com.lewuathe.dllib.example.StackedDenoisingAutoEncoderApp.scala Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of dllib_2.11 Show documentation
Show all versions of dllib_2.11 Show documentation
dllib is a distributed deep learning framework running on Apache Spark
The newest version!
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
package com.lewuathe.dllib.example
import org.apache.spark.SparkContext
import org.apache.spark.sql.{DataFrame, SQLContext}
import com.lewuathe.dllib.graph.Graph
import com.lewuathe.dllib.layer.{AffineLayer, DenoisingAutoEncodeLayer}
import com.lewuathe.dllib.layer.{SigmoidLayer, SoftmaxLayer}
import com.lewuathe.dllib.model.{InMemoryModel, Model}
import com.lewuathe.dllib.network.Network
import com.lewuathe.dllib.solver.UnsupervisedPretrainingSolver
class StackedDenoisingAutoEncoderApp(miniBatchFraction: Double,
numIterations: Int,
learningRate: Double) {
def createMNISTDataset(path: String, sc: SparkContext): DataFrame = {
val dataset = MNIST(path)
MNIST.asDF(dataset, sc, 5000)
}
def submit(sc: SparkContext): Unit = {
val sqlContext = new SQLContext(sc)
val df = createMNISTDataset("/tmp/", sc)
val sdaGraph = new Graph(
Array(
new DenoisingAutoEncodeLayer(100, 784),
new SigmoidLayer(100, 100),
new AffineLayer(10, 100),
new SoftmaxLayer(10, 10)
))
val sdaModel = InMemoryModel(sdaGraph)
val sda = Network(sdaModel, sdaGraph)
val unsupervisedPretrainer =
new UnsupervisedPretrainingSolver("MNIST", sda)
unsupervisedPretrainer.setNumIterations(numIterations)
unsupervisedPretrainer.miniBatchFraction = miniBatchFraction
unsupervisedPretrainer.learningRate = learningRate
val model = unsupervisedPretrainer.fit(df)
sdaGraph.layers.foreach({
case l: DenoisingAutoEncodeLayer =>
l.vizWeight("./images/weight_denoising.png", model.model)
})
val result = model.transform(df)
result.filter("label = prediction").count()
}
}
object StackedDenoisingAutoEncoderApp {
def submit(sc: SparkContext): Unit =
new StackedDenoisingAutoEncoderApp(0.03, 10, 0.5).submit(sc)
def apply(sc: SparkContext,
miniBatchFraction: Double,
numIterations: Int,
learningRate: Double): Unit = {
new StackedDenoisingAutoEncoderApp(miniBatchFraction,
numIterations,
learningRate).submit(sc)
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy