de.lessvoid.math.Mat4 Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of coregl-utils Show documentation
Show all versions of coregl-utils Show documentation
simple utility methods to make life with OpenGL core profile simpler
The newest version!
/*
* Copyright (c) 2002-2008 LWJGL Project
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* * Neither the name of 'LWJGL' nor the names of
* its contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
package de.lessvoid.math;
import java.io.Serializable;
import java.nio.ByteBuffer;
import java.nio.ByteOrder;
import java.nio.FloatBuffer;
/**
* Holds a 4x4 float matrix.
*
* @author foo
* @author void256 - removed all of the base class methods and some of the
* vector/transformation operations to make the class usable as a self
* contained class.
*/
public class Mat4 implements Serializable {
private static final long serialVersionUID = 1L;
private FloatBuffer matrixBuffer;
public float m00, m01, m02, m03, m10, m11, m12, m13, m20, m21, m22, m23, m30, m31, m32, m33;
/**
* Construct a new matrix, initialized to the identity.
*/
public Mat4() {
setIdentity();
}
public Mat4(final Mat4 src) {
load(src);
}
/**
* Returns a string representation of this matrix
*/
@Override
public String toString() {
final StringBuilder buf = new StringBuilder();
buf.append(m00).append(' ').append(m10).append(' ').append(m20).append(' ').append(m30).append('\n');
buf.append(m01).append(' ').append(m11).append(' ').append(m21).append(' ').append(m31).append('\n');
buf.append(m02).append(' ').append(m12).append(' ').append(m22).append(' ').append(m32).append('\n');
buf.append(m03).append(' ').append(m13).append(' ').append(m23).append(' ').append(m33).append('\n');
return buf.toString();
}
/**
* Store this Matrix to an internal FloatBuffer and return that buffer. Please
* note that the same internal buffer will be used for each call.
*
* @return FloatBuffer with the Matrix data
*/
public FloatBuffer toBuffer() {
if (matrixBuffer == null) {
matrixBuffer = ByteBuffer.allocateDirect(64).order(ByteOrder.nativeOrder()).asFloatBuffer();
}
matrixBuffer.clear();
store(matrixBuffer);
matrixBuffer.rewind();
return matrixBuffer;
}
/**
* Set this matrix to be the identity matrix.
*
* @return this
*/
public Mat4 setIdentity() {
return setIdentity(this);
}
/**
* Set the given matrix to be the identity matrix.
*
* @param m
* The matrix to set to the identity
* @return m
*/
public static Mat4 setIdentity(final Mat4 m) {
m.m00 = 1.0f;
m.m01 = 0.0f;
m.m02 = 0.0f;
m.m03 = 0.0f;
m.m10 = 0.0f;
m.m11 = 1.0f;
m.m12 = 0.0f;
m.m13 = 0.0f;
m.m20 = 0.0f;
m.m21 = 0.0f;
m.m22 = 1.0f;
m.m23 = 0.0f;
m.m30 = 0.0f;
m.m31 = 0.0f;
m.m32 = 0.0f;
m.m33 = 1.0f;
return m;
}
/**
* Set this matrix to 0.
*
* @return this
*/
public Mat4 setZero() {
return setZero(this);
}
/**
* Set the given matrix to 0.
*
* @param m
* The matrix to set to 0
* @return m
*/
public static Mat4 setZero(final Mat4 m) {
m.m00 = 0.0f;
m.m01 = 0.0f;
m.m02 = 0.0f;
m.m03 = 0.0f;
m.m10 = 0.0f;
m.m11 = 0.0f;
m.m12 = 0.0f;
m.m13 = 0.0f;
m.m20 = 0.0f;
m.m21 = 0.0f;
m.m22 = 0.0f;
m.m23 = 0.0f;
m.m30 = 0.0f;
m.m31 = 0.0f;
m.m32 = 0.0f;
m.m33 = 0.0f;
return m;
}
public static Mat4 createTranslate(final float x, final float y, final float z) {
final Mat4 result = new Mat4();
result.m30 = x;
result.m31 = y;
result.m32 = z;
return result;
}
public static Mat4 createScale(final float x, final float y, final float z) {
final Mat4 result = new Mat4();
result.m00 = x;
result.m11 = y;
result.m22 = z;
return result;
}
public static Mat4 createRotate(final float angle, final float x, final float y, final float z) {
final double angleRad = angle * Math.PI / 180.;
final float c = (float) Math.cos(angleRad);
final float s = (float) Math.sin(angleRad);
final Mat4 result = new Mat4();
result.m00 = x * x * (1 - c) + c;
result.m10 = x * y * (1 - c) - z * s;
result.m20 = x * z * (1 - c) + y * s;
result.m30 = 0;
result.m01 = y * x * (1 - c) + z * s;
result.m11 = y * y * (1 - c) + c;
result.m21 = y * z * (1 - c) - x * s;
result.m31 = 0;
result.m02 = x * z * (1 - c) - y * s;
result.m12 = y * z * (1 - c) + x * s;
result.m22 = z * z * (1 - c) + c;
result.m32 = 0;
result.m03 = 0;
result.m13 = 0;
result.m23 = 0;
result.m33 = 1;
return result;
}
/**
* Load from another matrix4f
*
* @param src
* The source matrix
* @return this
*/
public Mat4 load(final Mat4 src) {
return load(src, this);
}
/**
* Copy the source matrix to the destination matrix
*
* @param src
* The source matrix
* @param dest
* The destination matrix, or null of a new one is to be created
* @return The copied matrix
*/
public static Mat4 load(final Mat4 src, Mat4 dest) {
if (dest == null) dest = new Mat4();
dest.m00 = src.m00;
dest.m01 = src.m01;
dest.m02 = src.m02;
dest.m03 = src.m03;
dest.m10 = src.m10;
dest.m11 = src.m11;
dest.m12 = src.m12;
dest.m13 = src.m13;
dest.m20 = src.m20;
dest.m21 = src.m21;
dest.m22 = src.m22;
dest.m23 = src.m23;
dest.m30 = src.m30;
dest.m31 = src.m31;
dest.m32 = src.m32;
dest.m33 = src.m33;
return dest;
}
/**
* Load from a float buffer. The buffer stores the matrix in column major
* (OpenGL) order.
*
* @param buf
* A float buffer to read from
* @return this
*/
public Mat4 load(final FloatBuffer buf) {
m00 = buf.get();
m01 = buf.get();
m02 = buf.get();
m03 = buf.get();
m10 = buf.get();
m11 = buf.get();
m12 = buf.get();
m13 = buf.get();
m20 = buf.get();
m21 = buf.get();
m22 = buf.get();
m23 = buf.get();
m30 = buf.get();
m31 = buf.get();
m32 = buf.get();
m33 = buf.get();
return this;
}
/**
* Load from a float buffer. The buffer stores the matrix in row major (maths)
* order.
*
* @param buf
* A float buffer to read from
* @return this
*/
public Mat4 loadTranspose(final FloatBuffer buf) {
m00 = buf.get();
m10 = buf.get();
m20 = buf.get();
m30 = buf.get();
m01 = buf.get();
m11 = buf.get();
m21 = buf.get();
m31 = buf.get();
m02 = buf.get();
m12 = buf.get();
m22 = buf.get();
m32 = buf.get();
m03 = buf.get();
m13 = buf.get();
m23 = buf.get();
m33 = buf.get();
return this;
}
/**
* Store this matrix in a float buffer. The matrix is stored in column major
* (openGL) order.
*
* @param buf
* The buffer to store this matrix in
*/
public Mat4 store(final FloatBuffer buf) {
buf.put(m00);
buf.put(m01);
buf.put(m02);
buf.put(m03);
buf.put(m10);
buf.put(m11);
buf.put(m12);
buf.put(m13);
buf.put(m20);
buf.put(m21);
buf.put(m22);
buf.put(m23);
buf.put(m30);
buf.put(m31);
buf.put(m32);
buf.put(m33);
return this;
}
/**
* Store this matrix in a float buffer. The matrix is stored in row major
* (maths) order.
*
* @param buf
* The buffer to store this matrix in
*/
public Mat4 storeTranspose(final FloatBuffer buf) {
buf.put(m00);
buf.put(m10);
buf.put(m20);
buf.put(m30);
buf.put(m01);
buf.put(m11);
buf.put(m21);
buf.put(m31);
buf.put(m02);
buf.put(m12);
buf.put(m22);
buf.put(m32);
buf.put(m03);
buf.put(m13);
buf.put(m23);
buf.put(m33);
return this;
}
/**
* Store the rotation portion of this matrix in a float buffer. The matrix is
* stored in column major (openGL) order.
*
* @param buf
* The buffer to store this matrix in
*/
public Mat4 store3f(final FloatBuffer buf) {
buf.put(m00);
buf.put(m01);
buf.put(m02);
buf.put(m10);
buf.put(m11);
buf.put(m12);
buf.put(m20);
buf.put(m21);
buf.put(m22);
return this;
}
/**
* Add two matrices together and place the result in a third matrix.
*
* @param left
* The left source matrix
* @param right
* The right source matrix
* @param dest
* The destination matrix, or null if a new one is to be created
* @return the destination matrix
*/
public static Mat4 add(final Mat4 left, final Mat4 right, Mat4 dest) {
if (dest == null) dest = new Mat4();
dest.m00 = left.m00 + right.m00;
dest.m01 = left.m01 + right.m01;
dest.m02 = left.m02 + right.m02;
dest.m03 = left.m03 + right.m03;
dest.m10 = left.m10 + right.m10;
dest.m11 = left.m11 + right.m11;
dest.m12 = left.m12 + right.m12;
dest.m13 = left.m13 + right.m13;
dest.m20 = left.m20 + right.m20;
dest.m21 = left.m21 + right.m21;
dest.m22 = left.m22 + right.m22;
dest.m23 = left.m23 + right.m23;
dest.m30 = left.m30 + right.m30;
dest.m31 = left.m31 + right.m31;
dest.m32 = left.m32 + right.m32;
dest.m33 = left.m33 + right.m33;
return dest;
}
/**
* Subtract the right matrix from the left and place the result in a third
* matrix.
*
* @param left
* The left source matrix
* @param right
* The right source matrix
* @param dest
* The destination matrix, or null if a new one is to be created
* @return the destination matrix
*/
public static Mat4 sub(final Mat4 left, final Mat4 right, Mat4 dest) {
if (dest == null) dest = new Mat4();
dest.m00 = left.m00 - right.m00;
dest.m01 = left.m01 - right.m01;
dest.m02 = left.m02 - right.m02;
dest.m03 = left.m03 - right.m03;
dest.m10 = left.m10 - right.m10;
dest.m11 = left.m11 - right.m11;
dest.m12 = left.m12 - right.m12;
dest.m13 = left.m13 - right.m13;
dest.m20 = left.m20 - right.m20;
dest.m21 = left.m21 - right.m21;
dest.m22 = left.m22 - right.m22;
dest.m23 = left.m23 - right.m23;
dest.m30 = left.m30 - right.m30;
dest.m31 = left.m31 - right.m31;
dest.m32 = left.m32 - right.m32;
dest.m33 = left.m33 - right.m33;
return dest;
}
/**
* Multiply the right matrix by the left and return the result in a new
* matrix.
*
* @param left
* The left source matrix
* @param right
* The right source matrix
* @return the destination matrix
*/
public static Mat4 mul(final Mat4 left, final Mat4 right) {
return Mat4.mul(left, right, null);
}
/**
* Multiply the right matrix by the left and place the result in a third
* matrix.
*
* @param left
* The left source matrix
* @param right
* The right source matrix
* @param dest
* The destination matrix, or null if a new one is to be created
* @return the destination matrix
*/
public static Mat4 mul(final Mat4 left, final Mat4 right, Mat4 dest) {
if (dest == null) dest = new Mat4();
final float m00 = left.m00 * right.m00 + left.m10 * right.m01 + left.m20 * right.m02 + left.m30 * right.m03;
final float m01 = left.m01 * right.m00 + left.m11 * right.m01 + left.m21 * right.m02 + left.m31 * right.m03;
final float m02 = left.m02 * right.m00 + left.m12 * right.m01 + left.m22 * right.m02 + left.m32 * right.m03;
final float m03 = left.m03 * right.m00 + left.m13 * right.m01 + left.m23 * right.m02 + left.m33 * right.m03;
final float m10 = left.m00 * right.m10 + left.m10 * right.m11 + left.m20 * right.m12 + left.m30 * right.m13;
final float m11 = left.m01 * right.m10 + left.m11 * right.m11 + left.m21 * right.m12 + left.m31 * right.m13;
final float m12 = left.m02 * right.m10 + left.m12 * right.m11 + left.m22 * right.m12 + left.m32 * right.m13;
final float m13 = left.m03 * right.m10 + left.m13 * right.m11 + left.m23 * right.m12 + left.m33 * right.m13;
final float m20 = left.m00 * right.m20 + left.m10 * right.m21 + left.m20 * right.m22 + left.m30 * right.m23;
final float m21 = left.m01 * right.m20 + left.m11 * right.m21 + left.m21 * right.m22 + left.m31 * right.m23;
final float m22 = left.m02 * right.m20 + left.m12 * right.m21 + left.m22 * right.m22 + left.m32 * right.m23;
final float m23 = left.m03 * right.m20 + left.m13 * right.m21 + left.m23 * right.m22 + left.m33 * right.m23;
final float m30 = left.m00 * right.m30 + left.m10 * right.m31 + left.m20 * right.m32 + left.m30 * right.m33;
final float m31 = left.m01 * right.m30 + left.m11 * right.m31 + left.m21 * right.m32 + left.m31 * right.m33;
final float m32 = left.m02 * right.m30 + left.m12 * right.m31 + left.m22 * right.m32 + left.m32 * right.m33;
final float m33 = left.m03 * right.m30 + left.m13 * right.m31 + left.m23 * right.m32 + left.m33 * right.m33;
dest.m00 = m00;
dest.m01 = m01;
dest.m02 = m02;
dest.m03 = m03;
dest.m10 = m10;
dest.m11 = m11;
dest.m12 = m12;
dest.m13 = m13;
dest.m20 = m20;
dest.m21 = m21;
dest.m22 = m22;
dest.m23 = m23;
dest.m30 = m30;
dest.m31 = m31;
dest.m32 = m32;
dest.m33 = m33;
return dest;
}
/**
* Transpose this matrix
*
* @return this
*/
public Mat4 transpose() {
return transpose(this);
}
/**
* Transpose this matrix and place the result in another matrix
*
* @param dest
* The destination matrix or null if a new matrix is to be created
* @return the transposed matrix
*/
public Mat4 transpose(final Mat4 dest) {
return transpose(this, dest);
}
/**
* Transpose the source matrix and place the result in the destination matrix
*
* @param src
* The source matrix
* @param dest
* The destination matrix or null if a new matrix is to be created
* @return the transposed matrix
*/
public static Mat4 transpose(final Mat4 src, Mat4 dest) {
if (dest == null) dest = new Mat4();
final float m00 = src.m00;
final float m01 = src.m10;
final float m02 = src.m20;
final float m03 = src.m30;
final float m10 = src.m01;
final float m11 = src.m11;
final float m12 = src.m21;
final float m13 = src.m31;
final float m20 = src.m02;
final float m21 = src.m12;
final float m22 = src.m22;
final float m23 = src.m32;
final float m30 = src.m03;
final float m31 = src.m13;
final float m32 = src.m23;
final float m33 = src.m33;
dest.m00 = m00;
dest.m01 = m01;
dest.m02 = m02;
dest.m03 = m03;
dest.m10 = m10;
dest.m11 = m11;
dest.m12 = m12;
dest.m13 = m13;
dest.m20 = m20;
dest.m21 = m21;
dest.m22 = m22;
dest.m23 = m23;
dest.m30 = m30;
dest.m31 = m31;
dest.m32 = m32;
dest.m33 = m33;
return dest;
}
/**
* @return the determinant of the matrix
*/
public float determinant() {
float f = m00
* ((m11 * m22 * m33 + m12 * m23 * m31 + m13 * m21 * m32) - m13 * m22 * m31 - m11 * m23 * m32 - m12 * m21 * m33);
f -= m01
* ((m10 * m22 * m33 + m12 * m23 * m30 + m13 * m20 * m32) - m13 * m22 * m30 - m10 * m23 * m32 - m12 * m20 * m33);
f += m02
* ((m10 * m21 * m33 + m11 * m23 * m30 + m13 * m20 * m31) - m13 * m21 * m30 - m10 * m23 * m31 - m11 * m20 * m33);
f -= m03
* ((m10 * m21 * m32 + m11 * m22 * m30 + m12 * m20 * m31) - m12 * m21 * m30 - m10 * m22 * m31 - m11 * m20 * m32);
return f;
}
/**
* Calculate the determinant of a 3x3 matrix
*
* @return result
*/
private static float determinant3x3(final float t00,
final float t01,
final float t02,
final float t10,
final float t11,
final float t12,
final float t20,
final float t21,
final float t22) {
return t00 * (t11 * t22 - t12 * t21) + t01 * (t12 * t20 - t10 * t22) + t02 * (t10 * t21 - t11 * t20);
}
/**
* Invert this matrix
*
* @return this if successful, null otherwise
*/
public Mat4 invert() {
return invert(this, this);
}
/**
* Invert the source matrix and put the result in the destination
*
* @param src
* The source matrix
* @param dest
* The destination matrix, or null if a new matrix is to be created
* @return The inverted matrix if successful, null otherwise
*/
public static Mat4 invert(final Mat4 src, Mat4 dest) {
final float determinant = src.determinant();
if (determinant != 0) {
/*
* m00 m01 m02 m03 m10 m11 m12 m13 m20 m21 m22 m23 m30 m31 m32 m33
*/
if (dest == null) dest = new Mat4();
final float determinant_inv = 1f / determinant;
// first row
final float t00 = determinant3x3(src.m11, src.m12, src.m13, src.m21, src.m22, src.m23, src.m31, src.m32, src.m33);
final float t01 = -determinant3x3(src.m10,
src.m12,
src.m13,
src.m20,
src.m22,
src.m23,
src.m30,
src.m32,
src.m33);
final float t02 = determinant3x3(src.m10, src.m11, src.m13, src.m20, src.m21, src.m23, src.m30, src.m31, src.m33);
final float t03 = -determinant3x3(src.m10,
src.m11,
src.m12,
src.m20,
src.m21,
src.m22,
src.m30,
src.m31,
src.m32);
// second row
final float t10 = -determinant3x3(src.m01,
src.m02,
src.m03,
src.m21,
src.m22,
src.m23,
src.m31,
src.m32,
src.m33);
final float t11 = determinant3x3(src.m00, src.m02, src.m03, src.m20, src.m22, src.m23, src.m30, src.m32, src.m33);
final float t12 = -determinant3x3(src.m00,
src.m01,
src.m03,
src.m20,
src.m21,
src.m23,
src.m30,
src.m31,
src.m33);
final float t13 = determinant3x3(src.m00, src.m01, src.m02, src.m20, src.m21, src.m22, src.m30, src.m31, src.m32);
// third row
final float t20 = determinant3x3(src.m01, src.m02, src.m03, src.m11, src.m12, src.m13, src.m31, src.m32, src.m33);
final float t21 = -determinant3x3(src.m00,
src.m02,
src.m03,
src.m10,
src.m12,
src.m13,
src.m30,
src.m32,
src.m33);
final float t22 = determinant3x3(src.m00, src.m01, src.m03, src.m10, src.m11, src.m13, src.m30, src.m31, src.m33);
final float t23 = -determinant3x3(src.m00,
src.m01,
src.m02,
src.m10,
src.m11,
src.m12,
src.m30,
src.m31,
src.m32);
// fourth row
final float t30 = -determinant3x3(src.m01,
src.m02,
src.m03,
src.m11,
src.m12,
src.m13,
src.m21,
src.m22,
src.m23);
final float t31 = determinant3x3(src.m00, src.m02, src.m03, src.m10, src.m12, src.m13, src.m20, src.m22, src.m23);
final float t32 = -determinant3x3(src.m00,
src.m01,
src.m03,
src.m10,
src.m11,
src.m13,
src.m20,
src.m21,
src.m23);
final float t33 = determinant3x3(src.m00, src.m01, src.m02, src.m10, src.m11, src.m12, src.m20, src.m21, src.m22);
// transpose and divide by the determinant
dest.m00 = t00 * determinant_inv;
dest.m11 = t11 * determinant_inv;
dest.m22 = t22 * determinant_inv;
dest.m33 = t33 * determinant_inv;
dest.m01 = t10 * determinant_inv;
dest.m10 = t01 * determinant_inv;
dest.m20 = t02 * determinant_inv;
dest.m02 = t20 * determinant_inv;
dest.m12 = t21 * determinant_inv;
dest.m21 = t12 * determinant_inv;
dest.m03 = t30 * determinant_inv;
dest.m30 = t03 * determinant_inv;
dest.m13 = t31 * determinant_inv;
dest.m31 = t13 * determinant_inv;
dest.m32 = t23 * determinant_inv;
dest.m23 = t32 * determinant_inv;
return dest;
} else return null;
}
/**
* Negate this matrix
*
* @return this
*/
public Mat4 negate() {
return negate(this);
}
/**
* Negate this matrix and place the result in a destination matrix.
*
* @param dest
* The destination matrix, or null if a new matrix is to be created
* @return the negated matrix
*/
public Mat4 negate(final Mat4 dest) {
return negate(this, this);
}
/**
* Negate this matrix and place the result in a destination matrix.
*
* @param src
* The source matrix
* @param dest
* The destination matrix, or null if a new matrix is to be created
* @return The negated matrix
*/
public static Mat4 negate(final Mat4 src, Mat4 dest) {
if (dest == null) dest = new Mat4();
dest.m00 = -src.m00;
dest.m01 = -src.m01;
dest.m02 = -src.m02;
dest.m03 = -src.m03;
dest.m10 = -src.m10;
dest.m11 = -src.m11;
dest.m12 = -src.m12;
dest.m13 = -src.m13;
dest.m20 = -src.m20;
dest.m21 = -src.m21;
dest.m22 = -src.m22;
dest.m23 = -src.m23;
dest.m30 = -src.m30;
dest.m31 = -src.m31;
dest.m32 = -src.m32;
dest.m33 = -src.m33;
return dest;
}
/**
* Create a new identity matrix.
*
* @return a identity matrix
*/
public static Mat4 createIdentity() {
return new Mat4();
}
/**
* Transform a Vector by a matrix and return the result in a destination
* vector.
*
* @param left
* The left matrix
* @param right
* The right vector
* @return the destination vector
*/
public static Vec4 transform(final Mat4 left, final Vec4 right) {
return transform(left, right, null);
}
/**
* Transform a Vector by a matrix and return the result in a destination
* vector.
*
* @param left
* The left matrix
* @param right
* The right vector
* @param dest
* The destination vector, or null if a new one is to be created
* @return the destination vector
*/
public static Vec4 transform(final Mat4 left, final Vec4 right, Vec4 dest) {
if (dest == null) dest = new Vec4();
final float x = left.m00 * right.x + left.m10 * right.y + left.m20 * right.z + left.m30 * right.w;
final float y = left.m01 * right.x + left.m11 * right.y + left.m21 * right.z + left.m31 * right.w;
final float z = left.m02 * right.x + left.m12 * right.y + left.m22 * right.z + left.m32 * right.w;
final float w = left.m03 * right.x + left.m13 * right.y + left.m23 * right.z + left.m33 * right.w;
dest.x = x;
dest.y = y;
dest.z = z;
dest.w = w;
return dest;
}
/**
* Compare this Matrix with some other matrix and return true when they are
* equal.
*
* @param other
*/
public boolean compare(final Mat4 other) {
return equals(m00, other.m00) && equals(m01, other.m01) && equals(m02, other.m02) && equals(m03, other.m03)
&& equals(m10, other.m10) && equals(m11, other.m11) && equals(m12, other.m12) && equals(m13, other.m13)
&& equals(m20, other.m20) && equals(m21, other.m21) && equals(m22, other.m22) && equals(m23, other.m23)
&& equals(m30, other.m30) && equals(m31, other.m31) && equals(m32, other.m32) && equals(m33, other.m33);
}
private boolean equals(final float a, final float b) {
return Math.abs(a - b) < 0.00000001f;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy