All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.lewuathe.dllib.layer.SoftplusLayer.scala Maven / Gradle / Ivy

The newest version!
/*
 * Licensed to the Apache Software Foundation (ASF) under one
 * or more contributor license agreements.  See the NOTICE file
 * distributed with this work for additional information
 * regarding copyright ownership.  The ASF licenses this file
 * to you under the Apache License, Version 2.0 (the
 * "License"); you may not use this file except in compliance
 * with the License.  You may obtain a copy of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
 * KIND, either express or implied.  See the License for the
 * specific language governing permissions and limitations
 * under the License.
 */

package com.lewuathe.dllib.layer

import breeze.linalg.Vector

import com.lewuathe.dllib.{ActivationStack, Bias, Blob}
import com.lewuathe.dllib.{BlobShape, Weight}
import com.lewuathe.dllib.activations.{softplus, softplusPrime}
import com.lewuathe.dllib.model.Model
import com.lewuathe.dllib.util.genId

class SoftplusLayer(override val outputSize: Int, override val inputSize: Int)
    extends Layer
    with Visualizable
    with UniBlobSupport {
  override var id: String             = genId
  override val inputShape: BlobShape  = BlobShape(1, inputSize)
  override val outputShape: BlobShape = BlobShape(1, outputSize)

  /**
    * Calculate the output corresponding given input.
    * Input is given as a top of ActivationStack.
    *
    * @param acts
    * @param model
    * @return The output tuple of the layer.
    */
  override def forward(acts: ActivationStack, model: Model): Blob[Double] = {
    val input = acts.top
    checkBlobSize(input)
    require(input.head.size == inputSize, "Invalid input")

    Blob.uni(softplus(input.head))
  }

  /**
    * Calculate the delta of this iteration. The input of the layer in forward
    * phase can be restored from ActivationStack. It returns the delta of input
    * layer of this layer and the delta of coefficient and intercept parameter.
    *
    * @param delta
    * @param acts
    * @param model
    * @return The delta tuple of the layer while back propagation.
    *         First is passed previous layer, the second and third is
    *         the delta of Weight and Bias parameter of the layer.
    */
  override def backward(delta: Blob[Double],
                        acts: ActivationStack,
                        model: Model): (Blob[Double], Weight, Bias) = {
    val thisOutput = acts.pop()
    val thisInput  = acts.top

    // No necessary to train this layer.
    val dWeight = Weight.zero(id, outputSize, inputSize)
    val dBias   = Bias.zero(id, outputSize)

    val d: Vector[Double] = softplusPrime(thisInput.head) :* delta.head
        .toDenseVector
    (Blob.uni(d), dWeight, dBias)
  }
}




© 2015 - 2025 Weber Informatics LLC | Privacy Policy