com.launchableinc.openai.utils.TikTokensUtil Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of api Show documentation
Show all versions of api Show documentation
Basic java objects for the OpenAI GPT APIs
package com.launchableinc.openai.utils;
import com.knuddels.jtokkit.Encodings;
import com.knuddels.jtokkit.api.Encoding;
import com.knuddels.jtokkit.api.EncodingRegistry;
import com.knuddels.jtokkit.api.EncodingType;
import com.knuddels.jtokkit.api.ModelType;
import com.launchableinc.openai.completion.chat.ChatMessage;
import lombok.AllArgsConstructor;
import lombok.Getter;
import java.util.*;
/**
* Token calculation tool class
*/
public class TikTokensUtil {
/**
* Model name corresponds to Encoding
*/
private static final Map modelMap = new HashMap<>();
/**
* Registry instance
*/
private static final EncodingRegistry registry = Encodings.newDefaultEncodingRegistry();
static {
for (ModelType modelType : ModelType.values()) {
modelMap.put(modelType.getName(), registry.getEncodingForModel(modelType));
}
modelMap.put(ModelEnum.GPT_3_5_TURBO_0301.getName(),
registry.getEncodingForModel(ModelType.GPT_3_5_TURBO));
modelMap.put(ModelEnum.GPT_4_32K.getName(), registry.getEncodingForModel(ModelType.GPT_4));
modelMap.put(ModelEnum.GPT_4_32K_0314.getName(), registry.getEncodingForModel(ModelType.GPT_4));
modelMap.put(ModelEnum.GPT_4_0314.getName(), registry.getEncodingForModel(ModelType.GPT_4));
modelMap.put(ModelEnum.GPT_4_1106_preview.getName(),
registry.getEncodingForModel(ModelType.GPT_4));
}
/**
* Get encoding array through Encoding and text.
*
* @param enc Encoding type
* @param text Text information
* @return Encoding array
*/
public static List encode(Encoding enc, String text) {
return isBlank(text) ? new ArrayList<>() : enc.encode(text);
}
/**
* Calculate tokens of text information through Encoding.
*
* @param enc Encoding type
* @param text Text information
* @return Number of tokens
*/
public static int tokens(Encoding enc, String text) {
return encode(enc, text).size();
}
/**
* Reverse calculate text information through Encoding and encoded array
*
* @param enc Encoding
* @param encoded Encoding array
* @return Text information corresponding to the encoding array.
*/
public static String decode(Encoding enc, List encoded) {
return enc.decode(encoded);
}
/**
* Get an Encoding object by Encoding type
*
* @param encodingType
* @return Encoding
*/
public static Encoding getEncoding(EncodingType encodingType) {
Encoding enc = registry.getEncoding(encodingType);
return enc;
}
/**
* Obtain the encoding array by encoding;
*
* @param text
* @return Encoding array
*/
public static List encode(EncodingType encodingType, String text) {
if (isBlank(text)) {
return new ArrayList<>();
}
Encoding enc = getEncoding(encodingType);
List encoded = enc.encode(text);
return encoded;
}
/**
* Compute the tokens of the specified string through EncodingType.
*
* @param encodingType
* @param text
* @return Number of tokens
*/
public static int tokens(EncodingType encodingType, String text) {
return encode(encodingType, text).size();
}
/**
* Reverse the encoded array to get the string text using EncodingType and the encoded array.
*
* @param encodingType
* @param encoded
* @return The string corresponding to the encoding array.
*/
public static String decode(EncodingType encodingType, List encoded) {
Encoding enc = getEncoding(encodingType);
return enc.decode(encoded);
}
/**
* Get an Encoding object by model name.
*
* @param modelName
* @return Encoding
*/
public static Encoding getEncoding(String modelName) {
return modelMap.get(modelName);
}
/**
* Get the encoded array by model name using encode.
*
* @param text Text information
* @return Encoding array
*/
public static List encode(String modelName, String text) {
if (isBlank(text)) {
return new ArrayList<>();
}
Encoding enc = getEncoding(modelName);
if (Objects.isNull(enc)) {
return new ArrayList<>();
}
List encoded = enc.encode(text);
return encoded;
}
/**
* Calculate the tokens of a specified string by model name.
*
* @param modelName
* @param text
* @return Number of tokens
*/
public static int tokens(String modelName, String text) {
return encode(modelName, text).size();
}
/**
* Calculate the encoded array for messages by model name. Refer to the official processing logic:
* https://github.com/openai/openai-cookbook/blob/main/examples/How_to_count_tokens_with_tiktoken.ipynb
*
* @param modelName
* @param messages
* @return Number of tokens
*/
public static int tokens(String modelName, List messages) {
Encoding encoding = getEncoding(modelName);
int tokensPerMessage = 0;
int tokensPerName = 0;
//3.5统一处理
if (modelName.equals("gpt-3.5-turbo-0301") || modelName.equals("gpt-3.5-turbo")) {
tokensPerMessage = 4;
tokensPerName = -1;
}
//4.0统一处理
if (modelName.equals("gpt-4") || modelName.equals("gpt-4-0314")) {
tokensPerMessage = 3;
tokensPerName = 1;
}
int sum = 0;
for (ChatMessage msg : messages) {
sum += tokensPerMessage;
sum += tokens(encoding, msg.getContent());
sum += tokens(encoding, msg.getRole());
sum += tokens(encoding, msg.getName());
if (isNotBlank(msg.getName())) {
sum += tokensPerName;
}
}
sum += 3;
return sum;
}
/**
* Reverse the string text through the model name and the encoded array.
*
* @param modelName
* @param encoded
* @return
*/
public static String decode(String modelName, List encoded) {
Encoding enc = getEncoding(modelName);
return enc.decode(encoded);
}
/**
* Obtain the modelType.
*
* @param name
* @return
*/
public static ModelType getModelTypeByName(String name) {
if (ModelEnum.GPT_3_5_TURBO_0301.getName().equals(name)) {
return ModelType.GPT_3_5_TURBO;
}
if (ModelEnum.GPT_4.getName().equals(name)
|| ModelEnum.GPT_4_32K.getName().equals(name)
|| ModelEnum.GPT_4_32K_0314.getName().equals(name)
|| ModelEnum.GPT_4_0314.getName().equals(name)) {
return ModelType.GPT_4;
}
for (ModelType modelType : ModelType.values()) {
if (modelType.getName().equals(name)) {
return modelType;
}
}
return null;
}
@Getter
@AllArgsConstructor
public enum ModelEnum {
/**
* gpt-3.5-turbo
*/
GPT_3_5_TURBO("gpt-3.5-turbo"),
/**
* Temporary model, not recommended for use.
*/
GPT_3_5_TURBO_0301("gpt-3.5-turbo-0301"),
/**
* GPT4.0
*/
GPT_4("gpt-4"),
/**
* Temporary model, not recommended for use.
*/
GPT_4_0314("gpt-4-0314"),
/**
* GPT4.0 超长上下文
*/
GPT_4_32K("gpt-4-32k"),
/**
* Temporary model, not recommended for use.
*/
GPT_4_32K_0314("gpt-4-32k-0314"),
/**
* Temporary model, not recommended for use.
*/
GPT_4_1106_preview("gpt-4-1106-preview");
private String name;
}
public static boolean isBlankChar(int c) {
return Character.isWhitespace(c) || Character.isSpaceChar(c) || c == 65279 || c == 8234
|| c == 0 || c == 12644 || c == 10240 || c == 6158;
}
public static boolean isBlankChar(char c) {
return isBlankChar((int) c);
}
public static boolean isNotBlank(CharSequence str) {
return !isBlank(str);
}
public static boolean isBlank(CharSequence str) {
int length;
if (str != null && (length = str.length()) != 0) {
for (int i = 0; i < length; ++i) {
if (!isBlankChar(str.charAt(i))) {
return false;
}
}
return true;
} else {
return true;
}
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy