com.google.javascript.jscomp.SymbolTable Maven / Gradle / Ivy
Show all versions of com.liferay.frontend.js.minifier
/*
* Copyright 2011 The Closure Compiler Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.google.javascript.jscomp;
import static com.google.common.base.Preconditions.checkNotNull;
import static com.google.common.base.Preconditions.checkState;
import com.google.common.base.Preconditions;
import com.google.common.base.Predicates;
import com.google.common.collect.HashBasedTable;
import com.google.common.collect.ImmutableList;
import com.google.common.collect.ImmutableMap;
import com.google.common.collect.Iterables;
import com.google.common.collect.Ordering;
import com.google.common.collect.Table;
import com.google.javascript.jscomp.parsing.parser.util.format.SimpleFormat;
import com.google.javascript.rhino.JSDocInfo;
import com.google.javascript.rhino.JSDocInfo.Marker;
import com.google.javascript.rhino.JSDocInfo.Visibility;
import com.google.javascript.rhino.Node;
import com.google.javascript.rhino.SourcePosition;
import com.google.javascript.rhino.StaticRef;
import com.google.javascript.rhino.StaticScope;
import com.google.javascript.rhino.StaticSlot;
import com.google.javascript.rhino.StaticSourceFile;
import com.google.javascript.rhino.StaticSymbolTable;
import com.google.javascript.rhino.jstype.EnumType;
import com.google.javascript.rhino.jstype.FunctionType;
import com.google.javascript.rhino.jstype.JSType;
import com.google.javascript.rhino.jstype.JSTypeNative;
import com.google.javascript.rhino.jstype.JSTypeRegistry;
import com.google.javascript.rhino.jstype.ObjectType;
import com.google.javascript.rhino.jstype.SimpleReference;
import com.google.javascript.rhino.jstype.SimpleSlot;
import com.google.javascript.rhino.jstype.StaticTypedScope;
import com.google.javascript.rhino.jstype.StaticTypedSlot;
import com.google.javascript.rhino.jstype.UnionType;
import java.util.ArrayList;
import java.util.Collection;
import java.util.Collections;
import java.util.IdentityHashMap;
import java.util.LinkedHashMap;
import java.util.List;
import java.util.Map;
import java.util.Objects;
import java.util.TreeSet;
import java.util.logging.Level;
import java.util.logging.Logger;
import javax.annotation.Nullable;
/**
* A symbol table for people that want to use Closure Compiler as an indexer.
*
* Contains an index of all the symbols in the code within a compilation
* job. The API is designed for people who want to visit all the symbols, rather
* than people who want to lookup a specific symbol by a certain key.
*
* We can use this to combine different types of symbol tables. For example,
* one class might have a {@code StaticSymbolTable} of all variable references,
* and another class might have a {@code StaticSymbolTable} of all type names
* in JSDoc comments. This class allows you to combine them into a unified
* index.
*
* Most passes build their own "partial" symbol table that implements the same
* interface (StaticSymbolTable, StaticSlot, and friends). Individual compiler
* passes usually need more or less metadata about the certainty of symbol
* information. Building a complete symbol table with all the necessary metadata
* for all passes would be too slow. However, as long as these "partial" symbol
* tables implement the proper interfaces, we should be able to add them to this
* symbol table to make it more complete.
*
* If clients want fast lookup, they should build their own wrapper around
* this symbol table that indexes symbols or references by the desired lookup
* key.
*
* By design, when this symbol table creates symbols for types, it tries
* to mimic the symbol table you would get in an OO language. For example,
* the "type Foo" and "the constructor that creates objects of type Foo"
* are the same symbol. The types of "Foo.prototype" and "new Foo()" also
* have the same symbol. Although JSCompiler internally treats these as
* distinct symbols, we assume that most clients will not care about
* the distinction.
*
* @see #addSymbolsFrom For more information on how to write plugins for this
* symbol table.
*
* @author [email protected] (Nick Santos)
*/
public final class SymbolTable {
private static final Logger logger =
Logger.getLogger(SymbolTable.class.getName());
/**
* The name we use for the JavaScript built-in Global object. It's
* anonymous in JavaScript, so we have to give it an invalid identifier
* to avoid conflicts with user-defined property names.
*/
public static final String GLOBAL_THIS = "*global*";
/**
* All symbols in the program, uniquely identified by the node where
* they're declared and their name.
*/
private final Table symbols = HashBasedTable.create();
/**
* All syntactic scopes in the program, uniquely identified by the node where
* they're declared.
*/
private final Map scopes = new LinkedHashMap<>();
/**
* All Nodes with JSDocInfo in the program.
*/
private final List docInfos = new ArrayList<>();
private SymbolScope globalScope = null;
private final AbstractCompiler compiler;
private final JSTypeRegistry registry;
/**
* Clients should get a symbol table by asking the compiler at the end
* of a compilation job.
*/
SymbolTable(AbstractCompiler compiler, JSTypeRegistry registry) {
this.compiler = compiler;
this.registry = registry;
}
public Iterable getReferences(Symbol symbol) {
return Collections.unmodifiableCollection(symbol.references.values());
}
public ImmutableList getReferenceList(Symbol symbol) {
return ImmutableList.copyOf(symbol.references.values());
}
public ImmutableList getAllSymbols() {
return ImmutableList.copyOf(symbols.values());
}
/**
* Get the symbols in their natural ordering.
* Always returns a mutable list.
*/
public List getAllSymbolsSorted() {
List sortedSymbols = getNaturalSymbolOrdering().sortedCopy(symbols.values());
return sortedSymbols;
}
/**
* Gets the 'natural' ordering of symbols.
*
* Right now, we only guarantee that symbols in the global scope will come
* before symbols in local scopes. After that, the order is deterministic but
* undefined.
*/
public Ordering getNaturalSymbolOrdering() {
return symbolOrdering;
}
public SymbolScope getScope(Symbol slot) {
return slot.scope;
}
public Collection getAllJSDocInfoNodes() {
return Collections.unmodifiableList(docInfos);
}
/**
* Declare a symbol after the main symbol table was constructed.
* Throws an exception if you try to declare a symbol twice.
*/
public Symbol declareInferredSymbol(
SymbolScope scope, String name, Node declNode) {
return declareSymbol(name, null, true, scope, declNode, null);
}
/**
* Gets the scope that contains the given node.
* If {@code n} is a function name, we return the scope that contains the
* function, not the function itself.
*/
public SymbolScope getEnclosingScope(Node n) {
Node current = n.getParent();
if (n.isName() &&
n.getParent().isFunction()) {
current = current.getParent();
}
for (; current != null; current = current.getParent()) {
if (scopes.containsKey(current)) {
return scopes.get(current);
}
}
return null;
}
/**
* If {@code sym} is a function, try to find a Symbol for
* a parameter with the given name.
*
* Returns null if we couldn't find one.
*
* Notice that this just makes a best effort, and may not be able
* to find parameters for non-conventional function definitions.
* For example, we would not be able to find "y" in this code:
*
* var x = x() ? function(y) {} : function(y) {};
*
*/
public Symbol getParameterInFunction(Symbol sym, String paramName) {
SymbolScope scope = getScopeInFunction(sym);
if (scope != null) {
Symbol param = scope.getSlot(paramName);
if (param != null && param.scope == scope) {
return param;
}
}
return null;
}
private SymbolScope getScopeInFunction(Symbol sym) {
FunctionType type = sym.getFunctionType();
if (type == null) {
return null;
}
Node functionNode = type.getSource();
if (functionNode == null) {
return null;
}
return scopes.get(functionNode);
}
/**
* All local scopes are associated with a function, and some functions
* are associated with a symbol. Returns the symbol associated with the given
* scope.
*/
public Symbol getSymbolForScope(SymbolScope scope) {
if (scope.getSymbolForScope() == null) {
scope.setSymbolForScope(findSymbolForScope(scope));
}
return scope.getSymbolForScope();
}
/**
* Find the symbol associated with the given scope.
* Notice that we won't always be able to figure out this association
* dynamically, so sometimes we'll just create the association when we
* create the scope.
*/
private Symbol findSymbolForScope(SymbolScope scope) {
Node rootNode = scope.getRootNode();
if (rootNode.getParent() == null) {
return globalScope.getSlot(GLOBAL_THIS);
}
if (!rootNode.isFunction()) {
return null;
}
String name = NodeUtil.getBestLValueName(
NodeUtil.getBestLValue(rootNode));
return name == null ? null : scope.getParentScope().getQualifiedSlot(name);
}
/**
* Get all symbols associated with the type of the given symbol.
*
* For example, given a variable x declared as
* /* @type {Array|Date} /
* var x = f();
* this will return the constructors for Array and Date.
*/
public Iterable getAllSymbolsForTypeOf(Symbol sym) {
return getAllSymbolsForType(getType(sym));
}
/**
* Returns the global scope.
*/
public SymbolScope getGlobalScope() {
return globalScope;
}
/**
* Gets the symbol for the given constructor or interface.
*/
public Symbol getSymbolDeclaredBy(FunctionType fn) {
checkState(fn.isConstructor() || fn.isInterface());
ObjectType instanceType = fn.getInstanceType();
return getSymbolForName(fn.getSource(), instanceType.getReferenceName());
}
/**
* Gets the symbol for the given enum.
*/
public Symbol getSymbolDeclaredBy(EnumType enumType) {
return getSymbolForName(null,
enumType.getElementsType().getReferenceName());
}
/**
* Gets the symbol for the prototype if this is the symbol for a constructor
* or interface.
*/
public Symbol getSymbolForInstancesOf(Symbol sym) {
FunctionType fn = sym.getFunctionType();
if (fn != null && fn.isNominalConstructor()) {
return getSymbolForInstancesOf(fn);
}
return null;
}
/**
* Gets the symbol for the prototype of the given constructor or interface.
*/
public Symbol getSymbolForInstancesOf(FunctionType fn) {
checkState(fn.isConstructor() || fn.isInterface());
ObjectType pType = fn.getPrototype();
return getSymbolForName(fn.getSource(), pType.getReferenceName());
}
private Symbol getSymbolForName(Node source, String name) {
if (name == null || globalScope == null) {
return null;
}
SymbolScope scope = source == null ?
globalScope : getEnclosingScope(source);
// scope will sometimes be null if one of the type-stripping passes
// was run, and the symbol isn't in the AST anymore.
return scope == null ? null : scope.getQualifiedSlot(name);
}
/**
* Gets all symbols associated with the given type.
* For union types, this may be multiple symbols.
* For instance types, this will return the constructor of
* that instance.
*/
public List getAllSymbolsForType(JSType type) {
if (type == null) {
return ImmutableList.of();
}
UnionType unionType = type.toMaybeUnionType();
if (unionType != null) {
List result = new ArrayList<>(2);
for (JSType alt : unionType.getAlternates()) {
// Our type system never has nested unions.
Symbol altSym = getSymbolForTypeHelper(alt, true);
if (altSym != null) {
result.add(altSym);
}
}
return result;
}
Symbol result = getSymbolForTypeHelper(type, true);
return result == null
? ImmutableList.of() : ImmutableList.of(result);
}
/**
* Gets all symbols associated with the given type.
* If there is more that one symbol associated with the given type,
* return null.
* @param type The type.
* @param linkToCtor If true, we should link instance types back
* to their constructor function. If false, we should link
* instance types back to their prototype. See the comments
* at the top of this file for more information on how
* our internal type system is more granular than Symbols.
*/
private Symbol getSymbolForTypeHelper(JSType type, boolean linkToCtor) {
if (type == null) {
return null;
}
if (type.isGlobalThisType()) {
return globalScope.getSlot(GLOBAL_THIS);
} else if (type.isNominalConstructor()) {
return linkToCtor ?
globalScope.getSlot("Function") :
getSymbolDeclaredBy(type.toMaybeFunctionType());
} else if (type.isFunctionPrototypeType()) {
FunctionType ownerFn = ((ObjectType) type).getOwnerFunction();
if (!ownerFn.isConstructor() && !ownerFn.isInterface()) {
return null;
}
return linkToCtor ?
getSymbolDeclaredBy(ownerFn) :
getSymbolForInstancesOf(ownerFn);
} else if (type.isInstanceType()) {
FunctionType ownerFn = ((ObjectType) type).getConstructor();
return linkToCtor ?
getSymbolDeclaredBy(ownerFn) :
getSymbolForInstancesOf(ownerFn);
} else if (type.isFunctionType()) {
return linkToCtor ?
globalScope.getSlot("Function") :
globalScope.getQualifiedSlot("Function.prototype");
} else if (type.autoboxesTo() != null) {
return getSymbolForTypeHelper(type.autoboxesTo(), linkToCtor);
} else {
return null;
}
}
@SuppressWarnings("unused")
public String toDebugString() {
StringBuilder builder = new StringBuilder();
for (Symbol symbol : getAllSymbols()) {
toDebugString(builder, symbol);
}
return builder.toString();
}
private void toDebugString(StringBuilder builder, Symbol symbol) {
SymbolScope scope = symbol.scope;
if (scope.isGlobalScope()) {
builder.append(
SimpleFormat.format("'%s' : in global scope:\n", symbol.getName()));
} else if (scope.getRootNode() != null) {
builder.append(
SimpleFormat.format("'%s' : in scope %s:%d\n",
symbol.getName(),
scope.getRootNode().getSourceFileName(),
scope.getRootNode().getLineno()));
} else if (scope.getSymbolForScope() != null) {
builder.append(
SimpleFormat.format("'%s' : in scope %s\n", symbol.getName(),
scope.getSymbolForScope().getName()));
} else {
builder.append(
SimpleFormat.format("'%s' : in unknown scope\n", symbol.getName()));
}
int refCount = 0;
for (Reference ref : getReferences(symbol)) {
builder.append(
SimpleFormat.format(" Ref %d: %s:%d\n",
refCount,
ref.getNode().getSourceFileName(),
ref.getNode().getLineno()));
refCount++;
}
}
/**
* Make sure all the given scopes in {@code otherSymbolTable}
* are in this symbol table.
*/
void addScopes(Collection scopes) {
for (S scope : scopes) {
createScopeFrom(scope);
}
}
/** Finds all the scopes and adds them to this symbol table. */
void findScopes(Node externs, Node root) {
NodeTraversal t =
new NodeTraversal(
compiler,
new NodeTraversal.AbstractScopedCallback() {
@Override
public void enterScope(NodeTraversal t) {
createScopeFrom(t.getScope());
}
@Override
public void visit(NodeTraversal t, Node n, Node p) {}
},
SyntacticScopeCreator.makeUntyped(compiler));
t.traverseRoots(externs, root);
}
/** Gets all the scopes in this symbol table. */
public Collection getAllScopes() {
return Collections.unmodifiableCollection(scopes.values());
}
/**
* Finds anonymous functions in local scopes, and gives them names
* and symbols. They will show up as local variables with names
* "function%0", "function%1", etc.
*/
public void addAnonymousFunctions() {
TreeSet scopes = new TreeSet<>(lexicalScopeOrdering);
for (SymbolScope scope : getAllScopes()) {
if (scope.isLexicalScope()) {
scopes.add(scope);
}
}
for (SymbolScope scope : scopes) {
addAnonymousFunctionsInScope(scope);
}
}
private void addAnonymousFunctionsInScope(SymbolScope scope) {
Symbol sym = getSymbolForScope(scope);
if (sym == null) {
// JSCompiler has no symbol for this scope. Check to see if it's a
// local function. If it is, give it a name.
if (scope.isLexicalScope() &&
!scope.isGlobalScope() &&
scope.getRootNode() != null &&
!scope.getRootNode().isFromExterns() &&
scope.getParentScope() != null) {
SymbolScope parent = scope.getParentScope();
int count = parent.innerAnonFunctionsWithNames++;
String innerName = "function%" + count;
scope.setSymbolForScope(
declareInferredSymbol(
parent, innerName, scope.getRootNode()));
}
}
}
/**
* Make sure all the symbols and references in {@code otherSymbolTable}
* are in this symbol table.
*
* Uniqueness of symbols and references is determined by the associated
* node.
*
* If multiple symbol tables are mixed in, we do not check for consistency
* between symbol tables. The first symbol we see dictates the type
* information for that symbol.
*/
void addSymbolsFrom(StaticSymbolTable otherSymbolTable) {
for (S otherSymbol : otherSymbolTable.getAllSymbols()) {
String name = otherSymbol.getName();
SymbolScope myScope = createScopeFrom(
otherSymbolTable.getScope(otherSymbol));
StaticRef decl = findBestDeclToAdd(otherSymbolTable, otherSymbol);
Symbol mySymbol = null;
if (decl != null) {
Node declNode = decl.getNode();
// If we have a declaration node, we can ensure the symbol is declared.
mySymbol = isAnySymbolDeclared(name, declNode, myScope);
if (mySymbol == null) {
mySymbol = copySymbolTo(otherSymbol, declNode, myScope);
}
} else {
// If we don't have a declaration node, we won't be able to declare
// a symbol in this symbol table. But we may be able to salvage the
// references if we already have a symbol.
mySymbol = myScope.getOwnSlot(name);
}
if (mySymbol != null) {
for (R otherRef : otherSymbolTable.getReferences(otherSymbol)) {
if (isGoodRefToAdd(otherRef)) {
mySymbol.defineReferenceAt(otherRef.getNode());
}
}
}
}
}
/**
* Checks if any symbol is already declared at the given node and scope
* for the given name. If so, returns it.
*/
private Symbol isAnySymbolDeclared(
String name, Node declNode, SymbolScope scope) {
Symbol sym = symbols.get(declNode, name);
if (sym == null) {
// Sometimes, our symbol tables will disagree on where the
// declaration node should be. In the rare case where this happens,
// trust the existing symbol.
// See SymbolTableTest#testDeclarationDisagreement.
return scope.ownSymbols.get(name);
}
return sym;
}
/** Helper for addSymbolsFrom, to determine the best declaration spot. */
private
StaticRef findBestDeclToAdd(StaticSymbolTable otherSymbolTable, S slot) {
StaticRef decl = slot.getDeclaration();
if (isGoodRefToAdd(decl)) {
return decl;
}
for (R ref : otherSymbolTable.getReferences(slot)) {
if (isGoodRefToAdd(ref)) {
return ref;
}
}
return null;
}
/**
* Helper for addSymbolsFrom, to determine whether a reference is
* acceptable. A reference must be in the normal source tree.
*/
private boolean isGoodRefToAdd(@Nullable StaticRef ref) {
return ref != null && ref.getNode() != null
&& ref.getNode().getStaticSourceFile() != null
&& !Compiler.SYNTHETIC_EXTERNS.equals(
ref.getNode().getStaticSourceFile().getName());
}
private Symbol copySymbolTo(StaticSlot sym, SymbolScope scope) {
return copySymbolTo(sym, sym.getDeclaration().getNode(), scope);
}
private Symbol copySymbolTo(
StaticSlot sym, Node declNode, SymbolScope scope) {
// All symbols must have declaration nodes.
checkNotNull(declNode);
return declareSymbol(
sym.getName(), getType(sym), isTypeInferred(sym), scope, declNode,
sym.getJSDocInfo());
}
/**
* Replace all \ with \\ so there will be no \0 or \n in the string, then replace all '\0'
* (NULL) with \0 and all '\n' (newline) with \n.
*/
private static String sanitizeSpecialChars(String s) {
return s.replace("\\", "\\\\").replace("\0", "\\0").replace("\n", "\\n");
}
private Symbol addSymbol(
String name, JSType type, boolean inferred, SymbolScope scope,
Node declNode) {
name = sanitizeSpecialChars(name);
Symbol symbol = new Symbol(name, type, inferred, scope);
Symbol replacedSymbol = symbols.put(declNode, name, symbol);
Preconditions.checkState(
replacedSymbol == null,
"Found duplicate symbol %s in global index. Type %s", name, type);
replacedSymbol = scope.ownSymbols.put(name, symbol);
Preconditions.checkState(
replacedSymbol == null,
"Found duplicate symbol %s in its scope. Type %s", name, type);
return symbol;
}
private Symbol declareSymbol(
String name, JSType type, boolean inferred,
SymbolScope scope, Node declNode, JSDocInfo info) {
Symbol symbol = addSymbol(name, type, inferred, scope, declNode);
symbol.setJSDocInfo(info);
symbol.setDeclaration(symbol.defineReferenceAt(declNode));
return symbol;
}
private void removeSymbol(Symbol s) {
SymbolScope scope = getScope(s);
if (!scope.ownSymbols.remove(s.getName()).equals(s)) {
throw new IllegalStateException("Symbol not found in scope " + s);
}
if (!symbols.remove(s.getDeclaration().getNode(), s.getName()).equals(s)) {
throw new IllegalStateException("Symbol not found in table " + s);
}
// If s declares a property scope then all child symbols should be removed as well.
// For example:
// let foo = {a: 1, b: 2};
// foo declares property scope with a and b as its children. When removing foo we should also
// remove a and b.
if (s.propertyScope != null && s.propertyScope.getSymbolForScope().equals(s)) {
// Need to iterate over copy of values list because removeSymbol() will change the map
// and we'll get ConcurrentModificationException
for (Symbol childSymbol : ImmutableList.copyOf(s.propertyScope.ownSymbols.values())) {
removeSymbol(childSymbol);
}
scopes.remove(s.getDeclarationNode());
}
}
/**
* Not all symbol tables record references to "namespace" objects.
* For example, if you have:
* goog.dom.DomHelper = function() {};
* The symbol table may not record that as a reference to "goog.dom",
* because that would be redundant.
*/
void fillNamespaceReferences() {
for (Symbol symbol : getAllSymbols()) {
String qName = symbol.getName();
int rootIndex = qName.indexOf('.');
if (rootIndex == -1) {
continue;
}
Symbol root = symbol.scope.getQualifiedSlot(
qName.substring(0, rootIndex));
if (root == null) {
// In theory, this should never happen, but we fail quietly anyway
// just to be safe.
continue;
}
for (Reference ref : getReferences(symbol)) {
Node currentNode = ref.getNode();
if (!currentNode.isQualifiedName()) {
continue;
}
while (currentNode.isGetProp()) {
currentNode = currentNode.getFirstChild();
String name = currentNode.getQualifiedName();
if (name != null) {
Symbol namespace =
isAnySymbolDeclared(name, currentNode, root.scope);
if (namespace == null) {
namespace = root.scope.getQualifiedSlot(name);
}
if (namespace == null && root.scope.isGlobalScope()) {
namespace = declareSymbol(name,
registry.getNativeType(JSTypeNative.UNKNOWN_TYPE),
true,
root.scope,
currentNode,
null /* JsDoc info */);
}
if (namespace != null) {
namespace.defineReferenceAt(currentNode);
}
}
}
}
}
}
@SuppressWarnings("ReferenceEquality")
void fillPropertyScopes() {
// Collect all object symbols.
// All symbols that came from goog.module are collected separately because they will have to
// be processed first. See explanation below.
List types = new ArrayList<>();
List googModuleExportTypes = new ArrayList<>();
// Create a property scope for each named type and each anonymous object,
// and populate it with that object's properties.
//
// We notably don't want to create a property scope for 'x' in
// var x = new Foo();
// where x is just an instance of another type.
for (Symbol sym : getAllSymbols()) {
if (needsPropertyScope(sym)) {
if (sym.getName().startsWith("module$exports")) {
googModuleExportTypes.add(sym);
} else {
types.add(sym);
}
}
}
// The order of operations here is significant.
//
// When we add properties to Foo, we'll remove Foo.prototype from
// the symbol table and replace it with a fresh symbol in Foo's
// property scope. So the symbol for Foo.prototype in
// {@code instances} will be stale.
//
// To prevent this, we sort the list by the reverse of the
// default symbol order, which will do the right thing. Essentially going from leaf symbols
// to roots.
//
// Also sorting all symbols is not enough. There is a tricky case with symbols declared in
// goog.module that also has declareLegacyNamespace. Example:
//
// goog.module('x.y');
// goog.module.declareLegacyNamespace();
// exports.foo = function() {};
//
// Symbols are following:
// x.y
// x
// module$exports$x$y.foo
// module$exports$x$y
//
// If we order them in reverse lexicographical order symbols x.y and x will be processed before
// foo. This is wrong as foo is in fact property of x.y namespace. So we must process all
// module$exports$ symbols first. That's why we collected them in a separate list.
//
Collections.sort(types, getNaturalSymbolOrdering().reverse());
Collections.sort(googModuleExportTypes, getNaturalSymbolOrdering().reverse());
Iterable allTypes = Iterables.concat(googModuleExportTypes, types);
// If you though we are done with tricky case - you were wrong. There is another one!
// The problem with the same property scope appearing several times. For example when using
// aliases:
//
// const OBJ = {one: 1};
// function() {
// const alias = OBJ;
// console.log(alias.one);
// }
//
// In this case both 'OBJ' and 'alias' are considered property scopes and are candidates for
// processing even though they share the same "type" which is "{one: 1}". As they share the same
// type we need to process only one of them. To do that we build a "type => root symbol" map.
// In this case the map will be {one: 1} => OBJ. Using this map will skip 'alias' when creating
// property scopes.
//
// NOTE: we are using IdentityHashMap to compare types using == because we need to find symbols
// that point to the exact same type instance.
Map symbolThatDeclaresType = new IdentityHashMap<>();
for (Symbol s : allTypes) {
// Symbols are sorted in reverse order so that those with more outer scope will come later in
// the list, and therefore override those set by aliases in more inner scope. The sorting
// happens few lines above.
symbolThatDeclaresType.put(s.getType(), s);
}
for (Symbol s : allTypes) {
// Create property scopes only based on "root" symbols for each type to handle aliases.
if (s.getType() == null || symbolThatDeclaresType.get(s.getType()).equals(s)) {
createPropertyScopeFor(s);
}
}
// Now we need to set the new property scope symbol to all aliases.
for (Symbol s : allTypes) {
if (s.getType() != null) {
s.propertyScope = symbolThatDeclaresType.get(s.getType()).getPropertyScope();
}
}
pruneOrphanedNames();
}
private boolean needsPropertyScope(Symbol sym) {
ObjectType type = ObjectType.cast(getType(sym));
if (type == null) {
return false;
}
// Anonymous objects
if (type.getReferenceName() == null) {
return true;
}
// Constructors/prototypes
// Should this check for
// (type.isNominalConstructor() || type.isFunctionPrototypeType())
// ?
if (sym.getName().equals(type.getReferenceName())) {
return true;
}
// Enums
return type.isEnumType()
&& sym.getName().equals(type.toMaybeEnumType().getElementsType().getReferenceName());
}
/**
* Removes symbols where the namespace they're on has been removed.
*
* After filling property scopes, we may have two symbols represented
* in different ways. For example, "A.superClass_.foo" and B.prototype.foo".
*
* This resolves that ambiguity by pruning the duplicates.
* If we have a lexical symbol with a constructor in its property
* chain, then we assume there's also a property path to this symbol.
* In other words, we can remove "A.superClass_.foo" because it's rooted
* at "A", and we built a property scope for "A" above.
*/
void pruneOrphanedNames() {
nextSymbol:
for (Symbol s : getAllSymbols()) {
if (s.isProperty()) {
continue;
}
String currentName = s.getName();
int dot = -1;
while (-1 != (dot = currentName.lastIndexOf('.'))) {
currentName = currentName.substring(0, dot);
Symbol owner = s.scope.getQualifiedSlot(currentName);
if (owner != null
&& getType(owner) != null
&& (getType(owner).isNominalConstructor()
|| getType(owner).isFunctionPrototypeType()
|| getType(owner).isEnumType())) {
removeSymbol(s);
continue nextSymbol;
}
}
}
}
/**
* Create symbols and references for all properties of types in
* this symbol table.
*
* This gets a little bit tricky, because of the way this symbol table
* conflates "type Foo" and "the constructor of type Foo". So if you
* have:
*
*
* SymbolTable symbolTable = for("var x = new Foo();");
* Symbol x = symbolTable.getGlobalScope().getSlot("x");
* Symbol type = symbolTable.getAllSymbolsForType(getType(x)).get(0);
*
*
* Then type.getPropertyScope() will have the properties of the
* constructor "Foo". To get the properties of instances of "Foo",
* you will need to call:
*
*
* Symbol instance = symbolTable.getSymbolForInstancesOf(type);
*
*
* As described at the top of this file, notice that "new Foo()" and
* "Foo.prototype" are represented by the same symbol.
*/
void fillPropertySymbols(Node externs, Node root) {
(new PropertyRefCollector()).process(externs, root);
}
/** Index JSDocInfo. */
void fillJSDocInfo(Node externs, Node root) {
NodeTraversal t =
new NodeTraversal(
compiler,
new JSDocInfoCollector(compiler.getTypeRegistry()),
SyntacticScopeCreator.makeUntyped(compiler));
t.traverseRoots(externs, root);
// Create references to parameters in the JSDoc.
for (Symbol sym : getAllSymbols()) {
JSDocInfo info = sym.getJSDocInfo();
if (info == null) {
continue;
}
for (Marker marker : info.getMarkers()) {
SourcePosition pos = marker.getNameNode();
if (pos == null) {
continue;
}
Node paramNode = pos.getItem();
String name = paramNode.getString();
Symbol param = getParameterInFunction(sym, name);
if (param == null) {
// There is no reference to this parameter in the actual JavaScript
// code, so we'll try to create a special JsDoc-only symbol in
// a JsDoc-only scope.
SourcePosition typePos = marker.getType();
JSType type = null;
if (typePos != null) {
type = typePos.getItem().getJSType();
}
if (sym.docScope == null) {
sym.docScope = new SymbolScope(null /* root */,
null /* parent scope */, null /* type of this */, sym);
}
// Check to make sure there's no existing symbol. In theory, this
// should never happen, but we check anyway and fail silently
// if our assumptions are wrong. (We do not want to put the symbol
// table into an invalid state).
Symbol existingSymbol =
isAnySymbolDeclared(name, paramNode, sym.docScope);
if (existingSymbol == null) {
declareSymbol(name, type, type == null, sym.docScope, paramNode,
null /* info */);
}
} else {
param.defineReferenceAt(paramNode);
}
}
}
}
/** Records the visibility of each symbol. */
void fillSymbolVisibility(Node externs, Node root) {
CollectFileOverviewVisibility collectPass =
new CollectFileOverviewVisibility(compiler);
collectPass.process(externs, root);
ImmutableMap visibilityMap =
collectPass.getFileOverviewVisibilityMap();
NodeTraversal t =
new NodeTraversal(
compiler,
new VisibilityCollector(visibilityMap, compiler.getCodingConvention()),
SyntacticScopeCreator.makeUntyped(compiler));
t.traverseRoots(externs, root);
}
/**
* Build a property scope for the given symbol. Any properties of the symbol will be added to the
* property scope.
*
* It is important that property scopes are created in order from the leaves up to the root, so
* this should only be called from #fillPropertyScopes. If you try to create a property scope for
* a parent before its leaf, then the leaf will get cut and re-added to the parent property scope,
* and weird things will happen.
*/
// This function uses == to compare types to be exact same instances.
@SuppressWarnings("ReferenceEquality")
private void createPropertyScopeFor(Symbol s) {
// In order to build a property scope for s, we will need to build
// a property scope for all its implicit prototypes first. This means
// that sometimes we will already have built its property scope
// for a previous symbol.
if (s.propertyScope != null) {
return;
}
SymbolScope parentPropertyScope = null;
ObjectType type = getType(s) == null ? null : getType(s).toObjectType();
if (type == null) {
return;
}
ObjectType proto = type.getParentScope();
if (proto != null && proto != type && proto.getConstructor() != null) {
Symbol parentSymbol = getSymbolForInstancesOf(proto.getConstructor());
if (parentSymbol != null) {
createPropertyScopeFor(parentSymbol);
parentPropertyScope = parentSymbol.getPropertyScope();
}
}
ObjectType instanceType = type;
Iterable propNames = type.getOwnPropertyNames();
if (instanceType.isFunctionPrototypeType()) {
// Guard against modifying foo.prototype when foo is a regular (non-constructor) function.
if (instanceType.getOwnerFunction().hasInstanceType()) {
// Merge the properties of "Foo.prototype" and "new Foo()" together.
instanceType = instanceType.getOwnerFunction().getInstanceType();
propNames = Iterables.concat(propNames, instanceType.getOwnPropertyNames());
}
}
s.setPropertyScope(new SymbolScope(null, parentPropertyScope, type, s));
for (String propName : propNames) {
StaticSlot newProp = instanceType.getSlot(propName);
if (newProp.getDeclaration() == null) {
// Skip properties without declarations. We won't know how to index
// them, because we index things by node.
continue;
}
// We have symbol tables that do not do type analysis. They just try
// to build a complete index of all objects in the program. So we might
// already have symbols for things like "Foo.bar". If this happens,
// throw out the old symbol and use the type-based symbol.
Symbol oldProp = symbols.get(newProp.getDeclaration().getNode(),
s.getName() + "." + propName);
// If we've already have an entry in the table for this symbol,
// then skip it. This should only happen if we screwed up,
// and declared multiple distinct properties with the same name
// at the same node. We bail out here to be safe.
if (symbols.get(newProp.getDeclaration().getNode(),
newProp.getName()) != null) {
if (logger.isLoggable(Level.FINE)) {
logger.fine("Found duplicate symbol " + newProp);
}
continue;
}
Symbol newSym = copySymbolTo(newProp, s.propertyScope);
if (oldProp != null) {
if (newSym.getJSDocInfo() == null) {
newSym.setJSDocInfo(oldProp.getJSDocInfo());
}
newSym.setPropertyScope(oldProp.propertyScope);
for (Reference ref : oldProp.references.values()) {
newSym.defineReferenceAt(ref.getNode());
}
// All references/scopes from oldProp were updated to use the newProp. Time to remove
// oldProp.
removeSymbol(oldProp);
}
}
}
/**
* Fill in references to "this" variables.
*/
void fillThisReferences(Node externs, Node root) {
(new ThisRefCollector()).process(externs, root);
}
private boolean isSymbolGeneratedAndShouldNotBeIndexed(Symbol symbol) {
// Destructuring pass introduces new variables:
//
// let {a, b} = foo;
//
// is transpiled to
//
// let destructuring$var0 = foo;
// let a = destructuring$var0.a;
// let b = destructuring$var0.b;
//
// destructuring$var0 should not get into index as it's invisible to a user.
return symbol.getName().contains(Es6RewriteDestructuring.DESTRUCTURING_TEMP_VAR);
}
/**
* Removes various generated symbols that are invisible to users and pollute or mess up index.
* Jscompiler does transpilations that might introduce extra nodes/symbols. Most of
* these symbols should not get into final SymbolTable because SymbolTable should contain only
* symbols that correspond to a symbol in original source code (before transpilation).
*/
void removeGeneratedSymbols() {
// Need to iterate over copy of values list because removeSymbol() will change the map
// and we'll get ConcurrentModificationException
for (Symbol symbol : ImmutableList.copyOf(symbols.values())) {
if (isSymbolGeneratedAndShouldNotBeIndexed(symbol)) {
removeSymbol(symbol);
}
}
}
/**
* Given a scope from another symbol table, returns the {@code SymbolScope}
* rooted at the same node. Creates one if it doesn't exist yet.
*/
private SymbolScope createScopeFrom(StaticScope otherScope) {
Node otherScopeRoot = otherScope.getRootNode();
SymbolScope myScope = scopes.get(otherScopeRoot);
if (myScope == null) {
StaticScope otherScopeParent = otherScope.getParentScope();
// If otherScope is a global scope, and we already have a global scope,
// then something has gone seriously wrong.
//
// Not all symbol tables are rooted at the same global node, and
// we do not want to mix and match symbol tables that are rooted
// differently.
if (otherScopeParent == null) {
// The global scope must be created before any local scopes.
checkState(globalScope == null, "Global scopes found at different roots");
}
myScope = new SymbolScope(
otherScopeRoot,
otherScopeParent == null ? null : createScopeFrom(otherScopeParent),
getTypeOfThis(otherScope),
null);
scopes.put(otherScopeRoot, myScope);
if (myScope.isGlobalScope()) {
globalScope = myScope;
}
}
return myScope;
}
/** A symbol-table entry */
public static final class Symbol extends SimpleSlot {
// Use a linked hash map, so that the results are deterministic
// (and so the declaration always comes first).
private final Map references = new LinkedHashMap<>();
private final SymbolScope scope;
private SymbolScope propertyScope = null;
private Reference declaration = null;
private JSDocInfo docInfo = null;
/**
* Stored separately from {@link #docInfo}, because the visibility stored
* in JSDocInfo is not necessarily authoritative.
*/
@Nullable private Visibility visibility = null;
// A scope for symbols that are only documented in JSDoc.
private SymbolScope docScope = null;
Symbol(String name, JSType type, boolean inferred, SymbolScope scope) {
super(name, type, inferred);
this.scope = scope;
}
@Override
public boolean equals(Object o) {
if (!(o instanceof Symbol)) {
return false;
}
Symbol other = (Symbol) o;
return isTypeInferred() == other.isTypeInferred()
&& Objects.equals(getName(), other.getName())
&& Objects.equals(getType(), other.getType())
&& Objects.equals(scope, other.scope);
}
@Override
public int hashCode() {
return Objects.hash(Boolean.valueOf(isTypeInferred()), getName(), getType(), scope);
}
@Override
public Reference getDeclaration() {
return declaration;
}
public FunctionType getFunctionType() {
return JSType.toMaybeFunctionType(getType());
}
public Reference defineReferenceAt(Node n) {
Reference result = references.get(n);
if (result == null) {
result = new Reference(this, n);
references.put(n, result);
}
return result;
}
/** Sets the declaration node. May only be called once. */
void setDeclaration(Reference ref) {
checkState(this.declaration == null);
this.declaration = ref;
}
public Node getDeclarationNode() {
return declaration == null ? null : declaration.getNode();
}
public String getSourceFileName() {
Node n = getDeclarationNode();
return n == null ? null : n.getSourceFileName();
}
public SymbolScope getPropertyScope() {
return propertyScope;
}
void setPropertyScope(SymbolScope scope) {
this.propertyScope = scope;
if (scope != null) {
this.propertyScope.setSymbolForScope(this);
}
}
@Override
public JSDocInfo getJSDocInfo() {
return docInfo;
}
void setJSDocInfo(JSDocInfo info) {
this.docInfo = info;
}
@Nullable public Visibility getVisibility() {
return this.visibility;
}
void setVisibility(Visibility v) {
this.visibility = v;
}
/** Whether this is a property of another variable. */
public boolean isProperty() {
return scope.isPropertyScope();
}
/** Whether this is a variable in a lexical scope. */
public boolean isLexicalVariable() {
return scope.isLexicalScope();
}
/** Whether this is a variable that's only in JSDoc. */
public boolean isDocOnlyParameter() {
return scope.isDocScope();
}
@Override
public String toString() {
Node n = getDeclarationNode();
int lineNo = n == null ? -1 : n.getLineno();
return getName() + "@" + getSourceFileName() + ":" + lineNo;
}
}
/** Reference */
public static final class Reference extends SimpleReference {
Reference(Symbol symbol, Node node) {
super(symbol, node);
}
}
/** Scope of a symbol */
public static final class SymbolScope {
private final Node rootNode;
private final SymbolScope parent;
private final JSType typeOfThis;
private final Map ownSymbols = new LinkedHashMap<>();
private final int scopeDepth;
// The number of inner anonymous functions that we've given names to.
private int innerAnonFunctionsWithNames = 0;
// The symbol associated with a property scope or doc scope.
private Symbol mySymbol;
SymbolScope(
Node rootNode,
@Nullable SymbolScope parent,
JSType typeOfThis,
Symbol mySymbol) {
this.rootNode = rootNode;
this.parent = parent;
this.typeOfThis = typeOfThis;
this.scopeDepth = parent == null ? 0 : (parent.getScopeDepth() + 1);
this.mySymbol = mySymbol;
}
Symbol getSymbolForScope() {
return mySymbol;
}
void setSymbolForScope(Symbol sym) {
this.mySymbol = sym;
}
/** Gets a unique index for the symbol in this scope. */
public int getIndexOfSymbol(Symbol sym) {
return Iterables.indexOf(
ownSymbols.values(), Predicates.equalTo(sym));
}
Node getRootNode() {
return rootNode;
}
public SymbolScope getParentScope() {
return parent;
}
/**
* Get the slot for a fully-qualified name (e.g., "a.b.c") by trying
* to find property scopes at each part of the path.
*/
public Symbol getQualifiedSlot(String name) {
Symbol fullyNamedSym = getSlot(name);
if (fullyNamedSym != null) {
return fullyNamedSym;
}
int dot = name.lastIndexOf('.');
if (dot != -1) {
Symbol owner = getQualifiedSlot(name.substring(0, dot));
if (owner != null && owner.getPropertyScope() != null) {
return owner.getPropertyScope().getSlot(name.substring(dot + 1));
}
}
return null;
}
public Symbol getSlot(String name) {
Symbol own = getOwnSlot(name);
if (own != null) {
return own;
}
Symbol ancestor = parent == null ? null : parent.getSlot(name);
if (ancestor != null) {
return ancestor;
}
return null;
}
Symbol getOwnSlot(String name) {
return ownSymbols.get(name);
}
public JSType getTypeOfThis() {
return typeOfThis;
}
public boolean isGlobalScope() {
return getParentScope() == null && getRootNode() != null;
}
/**
* Returns whether this is a doc scope. A doc scope is a table for symbols
* that are documented solely within a JSDoc comment.
*/
public boolean isDocScope() {
return getRootNode() == null && mySymbol != null &&
mySymbol.docScope == this;
}
public boolean isPropertyScope() {
return getRootNode() == null && !isDocScope();
}
public boolean isLexicalScope() {
return getRootNode() != null;
}
public int getScopeDepth() {
return scopeDepth;
}
@Override
public String toString() {
Node n = getRootNode();
if (n != null) {
return "Scope@" + n.getSourceFileName() + ":" + n.getLineno();
} else {
return "PropertyScope@" + getSymbolForScope();
}
}
}
private class PropertyRefCollector
extends NodeTraversal.AbstractPostOrderCallback
implements CompilerPass {
@Override
public void process(Node externs, Node root) {
NodeTraversal t =
new NodeTraversal(compiler, this, SyntacticScopeCreator.makeUntyped(compiler));
t.traverseRoots(externs, root);
}
private boolean maybeDefineReference(
Node n, String propName, Symbol ownerSymbol) {
// getPropertyScope() will be null in some rare cases where there
// are no extern declarations for built-in types (like Function).
if (ownerSymbol != null && ownerSymbol.getPropertyScope() != null) {
Symbol prop = ownerSymbol.getPropertyScope().getSlot(propName);
if (prop != null) {
prop.defineReferenceAt(n);
return true;
}
}
return false;
}
// Try to find the symbol by its fully qualified name.
private boolean tryDefineLexicalQualifiedNameRef(String name, Node n) {
if (name != null) {
Symbol lexicalSym = getEnclosingScope(n).getQualifiedSlot(name);
if (lexicalSym != null) {
lexicalSym.defineReferenceAt(n);
return true;
}
}
return false;
}
// Try to remove a reference by its fully qualified name.
// If the symbol has no references left, remove it completely.
private void tryRemoveLexicalQualifiedNameRef(String name, Node n) {
if (name != null) {
Symbol lexicalSym = getEnclosingScope(n).getQualifiedSlot(name);
if (lexicalSym != null &&
lexicalSym.isLexicalVariable() &&
lexicalSym.getDeclaration().getNode() == n) {
removeSymbol(lexicalSym);
}
}
}
private boolean maybeDefineTypedReference(
Node n, String propName, JSType owner) {
if (owner.isGlobalThisType()) {
Symbol sym = globalScope.getSlot(propName);
if (sym != null) {
sym.defineReferenceAt(n);
return true;
}
} else if (owner.isNominalConstructor()) {
return maybeDefineReference(
n, propName, getSymbolDeclaredBy(owner.toMaybeFunctionType()));
} else if (owner.isEnumType()) {
return maybeDefineReference(
n, propName, getSymbolDeclaredBy(owner.toMaybeEnumType()));
} else {
boolean defined = false;
for (Symbol ctor : getAllSymbolsForType(owner)) {
if (maybeDefineReference(
n, propName, getSymbolForInstancesOf(ctor))) {
defined = true;
}
}
return defined;
}
return false;
}
@Override
public void visit(NodeTraversal t, Node n, Node parent) {
// There are two ways to define a property reference:
// 1) As a fully qualified lexical symbol (e.g., x.y)
// 2) As a property of another object (e.g., x's y)
// Property definitions should take precedence over lexical
// definitions. e.g., for "a.b", it's more useful to record
// this as "property b of the type of a", than as "symbol a.b".
if (n.isGetProp()) {
JSType owner = n.getFirstChild().getJSType();
if (owner != null) {
boolean defined = maybeDefineTypedReference(
n, n.getLastChild().getString(), owner);
if (defined) {
tryRemoveLexicalQualifiedNameRef(n.getQualifiedName(), n);
return;
}
}
tryDefineLexicalQualifiedNameRef(n.getQualifiedName(), n);
} else if (n.isStringKey()) {
JSType owner = parent.getJSType();
if (owner != null) {
boolean defined =
maybeDefineTypedReference(n, n.getString(), owner);
if (defined) {
tryRemoveLexicalQualifiedNameRef(
NodeUtil.getBestLValueName(n), n);
return;
}
}
tryDefineLexicalQualifiedNameRef(
NodeUtil.getBestLValueName(n), n);
}
}
}
private class ThisRefCollector
extends NodeTraversal.AbstractScopedCallback
implements CompilerPass {
// The 'this' symbols in the current scope chain.
//
// If we don't know how to declare 'this' in a scope chain,
// then null should be on the stack. But this should be a rare
// occurrence. We should strive to always be able to come up
// with some symbol for 'this'.
private final List thisStack = new ArrayList<>();
@Override
public void process(Node externs, Node root) {
NodeTraversal t =
new NodeTraversal(compiler, this, SyntacticScopeCreator.makeUntyped(compiler));
t.traverseRoots(externs, root);
}
@Override
public void enterScope(NodeTraversal t) {
Symbol symbol = null;
if (t.inGlobalScope()) {
// Declare the global this at the first input root.
// This is a bizarre place to put it, but we need some
// location with a real file path (because all symbols
// must have a path).
// Note that root.lastChild.firstChild is the first non-extern input.
Node firstInputRoot = t.getScopeRoot().getLastChild().getFirstChild();
if (firstInputRoot != null) {
symbol = addSymbol(
GLOBAL_THIS,
registry.getNativeType(JSTypeNative.GLOBAL_THIS),
false /* declared */,
globalScope,
firstInputRoot);
symbol.setDeclaration(new Reference(symbol, firstInputRoot));
}
} else {
// Otherwise, declare a "this" property when possible.
Node scopeRoot = t.getScopeRoot();
SymbolScope scope = scopes.get(scopeRoot);
if (NodeUtil.getFunctionBody(scopeRoot).hasChildren()) {
Symbol scopeSymbol = getSymbolForScope(scope);
if (scopeSymbol != null) {
SymbolScope propScope = scopeSymbol.getPropertyScope();
if (propScope != null) {
// If a function is assigned multiple times, we only want
// one addressable "this" symbol.
symbol = propScope.getOwnSlot("this");
if (symbol == null) {
JSType rootType = t.getScopeRoot().getJSType();
FunctionType fnType = rootType == null ? null : rootType.toMaybeFunctionType();
JSType type = fnType == null ? null : fnType.getTypeOfThis();
symbol = addSymbol("this", type, false /* declared */, scope, t.getScopeRoot());
}
}
}
} else {
logger.fine("Skipping empty function: " + scopeRoot);
}
}
thisStack.add(symbol);
}
@Override
public void exitScope(NodeTraversal t) {
thisStack.remove(thisStack.size() - 1);
}
@Override
public void visit(NodeTraversal t, Node n, Node parent) {
if (!n.isThis()) {
return;
}
Symbol symbol = Iterables.getLast(thisStack);
if (symbol != null) {
Reference ref = symbol.defineReferenceAt(n);
if (symbol.getDeclaration() == null) {
symbol.setDeclaration(ref);
}
}
}
}
/** Collects references to types in JSDocInfo. */
private class JSDocInfoCollector
extends NodeTraversal.AbstractPostOrderCallback {
private final JSTypeRegistry typeRegistry;
private JSDocInfoCollector(JSTypeRegistry registry) {
this.typeRegistry = registry;
}
@Override public void visit(NodeTraversal t, Node n, Node parent) {
if (n.getJSDocInfo() != null) {
// Find references in the JSDocInfo.
JSDocInfo info = n.getJSDocInfo();
docInfos.add(n);
for (Node typeAst : info.getTypeNodes()) {
SymbolScope scope = scopes.get(t.getScopeRoot());
visitTypeNode(
n,
info.getTemplateTypeNames(),
scope == null ? globalScope : scope,
typeAst);
}
}
}
private boolean isNativeSourcelessType(String name) {
switch (name) {
case "null":
case "undefined":
case "void":
return true;
default:
return false;
}
}
public void visitTypeNode(Node refNode, ImmutableList templateTypeNames,
SymbolScope scope, Node n) {
if (n.isString()
&& !isNativeSourcelessType(n.getString())
&& !templateTypeNames.contains(n.getString())) {
Symbol symbol = lookupPossiblyDottedName(scope, n.getString());
if (symbol != null) {
symbol.defineReferenceAt(n);
}
}
for (Node child = n.getFirstChild();
child != null; child = child.getNext()) {
visitTypeNode(refNode, templateTypeNames, scope, child);
}
}
// TODO(peterhal): @template types.
private Symbol lookupPossiblyDottedName(SymbolScope scope, String dottedName) {
// Try the dotted name to start.
String[] names = dottedName.split("\\.");
Symbol result = null;
SymbolScope currentScope = scope;
for (int i = 0; i < names.length; i++) {
String name = names[i];
result = currentScope.getSlot(name);
if (result == null) {
break;
}
if (i < (names.length - 1)) {
currentScope = result.getPropertyScope();
if (currentScope == null) {
result = null;
break;
}
}
}
if (result == null) {
// If we can't find this type, it might be a reference to a
// primitive type (like {string}). Autobox it to check.
// Alternatively it can be a type from externs.
JSType type = typeRegistry.getType(dottedName);
JSType autobox = type == null ? null : type.autoboxesTo();
result = autobox == null
? getSymbolForTypeHelper(type, true) : getSymbolForTypeHelper(autobox, true);
}
if (result == null) {
// dotted name might be a type/variable declared in externs. In that case look it up in
// global scope.
result = globalScope.getSlot(dottedName);
if (result != null && !result.getDeclarationNode().getStaticSourceFile().isExtern()) {
result = null;
}
}
return result;
}
}
/** Collects the visibility information for each name/property. */
private class VisibilityCollector
extends NodeTraversal.AbstractPostOrderCallback {
private final ImmutableMap fileVisibilityMap;
private final CodingConvention codingConvention;
private VisibilityCollector(
ImmutableMap fileVisibilityMap,
CodingConvention codingConvention) {
this.fileVisibilityMap = fileVisibilityMap;
this.codingConvention = codingConvention;
}
@Override public void visit(NodeTraversal t, Node n, Node parent) {
if (n.isName()) {
visitName(t, n);
} else if (n.isGetProp()) {
visitProperty(n, parent);
}
}
private void visitName(NodeTraversal t, Node n) {
Symbol symbol = symbols.get(n, n.getString());
if (symbol == null) {
return;
}
// Visibility already set.
if (symbol.getVisibility() != null) {
return;
}
Var var = t.getScope().getVar(n.getString());
if (var == null) {
return;
}
Visibility v = AccessControlUtils.getEffectiveNameVisibility(
n, var, fileVisibilityMap);
if (v == null) {
return;
}
symbol.setVisibility(v);
}
private void visitProperty(Node getprop, Node parent) {
String propertyName = getprop.getLastChild().getString();
Symbol symbol = symbols.get(getprop, propertyName);
if (symbol == null) {
return;
}
// Visibility already set.
if (symbol.getVisibility() != null) {
return;
}
JSType jsType = getprop.getFirstChild().getJSType();
if (jsType == null) {
return;
}
boolean isOverride = parent.getJSDocInfo() != null
&& parent.isAssign()
&& parent.getFirstChild() == getprop;
if (isOverride) {
// Don't bother with AccessControlUtils for overridden properties.
// AccessControlUtils currently has complicated logic for detecting
// visibility mismatches for overridden properties that is still
// too tightly coupled to CheckAccessControls. TODO(brndn): simplify.
symbol.setVisibility(Visibility.INHERITED);
} else {
ObjectType referenceType = ObjectType.cast(jsType.dereference());
Visibility v = AccessControlUtils.getEffectivePropertyVisibility(
getprop,
referenceType,
fileVisibilityMap,
codingConvention);
if (v == null) {
return;
}
symbol.setVisibility(v);
}
}
}
// Comparators
private final Ordering sourceNameOrdering =
Ordering.natural().nullsFirst();
private final Ordering nodeOrdering = new Ordering() {
@Override
public int compare(Node a, Node b) {
int result = sourceNameOrdering.compare(
a.getSourceFileName(), b.getSourceFileName());
if (result != 0) {
return result;
}
// Source position is a bit mask of line in the top 4 bits, so this
// is a quick way to compare order without computing absolute position.
return a.getSourcePosition() - b.getSourcePosition();
}
};
private final Ordering lexicalScopeOrdering =
new Ordering() {
@Override
public int compare(SymbolScope a, SymbolScope b) {
checkState(a.isLexicalScope() && b.isLexicalScope(), "We can only sort lexical scopes");
return nodeOrdering.compare(a.getRootNode(), b.getRootNode());
}
};
private final Ordering symbolOrdering = new Ordering() {
@Override
public int compare(Symbol a, Symbol b) {
SymbolScope scopeA = getScope(a);
SymbolScope scopeB = getScope(b);
// More deeply nested symbols should go later.
int result = getLexicalScopeDepth(scopeA) - getLexicalScopeDepth(scopeB);
if (result != 0) {
return result;
}
// After than, just use lexicographic ordering.
// This ensures "a.b" comes before "a.b.c".
return a.getName().compareTo(b.getName());
}
};
/**
* For a lexical scope, just returns the normal scope depth.
*
* For a property scope, returns the number of scopes we have to search
* to find the nearest lexical scope, plus that lexical scope's depth.
*
* For a doc info scope, returns 0.
*/
private int getLexicalScopeDepth(SymbolScope scope) {
if (scope.isLexicalScope() || scope.isDocScope()) {
return scope.getScopeDepth();
} else {
checkState(scope.isPropertyScope());
Symbol sym = scope.getSymbolForScope();
checkNotNull(sym);
return getLexicalScopeDepth(getScope(sym)) + 1;
}
}
private JSType getType(StaticSlot sym) {
if (sym instanceof StaticTypedSlot) {
return ((StaticTypedSlot) sym).getType();
}
return null;
}
private JSType getTypeOfThis(StaticScope s) {
if (s instanceof StaticTypedScope) {
return ((StaticTypedScope) s).getTypeOfThis();
}
return null;
}
private boolean isTypeInferred(StaticSlot sym) {
if (sym instanceof StaticTypedSlot) {
return ((StaticTypedSlot) sym).isTypeInferred();
}
return true;
}
}