com.lewuathe.dllib.layer.DenoisingAutoEncodeLayer.scala Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of dllib_2.11 Show documentation
Show all versions of dllib_2.11 Show documentation
dllib is a distributed deep learning framework running on Apache Spark
The newest version!
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
package com.lewuathe.dllib.layer
import breeze.linalg.{Matrix, Vector => brzVector}
import breeze.stats.distributions.Binomial
import com.lewuathe.dllib.{ActivationStack, Bias, Blob}
import com.lewuathe.dllib.{BlobShape, Weight}
import com.lewuathe.dllib.activations.sigmoid
import com.lewuathe.dllib.model.Model
import com.lewuathe.dllib.util.genId
class DenoisingAutoEncodeLayer(override val outputSize: Int,
override val inputSize: Int)
extends PretrainLayer
with ShapeValidator
with Visualizable
with UniBlobSupport {
// Temporary ID used for storing pretrain parameters on Model
override var id = genId()
override val inputShape: BlobShape = BlobShape(1, inputSize)
override val outputShape: BlobShape = BlobShape(1, outputSize)
val corruptionLevel = 0.7
protected def corrupt(input: brzVector[Double]): brzVector[Double] = {
val mask = brzVector(
Binomial(1, 1.0 - corruptionLevel)
.sample(input.length)
.map(_.toDouble): _*)
mask :* input
}
/**
* Encode the input to hidden layer
*
* @param input
* @param model
* @param tmpModel
* @return
*/
override def encode(
input: brzVector[Double],
model: Model,
tmpModel: Model): (brzVector[Double], brzVector[Double]) = {
val weight: Matrix[Double] = model.getWeight(id).get.value
val bias: brzVector[Double] = model.getBias(id).get.value
val u: brzVector[Double] = weight * corrupt(input) + bias
val z = sigmoid(u)
(u, z)
}
/**
* Decode hidden layer value to visible layer
*
* @param input
* @param model
* @param tmpModel
* @return
*/
override def decode(
input: brzVector[Double],
model: Model,
tmpModel: Model): (brzVector[Double], brzVector[Double]) = {
val weight: Matrix[Double] = model.getWeight(id).get.value
// Make sure to restore a Bias for pretrain visualization layer
val bias: brzVector[Double] = tmpModel.getBias(id).get.value
// TODO: decode bias should be stored in model
val u: brzVector[Double] = weight.toDenseMatrix.t * input + bias
val z = sigmoid(u)
(u, z)
}
/**
* Calculate the error of output layer between label data and prediction.
*
* @param label
* @param prediction
* @return
*/
protected def error(label: brzVector[Double],
prediction: brzVector[Double]): brzVector[Double] = {
require(label.size == prediction.size)
val ret = label - prediction
ret.map({
case (d: Double) if d.isNaN => 0.0
case (d: Double) => d
})
}
/**
* Returns the form for creating tmp model used while pretraining
* The layer used as prototype for creating tmp model. Only necessary
* fields are input size, output size and id.
*
* @return A new pretrain layer that is reversed output and input.
* It is used mainly for keeping bias value while pretraining.
*/
override def createTmpLayer: PretrainLayer = {
val tmpLayer = new DenoisingAutoEncodeLayer(inputSize, outputSize)
tmpLayer.id = this.id
tmpLayer
}
/**
* Calculate the output corresponding given input.
* Input is given as a top of ActivationStack.
* @param acts
* @param model
* @return The output tuple of the layer. First value of the tuple
* represents the raw output, the second is applied activation
* function of the layer.
*/
override def forward(acts: ActivationStack, model: Model): Blob[Double] = {
val weight: Matrix[Double] = model.getWeight(id).get.value
val bias: brzVector[Double] = model.getBias(id).get.value
validateParamShapes(weight, bias)
val input = acts.top
checkBlobSize(input)
require(input.head.size == inputSize, "Invalid input")
val u: brzVector[Double] = weight * input.head + bias
Blob.uni(u)
}
/**
* Calculate the delta of this iteration. The input of the layer in forward
* phase can be restored from ActivationStack. It returns the delta of input
* layer of this layer and the delta of coefficient and intercept parameter.
*
* @param delta
* @param acts
* @param model
* @return
*/
override def backward(delta: Blob[Double],
acts: ActivationStack,
model: Model): (Blob[Double], Weight, Bias) = {
val weight: Matrix[Double] = model.getWeight(id).get.value
val bias: brzVector[Double] = model.getBias(id).get.value
val thisOutput = acts.pop()
val thisInput = acts.top
checkBlobSize(delta)
val dWeight: Weight = new Weight(id, outputSize, inputSize)(
Some(delta.head.toDenseVector * thisInput.head.toDenseVector.t))
val dBias: Bias = new Bias(id, outputSize)(Some(delta.head))
validateParamShapes(dWeight.value, dBias.value)
val d: brzVector[Double] = weight.toDenseMatrix.t * delta.head
.toDenseVector
(Blob.uni(d), dWeight, dBias)
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy