
org.apache.spark.sql.kafka010.ShadowedStreamWriter.scala Maven / Gradle / Ivy
The newest version!
package org.apache.spark.sql.kafka010
import scala.collection.JavaConverters._
import org.apache.spark.sql.catalyst.InternalRow
import org.apache.spark.sql.catalyst.expressions.Attribute
import org.apache.spark.sql.kafka010.KafkaWriter.validateQuery
import org.apache.spark.sql.sources.v2.writer._
import org.apache.spark.sql.sources.v2.writer.streaming.StreamWriter
import org.apache.spark.sql.types.StructType
/**
* Dummy commit message. The DataSourceV2 framework requires a commit message implementation but we
* don't need to really send one.
*/
case object ShadowedKafkaWriterCommitMessage extends WriterCommitMessage
/**
* A [[StreamWriter]] for Kafka writing. Responsible for generating the writer factory.
*
* @param topic The topic this writer is responsible for. If None, topic will be inferred from
* a `topic` field in the incoming data.
* @param producerParams Parameters for Kafka producers in each task.
* @param schema The schema of the input data.
*/
class ShadowedKafkaStreamWriter(
topic: Option[String], producerParams: Map[String, String], schema: StructType)
extends StreamWriter with SupportsWriteInternalRow {
validateQuery(schema.toAttributes, producerParams.toMap[String, Object].asJava, topic)
override def createInternalRowWriterFactory(): ShadowedKafkaStreamWriterFactory =
ShadowedKafkaStreamWriterFactory(topic, producerParams, schema)
override def commit(epochId: Long, messages: Array[WriterCommitMessage]): Unit = {}
override def abort(epochId: Long, messages: Array[WriterCommitMessage]): Unit = {}
}
/**
* A [[DataWriterFactory]] for Kafka writing. Will be serialized and sent to executors to generate
* the per-task data writers.
* @param topic The topic that should be written to. If None, topic will be inferred from
* a `topic` field in the incoming data.
* @param producerParams Parameters for Kafka producers in each task.
* @param schema The schema of the input data.
*/
case class ShadowedKafkaStreamWriterFactory(
topic: Option[String], producerParams: Map[String, String], schema: StructType)
extends DataWriterFactory[InternalRow] {
override def createDataWriter(partitionId: Int, attemptNumber: Int): DataWriter[InternalRow] = {
new ShadowedKafkaStreamDataWriter(topic, producerParams, schema.toAttributes)
}
}
/**
* A [[DataWriter]] for Kafka writing. One data writer will be created in each partition to
* process incoming rows.
*
* @param targetTopic The topic that this data writer is targeting. If None, topic will be inferred
* from a `topic` field in the incoming data.
* @param producerParams Parameters to use for the Kafka producer.
* @param inputSchema The attributes in the input data.
*/
class ShadowedKafkaStreamDataWriter(
targetTopic: Option[String], producerParams: Map[String, String], inputSchema: Seq[Attribute])
extends ShadowedKafkaRowWriter(inputSchema, targetTopic) with DataWriter[InternalRow] {
import scala.collection.JavaConverters._
private lazy val producer = ShadowedCachedKafkaProducer.getOrCreate(
new java.util.HashMap[String, Object](producerParams.asJava))
def write(row: InternalRow): Unit = {
checkForErrors()
sendRow(row, producer)
}
def commit(): WriterCommitMessage = {
// Send is asynchronous, but we can't commit until all rows are actually in Kafka.
// This requires flushing and then checking that no callbacks produced errors.
// We also check for errors before to fail as soon as possible - the check is cheap.
checkForErrors()
producer.flush()
checkForErrors()
ShadowedKafkaWriterCommitMessage
}
def abort(): Unit = {}
def close(): Unit = {
checkForErrors()
if (producer != null) {
producer.flush()
checkForErrors()
ShadowedCachedKafkaProducer.close(new java.util.HashMap[String, Object](producerParams.asJava))
}
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy