com.annimon.stream.IntStream Maven / Gradle / Ivy
package com.annimon.stream;
import java.io.Closeable;
import java.util.Comparator;
import java.util.NoSuchElementException;
import com.annimon.stream.function.Function;
import com.annimon.stream.function.IntBinaryOperator;
import com.annimon.stream.function.IntConsumer;
import com.annimon.stream.function.IntFunction;
import com.annimon.stream.function.IntPredicate;
import com.annimon.stream.function.IntSupplier;
import com.annimon.stream.function.IntToDoubleFunction;
import com.annimon.stream.function.IntToLongFunction;
import com.annimon.stream.function.IntUnaryOperator;
import com.annimon.stream.function.ObjIntConsumer;
import com.annimon.stream.function.Supplier;
import com.annimon.stream.function.ToIntFunction;
import com.annimon.stream.internal.Compose;
import com.annimon.stream.internal.Operators;
import com.annimon.stream.internal.Params;
import com.annimon.stream.iterator.PrimitiveIterator;
import com.annimon.stream.iterator.PrimitiveIterator.OfInt;
import com.annimon.stream.operator.IntArray;
import com.annimon.stream.operator.IntCodePoints;
import com.annimon.stream.operator.IntConcat;
import com.annimon.stream.operator.IntDropWhile;
import com.annimon.stream.operator.IntFilter;
import com.annimon.stream.operator.IntFlatMap;
import com.annimon.stream.operator.IntGenerate;
import com.annimon.stream.operator.IntIterate;
import com.annimon.stream.operator.IntLimit;
import com.annimon.stream.operator.IntMap;
import com.annimon.stream.operator.IntMapToDouble;
import com.annimon.stream.operator.IntMapToLong;
import com.annimon.stream.operator.IntMapToObj;
import com.annimon.stream.operator.IntPeek;
import com.annimon.stream.operator.IntRangeClosed;
import com.annimon.stream.operator.IntScan;
import com.annimon.stream.operator.IntScanIdentity;
import com.annimon.stream.operator.IntSkip;
import com.annimon.stream.operator.IntSorted;
import com.annimon.stream.operator.IntTakeUntil;
import com.annimon.stream.operator.IntTakeWhile;
/**
* A sequence of primitive int-valued elements supporting sequential operations. This is the {@code int}
* primitive specialization of {@link Stream}.
*/
public final class IntStream implements Closeable {
/**
* Single instance for empty stream. It is safe for multi-thread environment because it has no content.
*/
private static final IntStream EMPTY = new IntStream(new PrimitiveIterator.OfInt() {
@Override
public int nextInt() {
return 0;
}
@Override
public boolean hasNext() {
return false;
}
});
/**
* Returns an empty stream.
*
* @return the empty stream
*/
public static IntStream empty() {
return EMPTY;
}
/**
* Returns stream whose elements are the specified values.
*
* @param values the elements of the new stream
* @return the new stream
* @throws NullPointerException if {@code values} is null
*/
public static IntStream of(final int... values) {
if (values == null || values.length == 0) {
return IntStream.empty();
}
return new IntStream(new IntArray(values));
}
/**
* Creates a {@code IntStream} from {@code PrimitiveIterator.OfInt}.
*
* @param iterator the iterator with elements to be passed to stream
* @return the new {@code IntStream}
* @throws NullPointerException if {@code iterator} is null
*/
public static IntStream of(PrimitiveIterator.OfInt iterator) {
Objects.requireNonNull(iterator);
return new IntStream(iterator);
}
/**
* Creates an {@code IntStream} of code point values from the given sequence.
* Any surrogate pairs encountered in the sequence are combined as if by {@linkplain
* Character#toCodePoint Character.toCodePoint} and the result is passed to the stream.
* Any other code units, including ordinary BMP characters, unpaired surrogates, and
* undefined code units, are zero-extended to {@code int} values which are then
* passed to the stream.
*
* @param charSequence the sequence where to get all code points values.
* @return the new stream
* @since 1.1.8
*/
public static IntStream ofCodePoints(CharSequence charSequence) {
return new IntStream(new IntCodePoints(charSequence));
}
/**
* Returns a sequential ordered {@code IntStream} from {@code startInclusive}
* (inclusive) to {@code endExclusive} (exclusive) by an incremental step of
* {@code 1}.
*
* @param startInclusive the (inclusive) initial value
* @param endExclusive the exclusive upper bound
* @return a sequential {@code IntStream} for the range of {@code int}
* elements
*/
public static IntStream range(final int startInclusive, final int endExclusive) {
if (startInclusive >= endExclusive) {
return empty();
}
return rangeClosed(startInclusive, endExclusive - 1);
}
public static IntStream range(final int startInclusive, final int endExclusive, final int by) {
if (by == 0) {
throw new IllegalArgumentException("'by' can't be zero");
}
if (endExclusive == startInclusive || endExclusive > startInclusive != by > 0) {
return empty();
}
return of(new PrimitiveIterator.OfInt() {
private int next = startInclusive;
private long cnt = (endExclusive * 1L - startInclusive) / by + ((endExclusive * 1L - startInclusive) % by == 0 ? 0 : 1);
@Override
public boolean hasNext() {
return cnt > 0;
}
@Override
public int nextInt() {
if (cnt-- <= 0) {
throw new NoSuchElementException();
}
int result = next;
next += by;
return result;
}
});
}
/**
* Returns a sequential ordered {@code IntStream} from {@code startInclusive}
* (inclusive) to {@code endInclusive} (inclusive) by an incremental step of
* {@code 1}.
*
* @param startInclusive the (inclusive) initial value
* @param endInclusive the inclusive upper bound
* @return a sequential {@code IntStream} for the range of {@code int}
* elements
*/
public static IntStream rangeClosed(final int startInclusive, final int endInclusive) {
if (startInclusive > endInclusive) {
return empty();
} else if (startInclusive == endInclusive) {
return of(startInclusive);
} else {
return new IntStream(new IntRangeClosed(startInclusive, endInclusive));
}
}
public static IntStream rangeClosed(final int startInclusive, final int endInclusive, final int by) {
if (by == 0) {
throw new IllegalArgumentException("'by' can't be zero");
}
if (endInclusive == startInclusive) {
return of(startInclusive);
} else if (endInclusive > startInclusive != by > 0) {
return empty();
}
return of(new PrimitiveIterator.OfInt() {
private int next = startInclusive;
private long cnt = (endInclusive * 1L - startInclusive) / by + 1;
@Override
public boolean hasNext() {
return cnt > 0;
}
@Override
public int nextInt() {
if (cnt-- <= 0) {
throw new NoSuchElementException();
}
int result = next;
next += by;
return result;
}
});
}
/**
* Returns an infinite sequential unordered stream where each element is
* generated by the provided {@code IntSupplier}. This is suitable for
* generating constant streams, streams of random elements, etc.
*
* @param s the {@code IntSupplier} for generated elements
* @return a new infinite sequential {@code IntStream}
* @throws NullPointerException if {@code s} is null
*/
public static IntStream generate(final IntSupplier s) {
Objects.requireNonNull(s);
return new IntStream(new IntGenerate(s));
}
/**
* Returns an infinite sequential ordered {@code IntStream} produced by iterative
* application of a function {@code f} to an initial element {@code seed},
* producing a {@code Stream} consisting of {@code seed}, {@code f(seed)},
* {@code f(f(seed))}, etc.
*
* The first element (position {@code 0}) in the {@code IntStream} will be
* the provided {@code seed}. For {@code n > 0}, the element at position
* {@code n}, will be the result of applying the function {@code f} to the
* element at position {@code n - 1}.
*
*
Example:
*
* seed: 1
* f: (a) -> a + 5
* result: [1, 6, 11, 16, ...]
*
*
* @param seed the initial element
* @param f a function to be applied to the previous element to produce
* a new element
* @return a new sequential {@code IntStream}
* @throws NullPointerException if {@code f} is null
*/
public static IntStream iterate(final int seed, final IntUnaryOperator f) {
Objects.requireNonNull(f);
return new IntStream(new IntIterate(seed, f));
}
/**
* Creates an {@code IntStream} by iterative application {@code IntUnaryOperator} function
* to an initial element {@code seed}, conditioned on satisfying the supplied predicate.
*
* Example:
*
* seed: 0
* predicate: (a) -> a < 20
* f: (a) -> a + 5
* result: [0, 5, 10, 15]
*
*
* @param seed the initial value
* @param predicate a predicate to determine when the stream must terminate
* @param op operator to produce new element by previous one
* @return the new stream
* @throws NullPointerException if {@code op} is null
* @since 1.1.5
*/
public static IntStream iterate(final int seed, final IntPredicate predicate, final IntUnaryOperator op) {
Objects.requireNonNull(predicate);
return iterate(seed, op).takeWhile(predicate);
}
/**
* Creates a lazily concatenated stream whose elements are all the
* elements of the first stream followed by all the elements of the
* second stream.
*
* Example:
*
* stream a: [1, 2, 3, 4]
* stream b: [5, 6]
* result: [1, 2, 3, 4, 5, 6]
*
*
* @param a the first stream
* @param b the second stream
* @return the concatenation of the two input streams
* @throws NullPointerException if {@code a} or {@code b} is null
*/
public static IntStream concat(final IntStream a, final IntStream b) {
Objects.requireNonNull(a);
Objects.requireNonNull(b);
@SuppressWarnings("resource")
IntStream result = new IntStream(new IntConcat(a.iterator, b.iterator));
return result.onClose(Compose.closeables(a, b));
}
public static IntStream concat(final int[] a, final int[] b) {
return new IntStream(new IntConcat(OfInt.of(a), OfInt.of(b)));
}
private final PrimitiveIterator.OfInt iterator;
private final Params params;
private IntStream(PrimitiveIterator.OfInt iterator) {
this(null, iterator);
}
IntStream(Params params, PrimitiveIterator.OfInt iterator) {
this.params = params;
this.iterator = iterator;
}
/**
* Returns internal {@code IntStream} iterator.
*
* @return internal {@code IntStream} iterator.
*/
public PrimitiveIterator.OfInt iterator() {
return iterator;
}
/**
* Returns a {@code Stream} consisting of the elements of this stream,
* each boxed to an {@code Integer}.
*
* This is an lazy intermediate operation.
*
* @return a {@code Stream} consistent of the elements of this stream,
* each boxed to an {@code Integer}
*/
public Stream boxed() {
return new Stream<>(params, iterator);
}
/**
* Returns a stream consisting of the elements of this stream that match
* the given predicate.
*
* This is an intermediate operation.
*
*
Example:
*
* predicate: (a) -> a > 2
* stream: [1, 2, 3, 4, -8, 0, 11]
* result: [3, 4, 11]
*
*
* @param predicate non-interfering, stateless predicate to apply to each
* element to determine if it should be included
* @return the new stream
*/
public IntStream filter(final IntPredicate predicate) {
return new IntStream(params, new IntFilter(iterator, predicate));
}
/**
* Returns an {@code IntStream} consisting of the results of applying the given
* function to the elements of this stream.
*
* This is an intermediate operation.
*
*
Example:
*
* mapper: (a) -> a + 5
* stream: [1, 2, 3, 4]
* result: [6, 7, 8, 9]
*
*
* @param mapper a non-interfering stateless function to apply to
* each element
* @return the new {@code IntStream}
*/
public IntStream map(final IntUnaryOperator mapper) {
return new IntStream(params, new IntMap(iterator, mapper));
}
/**
* Returns a {@code LongStream} consisting of the results of applying the given
* function to the elements of this stream.
*
* This is an intermediate operation.
*
* @param mapper the mapper function used to apply to each element
* @return the new {@code LongStream}
* @since 1.1.4
* @see #flatMap(com.annimon.stream.function.IntFunction)
*/
public LongStream mapToLong(final IntToLongFunction mapper) {
return new LongStream(params, new IntMapToLong(iterator, mapper));
}
/**
* Returns a {@code DoubleStream} consisting of the results of applying the given
* function to the elements of this stream.
*
*
This is an intermediate operation.
*
* @param mapper the mapper function used to apply to each element
* @return the new {@code DoubleStream}
* @since 1.1.4
* @see #flatMap(com.annimon.stream.function.IntFunction)
*/
public DoubleStream mapToDouble(final IntToDoubleFunction mapper) {
return new DoubleStream(params, new IntMapToDouble(iterator, mapper));
}
/**
* Returns a {@code Stream} consisting of the results of applying the given
* function to the elements of this stream.
*
*
This is an intermediate operation.
*
* @param the type result
* @param mapper the mapper function used to apply to each element
* @return the new {@code Stream}
*/
public Stream mapToObj(final IntFunction extends R> mapper) {
return new Stream<>(params, new IntMapToObj<>(iterator, mapper));
}
/**
* Returns a stream consisting of the results of replacing each element of
* this stream with the contents of a mapped stream produced by applying
* the provided mapping function to each element.
*
* This is an intermediate operation.
*
*
Example:
*
* mapper: (a) -> [a, a + 5]
* stream: [1, 2, 3, 4]
* result: [1, 6, 2, 7, 3, 8, 4, 9]
*
*
* @param mapper a non-interfering stateless function to apply to each
* element which produces an {@code IntStream} of new values
* @return the new stream
* @see Stream#flatMap(Function)
*/
public IntStream flatMap(final IntFunction extends IntStream> mapper) {
return new IntStream(params, new IntFlatMap(iterator, mapper));
}
/**
* Returns a stream consisting of the distinct elements of this stream.
*
* This is a stateful intermediate operation.
*
*
Example:
*
* stream: [1, 4, 2, 3, 3, 4, 1]
* result: [1, 4, 2, 3]
*
*
* @return the new stream
*/
public IntStream distinct() {
// While functional and quick to implement, this approach is not very efficient.
// An efficient version requires an int-specific map/set implementation.
return boxed().distinct().mapToInt(UNBOX_FUNCTION);
}
/**
* Returns a stream consisting of the elements of this stream in sorted
* order.
*
* This is a stateful intermediate operation.
*
*
Example:
*
* stream: [3, 4, 1, 2]
* result: [1, 2, 3, 4]
*
*
* @return the new stream
*/
public IntStream sorted() {
return new IntStream(params, new IntSorted(iterator));
}
/**
* Returns {@code IntStream} with sorted elements (as determinated by provided {@code Comparator}).
*
* This is a stateful intermediate operation.
*
*
Example:
*
* comparator: (a, b) -> -a.compareTo(b)
* stream: [1, 2, 3, 4]
* result: [4, 3, 2, 1]
*
*
* @param comparator the {@code Comparator} to compare elements
* @return the new {@code IntStream}
*/
public IntStream sorted(Comparator comparator) {
return boxed().sorted(comparator).mapToInt(UNBOX_FUNCTION);
}
/**
* Returns a stream consisting of the elements of this stream, additionally
* performing the provided action on each element as elements are consumed
* from the resulting stream. Handy method for debugging purposes.
*
* This is an intermediate operation.
*
* @param action the action to be performed on each element
* @return the new stream
*/
public IntStream peek(final IntConsumer action) {
return new IntStream(params, new IntPeek(iterator, action));
}
/**
* Returns a {@code IntStream} produced by iterative application of a accumulation function
* to reduction value and next element of the current stream.
* Produces a {@code IntStream} consisting of {@code value1}, {@code acc(value1, value2)},
* {@code acc(acc(value1, value2), value3)}, etc.
*
*
This is an intermediate operation.
*
*
Example:
*
* accumulator: (a, b) -> a + b
* stream: [1, 2, 3, 4, 5]
* result: [1, 3, 6, 10, 15]
*
*
* @param accumulator the accumulation function
* @return the new stream
* @throws NullPointerException if {@code accumulator} is null
* @since 1.1.6
*/
public IntStream scan(final IntBinaryOperator accumulator) {
Objects.requireNonNull(accumulator);
return new IntStream(params, new IntScan(iterator, accumulator));
}
/**
* Returns a {@code IntStream} produced by iterative application of a accumulation function
* to an initial element {@code identity} and next element of the current stream.
* Produces a {@code IntStream} consisting of {@code identity}, {@code acc(identity, value1)},
* {@code acc(acc(identity, value1), value2)}, etc.
*
* This is an intermediate operation.
*
*
Example:
*
* identity: 0
* accumulator: (a, b) -> a + b
* stream: [1, 2, 3, 4, 5]
* result: [0, 1, 3, 6, 10, 15]
*
*
* @param identity the initial value
* @param accumulator the accumulation function
* @return the new stream
* @throws NullPointerException if {@code accumulator} is null
* @since 1.1.6
*/
public IntStream scan(final int identity, final IntBinaryOperator accumulator) {
Objects.requireNonNull(accumulator);
return new IntStream(params, new IntScanIdentity(iterator, identity, accumulator));
}
/**
* Takes elements while the predicate returns {@code true}.
*
* This is an intermediate operation.
*
*
Example:
*
* predicate: (a) -> a < 3
* stream: [1, 2, 3, 4, 1, 2, 3, 4]
* result: [1, 2]
*
*
* @param predicate the predicate used to take elements
* @return the new {@code IntStream}
*/
public IntStream takeWhile(final IntPredicate predicate) {
return new IntStream(params, new IntTakeWhile(iterator, predicate));
}
/**
* Takes elements while the predicate returns {@code false}.
* Once predicate condition is satisfied by an element, the stream
* finishes with this element.
*
* This is an intermediate operation.
*
*
Example:
*
* stopPredicate: (a) -> a > 2
* stream: [1, 2, 3, 4, 1, 2, 3, 4]
* result: [1, 2, 3]
*
*
* @param stopPredicate the predicate used to take elements
* @return the new {@code IntStream}
* @since 1.1.6
*/
public IntStream takeUntil(final IntPredicate stopPredicate) {
return new IntStream(params, new IntTakeUntil(iterator, stopPredicate));
}
/**
* Drops elements while the predicate is true and returns the rest.
*
* This is an intermediate operation.
*
*
Example:
*
* predicate: (a) -> a < 3
* stream: [1, 2, 3, 4, 1, 2, 3, 4]
* result: [3, 4, 1, 2, 3, 4]
*
*
* @param predicate the predicate used to drop elements
* @return the new {@code IntStream}
*/
public IntStream dropWhile(final IntPredicate predicate) {
return new IntStream(params, new IntDropWhile(iterator, predicate));
}
/**
* Returns a stream consisting of the elements of this stream, truncated
* to be no longer than {@code maxSize} in length.
*
* This is a short-circuiting stateful intermediate operation.
*
*
Example:
*
* maxSize: 3
* stream: [1, 2, 3, 4, 5]
* result: [1, 2, 3]
*
* maxSize: 10
* stream: [1, 2]
* result: [1, 2]
*
*
* @param maxSize the number of elements the stream should be limited to
* @return the new stream
* @throws IllegalArgumentException if {@code maxSize} is negative
*/
public IntStream limit(final long maxSize) {
if (maxSize < 0) {
throw new IllegalArgumentException("maxSize cannot be negative");
}
if (maxSize == 0) {
return IntStream.empty();
}
return new IntStream(params, new IntLimit(iterator, maxSize));
}
/**
* Returns a stream consisting of the remaining elements of this stream
* after discarding the first {@code n} elements of the stream.
* If this stream contains fewer than {@code n} elements then an
* empty stream will be returned.
*
* This is a stateful intermediate operation.
*
*
Example:
*
* n: 3
* stream: [1, 2, 3, 4, 5]
* result: [4, 5]
*
* n: 10
* stream: [1, 2]
* result: []
*
*
* @param n the number of leading elements to skip
* @return the new stream
* @throws IllegalArgumentException if {@code n} is negative
*/
public IntStream skip(final long n) {
if (n < 0) {
throw new IllegalArgumentException("n cannot be negative");
} else if (n == 0) {
return this;
} else {
return new IntStream(params, new IntSkip(iterator, n));
}
}
/**
* Returns the sum of elements in this stream.
*
* @return the sum of elements in this stream
*/
public int sum() {
int sum = 0;
while (iterator.hasNext()) {
sum += iterator.nextInt();
}
return sum;
}
/**
* Returns an {@code OptionalInt} describing the minimum element of this
* stream, or an empty optional if this stream is empty.
*
* This is a terminal operation.
*
* @return an {@code OptionalInt} containing the minimum element of this
* stream, or an empty {@code OptionalInt} if the stream is empty
*/
public OptionalInt min() {
return reduce(new IntBinaryOperator() {
@Override
public int applyAsInt(int left, int right) {
return left < right ? left : right;
}
});
}
/**
* Returns an {@code OptionalInt} describing the maximum element of this
* stream, or an empty optional if this stream is empty.
*
*
This is a terminal operation.
*
* @return an {@code OptionalInt} containing the maximum element of this
* stream, or an empty {@code OptionalInt} if the stream is empty
*/
public OptionalInt max() {
return reduce(new IntBinaryOperator() {
@Override
public int applyAsInt(int left, int right) {
return left > right ? left : right;
}
});
}
/**
* Returns the count of elements in this stream.
*
*
This is a terminal operation.
*
* @return the count of elements in this stream
*/
public int count() {
int count = 0;
while (iterator.hasNext()) {
iterator.nextInt();
count++;
}
return count;
}
/**
* Returns the average of elements in this stream.
*
*
This is a terminal operation.
*
* @return the average of elements in this stream
*/
public OptionalDouble average() {
long count = 0;
long sum = 0;
while (iterator.hasNext()) {
sum += iterator.nextInt();
count++;
}
if (count == 0)
return OptionalDouble.empty();
return OptionalDouble.of(((double) sum) / count);
}
/**
* Returns whether any elements of this stream match the provided
* predicate. May not evaluate the predicate on all elements if not
* necessary for determining the result. If the stream is empty then
* {@code false} is returned and the predicate is not evaluated.
*
*
This is a short-circuiting terminal operation.
*
*
Example:
*
* predicate: (a) -> a == 5
* stream: [1, 2, 3, 4, 5]
* result: true
*
* predicate: (a) -> a == 5
* stream: [5, 5, 5]
* result: true
*
*
* @param predicate a non-interfering stateless predicate to apply
* to elements of this stream
* @return {@code true} if any elements of the stream match the provided
* predicate, otherwise {@code false}
*/
public boolean anyMatch(IntPredicate predicate) {
while (iterator.hasNext()) {
if (predicate.test(iterator.nextInt()))
return true;
}
return false;
}
/**
* Returns whether all elements of this stream match the provided predicate.
* May not evaluate the predicate on all elements if not necessary for
* determining the result. If the stream is empty then {@code true} is
* returned and the predicate is not evaluated.
*
* This is a short-circuiting terminal operation.
*
*
Example:
*
* predicate: (a) -> a == 5
* stream: [1, 2, 3, 4, 5]
* result: false
*
* predicate: (a) -> a == 5
* stream: [5, 5, 5]
* result: true
*
*
* @param predicate a non-interfering stateless predicate to apply to
* elements of this stream
* @return {@code true} if either all elements of the stream match the
* provided predicate or the stream is empty, otherwise {@code false}
*/
public boolean allMatch(IntPredicate predicate) {
while (iterator.hasNext()) {
if (!predicate.test(iterator.nextInt()))
return false;
}
return true;
}
/**
* Returns whether no elements of this stream match the provided predicate.
* May not evaluate the predicate on all elements if not necessary for
* determining the result. If the stream is empty then {@code true} is
* returned and the predicate is not evaluated.
*
* This is a short-circuiting terminal operation.
*
*
Example:
*
* predicate: (a) -> a == 5
* stream: [1, 2, 3, 4, 5]
* result: false
*
* predicate: (a) -> a == 5
* stream: [1, 2, 3]
* result: true
*
*
* @param predicate a non-interfering stateless predicate to apply to
* elements of this stream
* @return {@code true} if either no elements of the stream match the
* provided predicate or the stream is empty, otherwise {@code false}
*/
public boolean noneMatch(IntPredicate predicate) {
while (iterator.hasNext()) {
if (predicate.test(iterator.nextInt()))
return false;
}
return true;
}
/**
* Returns an {@link OptionalInt} describing the first element of this
* stream, or an empty {@code OptionalInt} if the stream is empty.
*
* This is a short-circuiting terminal operation.
*
* @return an {@code OptionalInt} describing the first element of this stream,
* or an empty {@code OptionalInt} if the stream is empty
*/
public OptionalInt findFirst() {
if (iterator.hasNext()) {
return OptionalInt.of(iterator.nextInt());
} else {
return OptionalInt.empty();
}
}
/**
* Returns the last element wrapped by {@code OptionalInt} class.
* If stream is empty, returns {@code OptionalInt.empty()}.
*
*
This is a short-circuiting terminal operation.
*
* @return an {@code OptionalInt} with the last element
* or {@code OptionalInt.empty()} if the stream is empty
* @since 1.1.8
*/
public OptionalInt findLast() {
return reduce(new IntBinaryOperator() {
@Override
public int applyAsInt(int left, int right) {
return right;
}
});
}
/**
* Performs an action for each element of this stream.
*
*
This is a terminal operation.
*
* @param action a non-interfering action to perform on the elements
*/
public void forEach(IntConsumer action) {
while (iterator.hasNext()) {
action.accept(iterator.nextInt());
}
}
/**
* Performs a reduction on the elements of this stream, using the provided
* identity value and an associative accumulation function, and returns the
* reduced value.
*
*
The {@code identity} value must be an identity for the accumulator
* function. This means that for all {@code x},
* {@code accumulator.apply(identity, x)} is equal to {@code x}.
* The {@code accumulator} function must be an associative function.
*
*
This is a terminal operation.
*
*
Example:
*
* identity: 0
* accumulator: (a, b) -> a + b
* stream: [1, 2, 3, 4, 5]
* result: 15
*
*
* @param identity the identity value for the accumulating function
* @param op an associative non-interfering stateless function for
* combining two values
* @return the result of the reduction
* @see #sum()
* @see #min()
* @see #max()
*/
public int reduce(int identity, IntBinaryOperator op) {
int result = identity;
while (iterator.hasNext()) {
int value = iterator.nextInt();
result = op.applyAsInt(result, value);
}
return result;
}
/**
* Performs a reduction on the elements of this stream, using an
* associative accumulation function, and returns an {@code OptionalInt}
* describing the reduced value, if any.
*
* The {@code op} function must be an associative function.
*
*
This is a terminal operation.
*
* @param op an associative, non-interfering, stateless function for
* combining two values
* @return the result of the reduction
* @see #reduce(int, IntBinaryOperator)
*/
public OptionalInt reduce(IntBinaryOperator op) {
boolean foundAny = false;
int result = 0;
while (iterator.hasNext()) {
int value = iterator.nextInt();
if (!foundAny) {
foundAny = true;
result = value;
} else {
result = op.applyAsInt(result, value);
}
}
return foundAny ? OptionalInt.of(result) : OptionalInt.empty();
}
/**
* Collects elements to {@code supplier} provided container by applying the given accumulation function.
*
*
This is a terminal operation.
*
* @param the type of the result
* @param supplier the supplier function that provides container
* @param accumulator the accumulation function
* @return the result of collect elements
* @see Stream#collect(com.annimon.stream.function.Supplier, com.annimon.stream.function.BiConsumer)
*/
public R collect(Supplier supplier, ObjIntConsumer accumulator) {
R result = supplier.get();
while (iterator.hasNext()) {
final int value = iterator.nextInt();
accumulator.accept(result, value);
}
return result;
}
/**
* Returns an array containing the elements of this stream.
*
* This is a terminal operation.
*
* @return an array containing the elements of this stream
*/
public int[] toArray() {
return Operators.toIntArray(iterator);
}
/**
* Applies custom operator on stream.
*
* Transforming function can return {@code IntStream} for intermediate operations,
* or any value for terminal operation.
*
*
Operator examples:
*
* // Intermediate operator
* public class Zip<T> implements Function<IntStream, IntStream> {
* @Override
* public IntStream apply(IntStream firstStream) {
* final PrimitiveIterator.OfInt it1 = firstStream.iterator();
* final PrimitiveIterator.OfInt it2 = secondStream.iterator();
* return IntStream.of(new PrimitiveIterator.OfInt() {
* @Override
* public boolean hasNext() {
* return it1.hasNext() && it2.hasNext();
* }
*
* @Override
* public int nextInt() {
* return combiner.applyAsInt(it1.nextInt(), it2.nextInt());
* }
* });
* }
* }
*
* // Intermediate operator based on existing stream operators
* public class SkipAndLimit implements UnaryOperator<IntStream> {
*
* private final int skip, limit;
*
* public SkipAndLimit(int skip, int limit) {
* this.skip = skip;
* this.limit = limit;
* }
*
* @Override
* public IntStream apply(IntStream stream) {
* return stream.skip(skip).limit(limit);
* }
* }
*
* // Terminal operator
* public class Average implements Function<IntStream, Double> {
* long count = 0, sum = 0;
*
* @Override
* public Double apply(IntStream stream) {
* final PrimitiveIterator.OfInt it = stream.iterator();
* while (it.hasNext()) {
* count++;
* sum += it.nextInt();
* }
* return (count == 0) ? 0 : sum / (double) count;
* }
* }
*
*
* @param the type of the result
* @param function a transforming function
* @return a result of the transforming function
* @see Stream#chain(com.annimon.stream.function.Function)
* @throws NullPointerException if {@code function} is null
*/
public R __(Function super IntStream, R> transfer) {
return transfer.apply(this);
}
public void println() {
boxed().println();
}
/**
* Adds close handler to the current stream.
*
* This is an intermediate operation.
*
* @param closeHandler an action to execute when the stream is closed
* @return the new stream with the close handler
* @since 1.1.8
*/
public IntStream onClose(final Runnable closeHandler) {
Objects.requireNonNull(closeHandler);
final Params newParams;
if (params == null) {
newParams = new Params();
newParams.closeHandler = closeHandler;
} else {
newParams = params;
final Runnable firstHandler = newParams.closeHandler;
newParams.closeHandler = Compose.runnables(firstHandler, closeHandler);
}
return new IntStream(newParams, iterator);
}
/**
* Causes close handler to be invoked if it exists.
* Since most of the stream providers are lists or arrays,
* it is not necessary to close the stream.
*
* @since 1.1.8
*/
@Override
public void close() {
if (params != null && params.closeHandler != null) {
params.closeHandler.run();
params.closeHandler = null;
}
}
private static final ToIntFunction UNBOX_FUNCTION = new ToIntFunction() {
@Override
public int applyAsInt(Integer t) {
return t;
}
};
}