All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.levigo.util.gwtawt.emul.java.awt.geom.Path2D Maven / Gradle / Ivy

The newest version!
/*
 * Copyright (c) 2006, Oracle and/or its affiliates. All rights reserved. DO NOT ALTER OR REMOVE
 * COPYRIGHT NOTICES OR THIS FILE HEADER.
 * 
 * This code is free software; you can redistribute it and/or modify it under the terms of the GNU
 * General Public License version 2 only, as published by the Free Software Foundation. Oracle
 * designates this particular file as subject to the "Classpath" exception as provided by Oracle in
 * the LICENSE file that accompanied this code.
 * 
 * This code is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without
 * even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
 * General Public License version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 * 
 * You should have received a copy of the GNU General Public License version 2 along with this work;
 * if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA
 * 02110-1301 USA.
 * 
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA or visit www.oracle.com
 * if you need additional information or have any questions.
 */

package java.awt.geom;

import java.awt.Rectangle;
import java.awt.Shape;
import java.io.Serializable;
import sun.awt.geom.Curve;

import com.levigo.util.gwtawt.client.helper.Arrays;

/**
 * The {@code Path2D} class provides a simple, yet flexible shape which represents an arbitrary
 * geometric path. It can fully represent any path which can be iterated by the {@link PathIterator}
 * interface including all of its segment types and winding rules and it implements all of the basic
 * hit testing methods of the {@link Shape} interface.
 * 

* Use {@link Path2D.Float} when dealing with data that can be represented and used with floating * point precision. Use {@link Path2D.Double} for data that requires the accuracy or range of double * precision. *

* {@code Path2D} provides exactly those facilities required for basic construction and management * of a geometric path and implementation of the above interfaces with little added interpretation. * If it is useful to manipulate the interiors of closed geometric shapes beyond simple hit testing * then the {@link Area} class provides additional capabilities specifically targeted at closed * figures. While both classes nominally implement the {@code Shape} interface, they differ in * purpose and together they provide two useful views of a geometric shape where {@code Path2D} * deals primarily with a trajectory formed by path segments and {@code Area} deals more with * interpretation and manipulation of enclosed regions of 2D geometric space. *

* The {@link PathIterator} interface has more detailed descriptions of the types of segments that * make up a path and the winding rules that control how to determine which regions are inside or * outside the path. * * @author Jim Graham * @since 1.6 */ public abstract class Path2D implements Shape/* , Cloneable */{ /** * An even-odd winding rule for determining the interior of a path. * * @see PathIterator#WIND_EVEN_ODD * @since 1.6 */ public static final int WIND_EVEN_ODD = PathIterator.WIND_EVEN_ODD; /** * A non-zero winding rule for determining the interior of a path. * * @see PathIterator#WIND_NON_ZERO * @since 1.6 */ public static final int WIND_NON_ZERO = PathIterator.WIND_NON_ZERO; // For code simplicity, copy these constants to our namespace // and cast them to byte constants for easy storage. private static final byte SEG_MOVETO = (byte) PathIterator.SEG_MOVETO; private static final byte SEG_LINETO = (byte) PathIterator.SEG_LINETO; private static final byte SEG_QUADTO = (byte) PathIterator.SEG_QUADTO; private static final byte SEG_CUBICTO = (byte) PathIterator.SEG_CUBICTO; private static final byte SEG_CLOSE = (byte) PathIterator.SEG_CLOSE; transient byte[] pointTypes; transient int numTypes; transient int numCoords; transient int windingRule; static final int INIT_SIZE = 20; static final int EXPAND_MAX = 500; /** * Constructs a new empty {@code Path2D} object. It is assumed that the package sibling subclass * that is defaulting to this constructor will fill in all values. * * @since 1.6 */ /* private protected */ Path2D() { } /** * Constructs a new {@code Path2D} object from the given specified initial values. This method is * only intended for internal use and should not be made public if the other constructors for this * class are ever exposed. * * @param rule the winding rule * @param initialTypes the size to make the initial array to store the path segment types * @since 1.6 */ /* private protected */ Path2D(int rule, int initialTypes) { setWindingRule(rule); this.pointTypes = new byte[initialTypes]; } abstract float[] cloneCoordsFloat(AffineTransform at); abstract double[] cloneCoordsDouble(AffineTransform at); abstract void append(float x, float y); abstract void append(double x, double y); abstract Point2D getPoint(int coordindex); abstract void needRoom(boolean needMove, int newCoords); abstract int pointCrossings(double px, double py); abstract int rectCrossings(double rxmin, double rymin, double rxmax, double rymax); /** * The {@code Float} class defines a geometric path with coordinates stored in single precision * floating point. * * @since 1.6 */ public static class Float extends Path2D implements Serializable { transient float floatCoords[]; /** * Constructs a new empty single precision {@code Path2D} object with a default winding rule of * {@link #WIND_NON_ZERO}. * * @since 1.6 */ public Float() { this(WIND_NON_ZERO, INIT_SIZE); } /** * Constructs a new empty single precision {@code Path2D} object with the specified winding rule * to control operations that require the interior of the path to be defined. * * @param rule the winding rule * @see #WIND_EVEN_ODD * @see #WIND_NON_ZERO * @since 1.6 */ public Float(int rule) { this(rule, INIT_SIZE); } /** * Constructs a new empty single precision {@code Path2D} object with the specified winding rule * and the specified initial capacity to store path segments. This number is an initial guess as * to how many path segments will be added to the path, but the storage is expanded as needed to * store whatever path segments are added. * * @param rule the winding rule * @param initialCapacity the estimate for the number of path segments in the path * @see #WIND_EVEN_ODD * @see #WIND_NON_ZERO * @since 1.6 */ public Float(int rule, int initialCapacity) { super(rule, initialCapacity); floatCoords = new float[initialCapacity * 2]; } /** * Constructs a new single precision {@code Path2D} object from an arbitrary {@link Shape} * object. All of the initial geometry and the winding rule for this path are taken from the * specified {@code Shape} object. * * @param s the specified {@code Shape} object * @since 1.6 */ public Float(Shape s) { this(s, null); } /** * Constructs a new single precision {@code Path2D} object from an arbitrary {@link Shape} * object, transformed by an {@link AffineTransform} object. All of the initial geometry and the * winding rule for this path are taken from the specified {@code Shape} object and transformed * by the specified {@code AffineTransform} object. * * @param s the specified {@code Shape} object * @param at the specified {@code AffineTransform} object * @since 1.6 */ public Float(Shape s, AffineTransform at) { if (s instanceof Path2D) { Path2D p2d = (Path2D) s; setWindingRule(p2d.windingRule); this.numTypes = p2d.numTypes; this.pointTypes = Arrays.copyOf(p2d.pointTypes, p2d.pointTypes.length); this.numCoords = p2d.numCoords; this.floatCoords = p2d.cloneCoordsFloat(at); } else { PathIterator pi = s.getPathIterator(at); setWindingRule(pi.getWindingRule()); this.pointTypes = new byte[INIT_SIZE]; this.floatCoords = new float[INIT_SIZE * 2]; append(pi, false); } } float[] cloneCoordsFloat(AffineTransform at) { float ret[]; if (at == null) { ret = Arrays.copyOf(this.floatCoords, this.floatCoords.length); } else { ret = new float[floatCoords.length]; at.transform(floatCoords, 0, ret, 0, numCoords / 2); } return ret; } double[] cloneCoordsDouble(AffineTransform at) { double ret[] = new double[floatCoords.length]; if (at == null) { for (int i = 0; i < numCoords; i++) { ret[i] = floatCoords[i]; } } else { at.transform(floatCoords, 0, ret, 0, numCoords / 2); } return ret; } void append(float x, float y) { floatCoords[numCoords++] = x; floatCoords[numCoords++] = y; } void append(double x, double y) { floatCoords[numCoords++] = (float) x; floatCoords[numCoords++] = (float) y; } Point2D getPoint(int coordindex) { return new Point2D.Float(floatCoords[coordindex], floatCoords[coordindex + 1]); } void needRoom(boolean needMove, int newCoords) { if (needMove && numTypes == 0) { throw new IllegalPathStateException("missing initial moveto " + "in path definition"); } int size = pointTypes.length; if (numTypes >= size) { int grow = size; if (grow > EXPAND_MAX) { grow = EXPAND_MAX; } pointTypes = Arrays.copyOf(pointTypes, size + grow); } size = floatCoords.length; if (numCoords + newCoords > size) { int grow = size; if (grow > EXPAND_MAX * 2) { grow = EXPAND_MAX * 2; } if (grow < newCoords) { grow = newCoords; } floatCoords = Arrays.copyOf(floatCoords, size + grow); } } /** * {@inheritDoc} * * @since 1.6 */ public final synchronized void moveTo(double x, double y) { if (numTypes > 0 && pointTypes[numTypes - 1] == SEG_MOVETO) { floatCoords[numCoords - 2] = (float) x; floatCoords[numCoords - 1] = (float) y; } else { needRoom(false, 2); pointTypes[numTypes++] = SEG_MOVETO; floatCoords[numCoords++] = (float) x; floatCoords[numCoords++] = (float) y; } } /** * Adds a point to the path by moving to the specified coordinates specified in float precision. *

* This method provides a single precision variant of the double precision {@code moveTo()} * method on the base {@code Path2D} class. * * @param x the specified X coordinate * @param y the specified Y coordinate * @see Path2D#moveTo * @since 1.6 */ public final synchronized void moveTo(float x, float y) { if (numTypes > 0 && pointTypes[numTypes - 1] == SEG_MOVETO) { floatCoords[numCoords - 2] = x; floatCoords[numCoords - 1] = y; } else { needRoom(false, 2); pointTypes[numTypes++] = SEG_MOVETO; floatCoords[numCoords++] = x; floatCoords[numCoords++] = y; } } /** * {@inheritDoc} * * @since 1.6 */ public final synchronized void lineTo(double x, double y) { needRoom(true, 2); pointTypes[numTypes++] = SEG_LINETO; floatCoords[numCoords++] = (float) x; floatCoords[numCoords++] = (float) y; } /** * Adds a point to the path by drawing a straight line from the current coordinates to the new * specified coordinates specified in float precision. *

* This method provides a single precision variant of the double precision {@code lineTo()} * method on the base {@code Path2D} class. * * @param x the specified X coordinate * @param y the specified Y coordinate * @see Path2D#lineTo * @since 1.6 */ public final synchronized void lineTo(float x, float y) { needRoom(true, 2); pointTypes[numTypes++] = SEG_LINETO; floatCoords[numCoords++] = x; floatCoords[numCoords++] = y; } /** * {@inheritDoc} * * @since 1.6 */ public final synchronized void quadTo(double x1, double y1, double x2, double y2) { needRoom(true, 4); pointTypes[numTypes++] = SEG_QUADTO; floatCoords[numCoords++] = (float) x1; floatCoords[numCoords++] = (float) y1; floatCoords[numCoords++] = (float) x2; floatCoords[numCoords++] = (float) y2; } /** * Adds a curved segment, defined by two new points, to the path by drawing a Quadratic curve * that intersects both the current coordinates and the specified coordinates {@code (x2,y2)}, * using the specified point {@code (x1,y1)} as a quadratic parametric control point. All * coordinates are specified in float precision. *

* This method provides a single precision variant of the double precision {@code quadTo()} * method on the base {@code Path2D} class. * * @param x1 the X coordinate of the quadratic control point * @param y1 the Y coordinate of the quadratic control point * @param x2 the X coordinate of the final end point * @param y2 the Y coordinate of the final end point * @see Path2D#quadTo * @since 1.6 */ public final synchronized void quadTo(float x1, float y1, float x2, float y2) { needRoom(true, 4); pointTypes[numTypes++] = SEG_QUADTO; floatCoords[numCoords++] = x1; floatCoords[numCoords++] = y1; floatCoords[numCoords++] = x2; floatCoords[numCoords++] = y2; } /** * {@inheritDoc} * * @since 1.6 */ public final synchronized void curveTo(double x1, double y1, double x2, double y2, double x3, double y3) { needRoom(true, 6); pointTypes[numTypes++] = SEG_CUBICTO; floatCoords[numCoords++] = (float) x1; floatCoords[numCoords++] = (float) y1; floatCoords[numCoords++] = (float) x2; floatCoords[numCoords++] = (float) y2; floatCoords[numCoords++] = (float) x3; floatCoords[numCoords++] = (float) y3; } /** * Adds a curved segment, defined by three new points, to the path by drawing a Bézier * curve that intersects both the current coordinates and the specified coordinates * {@code (x3,y3)}, using the specified points {@code (x1,y1)} and {@code (x2,y2)} as * Bézier control points. All coordinates are specified in float precision. *

* This method provides a single precision variant of the double precision {@code curveTo()} * method on the base {@code Path2D} class. * * @param x1 the X coordinate of the first Bézier control point * @param y1 the Y coordinate of the first Bézier control point * @param x2 the X coordinate of the second Bézier control point * @param y2 the Y coordinate of the second Bézier control point * @param x3 the X coordinate of the final end point * @param y3 the Y coordinate of the final end point * @see Path2D#curveTo * @since 1.6 */ public final synchronized void curveTo(float x1, float y1, float x2, float y2, float x3, float y3) { needRoom(true, 6); pointTypes[numTypes++] = SEG_CUBICTO; floatCoords[numCoords++] = x1; floatCoords[numCoords++] = y1; floatCoords[numCoords++] = x2; floatCoords[numCoords++] = y2; floatCoords[numCoords++] = x3; floatCoords[numCoords++] = y3; } int pointCrossings(double px, double py) { double movx, movy, curx, cury, endx, endy; float coords[] = floatCoords; curx = movx = coords[0]; cury = movy = coords[1]; int crossings = 0; int ci = 2; for (int i = 1; i < numTypes; i++) { switch (pointTypes[i]){ case PathIterator.SEG_MOVETO : if (cury != movy) { crossings += Curve.pointCrossingsForLine(px, py, curx, cury, movx, movy); } movx = curx = coords[ci++]; movy = cury = coords[ci++]; break; case PathIterator.SEG_LINETO : crossings += Curve.pointCrossingsForLine(px, py, curx, cury, endx = coords[ci++], endy = coords[ci++]); curx = endx; cury = endy; break; case PathIterator.SEG_QUADTO : crossings += Curve.pointCrossingsForQuad(px, py, curx, cury, coords[ci++], coords[ci++], endx = coords[ci++], endy = coords[ci++], 0); curx = endx; cury = endy; break; case PathIterator.SEG_CUBICTO : crossings += Curve.pointCrossingsForCubic(px, py, curx, cury, coords[ci++], coords[ci++], coords[ci++], coords[ci++], endx = coords[ci++], endy = coords[ci++], 0); curx = endx; cury = endy; break; case PathIterator.SEG_CLOSE : if (cury != movy) { crossings += Curve.pointCrossingsForLine(px, py, curx, cury, movx, movy); } curx = movx; cury = movy; break; } } if (cury != movy) { crossings += Curve.pointCrossingsForLine(px, py, curx, cury, movx, movy); } return crossings; } int rectCrossings(double rxmin, double rymin, double rxmax, double rymax) { float coords[] = floatCoords; double curx, cury, movx, movy, endx, endy; curx = movx = coords[0]; cury = movy = coords[1]; int crossings = 0; int ci = 2; for (int i = 1; crossings != Curve.RECT_INTERSECTS && i < numTypes; i++) { switch (pointTypes[i]){ case PathIterator.SEG_MOVETO : if (curx != movx || cury != movy) { crossings = Curve.rectCrossingsForLine(crossings, rxmin, rymin, rxmax, rymax, curx, cury, movx, movy); } // Count should always be a multiple of 2 here. // assert((crossings & 1) != 0); movx = curx = coords[ci++]; movy = cury = coords[ci++]; break; case PathIterator.SEG_LINETO : crossings = Curve.rectCrossingsForLine(crossings, rxmin, rymin, rxmax, rymax, curx, cury, endx = coords[ci++], endy = coords[ci++]); curx = endx; cury = endy; break; case PathIterator.SEG_QUADTO : crossings = Curve.rectCrossingsForQuad(crossings, rxmin, rymin, rxmax, rymax, curx, cury, coords[ci++], coords[ci++], endx = coords[ci++], endy = coords[ci++], 0); curx = endx; cury = endy; break; case PathIterator.SEG_CUBICTO : crossings = Curve.rectCrossingsForCubic(crossings, rxmin, rymin, rxmax, rymax, curx, cury, coords[ci++], coords[ci++], coords[ci++], coords[ci++], endx = coords[ci++], endy = coords[ci++], 0); curx = endx; cury = endy; break; case PathIterator.SEG_CLOSE : if (curx != movx || cury != movy) { crossings = Curve.rectCrossingsForLine(crossings, rxmin, rymin, rxmax, rymax, curx, cury, movx, movy); } curx = movx; cury = movy; // Count should always be a multiple of 2 here. // assert((crossings & 1) != 0); break; } } if (crossings != Curve.RECT_INTERSECTS && (curx != movx || cury != movy)) { crossings = Curve.rectCrossingsForLine(crossings, rxmin, rymin, rxmax, rymax, curx, cury, movx, movy); } // Count should always be a multiple of 2 here. // assert((crossings & 1) != 0); return crossings; } /** * {@inheritDoc} * * @since 1.6 */ public final void append(PathIterator pi, boolean connect) { float coords[] = new float[6]; while (!pi.isDone()) { switch (pi.currentSegment(coords)){ case SEG_MOVETO : if (!connect || numTypes < 1 || numCoords < 1) { moveTo(coords[0], coords[1]); break; } if (pointTypes[numTypes - 1] != SEG_CLOSE && floatCoords[numCoords - 2] == coords[0] && floatCoords[numCoords - 1] == coords[1]) { // Collapse out initial moveto/lineto break; } // NO BREAK; case SEG_LINETO : lineTo(coords[0], coords[1]); break; case SEG_QUADTO : quadTo(coords[0], coords[1], coords[2], coords[3]); break; case SEG_CUBICTO : curveTo(coords[0], coords[1], coords[2], coords[3], coords[4], coords[5]); break; case SEG_CLOSE : closePath(); break; } pi.next(); connect = false; } } /** * {@inheritDoc} * * @since 1.6 */ public final void transform(AffineTransform at) { at.transform(floatCoords, 0, floatCoords, 0, numCoords / 2); } /** * {@inheritDoc} * * @since 1.6 */ public final synchronized Rectangle2D getBounds2D() { float x1, y1, x2, y2; int i = numCoords; if (i > 0) { y1 = y2 = floatCoords[--i]; x1 = x2 = floatCoords[--i]; while (i > 0) { float y = floatCoords[--i]; float x = floatCoords[--i]; if (x < x1) x1 = x; if (y < y1) y1 = y; if (x > x2) x2 = x; if (y > y2) y2 = y; } } else { x1 = y1 = x2 = y2 = 0.0f; } return new Rectangle2D.Float(x1, y1, x2 - x1, y2 - y1); } /** * {@inheritDoc} *

* The iterator for this class is not multi-threaded safe, which means that the {@code Path2D} * class does not guarantee that modifications to the geometry of this {@code Path2D} object do * not affect any iterations of that geometry that are already in process. * * @since 1.6 */ public final PathIterator getPathIterator(AffineTransform at) { if (at == null) { return new CopyIterator(this); } else { return new TxIterator(this, at); } } /** * Creates a new object of the same class as this object. * * @return a clone of this instance. * @exception OutOfMemoryError if there is not enough memory. * @see java.lang.Cloneable * @since 1.6 */ // public final Object clone() { // // Note: It would be nice to have this return Path2D // // but one of our subclasses (GeneralPath) needs to // // offer "public Object clone()" for backwards // // compatibility so we cannot restrict it further. // // REMIND: Can we do both somehow? // if (this instanceof GeneralPath) { // return new GeneralPath(this); // } else { // return new Path2D.Float(this); // } // } /* * JDK 1.6 serialVersionUID */ private static final long serialVersionUID = 6990832515060788886L; // /** // * Writes the default serializable fields to the {@code ObjectOutputStream} followed by an // * explicit serialization of the path segments stored in this path. // * // * @serialData // *

    // *
  1. The default serializable fields. There are no default serializable fields as // * of 1.6. // *
  2. followed by a byte indicating the storage type of the original object as a // * hint (SERIAL_STORAGE_FLT_ARRAY) // *
  3. followed by an integer indicating the number of path segments to follow (NP) // * or -1 to indicate an unknown number of path segments follows // *
  4. followed by an integer indicating the total number of coordinates to follow // * (NC) or -1 to indicate an unknown number of coordinates follows (NC should always // * be even since coordinates always appear in pairs representing an x,y pair) // *
  5. followed by a byte indicating the winding rule ({@link #WIND_EVEN_ODD // * WIND_EVEN_ODD} or {@link #WIND_NON_ZERO WIND_NON_ZERO}) // *
  6. followed by NP (or unlimited if NP < 0) sets of values consisting of a single // * byte indicating a path segment type followed by one or more pairs of float or // * double values representing the coordinates of the path segment // *
  7. followed by a byte indicating the end of the path (SERIAL_PATH_END). // *
// *

// * The following byte value constants are used in the serialized form of // * {@code Path2D} objects: // *

// * // * // * // * // * // * // * // * // * // * // * // * // * // * // * // * // * // * // * // * // * // * // * // * // * // * // * // * // * // * // * // * // * // * // * // * // * // * // * // * // * // * // * // * // * // * // * // * // * // * // * // * // * // * // * // * // * // * // * // * // * // * // * // * // * // * // * // * // * // * // * // * // * // * // * // * // * // *
Constant NameByte ValueFollowed byDescription
{@code SERIAL_STORAGE_FLT_ARRAY}0x30A hint that the original {@code Path2D} object stored the coordinates in a // * Java array of floats.
{@code SERIAL_STORAGE_DBL_ARRAY}0x31A hint that the original {@code Path2D} object stored the coordinates in a // * Java array of doubles.
{@code SERIAL_SEG_FLT_MOVETO}0x402 floatsA {@link #moveTo moveTo} path segment follows.
{@code SERIAL_SEG_FLT_LINETO}0x412 floatsA {@link #lineTo lineTo} path segment follows.
{@code SERIAL_SEG_FLT_QUADTO}0x424 floatsA {@link #quadTo quadTo} path segment follows.
{@code SERIAL_SEG_FLT_CUBICTO}0x436 floatsA {@link #curveTo curveTo} path segment follows.
{@code SERIAL_SEG_DBL_MOVETO}0x502 doublesA {@link #moveTo moveTo} path segment follows.
{@code SERIAL_SEG_DBL_LINETO}0x512 doublesA {@link #lineTo lineTo} path segment follows.
{@code SERIAL_SEG_DBL_QUADTO}0x524 doublesA {@link #curveTo curveTo} path segment follows.
{@code SERIAL_SEG_DBL_CUBICTO}0x536 doublesA {@link #curveTo curveTo} path segment follows.
{@code SERIAL_SEG_CLOSE}0x60A {@link #closePath closePath} path segment.
{@code SERIAL_PATH_END}0x61There are no more path segments following.
// * // * @since 1.6 // */ // private void writeObject(java.io.ObjectOutputStream s) throws java.io.IOException { // super.writeObject(s, false); // } // // /** // * Reads the default serializable fields from the {@code ObjectInputStream} followed by an // * explicit serialization of the path segments stored in this path. // *

// * There are no default serializable fields as of 1.6. // *

// * The serial data for this object is described in the writeObject method. // * // * @since 1.6 // */ // private void readObject(java.io.ObjectInputStream s) throws java.lang.ClassNotFoundException, // java.io.IOException { // super.readObject(s, false); // } static class CopyIterator extends Path2D.Iterator { float floatCoords[]; CopyIterator(Path2D.Float p2df) { super(p2df); this.floatCoords = p2df.floatCoords; } public int currentSegment(float[] coords) { int type = path.pointTypes[typeIdx]; int numCoords = curvecoords[type]; if (numCoords > 0) { System.arraycopy(floatCoords, pointIdx, coords, 0, numCoords); } return type; } public int currentSegment(double[] coords) { int type = path.pointTypes[typeIdx]; int numCoords = curvecoords[type]; if (numCoords > 0) { for (int i = 0; i < numCoords; i++) { coords[i] = floatCoords[pointIdx + i]; } } return type; } } static class TxIterator extends Path2D.Iterator { float floatCoords[]; AffineTransform affine; TxIterator(Path2D.Float p2df, AffineTransform at) { super(p2df); this.floatCoords = p2df.floatCoords; this.affine = at; } public int currentSegment(float[] coords) { int type = path.pointTypes[typeIdx]; int numCoords = curvecoords[type]; if (numCoords > 0) { affine.transform(floatCoords, pointIdx, coords, 0, numCoords / 2); } return type; } public int currentSegment(double[] coords) { int type = path.pointTypes[typeIdx]; int numCoords = curvecoords[type]; if (numCoords > 0) { affine.transform(floatCoords, pointIdx, coords, 0, numCoords / 2); } return type; } } } /** * The {@code Double} class defines a geometric path with coordinates stored in double precision * floating point. * * @since 1.6 */ public static class Double extends Path2D implements Serializable { transient double doubleCoords[]; /** * Constructs a new empty double precision {@code Path2D} object with a default winding rule of * {@link #WIND_NON_ZERO}. * * @since 1.6 */ public Double() { this(WIND_NON_ZERO, INIT_SIZE); } /** * Constructs a new empty double precision {@code Path2D} object with the specified winding rule * to control operations that require the interior of the path to be defined. * * @param rule the winding rule * @see #WIND_EVEN_ODD * @see #WIND_NON_ZERO * @since 1.6 */ public Double(int rule) { this(rule, INIT_SIZE); } /** * Constructs a new empty double precision {@code Path2D} object with the specified winding rule * and the specified initial capacity to store path segments. This number is an initial guess as * to how many path segments are in the path, but the storage is expanded as needed to store * whatever path segments are added to this path. * * @param rule the winding rule * @param initialCapacity the estimate for the number of path segments in the path * @see #WIND_EVEN_ODD * @see #WIND_NON_ZERO * @since 1.6 */ public Double(int rule, int initialCapacity) { super(rule, initialCapacity); doubleCoords = new double[initialCapacity * 2]; } /** * Constructs a new double precision {@code Path2D} object from an arbitrary {@link Shape} * object. All of the initial geometry and the winding rule for this path are taken from the * specified {@code Shape} object. * * @param s the specified {@code Shape} object * @since 1.6 */ public Double(Shape s) { this(s, null); } /** * Constructs a new double precision {@code Path2D} object from an arbitrary {@link Shape} * object, transformed by an {@link AffineTransform} object. All of the initial geometry and the * winding rule for this path are taken from the specified {@code Shape} object and transformed * by the specified {@code AffineTransform} object. * * @param s the specified {@code Shape} object * @param at the specified {@code AffineTransform} object * @since 1.6 */ public Double(Shape s, AffineTransform at) { if (s instanceof Path2D) { Path2D p2d = (Path2D) s; setWindingRule(p2d.windingRule); this.numTypes = p2d.numTypes; this.pointTypes = Arrays.copyOf(p2d.pointTypes, p2d.pointTypes.length); this.numCoords = p2d.numCoords; this.doubleCoords = p2d.cloneCoordsDouble(at); } else { PathIterator pi = s.getPathIterator(at); setWindingRule(pi.getWindingRule()); this.pointTypes = new byte[INIT_SIZE]; this.doubleCoords = new double[INIT_SIZE * 2]; append(pi, false); } } float[] cloneCoordsFloat(AffineTransform at) { float ret[] = new float[doubleCoords.length]; if (at == null) { for (int i = 0; i < numCoords; i++) { ret[i] = (float) doubleCoords[i]; } } else { at.transform(doubleCoords, 0, ret, 0, numCoords / 2); } return ret; } double[] cloneCoordsDouble(AffineTransform at) { double ret[]; if (at == null) { ret = Arrays.copyOf(this.doubleCoords, this.doubleCoords.length); } else { ret = new double[doubleCoords.length]; at.transform(doubleCoords, 0, ret, 0, numCoords / 2); } return ret; } void append(float x, float y) { doubleCoords[numCoords++] = x; doubleCoords[numCoords++] = y; } void append(double x, double y) { doubleCoords[numCoords++] = x; doubleCoords[numCoords++] = y; } Point2D getPoint(int coordindex) { return new Point2D.Double(doubleCoords[coordindex], doubleCoords[coordindex + 1]); } void needRoom(boolean needMove, int newCoords) { if (needMove && numTypes == 0) { throw new IllegalPathStateException("missing initial moveto " + "in path definition"); } int size = pointTypes.length; if (numTypes >= size) { int grow = size; if (grow > EXPAND_MAX) { grow = EXPAND_MAX; } pointTypes = Arrays.copyOf(pointTypes, size + grow); } size = doubleCoords.length; if (numCoords + newCoords > size) { int grow = size; if (grow > EXPAND_MAX * 2) { grow = EXPAND_MAX * 2; } if (grow < newCoords) { grow = newCoords; } doubleCoords = Arrays.copyOf(doubleCoords, size + grow); } } /** * {@inheritDoc} * * @since 1.6 */ public final synchronized void moveTo(double x, double y) { if (numTypes > 0 && pointTypes[numTypes - 1] == SEG_MOVETO) { doubleCoords[numCoords - 2] = x; doubleCoords[numCoords - 1] = y; } else { needRoom(false, 2); pointTypes[numTypes++] = SEG_MOVETO; doubleCoords[numCoords++] = x; doubleCoords[numCoords++] = y; } } /** * {@inheritDoc} * * @since 1.6 */ public final synchronized void lineTo(double x, double y) { needRoom(true, 2); pointTypes[numTypes++] = SEG_LINETO; doubleCoords[numCoords++] = x; doubleCoords[numCoords++] = y; } /** * {@inheritDoc} * * @since 1.6 */ public final synchronized void quadTo(double x1, double y1, double x2, double y2) { needRoom(true, 4); pointTypes[numTypes++] = SEG_QUADTO; doubleCoords[numCoords++] = x1; doubleCoords[numCoords++] = y1; doubleCoords[numCoords++] = x2; doubleCoords[numCoords++] = y2; } /** * {@inheritDoc} * * @since 1.6 */ public final synchronized void curveTo(double x1, double y1, double x2, double y2, double x3, double y3) { needRoom(true, 6); pointTypes[numTypes++] = SEG_CUBICTO; doubleCoords[numCoords++] = x1; doubleCoords[numCoords++] = y1; doubleCoords[numCoords++] = x2; doubleCoords[numCoords++] = y2; doubleCoords[numCoords++] = x3; doubleCoords[numCoords++] = y3; } int pointCrossings(double px, double py) { double movx, movy, curx, cury, endx, endy; double coords[] = doubleCoords; curx = movx = coords[0]; cury = movy = coords[1]; int crossings = 0; int ci = 2; for (int i = 1; i < numTypes; i++) { switch (pointTypes[i]){ case PathIterator.SEG_MOVETO : if (cury != movy) { crossings += Curve.pointCrossingsForLine(px, py, curx, cury, movx, movy); } movx = curx = coords[ci++]; movy = cury = coords[ci++]; break; case PathIterator.SEG_LINETO : crossings += Curve.pointCrossingsForLine(px, py, curx, cury, endx = coords[ci++], endy = coords[ci++]); curx = endx; cury = endy; break; case PathIterator.SEG_QUADTO : crossings += Curve.pointCrossingsForQuad(px, py, curx, cury, coords[ci++], coords[ci++], endx = coords[ci++], endy = coords[ci++], 0); curx = endx; cury = endy; break; case PathIterator.SEG_CUBICTO : crossings += Curve.pointCrossingsForCubic(px, py, curx, cury, coords[ci++], coords[ci++], coords[ci++], coords[ci++], endx = coords[ci++], endy = coords[ci++], 0); curx = endx; cury = endy; break; case PathIterator.SEG_CLOSE : if (cury != movy) { crossings += Curve.pointCrossingsForLine(px, py, curx, cury, movx, movy); } curx = movx; cury = movy; break; } } if (cury != movy) { crossings += Curve.pointCrossingsForLine(px, py, curx, cury, movx, movy); } return crossings; } int rectCrossings(double rxmin, double rymin, double rxmax, double rymax) { double coords[] = doubleCoords; double curx, cury, movx, movy, endx, endy; curx = movx = coords[0]; cury = movy = coords[1]; int crossings = 0; int ci = 2; for (int i = 1; crossings != Curve.RECT_INTERSECTS && i < numTypes; i++) { switch (pointTypes[i]){ case PathIterator.SEG_MOVETO : if (curx != movx || cury != movy) { crossings = Curve.rectCrossingsForLine(crossings, rxmin, rymin, rxmax, rymax, curx, cury, movx, movy); } // Count should always be a multiple of 2 here. // assert((crossings & 1) != 0); movx = curx = coords[ci++]; movy = cury = coords[ci++]; break; case PathIterator.SEG_LINETO : endx = coords[ci++]; endy = coords[ci++]; crossings = Curve.rectCrossingsForLine(crossings, rxmin, rymin, rxmax, rymax, curx, cury, endx, endy); curx = endx; cury = endy; break; case PathIterator.SEG_QUADTO : crossings = Curve.rectCrossingsForQuad(crossings, rxmin, rymin, rxmax, rymax, curx, cury, coords[ci++], coords[ci++], endx = coords[ci++], endy = coords[ci++], 0); curx = endx; cury = endy; break; case PathIterator.SEG_CUBICTO : crossings = Curve.rectCrossingsForCubic(crossings, rxmin, rymin, rxmax, rymax, curx, cury, coords[ci++], coords[ci++], coords[ci++], coords[ci++], endx = coords[ci++], endy = coords[ci++], 0); curx = endx; cury = endy; break; case PathIterator.SEG_CLOSE : if (curx != movx || cury != movy) { crossings = Curve.rectCrossingsForLine(crossings, rxmin, rymin, rxmax, rymax, curx, cury, movx, movy); } curx = movx; cury = movy; // Count should always be a multiple of 2 here. // assert((crossings & 1) != 0); break; } } if (crossings != Curve.RECT_INTERSECTS && (curx != movx || cury != movy)) { crossings = Curve.rectCrossingsForLine(crossings, rxmin, rymin, rxmax, rymax, curx, cury, movx, movy); } // Count should always be a multiple of 2 here. // assert((crossings & 1) != 0); return crossings; } /** * {@inheritDoc} * * @since 1.6 */ public final void append(PathIterator pi, boolean connect) { double coords[] = new double[6]; while (!pi.isDone()) { switch (pi.currentSegment(coords)){ case SEG_MOVETO : if (!connect || numTypes < 1 || numCoords < 1) { moveTo(coords[0], coords[1]); break; } if (pointTypes[numTypes - 1] != SEG_CLOSE && doubleCoords[numCoords - 2] == coords[0] && doubleCoords[numCoords - 1] == coords[1]) { // Collapse out initial moveto/lineto break; } // NO BREAK; case SEG_LINETO : lineTo(coords[0], coords[1]); break; case SEG_QUADTO : quadTo(coords[0], coords[1], coords[2], coords[3]); break; case SEG_CUBICTO : curveTo(coords[0], coords[1], coords[2], coords[3], coords[4], coords[5]); break; case SEG_CLOSE : closePath(); break; } pi.next(); connect = false; } } /** * {@inheritDoc} * * @since 1.6 */ public final void transform(AffineTransform at) { at.transform(doubleCoords, 0, doubleCoords, 0, numCoords / 2); } /** * {@inheritDoc} * * @since 1.6 */ public final synchronized Rectangle2D getBounds2D() { double x1, y1, x2, y2; int i = numCoords; if (i > 0) { y1 = y2 = doubleCoords[--i]; x1 = x2 = doubleCoords[--i]; while (i > 0) { double y = doubleCoords[--i]; double x = doubleCoords[--i]; if (x < x1) x1 = x; if (y < y1) y1 = y; if (x > x2) x2 = x; if (y > y2) y2 = y; } } else { x1 = y1 = x2 = y2 = 0.0; } return new Rectangle2D.Double(x1, y1, x2 - x1, y2 - y1); } /** * {@inheritDoc} *

* The iterator for this class is not multi-threaded safe, which means that the {@code Path2D} * class does not guarantee that modifications to the geometry of this {@code Path2D} object do * not affect any iterations of that geometry that are already in process. * * @param at an {@code AffineTransform} * @return a new {@code PathIterator} that iterates along the boundary of this {@code Shape} and * provides access to the geometry of this {@code Shape}'s outline * @since 1.6 */ public final PathIterator getPathIterator(AffineTransform at) { if (at == null) { return new CopyIterator(this); } else { return new TxIterator(this, at); } } /** * Creates a new object of the same class as this object. * * @return a clone of this instance. * @exception OutOfMemoryError if there is not enough memory. * @see java.lang.Cloneable * @since 1.6 */ // public final Object clone() { // // Note: It would be nice to have this return Path2D // // but one of our subclasses (GeneralPath) needs to // // offer "public Object clone()" for backwards // // compatibility so we cannot restrict it further. // // REMIND: Can we do both somehow? // return new Path2D.Double(this); // } /* * JDK 1.6 serialVersionUID */ private static final long serialVersionUID = 1826762518450014216L; // /** // * Writes the default serializable fields to the {@code ObjectOutputStream} followed by an // * explicit serialization of the path segments stored in this path. // * // * @serialData // *

    // *
  1. The default serializable fields. There are no default serializable fields as // * of 1.6. // *
  2. followed by a byte indicating the storage type of the original object as a // * hint (SERIAL_STORAGE_DBL_ARRAY) // *
  3. followed by an integer indicating the number of path segments to follow (NP) // * or -1 to indicate an unknown number of path segments follows // *
  4. followed by an integer indicating the total number of coordinates to follow // * (NC) or -1 to indicate an unknown number of coordinates follows (NC should always // * be even since coordinates always appear in pairs representing an x,y pair) // *
  5. followed by a byte indicating the winding rule ({@link #WIND_EVEN_ODD // * WIND_EVEN_ODD} or {@link #WIND_NON_ZERO WIND_NON_ZERO}) // *
  6. followed by NP (or unlimited if NP < 0) sets of values consisting of a single // * byte indicating a path segment type followed by one or more pairs of float or // * double values representing the coordinates of the path segment // *
  7. followed by a byte indicating the end of the path (SERIAL_PATH_END). // *
// *

// * The following byte value constants are used in the serialized form of // * {@code Path2D} objects: // *

// * // * // * // * // * // * // * // * // * // * // * // * // * // * // * // * // * // * // * // * // * // * // * // * // * // * // * // * // * // * // * // * // * // * // * // * // * // * // * // * // * // * // * // * // * // * // * // * // * // * // * // * // * // * // * // * // * // * // * // * // * // * // * // * // * // * // * // * // * // * // * // * // * // * // * // * // * // *
Constant NameByte ValueFollowed byDescription
{@code SERIAL_STORAGE_FLT_ARRAY}0x30A hint that the original {@code Path2D} object stored the coordinates in a // * Java array of floats.
{@code SERIAL_STORAGE_DBL_ARRAY}0x31A hint that the original {@code Path2D} object stored the coordinates in a // * Java array of doubles.
{@code SERIAL_SEG_FLT_MOVETO}0x402 floatsA {@link #moveTo moveTo} path segment follows.
{@code SERIAL_SEG_FLT_LINETO}0x412 floatsA {@link #lineTo lineTo} path segment follows.
{@code SERIAL_SEG_FLT_QUADTO}0x424 floatsA {@link #quadTo quadTo} path segment follows.
{@code SERIAL_SEG_FLT_CUBICTO}0x436 floatsA {@link #curveTo curveTo} path segment follows.
{@code SERIAL_SEG_DBL_MOVETO}0x502 doublesA {@link #moveTo moveTo} path segment follows.
{@code SERIAL_SEG_DBL_LINETO}0x512 doublesA {@link #lineTo lineTo} path segment follows.
{@code SERIAL_SEG_DBL_QUADTO}0x524 doublesA {@link #curveTo curveTo} path segment follows.
{@code SERIAL_SEG_DBL_CUBICTO}0x536 doublesA {@link #curveTo curveTo} path segment follows.
{@code SERIAL_SEG_CLOSE}0x60A {@link #closePath closePath} path segment.
{@code SERIAL_PATH_END}0x61There are no more path segments following.
// * // * @since 1.6 // */ // private void writeObject(java.io.ObjectOutputStream s) throws java.io.IOException { // super.writeObject(s, true); // } // // /** // * Reads the default serializable fields from the {@code ObjectInputStream} followed by an // * explicit serialization of the path segments stored in this path. // *

// * There are no default serializable fields as of 1.6. // *

// * The serial data for this object is described in the writeObject method. // * // * @since 1.6 // */ // private void readObject(java.io.ObjectInputStream s) throws java.lang.ClassNotFoundException, // java.io.IOException { // super.readObject(s, true); // } static class CopyIterator extends Path2D.Iterator { double doubleCoords[]; CopyIterator(Path2D.Double p2dd) { super(p2dd); this.doubleCoords = p2dd.doubleCoords; } public int currentSegment(float[] coords) { int type = path.pointTypes[typeIdx]; int numCoords = curvecoords[type]; if (numCoords > 0) { for (int i = 0; i < numCoords; i++) { coords[i] = (float) doubleCoords[pointIdx + i]; } } return type; } public int currentSegment(double[] coords) { int type = path.pointTypes[typeIdx]; int numCoords = curvecoords[type]; if (numCoords > 0) { System.arraycopy(doubleCoords, pointIdx, coords, 0, numCoords); } return type; } } static class TxIterator extends Path2D.Iterator { double doubleCoords[]; AffineTransform affine; TxIterator(Path2D.Double p2dd, AffineTransform at) { super(p2dd); this.doubleCoords = p2dd.doubleCoords; this.affine = at; } public int currentSegment(float[] coords) { int type = path.pointTypes[typeIdx]; int numCoords = curvecoords[type]; if (numCoords > 0) { affine.transform(doubleCoords, pointIdx, coords, 0, numCoords / 2); } return type; } public int currentSegment(double[] coords) { int type = path.pointTypes[typeIdx]; int numCoords = curvecoords[type]; if (numCoords > 0) { affine.transform(doubleCoords, pointIdx, coords, 0, numCoords / 2); } return type; } } } /** * Adds a point to the path by moving to the specified coordinates specified in double precision. * * @param x the specified X coordinate * @param y the specified Y coordinate * @since 1.6 */ public abstract void moveTo(double x, double y); /** * Adds a point to the path by drawing a straight line from the current coordinates to the new * specified coordinates specified in double precision. * * @param x the specified X coordinate * @param y the specified Y coordinate * @since 1.6 */ public abstract void lineTo(double x, double y); /** * Adds a curved segment, defined by two new points, to the path by drawing a Quadratic curve that * intersects both the current coordinates and the specified coordinates {@code (x2,y2)}, using * the specified point {@code (x1,y1)} as a quadratic parametric control point. All coordinates * are specified in double precision. * * @param x1 the X coordinate of the quadratic control point * @param y1 the Y coordinate of the quadratic control point * @param x2 the X coordinate of the final end point * @param y2 the Y coordinate of the final end point * @since 1.6 */ public abstract void quadTo(double x1, double y1, double x2, double y2); /** * Adds a curved segment, defined by three new points, to the path by drawing a Bézier * curve that intersects both the current coordinates and the specified coordinates * {@code (x3,y3)}, using the specified points {@code (x1,y1)} and {@code (x2,y2)} as * Bézier control points. All coordinates are specified in double precision. * * @param x1 the X coordinate of the first Bézier control point * @param y1 the Y coordinate of the first Bézier control point * @param x2 the X coordinate of the second Bézier control point * @param y2 the Y coordinate of the second Bézier control point * @param x3 the X coordinate of the final end point * @param y3 the Y coordinate of the final end point * @since 1.6 */ public abstract void curveTo(double x1, double y1, double x2, double y2, double x3, double y3); /** * Closes the current subpath by drawing a straight line back to the coordinates of the last * {@code moveTo}. If the path is already closed then this method has no effect. * * @since 1.6 */ public final synchronized void closePath() { if (numTypes == 0 || pointTypes[numTypes - 1] != SEG_CLOSE) { needRoom(true, 0); pointTypes[numTypes++] = SEG_CLOSE; } } /** * Appends the geometry of the specified {@code Shape} object to the path, possibly connecting the * new geometry to the existing path segments with a line segment. If the {@code connect} * parameter is {@code true} and the path is not empty then any initial {@code moveTo} in the * geometry of the appended {@code Shape} is turned into a {@code lineTo} segment. If the * destination coordinates of such a connecting {@code lineTo} segment match the ending * coordinates of a currently open subpath then the segment is omitted as superfluous. The winding * rule of the specified {@code Shape} is ignored and the appended geometry is governed by the * winding rule specified for this path. * * @param s the {@code Shape} whose geometry is appended to this path * @param connect a boolean to control whether or not to turn an initial {@code moveTo} segment * into a {@code lineTo} segment to connect the new geometry to the existing path * @since 1.6 */ public final void append(Shape s, boolean connect) { append(s.getPathIterator(null), connect); } /** * Appends the geometry of the specified {@link PathIterator} object to the path, possibly * connecting the new geometry to the existing path segments with a line segment. If the * {@code connect} parameter is {@code true} and the path is not empty then any initial * {@code moveTo} in the geometry of the appended {@code Shape} is turned into a {@code lineTo} * segment. If the destination coordinates of such a connecting {@code lineTo} segment match the * ending coordinates of a currently open subpath then the segment is omitted as superfluous. The * winding rule of the specified {@code Shape} is ignored and the appended geometry is governed by * the winding rule specified for this path. * * @param pi the {@code PathIterator} whose geometry is appended to this path * @param connect a boolean to control whether or not to turn an initial {@code moveTo} segment * into a {@code lineTo} segment to connect the new geometry to the existing path * @since 1.6 */ public abstract void append(PathIterator pi, boolean connect); /** * Returns the fill style winding rule. * * @return an integer representing the current winding rule. * @see #WIND_EVEN_ODD * @see #WIND_NON_ZERO * @see #setWindingRule * @since 1.6 */ public final synchronized int getWindingRule() { return windingRule; } /** * Sets the winding rule for this path to the specified value. * * @param rule an integer representing the specified winding rule * @exception IllegalArgumentException if {@code rule} is not either {@link #WIND_EVEN_ODD} or * {@link #WIND_NON_ZERO} * @see #getWindingRule * @since 1.6 */ public final void setWindingRule(int rule) { if (rule != WIND_EVEN_ODD && rule != WIND_NON_ZERO) { throw new IllegalArgumentException("winding rule must be " + "WIND_EVEN_ODD or " + "WIND_NON_ZERO"); } windingRule = rule; } /** * Returns the coordinates most recently added to the end of the path as a {@link Point2D} object. * * @return a {@code Point2D} object containing the ending coordinates of the path or {@code null} * if there are no points in the path. * @since 1.6 */ public final synchronized Point2D getCurrentPoint() { int index = numCoords; if (numTypes < 1 || index < 1) { return null; } if (pointTypes[numTypes - 1] == SEG_CLOSE) { loop : for (int i = numTypes - 2; i > 0; i--) { switch (pointTypes[i]){ case SEG_MOVETO : break loop; case SEG_LINETO : index -= 2; break; case SEG_QUADTO : index -= 4; break; case SEG_CUBICTO : index -= 6; break; case SEG_CLOSE : break; } } } return getPoint(index - 2); } /** * Resets the path to empty. The append position is set back to the beginning of the path and all * coordinates and point types are forgotten. * * @since 1.6 */ public final synchronized void reset() { numTypes = numCoords = 0; } /** * Transforms the geometry of this path using the specified {@link AffineTransform}. The geometry * is transformed in place, which permanently changes the boundary defined by this object. * * @param at the {@code AffineTransform} used to transform the area * @since 1.6 */ public abstract void transform(AffineTransform at); /** * Returns a new {@code Shape} representing a transformed version of this {@code Path2D}. Note * that the exact type and coordinate precision of the return value is not specified for this * method. The method will return a Shape that contains no less precision for the transformed * geometry than this {@code Path2D} currently maintains, but it may contain no more precision * either. If the tradeoff of precision vs. storage size in the result is important then the * convenience constructors in the {@link Path2D.Float#Path2D.Float(Shape, AffineTransform) * Path2D.Float} and {@link Path2D.Double#Path2D.Double(Shape, AffineTransform) Path2D.Double} * subclasses should be used to make the choice explicit. * * @param at the {@code AffineTransform} used to transform a new {@code Shape}. * @return a new {@code Shape}, transformed with the specified {@code AffineTransform}. * @since 1.6 */ // public final synchronized Shape createTransformedShape(AffineTransform at) { // Path2D p2d = (Path2D) clone(); // // if (at != null) { // p2d.transform(at); // } // return p2d; // } /** * {@inheritDoc} * * @since 1.6 */ public final Rectangle getBounds() { return getBounds2D().getBounds(); } /** * Tests if the specified coordinates are inside the closed boundary of the specified * {@link PathIterator}. *

* This method provides a basic facility for implementors of the {@link Shape} interface to * implement support for the {@link Shape#contains(double, double)} method. * * @param pi the specified {@code PathIterator} * @param x the specified X coordinate * @param y the specified Y coordinate * @return {@code true} if the specified coordinates are inside the specified {@code PathIterator} * ; {@code false} otherwise * @since 1.6 */ public static boolean contains(PathIterator pi, double x, double y) { if (x * 0.0 + y * 0.0 == 0.0) { // TODO assert (false) : "Not implemented yet"; return false; // /* // * N * 0.0 is 0.0 only if N is finite. Here we know that both x and y are finite. // */ // int mask = (pi.getWindingRule() == WIND_NON_ZERO ? -1 : 1); // // int cross = Curve.pointCrossingsForPath(pi, x, y); // return ((cross & mask) != 0); } else { /* * Either x or y was infinite or NaN. A NaN always produces a negative response to any test * and Infinity values cannot be "inside" any path so they should return false as well. */ return false; } } /** * Tests if the specified {@link Point2D} is inside the closed boundary of the specified * {@link PathIterator}. *

* This method provides a basic facility for implementors of the {@link Shape} interface to * implement support for the {@link Shape#contains(Point2D)} method. * * @param pi the specified {@code PathIterator} * @param p the specified {@code Point2D} * @return {@code true} if the specified coordinates are inside the specified {@code PathIterator} * ; {@code false} otherwise * @since 1.6 */ public static boolean contains(PathIterator pi, Point2D p) { return contains(pi, p.getX(), p.getY()); } /** * {@inheritDoc} * * @since 1.6 */ public final boolean contains(double x, double y) { if (x * 0.0 + y * 0.0 == 0.0) { /* * N * 0.0 is 0.0 only if N is finite. Here we know that both x and y are finite. */ if (numTypes < 2) { return false; } int mask = (windingRule == WIND_NON_ZERO ? -1 : 1); return ((pointCrossings(x, y) & mask) != 0); } else { /* * Either x or y was infinite or NaN. A NaN always produces a negative response to any test * and Infinity values cannot be "inside" any path so they should return false as well. */ return false; } } /** * {@inheritDoc} * * @since 1.6 */ public final boolean contains(Point2D p) { return contains(p.getX(), p.getY()); } /** * Tests if the specified rectangular area is entirely inside the closed boundary of the specified * {@link PathIterator}. *

* This method provides a basic facility for implementors of the {@link Shape} interface to * implement support for the {@link Shape#contains(double, double, double, double)} method. *

* This method object may conservatively return false in cases where the specified rectangular * area intersects a segment of the path, but that segment does not represent a boundary between * the interior and exterior of the path. Such segments could lie entirely within the interior of * the path if they are part of a path with a {@link #WIND_NON_ZERO} winding rule or if the * segments are retraced in the reverse direction such that the two sets of segments cancel each * other out without any exterior area falling between them. To determine whether segments * represent true boundaries of the interior of the path would require extensive calculations * involving all of the segments of the path and the winding rule and are thus beyond the scope of * this implementation. * * @param pi the specified {@code PathIterator} * @param x the specified X coordinate * @param y the specified Y coordinate * @param w the width of the specified rectangular area * @param h the height of the specified rectangular area * @return {@code true} if the specified {@code PathIterator} contains the specified rectangluar * area; {@code false} otherwise. * @since 1.6 */ public static boolean contains(PathIterator pi, double x, double y, double w, double h) { if (java.lang.Double.isNaN(x + w) || java.lang.Double.isNaN(y + h)) { /* * [xy]+[wh] is NaN if any of those values are NaN, or if adding the two together would * produce NaN by virtue of adding opposing Infinte values. Since we need to add them below, * their sum must not be NaN. We return false because NaN always produces a negative response * to tests */ return false; } if (w <= 0 || h <= 0) { return false; } // TODO assert (false) : "Not implemented yet"; return false; // int mask = (pi.getWindingRule() == WIND_NON_ZERO ? -1 : 2); // int crossings = Curve.rectCrossingsForPath(pi, x, y, x + w, y + h); // return (crossings != Curve.RECT_INTERSECTS && (crossings & mask) != 0); } /** * Tests if the specified {@link Rectangle2D} is entirely inside the closed boundary of the * specified {@link PathIterator}. *

* This method provides a basic facility for implementors of the {@link Shape} interface to * implement support for the {@link Shape#contains(Rectangle2D)} method. *

* This method object may conservatively return false in cases where the specified rectangular * area intersects a segment of the path, but that segment does not represent a boundary between * the interior and exterior of the path. Such segments could lie entirely within the interior of * the path if they are part of a path with a {@link #WIND_NON_ZERO} winding rule or if the * segments are retraced in the reverse direction such that the two sets of segments cancel each * other out without any exterior area falling between them. To determine whether segments * represent true boundaries of the interior of the path would require extensive calculations * involving all of the segments of the path and the winding rule and are thus beyond the scope of * this implementation. * * @param pi the specified {@code PathIterator} * @param r a specified {@code Rectangle2D} * @return {@code true} if the specified {@code PathIterator} contains the specified * {@code Rectangle2D}; {@code false} otherwise. * @since 1.6 */ public static boolean contains(PathIterator pi, Rectangle2D r) { return contains(pi, r.getX(), r.getY(), r.getWidth(), r.getHeight()); } /** * {@inheritDoc} *

* This method object may conservatively return false in cases where the specified rectangular * area intersects a segment of the path, but that segment does not represent a boundary between * the interior and exterior of the path. Such segments could lie entirely within the interior of * the path if they are part of a path with a {@link #WIND_NON_ZERO} winding rule or if the * segments are retraced in the reverse direction such that the two sets of segments cancel each * other out without any exterior area falling between them. To determine whether segments * represent true boundaries of the interior of the path would require extensive calculations * involving all of the segments of the path and the winding rule and are thus beyond the scope of * this implementation. * * @since 1.6 */ public final boolean contains(double x, double y, double w, double h) { if (java.lang.Double.isNaN(x + w) || java.lang.Double.isNaN(y + h)) { /* * [xy]+[wh] is NaN if any of those values are NaN, or if adding the two together would * produce NaN by virtue of adding opposing Infinte values. Since we need to add them below, * their sum must not be NaN. We return false because NaN always produces a negative response * to tests */ return false; } if (w <= 0 || h <= 0) { return false; } // TODO assert (false) : "Not implemented yet"; return false; // int mask = (windingRule == WIND_NON_ZERO ? -1 : 2); // int crossings = rectCrossings(x, y, x + w, y + h); // return (crossings != Curve.RECT_INTERSECTS && (crossings & mask) != 0); } /** * {@inheritDoc} *

* This method object may conservatively return false in cases where the specified rectangular * area intersects a segment of the path, but that segment does not represent a boundary between * the interior and exterior of the path. Such segments could lie entirely within the interior of * the path if they are part of a path with a {@link #WIND_NON_ZERO} winding rule or if the * segments are retraced in the reverse direction such that the two sets of segments cancel each * other out without any exterior area falling between them. To determine whether segments * represent true boundaries of the interior of the path would require extensive calculations * involving all of the segments of the path and the winding rule and are thus beyond the scope of * this implementation. * * @since 1.6 */ public final boolean contains(Rectangle2D r) { return contains(r.getX(), r.getY(), r.getWidth(), r.getHeight()); } /** * Tests if the interior of the specified {@link PathIterator} intersects the interior of a * specified set of rectangular coordinates. *

* This method provides a basic facility for implementors of the {@link Shape} interface to * implement support for the {@link Shape#intersects(double, double, double, double)} method. *

* This method object may conservatively return true in cases where the specified rectangular area * intersects a segment of the path, but that segment does not represent a boundary between the * interior and exterior of the path. Such a case may occur if some set of segments of the path * are retraced in the reverse direction such that the two sets of segments cancel each other out * without any interior area between them. To determine whether segments represent true boundaries * of the interior of the path would require extensive calculations involving all of the segments * of the path and the winding rule and are thus beyond the scope of this implementation. * * @param pi the specified {@code PathIterator} * @param x the specified X coordinate * @param y the specified Y coordinate * @param w the width of the specified rectangular coordinates * @param h the height of the specified rectangular coordinates * @return {@code true} if the specified {@code PathIterator} and the interior of the specified * set of rectangular coordinates intersect each other; {@code false} otherwise. * @since 1.6 */ public static boolean intersects(PathIterator pi, double x, double y, double w, double h) { if (java.lang.Double.isNaN(x + w) || java.lang.Double.isNaN(y + h)) { /* * [xy]+[wh] is NaN if any of those values are NaN, or if adding the two together would * produce NaN by virtue of adding opposing Infinte values. Since we need to add them below, * their sum must not be NaN. We return false because NaN always produces a negative response * to tests */ return false; } if (w <= 0 || h <= 0) { return false; } // TODO assert (false) : "Not implemented yet"; return false; // int mask = (pi.getWindingRule() == WIND_NON_ZERO ? -1 : 2); // int crossings = Curve.rectCrossingsForPath(pi, x, y, x + w, y + h); // return (crossings == Curve.RECT_INTERSECTS || (crossings & mask) != 0); } /** * Tests if the interior of the specified {@link PathIterator} intersects the interior of a * specified {@link Rectangle2D}. *

* This method provides a basic facility for implementors of the {@link Shape} interface to * implement support for the {@link Shape#intersects(Rectangle2D)} method. *

* This method object may conservatively return true in cases where the specified rectangular area * intersects a segment of the path, but that segment does not represent a boundary between the * interior and exterior of the path. Such a case may occur if some set of segments of the path * are retraced in the reverse direction such that the two sets of segments cancel each other out * without any interior area between them. To determine whether segments represent true boundaries * of the interior of the path would require extensive calculations involving all of the segments * of the path and the winding rule and are thus beyond the scope of this implementation. * * @param pi the specified {@code PathIterator} * @param r the specified {@code Rectangle2D} * @return {@code true} if the specified {@code PathIterator} and the interior of the specified * {@code Rectangle2D} intersect each other; {@code false} otherwise. * @since 1.6 */ public static boolean intersects(PathIterator pi, Rectangle2D r) { return intersects(pi, r.getX(), r.getY(), r.getWidth(), r.getHeight()); } /** * {@inheritDoc} *

* This method object may conservatively return true in cases where the specified rectangular area * intersects a segment of the path, but that segment does not represent a boundary between the * interior and exterior of the path. Such a case may occur if some set of segments of the path * are retraced in the reverse direction such that the two sets of segments cancel each other out * without any interior area between them. To determine whether segments represent true boundaries * of the interior of the path would require extensive calculations involving all of the segments * of the path and the winding rule and are thus beyond the scope of this implementation. * * @since 1.6 */ public final boolean intersects(double x, double y, double w, double h) { if (java.lang.Double.isNaN(x + w) || java.lang.Double.isNaN(y + h)) { /* * [xy]+[wh] is NaN if any of those values are NaN, or if adding the two together would * produce NaN by virtue of adding opposing Infinte values. Since we need to add them below, * their sum must not be NaN. We return false because NaN always produces a negative response * to tests */ return false; } if (w <= 0 || h <= 0) { return false; } // TODO assert (false) : "Not implemented yet"; return false; // int mask = (windingRule == WIND_NON_ZERO ? -1 : 2); // int crossings = rectCrossings(x, y, x + w, y + h); // return (crossings == Curve.RECT_INTERSECTS || (crossings & mask) != 0); } /** * {@inheritDoc} *

* This method object may conservatively return true in cases where the specified rectangular area * intersects a segment of the path, but that segment does not represent a boundary between the * interior and exterior of the path. Such a case may occur if some set of segments of the path * are retraced in the reverse direction such that the two sets of segments cancel each other out * without any interior area between them. To determine whether segments represent true boundaries * of the interior of the path would require extensive calculations involving all of the segments * of the path and the winding rule and are thus beyond the scope of this implementation. * * @since 1.6 */ public final boolean intersects(Rectangle2D r) { return intersects(r.getX(), r.getY(), r.getWidth(), r.getHeight()); } /** * {@inheritDoc} *

* The iterator for this class is not multi-threaded safe, which means that this {@code Path2D} * class does not guarantee that modifications to the geometry of this {@code Path2D} object do * not affect any iterations of that geometry that are already in process. * * @since 1.6 */ // public final PathIterator getPathIterator(AffineTransform at, double flatness) { // return new FlatteningPathIterator(getPathIterator(at), flatness); // } /** * Creates a new object of the same class as this object. * * @return a clone of this instance. * @exception OutOfMemoryError if there is not enough memory. * @see java.lang.Cloneable * @since 1.6 */ // public abstract Object clone(); // Note: It would be nice to have this return Path2D // but one of our subclasses (GeneralPath) needs to // offer "public Object clone()" for backwards // compatibility so we cannot restrict it further. // REMIND: Can we do both somehow? // /* // * Support fields and methods for serializing the subclasses. // */ // private static final byte SERIAL_STORAGE_FLT_ARRAY = 0x30; // private static final byte SERIAL_STORAGE_DBL_ARRAY = 0x31; // // private static final byte SERIAL_SEG_FLT_MOVETO = 0x40; // private static final byte SERIAL_SEG_FLT_LINETO = 0x41; // private static final byte SERIAL_SEG_FLT_QUADTO = 0x42; // private static final byte SERIAL_SEG_FLT_CUBICTO = 0x43; // // private static final byte SERIAL_SEG_DBL_MOVETO = 0x50; // private static final byte SERIAL_SEG_DBL_LINETO = 0x51; // private static final byte SERIAL_SEG_DBL_QUADTO = 0x52; // private static final byte SERIAL_SEG_DBL_CUBICTO = 0x53; // // private static final byte SERIAL_SEG_CLOSE = 0x60; // private static final byte SERIAL_PATH_END = 0x61; // final void writeObject(java.io.ObjectOutputStream s, boolean isdbl) throws java.io.IOException // { // s.defaultWriteObject(); // // float fCoords[]; // double dCoords[]; // // if (isdbl) { // dCoords = ((Path2D.Double) this).doubleCoords; // fCoords = null; // } else { // fCoords = ((Path2D.Float) this).floatCoords; // dCoords = null; // } // // int numTypes = this.numTypes; // // s.writeByte(isdbl ? SERIAL_STORAGE_DBL_ARRAY : SERIAL_STORAGE_FLT_ARRAY); // s.writeInt(numTypes); // s.writeInt(numCoords); // s.writeByte((byte) windingRule); // // int cindex = 0; // for (int i = 0; i < numTypes; i++) { // int npoints; // byte serialtype; // switch (pointTypes[i]){ // case SEG_MOVETO : // npoints = 1; // serialtype = (isdbl ? SERIAL_SEG_DBL_MOVETO : SERIAL_SEG_FLT_MOVETO); // break; // case SEG_LINETO : // npoints = 1; // serialtype = (isdbl ? SERIAL_SEG_DBL_LINETO : SERIAL_SEG_FLT_LINETO); // break; // case SEG_QUADTO : // npoints = 2; // serialtype = (isdbl ? SERIAL_SEG_DBL_QUADTO : SERIAL_SEG_FLT_QUADTO); // break; // case SEG_CUBICTO : // npoints = 3; // serialtype = (isdbl ? SERIAL_SEG_DBL_CUBICTO : SERIAL_SEG_FLT_CUBICTO); // break; // case SEG_CLOSE : // npoints = 0; // serialtype = SERIAL_SEG_CLOSE; // break; // // default : // // Should never happen // throw new InternalError("unrecognized path type"); // } // s.writeByte(serialtype); // while (--npoints >= 0) { // if (isdbl) { // s.writeDouble(dCoords[cindex++]); // s.writeDouble(dCoords[cindex++]); // } else { // s.writeFloat(fCoords[cindex++]); // s.writeFloat(fCoords[cindex++]); // } // } // } // s.writeByte((byte) SERIAL_PATH_END); // } // // final void readObject(java.io.ObjectInputStream s, boolean storedbl) throws // java.lang.ClassNotFoundException, // java.io.IOException { // s.defaultReadObject(); // // // The subclass calls this method with the storage type that // // they want us to use (storedbl) so we ignore the storage // // method hint from the stream. // s.readByte(); // int nT = s.readInt(); // int nC = s.readInt(); // try { // setWindingRule(s.readByte()); // } catch (IllegalArgumentException iae) { // throw new java.io.InvalidObjectException(iae.getMessage()); // } // // pointTypes = new byte[(nT < 0) ? INIT_SIZE : nT]; // if (nC < 0) { // nC = INIT_SIZE * 2; // } // if (storedbl) { // ((Path2D.Double) this).doubleCoords = new double[nC]; // } else { // ((Path2D.Float) this).floatCoords = new float[nC]; // } // // PATHDONE : for (int i = 0; nT < 0 || i < nT; i++) { // boolean isdbl; // int npoints; // byte segtype; // // byte serialtype = s.readByte(); // switch (serialtype){ // case SERIAL_SEG_FLT_MOVETO : // isdbl = false; // npoints = 1; // segtype = SEG_MOVETO; // break; // case SERIAL_SEG_FLT_LINETO : // isdbl = false; // npoints = 1; // segtype = SEG_LINETO; // break; // case SERIAL_SEG_FLT_QUADTO : // isdbl = false; // npoints = 2; // segtype = SEG_QUADTO; // break; // case SERIAL_SEG_FLT_CUBICTO : // isdbl = false; // npoints = 3; // segtype = SEG_CUBICTO; // break; // // case SERIAL_SEG_DBL_MOVETO : // isdbl = true; // npoints = 1; // segtype = SEG_MOVETO; // break; // case SERIAL_SEG_DBL_LINETO : // isdbl = true; // npoints = 1; // segtype = SEG_LINETO; // break; // case SERIAL_SEG_DBL_QUADTO : // isdbl = true; // npoints = 2; // segtype = SEG_QUADTO; // break; // case SERIAL_SEG_DBL_CUBICTO : // isdbl = true; // npoints = 3; // segtype = SEG_CUBICTO; // break; // // case SERIAL_SEG_CLOSE : // isdbl = false; // npoints = 0; // segtype = SEG_CLOSE; // break; // // case SERIAL_PATH_END : // if (nT < 0) { // break PATHDONE; // } // throw new StreamCorruptedException("unexpected PATH_END"); // // default : // throw new StreamCorruptedException("unrecognized path type"); // } // needRoom(segtype != SEG_MOVETO, npoints * 2); // if (isdbl) { // while (--npoints >= 0) { // append(s.readDouble(), s.readDouble()); // } // } else { // while (--npoints >= 0) { // append(s.readFloat(), s.readFloat()); // } // } // pointTypes[numTypes++] = segtype; // } // if (nT >= 0 && s.readByte() != SERIAL_PATH_END) { // throw new StreamCorruptedException("missing PATH_END"); // } // } static abstract class Iterator implements PathIterator { int typeIdx; int pointIdx; Path2D path; static final int curvecoords[] = { 2, 2, 4, 6, 0 }; Iterator(Path2D path) { this.path = path; } public int getWindingRule() { return path.getWindingRule(); } public boolean isDone() { return (typeIdx >= path.numTypes); } public void next() { int type = path.pointTypes[typeIdx++]; pointIdx += curvecoords[type]; } } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy