(a[i])))) { result.add(a[i]); } } return result; } /** * Distinct by the value mapped from keyMapper. * * Mostly it's designed for one-step operation to complete the operation in one step. * java.util.stream.Stream is preferred for multiple phases operation. * * @param * @param * @param c * @param keyMapper don't change value of the input parameter. * @return * @throws E the e */ public static List distinctBy(final Collection c, final Throwables.Function keyMapper) throws E { if (isNullOrEmpty(c)) { return new ArrayList<>(); } return distinctBy(c, 0, c.size(), keyMapper); } /** * Distinct by the value mapped from keyMapper. * * Mostly it's designed for one-step operation to complete the operation in one step. * java.util.stream.Stream is preferred for multiple phases operation. * * @param * @param * @param c * @param fromIndex * @param toIndex * @param keyMapper don't change value of the input parameter. * @return * @throws E the e */ public static List distinctBy(final Collection c, final int fromIndex, final int toIndex, final Throwables.Function keyMapper) throws E { checkFromToIndex(fromIndex, toIndex, size(c)); if (isNullOrEmpty(c) && fromIndex == 0 && toIndex == 0) { return new ArrayList<>(); } final List result = new ArrayList<>(); final Set set = newHashSet(); T e = null; if (c instanceof List && c instanceof RandomAccess) { final List list = (List) c; for (int i = fromIndex; i < toIndex; i++) { e = list.get(i); if (set.add(hashKey(keyMapper.apply(e)))) { result.add(e); } } } else { final Iterator it = c.iterator(); for (int i = 0; i < toIndex && it.hasNext(); i++) { e = it.next(); if (i < fromIndex) { continue; } if (set.add(hashKey(keyMapper.apply(e)))) { result.add(e); } } } return result; } /** * * @param the generic type * @param the element type * @param c the c * @param filter the filter * @return true, if successful * @throws E the e */ @SuppressWarnings("deprecation") public static boolean allMatch(final Collection c, final Throwables.Predicate filter) throws E { return Iterables.allMatch(c, filter); } /** * * @param the generic type * @param the element type * @param a the a * @param filter the filter * @return true, if successful * @throws E the e */ @SuppressWarnings("deprecation") public static boolean allMatch(final T[] a, final Throwables.Predicate filter) throws E { return Iterables.allMatch(a, filter); } /** * * @param the generic type * @param the element type * @param c the c * @param filter the filter * @return true, if successful * @throws E the e */ @SuppressWarnings("deprecation") public static boolean anyMatch(final Collection c, final Throwables.Predicate filter) throws E { return Iterables.anyMatch(c, filter); } /** * * @param the generic type * @param the element type * @param a the a * @param filter the filter * @return true, if successful * @throws E the e */ @SuppressWarnings("deprecation") public static boolean anyMatch(final T[] a, final Throwables.Predicate filter) throws E { return Iterables.anyMatch(a, filter); } /** * * @param the generic type * @param the element type * @param c the c * @param filter the filter * @return true, if successful * @throws E the e */ @SuppressWarnings("deprecation") public static boolean noneMatch(final Collection c, final Throwables.Predicate filter) throws E { return Iterables.noneMatch(c, filter); } /** * * @param the generic type * @param the element type * @param a the a * @param filter the filter * @return true, if successful * @throws E the e */ @SuppressWarnings("deprecation") public static boolean noneMatch(final T[] a, final Throwables.Predicate filter) throws E { return Iterables.noneMatch(a, filter); } /** * * @param the generic type * @param the element type * @param c the c * @param atLeast the at least * @param atMost the at most * @param filter the filter * @return true, if successful * @throws E the e */ @SuppressWarnings("deprecation") public static boolean nMatch(final Collection c, final int atLeast, final int atMost, final Throwables.Predicate filter) throws E { return Iterables.nMatch(c, atLeast, atMost, filter); } /** * * @param the generic type * @param the element type * @param a the a * @param atLeast the at least * @param atMost the at most * @param filter the filter * @return true, if successful * @throws E the e */ @SuppressWarnings("deprecation") public static boolean nMatch(final T[] a, final int atLeast, final int atMost, final Throwables.Predicate filter) throws E { return Iterables.nMatch(a, atLeast, atMost, filter); } /** * * @param obj * @return */ public static String toJSON(final Object obj) { return Utils.jsonParser.serialize(obj, Utils.jsc); } /** * * @param obj * @param prettyFormat * @return */ public static String toJSON(final Object obj, final boolean prettyFormat) { return Utils.jsonParser.serialize(obj, prettyFormat ? Utils.jscPrettyFormat : Utils.jsc); } /** * * @param obj * @param config * @return */ public static String toJSON(final Object obj, final JSONSerializationConfig config) { return Utils.jsonParser.serialize(obj, config); } /** * * @param file * @param obj */ public static void toJSON(final File file, final Object obj) { Utils.jsonParser.serialize(file, obj); } /** * * @param file * @param obj * @param config */ public static void toJSON(final File file, final Object obj, final JSONSerializationConfig config) { Utils.jsonParser.serialize(file, obj, config); } /** * * @param os * @param obj */ public static void toJSON(final OutputStream os, final Object obj) { Utils.jsonParser.serialize(os, obj); } /** * * @param os * @param obj * @param config */ public static void toJSON(final OutputStream os, final Object obj, final JSONSerializationConfig config) { Utils.jsonParser.serialize(os, obj, config); } /** * * @param writer * @param obj */ public static void toJSON(final Writer writer, final Object obj) { Utils.jsonParser.serialize(writer, obj); } /** * * @param writer * @param obj * @param config */ public static void toJSON(final Writer writer, final Object obj, final JSONSerializationConfig config) { Utils.jsonParser.serialize(writer, obj, config); } /** * * @param * @param targetClass * @param json * @return */ public static T fromJSON(final Class targetClass, final String json) { return Utils.jsonParser.deserialize(targetClass, json); } /** * * @param * @param targetClass * @param json * @param config * @return */ public static T fromJSON(final Class targetClass, final String json, final JSONDeserializationConfig config) { return Utils.jsonParser.deserialize(targetClass, json, config); } /** * * @param * @param targetClass * @param json * @return */ public static T fromJSON(final Class targetClass, final File json) { return Utils.jsonParser.deserialize(targetClass, json); } /** * * @param * @param targetClass * @param json * @param config * @return */ public static T fromJSON(final Class targetClass, final File json, final JSONDeserializationConfig config) { return Utils.jsonParser.deserialize(targetClass, json, config); } /** * * @param * @param targetClass * @param json * @return */ public static T fromJSON(final Class targetClass, final InputStream json) { return Utils.jsonParser.deserialize(targetClass, json); } /** * * @param * @param targetClass * @param json * @param config * @return */ public static T fromJSON(final Class targetClass, final InputStream json, final JSONDeserializationConfig config) { return Utils.jsonParser.deserialize(targetClass, json, config); } /** * * @param * @param targetClass * @param json * @return */ public static T fromJSON(final Class targetClass, final Reader json) { return Utils.jsonParser.deserialize(targetClass, json); } /** * * @param * @param targetClass * @param json * @param config * @return */ public static T fromJSON(final Class targetClass, final Reader json, final JSONDeserializationConfig config) { return Utils.jsonParser.deserialize(targetClass, json, config); } /** * * @param * @param targetClass * @param json * @param fromIndex * @param toIndex * @return */ public static T fromJSON(final Class targetClass, final String json, final int fromIndex, final int toIndex) { return Utils.jsonParser.deserialize(targetClass, json, fromIndex, toIndex); } /** * * @param * @param targetClass * @param json * @param fromIndex * @param toIndex * @param config * @return */ public static T fromJSON(final Class targetClass, final String json, final int fromIndex, final int toIndex, final JSONDeserializationConfig config) { return Utils.jsonParser.deserialize(targetClass, json, fromIndex, toIndex, config); } /** * * @param * @param targetType can be the {@code Type} of {@code Entity/Array/Collection/Map}. * @param json * @return */ public static T fromJSON(final Type targetType, final String json) { return fromJSON(targetType, json, null); } /** * * @param * @param targetType can be the {@code Type} of {@code Entity/Array/Collection/Map}. * @param json * @param config * @return */ public static T fromJSON(final Type targetType, final String json, final JSONDeserializationConfig config) { return Utils.jsonParser.deserialize(targetType.clazz(), json, setConfig(targetType, config, true)); } /** * * @param * @param targetType can be the {@code Type} of {@code Entity/Array/Collection/Map}. * @param json * @return */ public static T fromJSON(final Type targetType, final File json) { return fromJSON(targetType, json, null); } /** * * @param * @param targetType can be the {@code Type} of {@code Entity/Array/Collection/Map}. * @param json * @param config * @return */ public static T fromJSON(final Type targetType, final File json, final JSONDeserializationConfig config) { return Utils.jsonParser.deserialize(targetType.clazz(), json, setConfig(targetType, config, true)); } /** * * @param * @param targetType can be the {@code Type} of {@code Entity/Array/Collection/Map}. * @param json * @return */ public static T fromJSON(final Type targetType, final InputStream json) { return fromJSON(targetType, json, null); } /** * * @param * @param targetType can be the {@code Type} of {@code Entity/Array/Collection/Map}. * @param json * @param config * @return */ public static T fromJSON(final Type targetType, final InputStream json, final JSONDeserializationConfig config) { return Utils.jsonParser.deserialize(targetType.clazz(), json, setConfig(targetType, config, true)); } /** * * @param * @param targetType can be the {@code Type} of {@code Entity/Array/Collection/Map}. * @param json * @return */ public static T fromJSON(final Type targetType, final Reader json) { return fromJSON(targetType, json, null); } /** * * @param * @param targetType can be the {@code Type} of {@code Entity/Array/Collection/Map}. * @param json * @param config * @return */ public static T fromJSON(final Type targetType, final Reader json, final JSONDeserializationConfig config) { return Utils.jsonParser.deserialize(targetType.clazz(), json, setConfig(targetType, config, true)); } /** * * @param * @param targetType can be the {@code Type} of {@code Entity/Array/Collection/Map}. * @param json * @param fromIndex * @param toIndex * @return */ public static T fromJSON(final Type targetType, final String json, final int fromIndex, final int toIndex) { return fromJSON(targetType, json, fromIndex, toIndex, null); } /** * * @param * @param targetType can be the {@code Type} of {@code Entity/Array/Collection/Map}. * @param json * @param fromIndex * @param toIndex * @param config * @return */ public static T fromJSON(final Type targetType, final String json, final int fromIndex, final int toIndex, final JSONDeserializationConfig config) { return Utils.jsonParser.deserialize(targetType.clazz(), json, fromIndex, toIndex, setConfig(targetType, config, true)); } /** * * @param json * @return */ public static String formatJSON(final String json) { return formatJSON(Object.class, json); } /** * * @param type * @param json * @return */ public static String formatJSON(final Class type, final String json) { return toJSON(fromJSON(type, json), Utils.jscPrettyFormat); } /** * * @param type * @param json * @return */ public static String formatJSON(final Type type, final String json) { return toJSON(fromJSON(type, json), Utils.jscPrettyFormat); } /** * * @param obj * @return */ public static String toXML(final Object obj) { return Utils.xmlParser.serialize(obj); } /** * * @param obj * @param prettyFormat * @return */ public static String toXML(final Object obj, final boolean prettyFormat) { return Utils.xmlParser.serialize(obj, prettyFormat ? Utils.xscPrettyFormat : Utils.xsc); } /** * * @param obj * @param config * @return */ public static String toXML(final Object obj, final XMLSerializationConfig config) { return Utils.xmlParser.serialize(obj, config); } /** * * @param file * @param obj */ public static void toXML(final File file, final Object obj) { Utils.xmlParser.serialize(file, obj); } /** * * @param file * @param obj * @param config */ public static void toXML(final File file, final Object obj, final XMLSerializationConfig config) { Utils.xmlParser.serialize(file, obj, config); } /** * * @param os * @param obj */ public static void toXML(final OutputStream os, final Object obj) { Utils.xmlParser.serialize(os, obj); } /** * * @param os * @param obj * @param config */ public static void toXML(final OutputStream os, final Object obj, final XMLSerializationConfig config) { Utils.xmlParser.serialize(os, obj, config); } /** * * @param writer * @param obj */ public static void toXML(final Writer writer, final Object obj) { Utils.xmlParser.serialize(writer, obj); } /** * * @param writer * @param obj * @param config */ public static void toXML(final Writer writer, final Object obj, final XMLSerializationConfig config) { Utils.xmlParser.serialize(writer, obj, config); } /** * * @param * @param targetClass * @param xml * @return */ public static T fromXML(final Class targetClass, final String xml) { return Utils.xmlParser.deserialize(targetClass, xml); } /** * * @param * @param targetClass * @param xml * @param config * @return */ public static T fromXML(final Class targetClass, final String xml, final XMLDeserializationConfig config) { return Utils.xmlParser.deserialize(targetClass, xml, config); } /** * * @param * @param targetClass * @param xml * @return */ public static T fromXML(final Class targetClass, final File xml) { return Utils.xmlParser.deserialize(targetClass, xml); } /** * * @param * @param targetClass * @param xml * @param config * @return */ public static T fromXML(final Class targetClass, final File xml, final XMLDeserializationConfig config) { return Utils.xmlParser.deserialize(targetClass, xml, config); } /** * * @param * @param targetClass * @param xml * @return */ public static T fromXML(final Class targetClass, final InputStream xml) { return Utils.xmlParser.deserialize(targetClass, xml); } /** * * @param * @param targetClass * @param xml * @param config * @return */ public static T fromXML(final Class targetClass, final InputStream xml, final XMLDeserializationConfig config) { return Utils.xmlParser.deserialize(targetClass, xml, config); } /** * * @param * @param targetClass * @param xml * @return */ public static T fromXML(final Class targetClass, final Reader xml) { return Utils.xmlParser.deserialize(targetClass, xml); } /** * * @param * @param targetClass * @param xml * @param config * @return */ public static T fromXML(final Class targetClass, final Reader xml, final XMLDeserializationConfig config) { return Utils.xmlParser.deserialize(targetClass, xml, config); } /** * * @param * @param targetType can be the {@code Type} of {@code Entity/Array/Collection/Map}. * @param xml * @return */ public static T fromXML(final Type targetType, final String xml) { return fromJSON(targetType, xml, null); } /** * * @param * @param targetType can be the {@code Type} of {@code Entity/Array/Collection/Map}. * @param xml * @param config * @return */ public static T fromXML(final Type targetType, final String xml, final XMLDeserializationConfig config) { return Utils.xmlParser.deserialize(targetType.clazz(), xml, setConfig(targetType, config, false)); } /** * * @param * @param targetType can be the {@code Type} of {@code Entity/Array/Collection/Map}. * @param xml * @return */ public static T fromXML(final Type targetType, final File xml) { return fromJSON(targetType, xml, null); } /** * * @param * @param targetType can be the {@code Type} of {@code Entity/Array/Collection/Map}. * @param xml * @param config * @return */ public static T fromXML(final Type targetType, final File xml, final XMLDeserializationConfig config) { return Utils.xmlParser.deserialize(targetType.clazz(), xml, setConfig(targetType, config, false)); } /** * * @param * @param targetType can be the {@code Type} of {@code Entity/Array/Collection/Map}. * @param xml * @return */ public static T fromXML(final Type targetType, final InputStream xml) { return fromJSON(targetType, xml, null); } /** * * @param * @param targetType can be the {@code Type} of {@code Entity/Array/Collection/Map}. * @param xml * @param config * @return */ public static T fromXML(final Type targetType, final InputStream xml, final XMLDeserializationConfig config) { return Utils.xmlParser.deserialize(targetType.clazz(), xml, setConfig(targetType, config, false)); } /** * * @param * @param targetType can be the {@code Type} of {@code Entity/Array/Collection/Map}. * @param xml * @return */ public static T fromXML(final Type targetType, final Reader xml) { return fromJSON(targetType, xml, null); } /** * * @param * @param targetType can be the {@code Type} of {@code Entity/Array/Collection/Map}. * @param xml * @param config * @return */ public static T fromXML(final Type targetType, final Reader xml, final XMLDeserializationConfig config) { return Utils.xmlParser.deserialize(targetType.clazz(), xml, setConfig(targetType, config, false)); } /** * Sets the config. * * @param * @param targetType * @param config * @param isJSON * @return */ private static > C setConfig(final Type targetType, final C config, boolean isJSON) { C res = config; if (targetType.isCollection()) { if (config == null || config.getElementType() == null) { res = config == null ? (C) (isJSON ? JDC.create() : XDC.create()) : (C) config.copy(); res.setElementType(targetType.getParameterTypes()[0]); } } else if (targetType.isMap()) { if (config == null || config.getMapKeyType() == null || config.getMapValueType() == null) { res = config == null ? (C) (isJSON ? JDC.create() : XDC.create()) : (C) config.copy(); if (res.getMapKeyType() == null) { res.setMapKeyType(targetType.getParameterTypes()[0]); } if (res.getMapValueType() == null) { res.setMapValueType(targetType.getParameterTypes()[1]); } } } return res; } /** * Xml 2 JSON. * * @param xml * @return */ public static String xml2JSON(final String xml) { return xml2JSON(Map.class, xml); } /** * Xml 2 JSON. * * @param cls * @param xml * @return */ public static String xml2JSON(final Class cls, final String xml) { return Utils.jsonParser.serialize(Utils.xmlParser.deserialize(cls, xml), Utils.jsc); } /** * Json 2 XML. * * @param json * @return */ public static String json2XML(final String json) { return json2XML(Map.class, json); } /** * Json 2 XML. * * @param cls * @param json * @return */ public static String json2XML(final Class cls, final String json) { return Utils.xmlParser.serialize(Utils.jsonParser.deserialize(cls, json)); } /** * To runtime exception. * * @param e * @return */ public static RuntimeException toRuntimeException(Throwable e) { return ExceptionUtil.toRuntimeException(e); } /** * * @param timeoutInMillis */ public static void sleep(final long timeoutInMillis) { if (timeoutInMillis <= 0) { return; } try { TimeUnit.MILLISECONDS.sleep(timeoutInMillis); } catch (InterruptedException e) { throw new UncheckedException(e); } } /** * * @param timeout * @param unit */ public static void sleep(final long timeout, final TimeUnit unit) { checkArgNotNull(unit, "unit"); if (timeout <= 0) { return; } try { unit.sleep(timeout); } catch (InterruptedException e) { throw new UncheckedException(e); } } /** * Note: Copied from Google Guava under Apache License v2.0 *
*
* * If a thread is interrupted during such a call, the call continues to block until the result is available or the * timeout elapses, and only then re-interrupts the thread. * * @param timeoutInMillis */ public static void sleepUninterruptibly(final long timeoutInMillis) { if (timeoutInMillis <= 0) { return; } boolean interrupted = false; try { long remainingNanos = TimeUnit.MILLISECONDS.toNanos(timeoutInMillis); final long sysNanos = System.nanoTime(); final long end = remainingNanos >= Long.MAX_VALUE - sysNanos ? Long.MAX_VALUE : sysNanos + remainingNanos; while (true) { try { // TimeUnit.sleep() treats negative timeouts just like zero. TimeUnit.NANOSECONDS.sleep(remainingNanos); return; } catch (InterruptedException e) { interrupted = true; remainingNanos = end - System.nanoTime(); } } } finally { if (interrupted) { Thread.currentThread().interrupt(); } } } /** * Note: Copied from Google Guava under Apache License v2.0 *
*
* * If a thread is interrupted during such a call, the call continues to block until the result is available or the * timeout elapses, and only then re-interrupts the thread. * * @param timeout * @param unit */ public static void sleepUninterruptibly(final long timeout, final TimeUnit unit) { checkArgNotNull(unit, "unit"); if (timeout <= 0) { return; } boolean interrupted = false; try { long remainingNanos = unit.toNanos(timeout); final long sysNanos = System.nanoTime(); final long end = remainingNanos >= Long.MAX_VALUE - sysNanos ? Long.MAX_VALUE : sysNanos + remainingNanos; while (true) { try { // TimeUnit.sleep() treats negative timeouts just like zero. TimeUnit.NANOSECONDS.sleep(remainingNanos); return; } catch (InterruptedException e) { interrupted = true; remainingNanos = end - System.nanoTime(); } } } finally { if (interrupted) { Thread.currentThread().interrupt(); } } } /** * Note: Copied from Google Guava under Apache License v2.0 *
*
* * If a thread is interrupted during such a call, the call continues to block until the result is available or the * timeout elapses, and only then re-interrupts the thread. * * @param cmd */ public static void runUninterruptibly(final Throwables.Runnable cmd) { checkArgNotNull(cmd); boolean interrupted = false; try { while (true) { try { cmd.run(); return; } catch (InterruptedException e) { interrupted = true; } } } finally { if (interrupted) { Thread.currentThread().interrupt(); } } } /** * Note: Copied from Google Guava under Apache License v2.0 *
*
* * If a thread is interrupted during such a call, the call continues to block until the result is available or the * timeout elapses, and only then re-interrupts the thread. * * @param timeoutInMillis * @param cmd */ public static void runUninterruptibly(final long timeoutInMillis, final Throwables.LongConsumer cmd) { checkArgNotNull(cmd); boolean interrupted = false; try { long remainingMillis = timeoutInMillis; final long sysMillis = System.currentTimeMillis(); final long end = remainingMillis >= Long.MAX_VALUE - sysMillis ? Long.MAX_VALUE : sysMillis + remainingMillis; while (true) { try { cmd.accept(remainingMillis); return; } catch (InterruptedException e) { interrupted = true; remainingMillis = end - System.currentTimeMillis(); } } } finally { if (interrupted) { Thread.currentThread().interrupt(); } } } /** * Note: Copied from Google Guava under Apache License v2.0 *
*
* * If a thread is interrupted during such a call, the call continues to block until the result is available or the * timeout elapses, and only then re-interrupts the thread. * * @param timeout * @param unit * @param cmd */ public static void runUninterruptibly(final long timeout, final TimeUnit unit, final Throwables.BiConsumer cmd) { checkArgNotNull(unit, "unit"); checkArgNotNull(cmd); boolean interrupted = false; try { long remainingNanos = unit.toNanos(timeout); final long sysNanos = System.nanoTime(); final long end = remainingNanos >= Long.MAX_VALUE - sysNanos ? Long.MAX_VALUE : sysNanos + remainingNanos; while (true) { try { cmd.accept(remainingNanos, TimeUnit.NANOSECONDS); return; } catch (InterruptedException e) { interrupted = true; remainingNanos = end - System.nanoTime(); } } } finally { if (interrupted) { Thread.currentThread().interrupt(); } } } /** * Note: Copied from Google Guava under Apache License v2.0 *
*
* * If a thread is interrupted during such a call, the call continues to block until the result is available or the * timeout elapses, and only then re-interrupts the thread. * * @param * @param cmd * @return */ public static T callUninterruptibly(Throwables.Callable cmd) { checkArgNotNull(cmd); boolean interrupted = false; try { while (true) { try { return cmd.call(); } catch (InterruptedException e) { interrupted = true; } } } finally { if (interrupted) { Thread.currentThread().interrupt(); } } } /** * Note: Copied from Google Guava under Apache License v2.0 *
*
* * If a thread is interrupted during such a call, the call continues to block until the result is available or the * timeout elapses, and only then re-interrupts the thread. * * @param * @param timeoutInMillis * @param cmd * @return */ public static T callUninterruptibly(final long timeoutInMillis, final Throwables.LongFunction cmd) { checkArgNotNull(cmd); boolean interrupted = false; try { long remainingMillis = timeoutInMillis; final long sysMillis = System.currentTimeMillis(); final long end = remainingMillis >= Long.MAX_VALUE - sysMillis ? Long.MAX_VALUE : sysMillis + remainingMillis; while (true) { try { return cmd.apply(remainingMillis); } catch (InterruptedException e) { interrupted = true; remainingMillis = end - System.currentTimeMillis(); } } } finally { if (interrupted) { Thread.currentThread().interrupt(); } } } /** * Note: Copied from Google Guava under Apache License v2.0 *
*
* * If a thread is interrupted during such a call, the call continues to block until the result is available or the * timeout elapses, and only then re-interrupts the thread. * * @param * @param timeout * @param unit * @param cmd * @return */ public static T callUninterruptibly(final long timeout, final TimeUnit unit, final Throwables.BiFunction cmd) { checkArgNotNull(unit, "unit"); checkArgNotNull(cmd); boolean interrupted = false; try { long remainingNanos = unit.toNanos(timeout); final long sysNanos = System.nanoTime(); final long end = remainingNanos >= Long.MAX_VALUE - sysNanos ? Long.MAX_VALUE : sysNanos + remainingNanos; while (true) { try { return cmd.apply(remainingNanos, TimeUnit.NANOSECONDS); } catch (InterruptedException e) { interrupted = true; remainingNanos = end - System.nanoTime(); } } } finally { if (interrupted) { Thread.currentThread().interrupt(); } } } /** * * @param * @param obj * @return */ @SuppressWarnings("rawtypes") public static T println(final T obj) { if (obj instanceof Collection) { System.out.println(Joiner.with(ELEMENT_SEPARATOR, "[", "]").reuseCachedBuffer(true).appendAll((Collection) obj)); } else if (obj instanceof Map) { System.out.println(Joiner.with(ELEMENT_SEPARATOR, "=", "{", "}").reuseCachedBuffer(true).appendEntries((Map) obj)); } else { System.out.println(toString(obj)); } return obj; } /** * * @param * @param format * @param args * @return */ @SafeVarargs public static T[] fprintln(final String format, final T... args) { System.out.printf(format, args); System.out.println(); return args; } /** * Returns the value of the {@code long} argument; throwing an exception if the value overflows an {@code int}. * * @param value the long value * @return * @throws ArithmeticException if the {@code argument} overflows an int */ public static int toIntExact(long value) { if (value < Integer.MIN_VALUE || value > Integer.MAX_VALUE) { throw new ArithmeticException("integer overflow"); } return (int) value; } /** * Returns an empty Nullable if {@code val} is {@code null} while {@code targetType} is primitive or can not be assigned to {@code targetType}. * Please be aware that {@code null} can be assigned to any {@code Object} type except primitive types: {@code boolean/char/byte/short/int/long/double}. * * @param * @param val * @param targetType * @return */ @SuppressWarnings("unchecked") public static Nullable castIfAssignable(final Object val, final Class targetType) { if (Primitives.isPrimitiveType(targetType)) { return val != null && Primitives.wrap(targetType).isAssignableFrom(val.getClass()) ? Nullable.of((T) val) : Nullable. empty(); } return val == null || targetType.isAssignableFrom(val.getClass()) ? Nullable.of((T) val) : Nullable. empty(); } /** * Returns a {@code Nullable} with the value returned by {@code action} or an empty {@code Nullable} if exception happens. * * @param * @param cmd * @return */ public static Nullable tryOrEmpty(final Callable cmd) { try { return Nullable.of(cmd.call()); } catch (Exception e) { return Nullable. empty(); } } /** * Returns a {@code Nullable} with the value returned by {@code func.apply(init)} or an empty {@code Nullable} if exception happens. * * @param * @param * @param * @param init * @param func * @return */ public static Nullable tryOrEmpty(final T init, final Throwables.Function func) { try { return Nullable.of(func.apply(init)); } catch (Exception e) { return Nullable. empty(); } } /** * Returns a {@code Nullable} with value got from the specified {@code supplier} if {@code b} is {@code true}, * otherwise returns an empty {@code Nullable} if {@code b} is false. * * @param * @param * @param b * @param supplier * @return * @throws E the e */ public static Nullable ifOrEmpty(final boolean b, final Throwables.Supplier supplier) throws E { if (b) { return Nullable.of(supplier.get()); } else { return Nullable.empty(); } } /** * Returns a {@code Nullable} with value returned by {@code func.apply(init)} if {@code b} is {@code true}, * otherwise returns an empty {@code Nullable} if {@code b} is false. * * @param * @param * @param * @param b * @param init * @param func * @return * @throws E the e */ public static Nullable ifOrEmpty(final boolean b, final T init, final Throwables.Function func) throws E { if (b) { return Nullable.of(func.apply(init)); } else { return Nullable.empty(); } } /** * If or else. * * @param * @param * @param b * @param actionForTrue do nothing if it's {@code null} even {@code b} is true. * @param actionForFalse do nothing if it's {@code null} even {@code b} is false. * @throws E1 the e1 * @throws E2 the e2 */ public static void ifOrElse(final boolean b, final Throwables.Runnable actionForTrue, final Throwables.Runnable actionForFalse) throws E1, E2 { if (b) { if (actionForTrue != null) { actionForTrue.run(); } } else { if (actionForFalse != null) { actionForFalse.run(); } } } /** * If or else. * * @param * @param * @param * @param b * @param init * @param actionForTrue do nothing if it's {@code null} even {@code b} is true. * @param actionForFalse do nothing if it's {@code null} even {@code b} is false. * @throws E1 the e1 * @throws E2 the e2 */ public static void ifOrElse(final boolean b, final T init, final Throwables.Consumer actionForTrue, final Throwables.Consumer actionForFalse) throws E1, E2 { if (b) { if (actionForTrue != null) { actionForTrue.accept(init); } } else { if (actionForFalse != null) { actionForFalse.accept(init); } } } /** * * @param * @param a * @return * @see Iterators#concat(Object[]...) */ @SafeVarargs public static ObjIterator iterate(final T[]... a) { return Iterators.concat(a); } /** * * @param * @param a * @return * @see Iterators#concat(Collection) */ @SafeVarargs public static ObjIterator iterate(final Collection... a) { return Iterators.concat(a); } /** * * @param * @param c * @return * @see Iterators#concatt(Collection) */ public static ObjIterator iterate(final Collection> c) { return Iterators.concatt(c); } /** * * @param a * @param b * @return true, if successful */ public static boolean disjoint(final Object[] a, final Object[] b) { if (isNullOrEmpty(a) || isNullOrEmpty(b)) { return true; } return a.length >= b.length ? disjoint(Arrays.asList(a), asSet(b)) : disjoint(asSet(a), Arrays.asList(b)); } /** * Returns {@code true} if the two specified arrays have no elements in common. * * @param c1 * @param c2 * @return {@code true} if the two specified arrays have no elements in common. * @see Collections#disjoint(Collection, Collection) */ public static boolean disjoint(final Collection c1, final Collection c2) { if (isNullOrEmpty(c1) || isNullOrEmpty(c2)) { return true; } if (c1 instanceof Set || (c2 instanceof Set == false && c1.size() > c2.size())) { for (Object e : c2) { if (c1.contains(e)) { return false; } } } else { for (Object e : c1) { if (c2.contains(e)) { return false; } } } return true; } /** * * @param * @param * @param a * @param b * @param nextSelector * @return * @throws E the e */ public static List merge(final T[] a, final T[] b, final Throwables.BiFunction nextSelector) throws E { if (isNullOrEmpty(a)) { return isNullOrEmpty(b) ? new ArrayList() : asList(b); } else if (isNullOrEmpty(b)) { return asList(a); } final List result = new ArrayList<>(a.length + b.length); final int lenA = a.length; final int lenB = b.length; int cursorA = 0; int cursorB = 0; while (cursorA < lenA || cursorB < lenB) { if (cursorA < lenA) { if (cursorB < lenB) { if (nextSelector.apply(a[cursorA], b[cursorB]) == Nth.FIRST) { result.add(a[cursorA++]); } else { result.add(b[cursorB++]); } } else { result.add(a[cursorA++]); } } else { result.add(b[cursorB++]); } } return result; } /** * * @param * @param * @param a * @param b * @param nextSelector * @return * @throws E the e */ public static List merge(final Collection a, final Collection b, final Throwables.BiFunction nextSelector) throws E { if (isNullOrEmpty(a)) { return isNullOrEmpty(b) ? new ArrayList() : new ArrayList<>(b); } else if (isNullOrEmpty(b)) { return new ArrayList<>(a); } final List result = new ArrayList<>(a.size() + b.size()); final Iterator iterA = a.iterator(); final Iterator iterB = b.iterator(); T nextA = null; T nextB = null; boolean hasNextA = false; boolean hasNextB = false; while (hasNextA || hasNextB || iterA.hasNext() || iterB.hasNext()) { if (hasNextA) { if (iterB.hasNext()) { if (nextSelector.apply(nextA, (nextB = iterB.next())) == Nth.FIRST) { hasNextA = false; hasNextB = true; result.add(nextA); } else { result.add(nextB); } } else { hasNextA = false; result.add(nextA); } } else if (hasNextB) { if (iterA.hasNext()) { if (nextSelector.apply((nextA = iterA.next()), nextB) == Nth.FIRST) { result.add(nextA); } else { hasNextA = true; hasNextB = false; result.add(nextB); } } else { hasNextB = false; result.add(nextB); } } else if (iterA.hasNext()) { if (iterB.hasNext()) { if (nextSelector.apply((nextA = iterA.next()), (nextB = iterB.next())) == Nth.FIRST) { hasNextB = true; result.add(nextA); } else { hasNextA = true; result.add(nextB); } } else { result.add(iterA.next()); } } else { result.add(iterB.next()); } } return result; } /** * * @param * @param * @param * @param * @param a * @param b * @param zipFunction * @return * @throws E the e */ public static List zip(final A[] a, final B[] b, final Throwables.BiFunction zipFunction) throws E { if (isNullOrEmpty(a) || isNullOrEmpty(b)) { return new ArrayList<>(); } final int minLen = min(a.length, b.length); final List result = new ArrayList<>(minLen); for (int i = 0; i < minLen; i++) { result.add(zipFunction.apply(a[i], b[i])); } return result; } /** * * @param * @param * @param * @param * @param a * @param b * @param zipFunction * @return * @throws E the e */ public static List zip(final Collection a, final Collection b, final Throwables.BiFunction zipFunction) throws E { if (isNullOrEmpty(a) || isNullOrEmpty(b)) { return new ArrayList<>(); } final Iterator iterA = a.iterator(); final Iterator iterB = b.iterator(); final int minLen = min(a.size(), b.size()); final List result = new ArrayList<>(minLen); for (int i = 0; i < minLen; i++) { result.add(zipFunction.apply(iterA.next(), iterB.next())); } return result; } /** * * @param * @param * @param * @param * @param * @param a * @param b * @param c * @param zipFunction * @return * @throws E the e */ public static List zip(final A[] a, final B[] b, final C[] c, final Throwables.TriFunction zipFunction) throws E { if (isNullOrEmpty(a) || isNullOrEmpty(b) || isNullOrEmpty(c)) { return new ArrayList<>(); } final int minLen = min(a.length, b.length, c.length); final List result = new ArrayList<>(minLen); for (int i = 0; i < minLen; i++) { result.add(zipFunction.apply(a[i], b[i], c[i])); } return result; } /** * * @param * @param * @param * @param * @param * @param a * @param b * @param c * @param zipFunction * @return * @throws E the e */ public static List zip(final Collection a, final Collection b, final Collection c, final Throwables.TriFunction zipFunction) throws E { if (isNullOrEmpty(a) || isNullOrEmpty(b) || isNullOrEmpty(c)) { return new ArrayList<>(); } final Iterator iterA = a.iterator(); final Iterator iterB = b.iterator(); final Iterator iterC = c.iterator(); final int minLen = min(a.size(), b.size(), c.size()); final List result = new ArrayList<>(minLen); for (int i = 0; i < minLen; i++) { result.add(zipFunction.apply(iterA.next(), iterB.next(), iterC.next())); } return result; } /** * * @param * @param * @param * @param * @param a * @param b * @param valueForNoneA * @param valueForNoneB * @param zipFunction * @return * @throws E the e */ public static List zip(final A[] a, final B[] b, final A valueForNoneA, final B valueForNoneB, final Throwables.BiFunction zipFunction) throws E { final int lenA = len(a); final int lenB = len(b); final int maxLen = max(lenA, lenB); final List result = new ArrayList<>(maxLen); for (int i = 0; i < maxLen; i++) { result.add(zipFunction.apply(i < lenA ? a[i] : valueForNoneA, i < lenB ? b[i] : valueForNoneB)); } return result; } /** * * @param * @param * @param * @param * @param a * @param b * @param valueForNoneA * @param valueForNoneB * @param zipFunction * @return * @throws E the e */ public static List zip(final Collection a, final Collection b, final A valueForNoneA, final B valueForNoneB, final Throwables.BiFunction zipFunction) throws E { final Iterator iterA = a == null ? ObjIterator. empty() : a.iterator(); final Iterator iterB = b == null ? ObjIterator. empty() : b.iterator(); final int lenA = size(a); final int lenB = size(b); final int maxLen = max(lenA, lenB); final List result = new ArrayList<>(maxLen); for (int i = 0; i < maxLen; i++) { result.add(zipFunction.apply(i < lenA ? iterA.next() : valueForNoneA, i < lenB ? iterB.next() : valueForNoneB)); } return result; } /** * * @param * @param * @param * @param * @param * @param a * @param b * @param c * @param valueForNoneA * @param valueForNoneB * @param valueForNoneC * @param zipFunction * @return * @throws E the e */ public static List zip(final A[] a, final B[] b, final C[] c, final A valueForNoneA, final B valueForNoneB, final C valueForNoneC, final Throwables.TriFunction zipFunction) throws E { final int lenA = len(a); final int lenB = len(b); final int lenC = len(c); final int maxLen = max(lenA, lenB, lenC); final List result = new ArrayList<>(maxLen); for (int i = 0; i < maxLen; i++) { result.add(zipFunction.apply(i < lenA ? a[i] : valueForNoneA, i < lenB ? b[i] : valueForNoneB, i < lenC ? c[i] : valueForNoneC)); } return result; } /** * * @param * @param * @param * @param * @param * @param a * @param b * @param c * @param valueForNoneA * @param valueForNoneB * @param valueForNoneC * @param zipFunction * @return * @throws E the e */ public static List zip(final Collection a, final Collection b, final Collection c, final A valueForNoneA, final B valueForNoneB, final C valueForNoneC, final Throwables.TriFunction zipFunction) throws E { final Iterator iterA = a == null ? ObjIterator. empty() : a.iterator(); final Iterator iterB = b == null ? ObjIterator. empty() : b.iterator(); final Iterator iterC = c == null ? ObjIterator. empty() : c.iterator(); final int lenA = size(a); final int lenB = size(b); final int lenC = size(c); final int maxLen = max(lenA, lenB, lenC); final List result = new ArrayList<>(maxLen); for (int i = 0; i < maxLen; i++) { result.add(zipFunction.apply(i < lenA ? iterA.next() : valueForNoneA, i < lenB ? iterB.next() : valueForNoneB, i < lenC ? iterC.next() : valueForNoneC)); } return result; } /** * * @param * @param * @param * @param * @param c * @param unzip the second parameter is an output parameter. * @return * @throws E the e */ public static Pair, List> unzip(final Collection c, final Throwables.BiConsumer, E> unzip) throws E { final int len = size(c); final List l = new ArrayList<>(len); final List r = new ArrayList<>(len); final Pair p = new Pair<>(); if (notNullOrEmpty(c)) { for (T e : c) { unzip.accept(e, p); l.add(p.left); r.add(p.right); } } return Pair.of(l, r); } /** * * @param * @param * @param * @param * @param * @param * @param c * @param unzip the second parameter is an output parameter. * @param supplier * @return * @throws E the e */ public static , RC extends Collection, E extends Exception> Pair unzip(final Collection c, final Throwables.BiConsumer, E> unzip, final IntFunction> supplier) throws E { final int len = size(c); final LC l = (LC) supplier.apply(len); final RC r = (RC) supplier.apply(len); final Pair p = new Pair<>(); if (notNullOrEmpty(c)) { for (T e : c) { unzip.accept(e, p); l.add(p.left); r.add(p.right); } } return Pair.of(l, r); } /** * * @param * @param * @param * @param * @param * @param c * @param unzip the second parameter is an output parameter. * @return * @throws E the e */ public static Triple, List, List> unzipp(final Collection c, final Throwables.BiConsumer, E> unzip) throws E { final int len = size(c); final List l = new ArrayList<>(len); final List m = new ArrayList<>(len); final List r = new ArrayList<>(len); final Triple t = new Triple<>(); if (notNullOrEmpty(c)) { for (T e : c) { unzip.accept(e, t); l.add(t.left); m.add(t.middle); r.add(t.right); } } return Triple.of(l, m, r); } /** * * @param * @param * @param * @param * @param * @param * @param * @param * @param c * @param unzip the second parameter is an output parameter. * @param supplier * @return * @throws E the e */ public static , MC extends Collection, RC extends Collection, E extends Exception> Triple unzipp( final Collection c, final Throwables.BiConsumer, E> unzip, final IntFunction> supplier) throws E { final int len = size(c); final LC l = (LC) supplier.apply(len); final MC m = (MC) supplier.apply(len); final RC r = (RC) supplier.apply(len); final Triple t = new Triple<>(); if (notNullOrEmpty(c)) { for (T e : c) { unzip.accept(e, t); l.add(t.left); m.add(t.middle); r.add(t.right); } } return Triple.of(l, m, r); } /** * * @param * @param * @param a * @param b * @return */ @SuppressWarnings("deprecation") public static List> crossJoin(final Collection a, final Collection b) { return Iterables.crossJoin(a, b); } /** * * @param * @param * @param * @param * @param a * @param b * @param func * @return * @throws E */ @SuppressWarnings("deprecation") public static List crossJoin(final Collection a, final Collection b, final Throwables.BiFunction func) throws E { return Iterables.crossJoin(a, b, func); } /** * The time complexity is O(n + m) : n is the size of this Seq and m is the size of specified collection b. * * @param the generic type * @param the generic type * @param the element type * @param the generic type * @param a the a * @param b the b * @param leftKeyMapper the left key mapper * @param rightKeyMapper the right key mapper * @return the list * @throws E the e * @throws E2 the e2 * @see sql join */ @SuppressWarnings("deprecation") public static List> innerJoin(final Collection a, final Collection b, final Throwables.Function leftKeyMapper, final Throwables.Function rightKeyMapper) throws E, E2 { return Iterables.innerJoin(a, b, leftKeyMapper, rightKeyMapper); } /** * The time complexity is O(n * m) : n is the size of this Seq and m is the size of specified collection b. * * @param the generic type * @param the generic type * @param the element type * @param a the a * @param b the b * @param predicate the predicate * @return the list * @throws E the e * @see sql join */ @SuppressWarnings("deprecation") public static List> innerJoin(final Collection a, final Collection b, final Throwables.BiPredicate predicate) throws E { return Iterables.innerJoin(a, b, predicate); } /** * The time complexity is O(n + m) : n is the size of this Seq and m is the size of specified collection b. * * @param the generic type * @param the generic type * @param the element type * @param the generic type * @param a the a * @param b the b * @param leftKeyMapper the left key mapper * @param rightKeyMapper the right key mapper * @return the list * @throws E the e * @throws E2 the e2 * @see sql join */ @SuppressWarnings("deprecation") public static List> fullJoin(final Collection a, final Collection b, final Throwables.Function leftKeyMapper, final Throwables.Function rightKeyMapper) throws E, E2 { return Iterables.fullJoin(a, b, leftKeyMapper, rightKeyMapper); } /** * The time complexity is O(n * m) : n is the size of this Seq and m is the size of specified collection b. * * @param the generic type * @param the generic type * @param the element type * @param a the a * @param b the b * @param predicate the predicate * @return the list * @throws E the e * @see sql join */ @SuppressWarnings("deprecation") public static List> fullJoin(final Collection a, final Collection b, final Throwables.BiPredicate predicate) throws E { return Iterables.fullJoin(a, b, predicate); } /** * The time complexity is O(n + m) : n is the size of this Seq and m is the size of specified collection b. * * @param the generic type * @param the generic type * @param the element type * @param the generic type * @param a the a * @param b the b * @param leftKeyMapper the left key mapper * @param rightKeyMapper the right key mapper * @return the list * @throws E the e * @throws E2 the e2 * @see sql join */ @SuppressWarnings("deprecation") public static List> leftJoin(final Collection a, final Collection b, final Throwables.Function leftKeyMapper, final Throwables.Function rightKeyMapper) throws E, E2 { return Iterables.leftJoin(a, b, leftKeyMapper, rightKeyMapper); } /** * The time complexity is O(n * m) : n is the size of this Seq and m is the size of specified collection b. * * @param the generic type * @param the generic type * @param the element type * @param a the a * @param b the b * @param predicate the predicate * @return the list * @throws E the e * @see sql join */ @SuppressWarnings("deprecation") public static List> leftJoin(final Collection a, final Collection b, final Throwables.BiPredicate predicate) throws E { return Iterables.leftJoin(a, b, predicate); } /** * The time complexity is O(n + m) : n is the size of this Seq and m is the size of specified collection b. * * @param the generic type * @param the generic type * @param the element type * @param the generic type * @param a the a * @param b the b * @param leftKeyMapper the left key mapper * @param rightKeyMapper the right key mapper * @return the list * @throws E the e * @throws E2 the e2 * @see sql join */ @SuppressWarnings("deprecation") public static List> rightJoin(final Collection a, final Collection b, final Throwables.Function leftKeyMapper, final Throwables.Function rightKeyMapper) throws E, E2 { return Iterables.rightJoin(a, b, leftKeyMapper, rightKeyMapper); } /** * The time complexity is O(n * m) : n is the size of this Seq and m is the size of specified collection b. * * @param the generic type * @param the generic type * @param the element type * @param a the a * @param b the b * @param predicate the predicate * @return the list * @throws E the e * @see sql join */ @SuppressWarnings("deprecation") public static List> rightJoin(final Collection a, final Collection b, final Throwables.BiPredicate predicate) throws E { return Iterables.rightJoin(a, b, predicate); } }