All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.lucene.search.similarities.Axiomatic Maven / Gradle / Ivy

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.lucene.search.similarities;


import java.util.ArrayList;
import java.util.List;

import org.apache.lucene.search.Explanation;

/**
 * Axiomatic approaches for IR. From Hui Fang and Chengxiang Zhai
 * 2005. An Exploration of Axiomatic Approaches to Information Retrieval.
 * In Proceedings of the 28th annual international ACM SIGIR
 * conference on Research and development in information retrieval
 * (SIGIR '05). ACM, New York, NY, USA, 480-487.
 * 

* There are a family of models. All of them are based on BM25, * Pivoted Document Length Normalization and Language model with * Dirichlet prior. Some components (e.g. Term Frequency, * Inverted Document Frequency) in the original models are modified * so that they follow some axiomatic constraints. *

* * @lucene.experimental */ public abstract class Axiomatic extends SimilarityBase { /** * hyperparam for the growth function */ protected final float s; /** * hyperparam for the primitive weighthing function */ protected final float k; /** * the query length */ protected final int queryLen; /** * Constructor setting all Axiomatic hyperparameters * @param s hyperparam for the growth function * @param queryLen the query length * @param k hyperparam for the primitive weighting function */ public Axiomatic(float s, int queryLen, float k) { if (Float.isFinite(s) == false || Float.isNaN(s) || s < 0 || s > 1) { throw new IllegalArgumentException("illegal s value: " + s + ", must be between 0 and 1"); } if (Float.isFinite(k) == false || Float.isNaN(k) || k < 0 || k > 1) { throw new IllegalArgumentException("illegal k value: " + k + ", must be between 0 and 1"); } if (queryLen < 0 || queryLen > Integer.MAX_VALUE) { throw new IllegalArgumentException("illegal query length value: " + queryLen + ", must be larger 0 and smaller than MAX_INT"); } this.s = s; this.queryLen = queryLen; this.k = k; } /** * Constructor setting only s, letting k and queryLen to default * @param s hyperparam for the growth function */ public Axiomatic(float s) { this(s, 1, 0.35f); } /** * Constructor setting s and queryLen, letting k to default * @param s hyperparam for the growth function * @param queryLen the query length */ public Axiomatic(float s, int queryLen) { this(s, queryLen, 0.35f); } /** * Default constructor */ public Axiomatic() { this(0.25f, 1, 0.35f); } @Override public double score(BasicStats stats, double freq, double docLen) { double score = tf(stats, freq, docLen) * ln(stats, freq, docLen) * tfln(stats, freq, docLen) * idf(stats, freq, docLen) - gamma(stats, freq, docLen); score *= stats.boost; // AxiomaticF3 similarities might produce negative scores due to their gamma component return Math.max(0, score); } @Override protected Explanation explain( BasicStats stats, Explanation freq, double docLen) { List subs = new ArrayList<>(); double f = freq.getValue().doubleValue(); explain(subs, stats, f, docLen); double score = tf(stats, f, docLen) * ln(stats, f, docLen) * tfln(stats, f, docLen) * idf(stats, f, docLen) - gamma(stats, f, docLen); Explanation explanation = Explanation.match((float) score, "score(" + getClass().getSimpleName() + ", freq=" + freq.getValue() +"), computed from:", subs); if (stats.boost != 1f) { explanation = Explanation.match((float) (score * stats.boost), "Boosted score, computed as (score * boost) from:", explanation, Explanation.match((float) stats.boost, "Query boost")); } if (score < 0) { explanation = Explanation.match(0, "max of:", Explanation.match(0, "Minimum legal score"), explanation); } return explanation; } @Override protected void explain(List subs, BasicStats stats, double freq, double docLen) { if (stats.getBoost() != 1.0d) { subs.add(Explanation.match((float) stats.getBoost(), "boost, query boost")); } subs.add(Explanation.match(this.k, "k, hyperparam for the primitive weighting function")); subs.add(Explanation.match(this.s, "s, hyperparam for the growth function")); subs.add(Explanation.match(this.queryLen, "queryLen, query length")); subs.add(tfExplain(stats, freq, docLen)); subs.add(lnExplain(stats, freq, docLen)); subs.add(tflnExplain(stats, freq, docLen)); subs.add(idfExplain(stats, freq, docLen)); subs.add(Explanation.match((float) gamma(stats, freq, docLen), "gamma")); super.explain(subs, stats, freq, docLen); } /** * Name of the axiomatic method. */ @Override public abstract String toString(); /** * compute the term frequency component */ protected abstract double tf(BasicStats stats, double freq, double docLen); /** * compute the document length component */ protected abstract double ln(BasicStats stats, double freq, double docLen); /** * compute the mixed term frequency and document length component */ protected abstract double tfln(BasicStats stats, double freq, double docLen); /** * compute the inverted document frequency component */ protected abstract double idf(BasicStats stats, double freq, double docLen); /** * compute the gamma component (only for F3EXp and F3LOG) */ protected abstract double gamma(BasicStats stats, double freq, double docLen); /** * Explain the score of the term frequency component for a single document * @param stats the corpus level statistics * @param freq number of occurrences of term in the document * @param docLen the document length * @return Explanation of how the tf component was computed */ protected abstract Explanation tfExplain(BasicStats stats, double freq, double docLen); /** * Explain the score of the document length component for a single document * @param stats the corpus level statistics * @param freq number of occurrences of term in the document * @param docLen the document length * @return Explanation of how the ln component was computed */ protected abstract Explanation lnExplain(BasicStats stats, double freq, double docLen); /** * Explain the score of the mixed term frequency and * document length component for a single document * @param stats the corpus level statistics * @param freq number of occurrences of term in the document * @param docLen the document length * @return Explanation of how the tfln component was computed */ protected abstract Explanation tflnExplain(BasicStats stats, double freq, double docLen); /** * Explain the score of the inverted document frequency component * for a single document * @param stats the corpus level statistics * @param freq number of occurrences of term in the document * @param docLen the document length * @return Explanation of how the idf component was computed */ protected abstract Explanation idfExplain(BasicStats stats, double freq, double docLen); }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy