All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.xmlbeans.impl.common.Levenshtein Maven / Gradle / Ivy

There is a newer version: 5.0.70
Show newest version
/*   Copyright 2004 The Apache Software Foundation
 *
 *   Licensed under the Apache License, Version 2.0 (the "License");
 *   you may not use this file except in compliance with the License.
 *   You may obtain a copy of the License at
 *
 *       http://www.apache.org/licenses/LICENSE-2.0
 *
 *   Unless required by applicable law or agreed to in writing, software
 *   distributed under the License is distributed on an "AS IS" BASIS,
 *   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *   See the License for the specific language governing permissions and
 *  limitations under the License.
 */

package org.apache.xmlbeans.impl.common;

public class Levenshtein
{
    //****************************
    // Get minimum of three values
    //****************************

    private static int minimum(int a, int b, int c)
    {
        int mi = a;
        if (b < mi)
            mi = b;
        if (c < mi)
            mi = c;
        return mi;
    }

    //*****************************
    // Compute Levenshtein distance
    //*****************************
    public static int distance(String s, String t)
    {
        int d[][]; // matrix
        int n; // length of s
        int m; // length of t
        int i; // iterates through s
        int j; // iterates through t
        char s_i; // ith character of s
        char t_j; // jth character of t
        int cost; // cost

        // Step 1
        n = s.length();
        m = t.length();
        if (n == 0)
            return m;
        if (m == 0)
            return n;
        d = new int[n+1][m+1];

        // Step 2
        for (i = 0; i <= n; i++)
            d[i][0] = i;
        for (j = 0; j <= m; j++)
            d[0][j] = j;

        // Step 3
        for (i = 1; i <= n; i++)
        {
            s_i = s.charAt (i - 1);

            // Step 4
            for (j = 1; j <= m; j++)
            {
                t_j = t.charAt(j - 1);

                // Step 5
                if (s_i == t_j)
                    cost = 0;
                else
                    cost = 1;

                // Step 6
                d[i][j] = minimum(d[i-1][j]+1, d[i][j-1]+1, d[i-1][j-1] + cost);
            }
        }

        // Step 7
        return d[n][m];
    }

}




© 2015 - 2024 Weber Informatics LLC | Privacy Policy