com.lewuathe.dllib.solver.MultiLayerPerceptron.scala Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of dllib_2.11 Show documentation
Show all versions of dllib_2.11 Show documentation
dllib is a distributed deep learning framework running on Apache Spark
The newest version!
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
package com.lewuathe.dllib.solver
import org.apache.spark.ml.linalg.Vector
import org.apache.spark.ml.param.ParamMap
import org.apache.spark.sql.Dataset
import breeze.linalg.{Vector => brzVector}
import com.lewuathe.dllib.Blob
import com.lewuathe.dllib.network.Network
/**
* Simple multilayer perceptron implementing backpropagation.
* @param uid
* @param network
*/
class MultiLayerPerceptron(override val uid: String, network: Network)
extends Solver[Vector, MultiLayerPerceptron, MultiLayerPerceptronModel](
network) {
override def copy(extra: ParamMap): MultiLayerPerceptron = defaultCopy(extra)
override protected def train(
dataset: Dataset[_]): MultiLayerPerceptronModel = {
val newModel = trainInternal(dataset, model)
val newNetwork = new Network(newModel, network.graph)
copyValues(new MultiLayerPerceptronModel(uid, newNetwork))
}
}
class MultiLayerPerceptronModel(override val uid: String, network: Network)
extends SolverModel[Vector, MultiLayerPerceptronModel](network) {
override protected def predict(features: Vector): Double = {
val brzFeatures = brzVector[Double](features.toArray)
predictInternal(Blob.uni(brzFeatures))
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy