All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.google.javascript.jscomp.PureFunctionIdentifier Maven / Gradle / Ivy

There is a newer version: 9.0.8
Show newest version
/*
 * Copyright 2009 The Closure Compiler Authors.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package com.google.javascript.jscomp;

import static com.google.common.base.Preconditions.checkArgument;
import static com.google.common.base.Preconditions.checkNotNull;
import static com.google.common.base.Preconditions.checkState;
import static java.nio.charset.StandardCharsets.UTF_8;

import com.google.common.annotations.VisibleForTesting;
import com.google.common.collect.ArrayListMultimap;
import com.google.common.collect.HashMultimap;
import com.google.common.collect.ImmutableList;
import com.google.common.collect.Iterables;
import com.google.common.collect.Multimap;
import com.google.common.collect.SetMultimap;
import com.google.common.io.Files;
import com.google.errorprone.annotations.Immutable;
import com.google.javascript.jscomp.CodingConvention.Cache;
import com.google.javascript.jscomp.DefinitionsRemover.Definition;
import com.google.javascript.jscomp.NodeTraversal.ScopedCallback;
import com.google.javascript.jscomp.graph.DiGraph.DiGraphNode;
import com.google.javascript.jscomp.graph.FixedPointGraphTraversal;
import com.google.javascript.jscomp.graph.FixedPointGraphTraversal.EdgeCallback;
import com.google.javascript.jscomp.graph.LinkedDirectedGraph;
import com.google.javascript.rhino.FunctionTypeI;
import com.google.javascript.rhino.JSDocInfo;
import com.google.javascript.rhino.Node;
import com.google.javascript.rhino.Token;
import com.google.javascript.rhino.TypeI;
import com.google.javascript.rhino.jstype.JSTypeNative;
import java.io.File;
import java.io.IOException;
import java.util.ArrayList;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import javax.annotation.Nullable;

/**
 * Compiler pass that computes function purity. A function is pure if it has no outside visible side
 * effects, and the result of the computation does not depend on external factors that are beyond
 * the control of the application; repeated calls to the function should return the same value as
 * long as global state hasn't changed.
 *
 * 

Date.now is an example of a function that has no side effects but is not pure. * *

TODO: This pass could be greatly improved by proper tracking of locals within function bodies. * Every instance of the call to {@link NodeUtil#evaluatesToLocalValue(Node)} and {@link * NodeUtil#allArgsUnescapedLocal(Node)} do not actually take into account local variables. They * only assume literals, primitives, and operations on primitives are local. * * @author [email protected] (John Lenz) * @author [email protected] (Thomas Deegan) *

We will prevail, in peace and freedom from fear, and in true health, through the purity * and essence of our natural... fluids. - General Turgidson */ class PureFunctionIdentifier implements CompilerPass { private final AbstractCompiler compiler; private final NameBasedDefinitionProvider definitionProvider; /** Map of function names to side effect gathering representative nodes */ private final Map functionInfoByName = new HashMap<>(); /** * Mapping from function node to side effects for all names associated with that node. * *

This is a multimap because you can construct situations in which a function node represents * the side effects for two different FunctionInformation instances. For example: * *

   *   // Not enough type information to collapse/disambiguate properties on "staticMethod".
   *   SomeClass.staticMethod = function anotherName() {};
   *   OtherClass.staticMethod = function() {global++}
   * 
* *

In this situation we want to keep the side effects for "X.staticMethod()" which are "global" * separate from "anotherName()". Hence the function node should point to the {@link * FunctionInformation} for both "staticMethod" and "anotherName". */ private final Multimap functionSideEffectMap; // List of all function call sites; used to iterate in markPureFunctionCalls. private final List allFunctionCalls; private final LinkedDirectedGraph sideEffectGraph = LinkedDirectedGraph.createWithoutAnnotations(); // Externs and ast tree root, for use in getDebugReport. These two // fields are null until process is called. private Node externs; private Node root; public PureFunctionIdentifier( AbstractCompiler compiler, NameBasedDefinitionProvider definitionProvider) { this.compiler = checkNotNull(compiler); this.definitionProvider = definitionProvider; this.functionSideEffectMap = ArrayListMultimap.create(); this.allFunctionCalls = new ArrayList<>(); this.externs = null; this.root = null; } @Override public void process(Node externsAst, Node srcAst) { checkState( externs == null && root == null, "It is illegal to call PureFunctionIdentifier.process twice the same instance. Please " + " use a new PureFunctionIdentifier instance each time."); externs = externsAst; root = srcAst; buildGraph(); NodeTraversal.traverseEs6(compiler, externs, new FunctionAnalyzer(true)); NodeTraversal.traverseEs6(compiler, root, new FunctionAnalyzer(false)); propagateSideEffects(); markPureFunctionCalls(); } /** * Compute debug report that includes: * *

    *
  • List of all pure functions. *
  • Reasons we think the remaining functions have side effects. *
*/ @VisibleForTesting String getDebugReport() { checkNotNull(externs); checkNotNull(root); StringBuilder sb = new StringBuilder(); for (Node call : allFunctionCalls) { sb.append(" "); Iterable expanded = unwrapCallableExpression(call.getFirstChild()); if (expanded != null) { for (Node comp : expanded) { String name = NameBasedDefinitionProvider.getSimplifiedName(comp); sb.append(name).append("|"); } } else { sb.append(""); } sb.append(" ") .append(new Node.SideEffectFlags(call.getSideEffectFlags())) .append(" from: ") .append(call.getSourceFileName()) .append("\n"); } return sb.toString(); } /** * Unwraps a complicated expression to reveal directly callable nodes that correspond to * definitions. For example: (a.c || b) or (x ? a.c : b) are turned into [a.c, b]. Since when you * call * *
   *   var result = (a.c || b)(some, parameters);
   * 
* * either a.c or b are called. * * @param exp A possibly complicated expression. * @return A list of GET_PROP NAME and function expression nodes (all of which can be called). Or * null if any of the callable nodes are of an unsupported type. e.g. x['asdf'](param); */ @Nullable private static Iterable unwrapCallableExpression(Node exp) { switch (exp.getToken()) { case GETPROP: String propName = exp.getLastChild().getString(); if (propName.equals("apply") || propName.equals("call")) { return unwrapCallableExpression(exp.getFirstChild()); } return ImmutableList.of(exp); case FUNCTION: case NAME: return ImmutableList.of(exp); case OR: case HOOK: Node firstVal; if (exp.isHook()) { firstVal = exp.getSecondChild(); } else { firstVal = exp.getFirstChild(); } Iterable firstCallable = unwrapCallableExpression(firstVal); Iterable secondCallable = unwrapCallableExpression(firstVal.getNext()); if (firstCallable == null || secondCallable == null) { return null; } return Iterables.concat(firstCallable, secondCallable); default: return null; // Unsupported call type. } } private static boolean isSupportedFunctionDefinition(@Nullable Node definitionRValue) { if (definitionRValue == null) { return false; } switch (definitionRValue.getToken()) { case FUNCTION: return true; case HOOK: return isSupportedFunctionDefinition(definitionRValue.getSecondChild()) && isSupportedFunctionDefinition(definitionRValue.getLastChild()); default: return false; } } private Iterable getGoogCacheCallableExpression(Cache cacheCall) { checkNotNull(cacheCall); if (cacheCall.keyFn == null) { return unwrapCallableExpression(cacheCall.valueFn); } return Iterables.concat( unwrapCallableExpression(cacheCall.valueFn), unwrapCallableExpression(cacheCall.keyFn)); } @Nullable private List getSideEffectsForCall(Node call) { checkArgument(call.isCall() || call.isNew(), call); Iterable expanded; Cache cacheCall = compiler.getCodingConvention().describeCachingCall(call); if (cacheCall != null) { expanded = getGoogCacheCallableExpression(cacheCall); } else { expanded = unwrapCallableExpression(call.getFirstChild()); } if (expanded == null) { return null; } List results = new ArrayList<>(); for (Node expression : expanded) { if (NodeUtil.isFunctionExpression(expression)) { // isExtern is false in the call to the constructor for the // FunctionExpressionDefinition below because we know that // getFunctionDefinitions() will only be called on the first // child of a call and thus the function expression // definition will never be an extern. results.addAll(functionSideEffectMap.get(expression)); continue; } String name = NameBasedDefinitionProvider.getSimplifiedName(expression); FunctionInformation info = null; if (name != null) { info = functionInfoByName.get(name); } if (info != null) { results.add(info); } else { return null; } } return results; } /** * When propagating side effects we construct a graph from every function definition A to every * function definition B that calls A(). Since the definition provider cannot always provide a * unique definition for a name, there may be many possible definitions for a given call site. In * the case where multiple defs share the same node in the graph. * *

We need to build the map {@link PureFunctionIdentifier#functionInfoByName} to get a * reference to the side effects for a call and we need the map {@link * PureFunctionIdentifier#functionSideEffectMap} to get a reference to the side effects for a * given function node. */ private void buildGraph() { final FunctionInformation unknownDefinitionFunction = new FunctionInformation(); unknownDefinitionFunction.setTaintsGlobalState(); unknownDefinitionFunction.setFunctionThrows(); unknownDefinitionFunction.setTaintsReturn(); unknownDefinitionFunction.graphNode = sideEffectGraph.createNode(unknownDefinitionFunction); for (DefinitionSite site : definitionProvider.getDefinitionSites()) { Definition definition = site.definition; if (definition.getLValue() != null) { Node getOrName = definition.getLValue(); checkArgument(getOrName.isGetProp() || getOrName.isName(), getOrName); String name = NameBasedDefinitionProvider.getSimplifiedName(getOrName); checkNotNull(name); if (isSupportedFunctionDefinition(definition.getRValue())) { addSupportedDefinition(site, name); } else { // Unsupported function definition. Mark a global side effect here since we don't // actually know anything about what's being defined. FunctionInformation info = functionInfoByName.get(name); if (info != null) { info.setTaintsGlobalState(); info.setFunctionThrows(); info.setTaintsReturn(); } else { functionInfoByName.put(name, unknownDefinitionFunction); } } } } } /** * Add the definition to the {@link PureFunctionIdentifier#sideEffectGraph} as a * FunctionInformation node or link it to the existing functionInformation node if there is * already a function with the same definition name. */ private void addSupportedDefinition(DefinitionSite definitionSite, String name) { for (Node function : unwrapCallableExpression(definitionSite.definition.getRValue())) { // A function may have multiple definitions. // Link this function definition to the existing FunctionInfo node. FunctionInformation functionInfo = functionInfoByName.get(name); if (functionInfo == null) { // Need to create a function info node. functionInfo = new FunctionInformation(); functionInfo.graphNode = sideEffectGraph.createNode(functionInfo); // Keep track of this so that later functions of the same name can point to the same // FunctionInformation. functionInfoByName.put(name, functionInfo); } functionSideEffectMap.put(function, functionInfo); if (definitionSite.inExterns) { // Externs have their side effects computed here, otherwise in FunctionAnalyzer. functionInfo.updateSideEffectsFromExtern(function, compiler); } } } /** * Propagate side effect information by building a graph based on call site information stored in * FunctionInformation and the NameBasedDefinitionProvider and then running GraphReachability to * determine the set of functions that have side effects. */ private void propagateSideEffects() { // Propagate side effect information to a fixed point. FixedPointGraphTraversal.newTraversal( new EdgeCallback() { @Override public boolean traverseEdge( FunctionInformation source, CallSitePropagationInfo edge, FunctionInformation destination) { return edge.propagate(source, destination); } }) .computeFixedPoint(sideEffectGraph); } /** Set no side effect property at pure-function call sites. */ private void markPureFunctionCalls() { for (Node callNode : allFunctionCalls) { List possibleSideEffects = getSideEffectsForCall(callNode); // Default to side effects, non-local results Node.SideEffectFlags flags = new Node.SideEffectFlags(); if (possibleSideEffects == null) { flags.setMutatesGlobalState(); flags.setThrows(); flags.setReturnsTainted(); } else { flags.clearAllFlags(); for (FunctionInformation functionInfo : possibleSideEffects) { checkNotNull(functionInfo); if (functionInfo.mutatesGlobalState()) { flags.setMutatesGlobalState(); } if (functionInfo.mutatesArguments()) { flags.setMutatesArguments(); } if (functionInfo.functionThrows()) { flags.setThrows(); } if (callNode.isCall()) { if (functionInfo.taintsThis()) { // A FunctionInfo for "f" maps to both "f()" and "f.call()" nodes. if (isCallOrApply(callNode)) { flags.setMutatesArguments(); } else { flags.setMutatesThis(); } } } if (functionInfo.taintsReturn()) { flags.setReturnsTainted(); } } } // Handle special cases (Math, RegExp) if (callNode.isCall()) { if (!NodeUtil.functionCallHasSideEffects(callNode, compiler)) { flags.clearSideEffectFlags(); } } else if (callNode.isNew()) { // Handle known cases now (Object, Date, RegExp, etc) if (!NodeUtil.constructorCallHasSideEffects(callNode)) { flags.clearSideEffectFlags(); } } int newSideEffectFlags = flags.valueOf(); if (callNode.getSideEffectFlags() != newSideEffectFlags) { callNode.setSideEffectFlags(newSideEffectFlags); compiler.reportChangeToEnclosingScope(callNode); } } } /** * Gather list of functions, functions with @nosideeffects annotations, call sites, and functions * that may mutate variables not defined in the local scope. */ private class FunctionAnalyzer implements ScopedCallback { private final SetMultimap blacklistedVarsByFunction = HashMultimap.create(); private final SetMultimap taintedVarsByFunction = HashMultimap.create(); private final boolean inExterns; FunctionAnalyzer(boolean inExterns) { this.inExterns = inExterns; } @Override public boolean shouldTraverse(NodeTraversal traversal, Node node, Node parent) { // Functions need to be processed as part of pre-traversal so that an entry for the function // exists in the functionSideEffectMap map when processing assignments and calls within the // body. if (node.isFunction() && !functionSideEffectMap.containsKey(node)) { // This function was not part of a definition which is why it was not created by // {@link buildGraph}. For example, an anonymous function. FunctionInformation functionInfo = new FunctionInformation(); functionSideEffectMap.put(node, functionInfo); functionInfo.graphNode = sideEffectGraph.createNode(functionInfo); } return true; } @Override public void visit(NodeTraversal traversal, Node node, Node parent) { if (inExterns) { return; } if (!NodeUtil.nodeTypeMayHaveSideEffects(node, compiler) && !node.isReturn()) { return; } if (NodeUtil.isCallOrNew(node)) { allFunctionCalls.add(node); } // TODO: This may be more expensive than necessary. Node enclosingFunction = traversal.getEnclosingFunction(); if (enclosingFunction == null) { return; } for (FunctionInformation sideEffectInfo : functionSideEffectMap.get(enclosingFunction)) { checkNotNull(sideEffectInfo); updateSideEffectsForNode(sideEffectInfo, traversal, node, enclosingFunction); } } public void updateSideEffectsForNode( FunctionInformation sideEffectInfo, NodeTraversal traversal, Node node, Node enclosingFunction) { if (NodeUtil.isAssignmentOp(node) || node.isInc() || node.isDelProp() || node.isDec()) { visitAssignmentOrUnaryOperator( sideEffectInfo, traversal.getScope(), node, enclosingFunction); } else if (NodeUtil.isCallOrNew(node)) { visitCall(sideEffectInfo, node); } else if (node.isName()) { // Variable definition are not side effects. Check that the name appears in the context of a // variable declaration. checkArgument(NodeUtil.isNameDeclaration(node.getParent()), node.getParent()); Node value = node.getFirstChild(); // Assignment to local, if the value isn't a safe local value, // new object creation or literal or known primitive result // value, add it to the local blacklist. if (value != null && !NodeUtil.evaluatesToLocalValue(value)) { Scope scope = traversal.getScope(); Var var = scope.getVar(node.getString()); blacklistedVarsByFunction.put(enclosingFunction, var); } } else if (node.isThrow()) { sideEffectInfo.setFunctionThrows(); } else if (node.isReturn()) { if (node.hasChildren() && !NodeUtil.evaluatesToLocalValue(node.getFirstChild())) { sideEffectInfo.setTaintsReturn(); } } else if (node.isYield()) { // 'yield' throws if the caller calls `.throw` on the generator object. sideEffectInfo.setFunctionThrows(); } else if (node.isAwait()) { // 'await' throws if the promise it's waiting on is rejected. sideEffectInfo.setFunctionThrows(); } else { throw new IllegalArgumentException("Unhandled side effect node type " + node); } } @Override public void enterScope(NodeTraversal t) { // Nothing to do. } @Override public void exitScope(NodeTraversal t) { if (!t.getScope().isFunctionBlockScope() && !t.getScope().isFunctionScope()) { return; } Node function = NodeUtil.getEnclosingFunction(t.getScopeRoot()); if (function == null) { return; } // Handle deferred local variable modifications: for (FunctionInformation sideEffectInfo : functionSideEffectMap.get(function)) { checkNotNull(sideEffectInfo, "%s has no side effect info.", function); if (sideEffectInfo.mutatesGlobalState()) { continue; } for (Var v : t.getScope().getVarIterable()) { boolean param = v.getParentNode().isParamList(); if (param && !blacklistedVarsByFunction.containsEntry(function, v) && taintedVarsByFunction.containsEntry(function, v)) { sideEffectInfo.setTaintsArguments(); continue; } boolean localVar = false; // Parameters and catch values can come from other scopes. if (v.getParentNode().isVar()) { // TODO(johnlenz): create a useful parameter list // sideEffectInfo.addKnownLocal(v.getName()); localVar = true; } // Take care of locals that might have been tainted. if (!localVar || blacklistedVarsByFunction.containsEntry(function, v)) { if (taintedVarsByFunction.containsEntry(function, v)) { // If the function has global side-effects // don't bother with the local side-effects. sideEffectInfo.setTaintsGlobalState(); break; } } } } // Clean up memory after exiting out of the function scope where we will no longer need these. if (t.getScopeRoot().isFunction()) { blacklistedVarsByFunction.removeAll(function); taintedVarsByFunction.removeAll(function); } } private boolean isVarDeclaredInScope(@Nullable Var v, Scope scope) { if (v == null) { return false; } if (v.scope == scope) { return true; } Node declarationRoot = NodeUtil.getEnclosingFunction(v.scope.getRootNode()); Node scopeRoot = NodeUtil.getEnclosingFunction(scope.getRootNode()); return declarationRoot == scopeRoot; } /** * Record information about the side effects caused by an assignment or mutating unary operator. * *

If the operation modifies this or taints global state, mark the enclosing function as * having those side effects. * * @param op operation being performed. */ private void visitAssignmentOrUnaryOperator( FunctionInformation sideEffectInfo, Scope scope, Node op, Node enclosingFunction) { Iterable lhsNodes; if (isIncDec(op) || op.isDelProp()) { lhsNodes = ImmutableList.of(op.getOnlyChild()); } else { lhsNodes = NodeUtil.findLhsNodesInNode(op); } for (Node lhs : lhsNodes) { if (NodeUtil.isGet(lhs)) { if (lhs.getFirstChild().isThis()) { sideEffectInfo.setTaintsThis(); } else { Node objectNode = lhs.getFirstChild(); if (objectNode.isName()) { Var var = scope.getVar(objectNode.getString()); if (isVarDeclaredInScope(var, scope)) { // Maybe a local object modification. We won't know for sure until // we exit the scope and can validate the value of the local. taintedVarsByFunction.put(enclosingFunction, var); } else { sideEffectInfo.setTaintsGlobalState(); } } else { // TODO(tdeegan): Perhaps handle multi level locals: local.prop.prop2++; sideEffectInfo.setTaintsGlobalState(); } } } else { Var var = scope.getVar(lhs.getString()); if (isVarDeclaredInScope(var, scope)) { // Assignment to local, if the value isn't a safe local value, // a literal or new object creation, add it to the local blacklist. // parameter values depend on the caller. // Note: other ops result in the name or prop being assigned a local // value (x++ results in a number, for instance) checkState(NodeUtil.isAssignmentOp(op) || isIncDec(op) || op.isDelProp()); Node rhs = NodeUtil.getRValueOfLValue(lhs); if (rhs != null && op.isAssign() && !NodeUtil.evaluatesToLocalValue(rhs)) { blacklistedVarsByFunction.put(enclosingFunction, var); } } else { sideEffectInfo.setTaintsGlobalState(); } } } } /** Record information about a call site. */ private void visitCall(FunctionInformation sideEffectInfo, Node node) { // Handle special cases (Math, RegExp) // TODO: This logic can probably be replaced with @nosideeffects annotations in externs. if (node.isCall() && !NodeUtil.functionCallHasSideEffects(node, compiler)) { return; } // Handle known cases now (Object, Date, RegExp, etc) if (node.isNew() && !NodeUtil.constructorCallHasSideEffects(node)) { return; } List possibleSideEffects = getSideEffectsForCall(node); if (possibleSideEffects == null) { sideEffectInfo.setTaintsGlobalState(); sideEffectInfo.setFunctionThrows(); return; } for (FunctionInformation sideEffectNode : possibleSideEffects) { CallSitePropagationInfo edge = CallSitePropagationInfo.computePropagationType(node); sideEffectGraph.connect(sideEffectNode.graphNode, edge, sideEffectInfo.graphNode); } } } private static boolean isIncDec(Node n) { Token type = n.getToken(); return (type == Token.INC || type == Token.DEC); } private static boolean isCallOrApply(Node callSite) { return NodeUtil.isFunctionObjectCall(callSite) || NodeUtil.isFunctionObjectApply(callSite); } /** * This class stores all the information about a call site needed to propagate side effects from * one instance of {@link FunctionInformation} to another. */ @Immutable private static class CallSitePropagationInfo { private CallSitePropagationInfo( boolean allArgsUnescapedLocal, boolean calleeThisEqualsCallerThis, Token callType) { checkArgument(callType == Token.CALL || callType == Token.NEW); this.allArgsUnescapedLocal = allArgsUnescapedLocal; this.calleeThisEqualsCallerThis = calleeThisEqualsCallerThis; this.callType = callType; } // If all the arguments values are local to the scope in which the call site occurs. private final boolean allArgsUnescapedLocal; /** * If you call a function with apply or call, one of the arguments at the call site will be used * as 'this' inside the implementation. If this is pass into apply like so: function.apply(this, * ...) then 'this' in the caller is tainted. */ private final boolean calleeThisEqualsCallerThis; // Whether this represents CALL (not a NEW node). private final Token callType; /** * Propagate the side effects from the callee to the caller. * * @param callee propagate from * @param caller propagate to * @return Returns true if the propagation changed the side effects on the caller. */ boolean propagate(FunctionInformation callee, FunctionInformation caller) { CallSitePropagationInfo propagationType = this; boolean changed = false; // If the callee modifies global state then so does that caller. if (callee.mutatesGlobalState() && !caller.mutatesGlobalState()) { caller.setTaintsGlobalState(); changed = true; } // If the callee throws an exception then so does the caller. if (callee.functionThrows() && !caller.functionThrows()) { caller.setFunctionThrows(); changed = true; } // If the callee mutates its input arguments and the arguments escape the caller then it has // unbounded side effects. if (callee.mutatesArguments() && !propagationType.allArgsUnescapedLocal && !caller.mutatesGlobalState()) { caller.setTaintsGlobalState(); changed = true; } if (callee.mutatesThis() && propagationType.calleeThisEqualsCallerThis) { if (!caller.mutatesThis()) { caller.setTaintsThis(); changed = true; } } else if (callee.mutatesThis() && propagationType.callType != Token.NEW) { // NEW invocations of a constructor that modifies "this" don't cause side effects. if (!caller.mutatesGlobalState()) { caller.setTaintsGlobalState(); changed = true; } } return changed; } static CallSitePropagationInfo computePropagationType(Node callSite) { checkArgument(callSite.isCall() || callSite.isNew()); boolean thisIsOuterThis = false; if (callSite.isCall()) { // Side effects only propagate via regular calls. // Calling a constructor that modifies "this" has no side effects. // Notice that we're using "mutatesThis" from the callee // FunctionInfo. If the call site is actually a .call or .apply, then // the "this" is going to be one of its arguments. boolean isCallOrApply = isCallOrApply(callSite); Node objectNode = isCallOrApply ? callSite.getSecondChild() : callSite.getFirstFirstChild(); if (objectNode != null && objectNode.isName() && !isCallOrApply) { // Exclude ".call" and ".apply" as the value may still be // null or undefined. We don't need to worry about this with a // direct method call because null and undefined don't have any // properties. // TODO(nicksantos): Turn this back on when locals-tracking // is fixed. See testLocalizedSideEffects11. //if (!caller.knownLocals.contains(name)) { //} } else if (objectNode != null && objectNode.isThis()) { thisIsOuterThis = true; } } boolean argsUnescapedLocal = NodeUtil.allArgsUnescapedLocal(callSite); return new CallSitePropagationInfo(argsUnescapedLocal, thisIsOuterThis, callSite.getToken()); } } /** * Keeps track of a function's known side effects by type and the list of calls that appear in a * function's body. */ private static class FunctionInformation { DiGraphNode graphNode; private int bitmask = 0; // Side effect types: private static final int FUNCTION_THROWS_MASK = 1 << 1; private static final int TAINTS_GLOBAL_STATE_MASK = 1 << 2; private static final int TAINTS_THIS_MASK = 1 << 3; private static final int TAINTS_ARGUMENTS_MASK = 1 << 4; // Function metatdata private static final int TAINTS_RETURN_MASK = 1 << 5; void setMask(int mask) { bitmask |= mask; } boolean getMask(int mask) { return (bitmask & mask) != 0; } boolean taintsThis() { return getMask(TAINTS_THIS_MASK); } /** * @return Whether the function returns something that is not affected by global state. In this * case, only true if return value is a literal or primitive since locals are not tracked * correctly. */ boolean taintsReturn() { return getMask(TAINTS_RETURN_MASK); } /** Returns true if function has an explicit "throw". */ boolean functionThrows() { return getMask(FUNCTION_THROWS_MASK); } /** @return false if function known to have side effects. */ boolean isPure() { return !getMask( FUNCTION_THROWS_MASK | TAINTS_GLOBAL_STATE_MASK | TAINTS_THIS_MASK | TAINTS_ARGUMENTS_MASK); } /** Marks the function as having "modifies globals" side effects. */ void setTaintsGlobalState() { setMask(TAINTS_GLOBAL_STATE_MASK); } /** Marks the function as having "modifies this" side effects. */ void setTaintsThis() { setMask(TAINTS_THIS_MASK); } /** Marks the function as having "modifies arguments" side effects. */ void setTaintsArguments() { setMask(TAINTS_ARGUMENTS_MASK); } /** Marks the function as having "throw" side effects. */ void setFunctionThrows() { setMask(FUNCTION_THROWS_MASK); } /** Marks the function as having non-local return result. */ void setTaintsReturn() { setMask(TAINTS_RETURN_MASK); } /** Returns true if function mutates global state. */ boolean mutatesGlobalState() { return getMask(TAINTS_GLOBAL_STATE_MASK); } /** Returns true if function mutates its arguments. */ boolean mutatesArguments() { return getMask(TAINTS_GLOBAL_STATE_MASK | TAINTS_ARGUMENTS_MASK); } /** Returns true if function mutates "this". */ boolean mutatesThis() { return taintsThis(); } @Override public String toString() { List status = new ArrayList<>(); if (taintsThis()) { status.add("this"); } if (mutatesGlobalState()) { status.add("global"); } if (mutatesArguments()) { status.add("args"); } if (taintsReturn()) { status.add("return"); } if (functionThrows()) { status.add("throw"); } return "Side effects: " + status; } /** Update function for @nosideeffects annotations. */ private void updateSideEffectsFromExtern(Node externFunction, AbstractCompiler compiler) { checkArgument(externFunction.isFunction()); checkArgument(externFunction.isFromExterns()); JSDocInfo info = NodeUtil.getBestJSDocInfo(externFunction); // Handle externs. TypeI typei = externFunction.getTypeI(); FunctionTypeI functionType = typei == null ? null : typei.toMaybeFunctionType(); if (functionType == null) { // Assume extern functions return tainted values when we have no type info to say otherwise. setTaintsReturn(); } else { TypeI retType = functionType.getReturnType(); if (!PureFunctionIdentifier.isLocalValueType(retType, compiler)) { setTaintsReturn(); } } if (info == null) { // We don't know anything about this function so we assume it has side effects. setTaintsGlobalState(); setFunctionThrows(); } else { if (info.modifiesThis()) { setTaintsThis(); } else if (info.hasSideEffectsArgumentsAnnotation()) { setTaintsArguments(); } else if (!info.getThrownTypes().isEmpty()) { setFunctionThrows(); } else if (info.isNoSideEffects()) { // Do nothing. } else { setTaintsGlobalState(); } } } } /** * TODO: This could be greatly improved. * * @return Whether the jstype is something known to be a local value. */ private static boolean isLocalValueType(TypeI typei, AbstractCompiler compiler) { checkNotNull(typei); TypeI nativeObj = compiler.getTypeIRegistry().getNativeType(JSTypeNative.OBJECT_TYPE); TypeI subtype = typei.meetWith(nativeObj); // If the type includes anything related to a object type, don't assume // anything about the locality of the value. return subtype.isBottom(); } /** * A compiler pass that constructs a reference graph and drives the PureFunctionIdentifier across * it. */ static class Driver implements CompilerPass { private final AbstractCompiler compiler; private final String reportPath; protected boolean checkJ2cl = true; Driver(AbstractCompiler compiler, String reportPath) { this.compiler = compiler; this.reportPath = reportPath; } @Override public void process(Node externs, Node root) { // Don't run the independent PureFunctionIdentifier pass if J2CL is enabled, since nested // PureFunctionIdentifier passes will run redundantly inside of J2CL. if (checkJ2cl && J2clSourceFileChecker.shouldRunJ2clPasses(compiler)) { return; } NameBasedDefinitionProvider defFinder = new NameBasedDefinitionProvider(compiler, true); defFinder.process(externs, root); PureFunctionIdentifier pureFunctionIdentifier = new PureFunctionIdentifier(compiler, defFinder); pureFunctionIdentifier.process(externs, root); if (reportPath != null) { try { Files.write(pureFunctionIdentifier.getDebugReport(), new File(reportPath), UTF_8); } catch (IOException e) { throw new RuntimeException(e); } } } } /** A driver that will run even when J2CL is enabled. */ static class DriverInJ2cl extends Driver { DriverInJ2cl(AbstractCompiler compiler, String reportPath) { super(compiler, reportPath); checkJ2cl = false; } } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy